kern_lwp.c revision 1.101.2.2 1 /* $NetBSD: kern_lwp.c,v 1.101.2.2 2008/06/04 02:05:39 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 * then the LWP is not on a run queue, but may be soon.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is: a) about to switch away into oblivion b) has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > STOPPED > SLEEP
125 * > SUSPENDED > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > SUSPENDED
136 *
137 * Other state transitions are possible with kernel threads (eg
138 * ONPROC -> IDL), but only happen under tightly controlled
139 * circumstances the side effects are understood.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * Note that an LWP is considered running or likely to run soon if in
200 * one of the following states. This affects the value of p_nrlwps:
201 *
202 * LSRUN, LSONPROC, LSSLEEP
203 *
204 * p_lock does not need to be held when transitioning among these
205 * three states.
206 */
207
208 #include <sys/cdefs.h>
209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.101.2.2 2008/06/04 02:05:39 yamt Exp $");
210
211 #include "opt_ddb.h"
212 #include "opt_lockdebug.h"
213
214 #define _LWP_API_PRIVATE
215
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/syscallargs.h>
222 #include <sys/syscall_stats.h>
223 #include <sys/kauth.h>
224 #include <sys/sleepq.h>
225 #include <sys/user.h>
226 #include <sys/lockdebug.h>
227 #include <sys/kmem.h>
228 #include <sys/pset.h>
229 #include <sys/intr.h>
230 #include <sys/lwpctl.h>
231 #include <sys/atomic.h>
232
233 #include <uvm/uvm_extern.h>
234 #include <uvm/uvm_object.h>
235
236 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
237
238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
239 &pool_allocator_nointr, IPL_NONE);
240
241 static pool_cache_t lwp_cache;
242 static specificdata_domain_t lwp_specificdata_domain;
243
244 void
245 lwpinit(void)
246 {
247
248 lwp_specificdata_domain = specificdata_domain_create();
249 KASSERT(lwp_specificdata_domain != NULL);
250 lwp_sys_init();
251 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
252 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
253 }
254
255 /*
256 * Set an suspended.
257 *
258 * Must be called with p_lock held, and the LWP locked. Will unlock the
259 * LWP before return.
260 */
261 int
262 lwp_suspend(struct lwp *curl, struct lwp *t)
263 {
264 int error;
265
266 KASSERT(mutex_owned(t->l_proc->p_lock));
267 KASSERT(lwp_locked(t, NULL));
268
269 KASSERT(curl != t || curl->l_stat == LSONPROC);
270
271 /*
272 * If the current LWP has been told to exit, we must not suspend anyone
273 * else or deadlock could occur. We won't return to userspace.
274 */
275 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
276 lwp_unlock(t);
277 return (EDEADLK);
278 }
279
280 error = 0;
281
282 switch (t->l_stat) {
283 case LSRUN:
284 case LSONPROC:
285 t->l_flag |= LW_WSUSPEND;
286 lwp_need_userret(t);
287 lwp_unlock(t);
288 break;
289
290 case LSSLEEP:
291 t->l_flag |= LW_WSUSPEND;
292
293 /*
294 * Kick the LWP and try to get it to the kernel boundary
295 * so that it will release any locks that it holds.
296 * setrunnable() will release the lock.
297 */
298 if ((t->l_flag & LW_SINTR) != 0)
299 setrunnable(t);
300 else
301 lwp_unlock(t);
302 break;
303
304 case LSSUSPENDED:
305 lwp_unlock(t);
306 break;
307
308 case LSSTOP:
309 t->l_flag |= LW_WSUSPEND;
310 setrunnable(t);
311 break;
312
313 case LSIDL:
314 case LSZOMB:
315 error = EINTR; /* It's what Solaris does..... */
316 lwp_unlock(t);
317 break;
318 }
319
320 return (error);
321 }
322
323 /*
324 * Restart a suspended LWP.
325 *
326 * Must be called with p_lock held, and the LWP locked. Will unlock the
327 * LWP before return.
328 */
329 void
330 lwp_continue(struct lwp *l)
331 {
332
333 KASSERT(mutex_owned(l->l_proc->p_lock));
334 KASSERT(lwp_locked(l, NULL));
335
336 /* If rebooting or not suspended, then just bail out. */
337 if ((l->l_flag & LW_WREBOOT) != 0) {
338 lwp_unlock(l);
339 return;
340 }
341
342 l->l_flag &= ~LW_WSUSPEND;
343
344 if (l->l_stat != LSSUSPENDED) {
345 lwp_unlock(l);
346 return;
347 }
348
349 /* setrunnable() will release the lock. */
350 setrunnable(l);
351 }
352
353 /*
354 * Wait for an LWP within the current process to exit. If 'lid' is
355 * non-zero, we are waiting for a specific LWP.
356 *
357 * Must be called with p->p_lock held.
358 */
359 int
360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
361 {
362 struct proc *p = l->l_proc;
363 struct lwp *l2;
364 int nfound, error;
365 lwpid_t curlid;
366 bool exiting;
367
368 KASSERT(mutex_owned(p->p_lock));
369
370 p->p_nlwpwait++;
371 l->l_waitingfor = lid;
372 curlid = l->l_lid;
373 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
374
375 for (;;) {
376 /*
377 * Avoid a race between exit1() and sigexit(): if the
378 * process is dumping core, then we need to bail out: call
379 * into lwp_userret() where we will be suspended until the
380 * deed is done.
381 */
382 if ((p->p_sflag & PS_WCORE) != 0) {
383 mutex_exit(p->p_lock);
384 lwp_userret(l);
385 #ifdef DIAGNOSTIC
386 panic("lwp_wait1");
387 #endif
388 /* NOTREACHED */
389 }
390
391 /*
392 * First off, drain any detached LWP that is waiting to be
393 * reaped.
394 */
395 while ((l2 = p->p_zomblwp) != NULL) {
396 p->p_zomblwp = NULL;
397 lwp_free(l2, false, false);/* releases proc mutex */
398 mutex_enter(p->p_lock);
399 }
400
401 /*
402 * Now look for an LWP to collect. If the whole process is
403 * exiting, count detached LWPs as eligible to be collected,
404 * but don't drain them here.
405 */
406 nfound = 0;
407 error = 0;
408 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
409 /*
410 * If a specific wait and the target is waiting on
411 * us, then avoid deadlock. This also traps LWPs
412 * that try to wait on themselves.
413 *
414 * Note that this does not handle more complicated
415 * cycles, like: t1 -> t2 -> t3 -> t1. The process
416 * can still be killed so it is not a major problem.
417 */
418 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
419 error = EDEADLK;
420 break;
421 }
422 if (l2 == l)
423 continue;
424 if ((l2->l_prflag & LPR_DETACHED) != 0) {
425 nfound += exiting;
426 continue;
427 }
428 if (lid != 0) {
429 if (l2->l_lid != lid)
430 continue;
431 /*
432 * Mark this LWP as the first waiter, if there
433 * is no other.
434 */
435 if (l2->l_waiter == 0)
436 l2->l_waiter = curlid;
437 } else if (l2->l_waiter != 0) {
438 /*
439 * It already has a waiter - so don't
440 * collect it. If the waiter doesn't
441 * grab it we'll get another chance
442 * later.
443 */
444 nfound++;
445 continue;
446 }
447 nfound++;
448
449 /* No need to lock the LWP in order to see LSZOMB. */
450 if (l2->l_stat != LSZOMB)
451 continue;
452
453 /*
454 * We're no longer waiting. Reset the "first waiter"
455 * pointer on the target, in case it was us.
456 */
457 l->l_waitingfor = 0;
458 l2->l_waiter = 0;
459 p->p_nlwpwait--;
460 if (departed)
461 *departed = l2->l_lid;
462 sched_lwp_collect(l2);
463
464 /* lwp_free() releases the proc lock. */
465 lwp_free(l2, false, false);
466 mutex_enter(p->p_lock);
467 return 0;
468 }
469
470 if (error != 0)
471 break;
472 if (nfound == 0) {
473 error = ESRCH;
474 break;
475 }
476
477 /*
478 * The kernel is careful to ensure that it can not deadlock
479 * when exiting - just keep waiting.
480 */
481 if (exiting) {
482 KASSERT(p->p_nlwps > 1);
483 cv_wait(&p->p_lwpcv, p->p_lock);
484 continue;
485 }
486
487 /*
488 * If all other LWPs are waiting for exits or suspends
489 * and the supply of zombies and potential zombies is
490 * exhausted, then we are about to deadlock.
491 *
492 * If the process is exiting (and this LWP is not the one
493 * that is coordinating the exit) then bail out now.
494 */
495 if ((p->p_sflag & PS_WEXIT) != 0 ||
496 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
497 error = EDEADLK;
498 break;
499 }
500
501 /*
502 * Sit around and wait for something to happen. We'll be
503 * awoken if any of the conditions examined change: if an
504 * LWP exits, is collected, or is detached.
505 */
506 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
507 break;
508 }
509
510 /*
511 * We didn't find any LWPs to collect, we may have received a
512 * signal, or some other condition has caused us to bail out.
513 *
514 * If waiting on a specific LWP, clear the waiters marker: some
515 * other LWP may want it. Then, kick all the remaining waiters
516 * so that they can re-check for zombies and for deadlock.
517 */
518 if (lid != 0) {
519 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
520 if (l2->l_lid == lid) {
521 if (l2->l_waiter == curlid)
522 l2->l_waiter = 0;
523 break;
524 }
525 }
526 }
527 p->p_nlwpwait--;
528 l->l_waitingfor = 0;
529 cv_broadcast(&p->p_lwpcv);
530
531 return error;
532 }
533
534 /*
535 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
536 * The new LWP is created in state LSIDL and must be set running,
537 * suspended, or stopped by the caller.
538 */
539 int
540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
541 void *stack, size_t stacksize, void (*func)(void *), void *arg,
542 lwp_t **rnewlwpp, int sclass)
543 {
544 struct lwp *l2, *isfree;
545 turnstile_t *ts;
546
547 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
548
549 /*
550 * First off, reap any detached LWP waiting to be collected.
551 * We can re-use its LWP structure and turnstile.
552 */
553 isfree = NULL;
554 if (p2->p_zomblwp != NULL) {
555 mutex_enter(p2->p_lock);
556 if ((isfree = p2->p_zomblwp) != NULL) {
557 p2->p_zomblwp = NULL;
558 lwp_free(isfree, true, false);/* releases proc mutex */
559 } else
560 mutex_exit(p2->p_lock);
561 }
562 if (isfree == NULL) {
563 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
564 memset(l2, 0, sizeof(*l2));
565 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
566 SLIST_INIT(&l2->l_pi_lenders);
567 } else {
568 l2 = isfree;
569 ts = l2->l_ts;
570 KASSERT(l2->l_inheritedprio == -1);
571 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
572 memset(l2, 0, sizeof(*l2));
573 l2->l_ts = ts;
574 }
575
576 l2->l_stat = LSIDL;
577 l2->l_proc = p2;
578 l2->l_refcnt = 1;
579 l2->l_class = sclass;
580
581 /*
582 * If vfork(), we want the LWP to run fast and on the same CPU
583 * as its parent, so that it can reuse the VM context and cache
584 * footprint on the local CPU.
585 */
586 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
587 l2->l_kpribase = PRI_KERNEL;
588 l2->l_priority = l1->l_priority;
589 l2->l_inheritedprio = -1;
590 l2->l_flag = inmem ? LW_INMEM : 0;
591 l2->l_pflag = LP_MPSAFE;
592 l2->l_fd = p2->p_fd;
593 TAILQ_INIT(&l2->l_ld_locks);
594
595 if (p2->p_flag & PK_SYSTEM) {
596 /* Mark it as a system LWP and not a candidate for swapping */
597 l2->l_flag |= LW_SYSTEM;
598 }
599
600 kpreempt_disable();
601 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
602 l2->l_cpu = l1->l_cpu;
603 kpreempt_enable();
604
605 lwp_initspecific(l2);
606 sched_lwp_fork(l1, l2);
607 lwp_update_creds(l2);
608 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
609 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
610 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
611 cv_init(&l2->l_sigcv, "sigwait");
612 l2->l_syncobj = &sched_syncobj;
613
614 if (rnewlwpp != NULL)
615 *rnewlwpp = l2;
616
617 l2->l_addr = UAREA_TO_USER(uaddr);
618 uvm_lwp_fork(l1, l2, stack, stacksize, func,
619 (arg != NULL) ? arg : l2);
620
621 mutex_enter(p2->p_lock);
622
623 if ((flags & LWP_DETACHED) != 0) {
624 l2->l_prflag = LPR_DETACHED;
625 p2->p_ndlwps++;
626 } else
627 l2->l_prflag = 0;
628
629 l2->l_sigmask = l1->l_sigmask;
630 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
631 sigemptyset(&l2->l_sigpend.sp_set);
632
633 p2->p_nlwpid++;
634 if (p2->p_nlwpid == 0)
635 p2->p_nlwpid++;
636 l2->l_lid = p2->p_nlwpid;
637 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
638 p2->p_nlwps++;
639
640 mutex_exit(p2->p_lock);
641
642 mutex_enter(proc_lock);
643 LIST_INSERT_HEAD(&alllwp, l2, l_list);
644 mutex_exit(proc_lock);
645
646 if ((p2->p_flag & PK_SYSTEM) == 0) {
647 /* Locking is needed, since LWP is in the list of all LWPs */
648 lwp_lock(l2);
649 /* Inherit a processor-set */
650 l2->l_psid = l1->l_psid;
651 /* Inherit an affinity */
652 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
653 /* Look for a CPU to start */
654 l2->l_cpu = sched_takecpu(l2);
655 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
656 }
657
658 SYSCALL_TIME_LWP_INIT(l2);
659
660 if (p2->p_emul->e_lwp_fork)
661 (*p2->p_emul->e_lwp_fork)(l1, l2);
662
663 return (0);
664 }
665
666 /*
667 * Called by MD code when a new LWP begins execution. Must be called
668 * with the previous LWP locked (so at splsched), or if there is no
669 * previous LWP, at splsched.
670 */
671 void
672 lwp_startup(struct lwp *prev, struct lwp *new)
673 {
674
675 KASSERT(kpreempt_disabled());
676 if (prev != NULL) {
677 /*
678 * Normalize the count of the spin-mutexes, it was
679 * increased in mi_switch(). Unmark the state of
680 * context switch - it is finished for previous LWP.
681 */
682 curcpu()->ci_mtx_count++;
683 membar_exit();
684 prev->l_ctxswtch = 0;
685 }
686 KPREEMPT_DISABLE(new);
687 spl0();
688 pmap_activate(new);
689 LOCKDEBUG_BARRIER(NULL, 0);
690 KPREEMPT_ENABLE(new);
691 if ((new->l_pflag & LP_MPSAFE) == 0) {
692 KERNEL_LOCK(1, new);
693 }
694 }
695
696 /*
697 * Exit an LWP.
698 */
699 void
700 lwp_exit(struct lwp *l)
701 {
702 struct proc *p = l->l_proc;
703 struct lwp *l2;
704 bool current;
705
706 current = (l == curlwp);
707
708 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
709
710 /*
711 * Verify that we hold no locks other than the kernel lock.
712 */
713 LOCKDEBUG_BARRIER(&kernel_lock, 0);
714
715 /*
716 * If we are the last live LWP in a process, we need to exit the
717 * entire process. We do so with an exit status of zero, because
718 * it's a "controlled" exit, and because that's what Solaris does.
719 *
720 * We are not quite a zombie yet, but for accounting purposes we
721 * must increment the count of zombies here.
722 *
723 * Note: the last LWP's specificdata will be deleted here.
724 */
725 mutex_enter(p->p_lock);
726 if (p->p_nlwps - p->p_nzlwps == 1) {
727 KASSERT(current == true);
728 /* XXXSMP kernel_lock not held */
729 exit1(l, 0);
730 /* NOTREACHED */
731 }
732 p->p_nzlwps++;
733 mutex_exit(p->p_lock);
734
735 if (p->p_emul->e_lwp_exit)
736 (*p->p_emul->e_lwp_exit)(l);
737
738 /* Delete the specificdata while it's still safe to sleep. */
739 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
740
741 /*
742 * Release our cached credentials.
743 */
744 kauth_cred_free(l->l_cred);
745 callout_destroy(&l->l_timeout_ch);
746
747 /*
748 * While we can still block, mark the LWP as unswappable to
749 * prevent conflicts with the with the swapper.
750 */
751 if (current)
752 uvm_lwp_hold(l);
753
754 /*
755 * Remove the LWP from the global list.
756 */
757 mutex_enter(proc_lock);
758 LIST_REMOVE(l, l_list);
759 mutex_exit(proc_lock);
760
761 /*
762 * Get rid of all references to the LWP that others (e.g. procfs)
763 * may have, and mark the LWP as a zombie. If the LWP is detached,
764 * mark it waiting for collection in the proc structure. Note that
765 * before we can do that, we need to free any other dead, deatched
766 * LWP waiting to meet its maker.
767 */
768 mutex_enter(p->p_lock);
769 lwp_drainrefs(l);
770
771 if ((l->l_prflag & LPR_DETACHED) != 0) {
772 while ((l2 = p->p_zomblwp) != NULL) {
773 p->p_zomblwp = NULL;
774 lwp_free(l2, false, false);/* releases proc mutex */
775 mutex_enter(p->p_lock);
776 l->l_refcnt++;
777 lwp_drainrefs(l);
778 }
779 p->p_zomblwp = l;
780 }
781
782 /*
783 * If we find a pending signal for the process and we have been
784 * asked to check for signals, then we loose: arrange to have
785 * all other LWPs in the process check for signals.
786 */
787 if ((l->l_flag & LW_PENDSIG) != 0 &&
788 firstsig(&p->p_sigpend.sp_set) != 0) {
789 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
790 lwp_lock(l2);
791 l2->l_flag |= LW_PENDSIG;
792 lwp_unlock(l2);
793 }
794 }
795
796 lwp_lock(l);
797 l->l_stat = LSZOMB;
798 if (l->l_name != NULL)
799 strcpy(l->l_name, "(zombie)");
800 lwp_unlock(l);
801 p->p_nrlwps--;
802 cv_broadcast(&p->p_lwpcv);
803 if (l->l_lwpctl != NULL)
804 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
805 mutex_exit(p->p_lock);
806
807 /*
808 * We can no longer block. At this point, lwp_free() may already
809 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
810 *
811 * Free MD LWP resources.
812 */
813 #ifndef __NO_CPU_LWP_FREE
814 cpu_lwp_free(l, 0);
815 #endif
816
817 if (current) {
818 pmap_deactivate(l);
819
820 /*
821 * Release the kernel lock, and switch away into
822 * oblivion.
823 */
824 #ifdef notyet
825 /* XXXSMP hold in lwp_userret() */
826 KERNEL_UNLOCK_LAST(l);
827 #else
828 KERNEL_UNLOCK_ALL(l, NULL);
829 #endif
830 lwp_exit_switchaway(l);
831 }
832 }
833
834 /*
835 * Free a dead LWP's remaining resources.
836 *
837 * XXXLWP limits.
838 */
839 void
840 lwp_free(struct lwp *l, bool recycle, bool last)
841 {
842 struct proc *p = l->l_proc;
843 struct rusage *ru;
844 ksiginfoq_t kq;
845
846 KASSERT(l != curlwp);
847
848 /*
849 * If this was not the last LWP in the process, then adjust
850 * counters and unlock.
851 */
852 if (!last) {
853 /*
854 * Add the LWP's run time to the process' base value.
855 * This needs to co-incide with coming off p_lwps.
856 */
857 bintime_add(&p->p_rtime, &l->l_rtime);
858 p->p_pctcpu += l->l_pctcpu;
859 ru = &p->p_stats->p_ru;
860 ruadd(ru, &l->l_ru);
861 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
862 ru->ru_nivcsw += l->l_nivcsw;
863 LIST_REMOVE(l, l_sibling);
864 p->p_nlwps--;
865 p->p_nzlwps--;
866 if ((l->l_prflag & LPR_DETACHED) != 0)
867 p->p_ndlwps--;
868
869 /*
870 * Have any LWPs sleeping in lwp_wait() recheck for
871 * deadlock.
872 */
873 cv_broadcast(&p->p_lwpcv);
874 mutex_exit(p->p_lock);
875 }
876
877 #ifdef MULTIPROCESSOR
878 /*
879 * In the unlikely event that the LWP is still on the CPU,
880 * then spin until it has switched away. We need to release
881 * all locks to avoid deadlock against interrupt handlers on
882 * the target CPU.
883 */
884 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
885 int count;
886 (void)count; /* XXXgcc */
887 KERNEL_UNLOCK_ALL(curlwp, &count);
888 while ((l->l_pflag & LP_RUNNING) != 0 ||
889 l->l_cpu->ci_curlwp == l)
890 SPINLOCK_BACKOFF_HOOK;
891 KERNEL_LOCK(count, curlwp);
892 }
893 #endif
894
895 /*
896 * Destroy the LWP's remaining signal information.
897 */
898 ksiginfo_queue_init(&kq);
899 sigclear(&l->l_sigpend, NULL, &kq);
900 ksiginfo_queue_drain(&kq);
901 cv_destroy(&l->l_sigcv);
902 mutex_destroy(&l->l_swaplock);
903
904 /*
905 * Free the LWP's turnstile and the LWP structure itself unless the
906 * caller wants to recycle them. Also, free the scheduler specific
907 * data.
908 *
909 * We can't return turnstile0 to the pool (it didn't come from it),
910 * so if it comes up just drop it quietly and move on.
911 *
912 * We don't recycle the VM resources at this time.
913 */
914 if (l->l_lwpctl != NULL)
915 lwp_ctl_free(l);
916 sched_lwp_exit(l);
917
918 if (!recycle && l->l_ts != &turnstile0)
919 pool_cache_put(turnstile_cache, l->l_ts);
920 if (l->l_name != NULL)
921 kmem_free(l->l_name, MAXCOMLEN);
922 #ifndef __NO_CPU_LWP_FREE
923 cpu_lwp_free2(l);
924 #endif
925 KASSERT((l->l_flag & LW_INMEM) != 0);
926 uvm_lwp_exit(l);
927 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
928 KASSERT(l->l_inheritedprio == -1);
929 if (!recycle)
930 pool_cache_put(lwp_cache, l);
931 }
932
933 /*
934 * Pick a LWP to represent the process for those operations which
935 * want information about a "process" that is actually associated
936 * with a LWP.
937 *
938 * If 'locking' is false, no locking or lock checks are performed.
939 * This is intended for use by DDB.
940 *
941 * We don't bother locking the LWP here, since code that uses this
942 * interface is broken by design and an exact match is not required.
943 */
944 struct lwp *
945 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
946 {
947 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
948 struct lwp *signalled;
949 int cnt;
950
951 if (locking) {
952 KASSERT(mutex_owned(p->p_lock));
953 }
954
955 /* Trivial case: only one LWP */
956 if (p->p_nlwps == 1) {
957 l = LIST_FIRST(&p->p_lwps);
958 if (nrlwps)
959 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
960 return l;
961 }
962
963 cnt = 0;
964 switch (p->p_stat) {
965 case SSTOP:
966 case SACTIVE:
967 /* Pick the most live LWP */
968 onproc = running = sleeping = stopped = suspended = NULL;
969 signalled = NULL;
970 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
971 if ((l->l_flag & LW_IDLE) != 0) {
972 continue;
973 }
974 if (l->l_lid == p->p_sigctx.ps_lwp)
975 signalled = l;
976 switch (l->l_stat) {
977 case LSONPROC:
978 onproc = l;
979 cnt++;
980 break;
981 case LSRUN:
982 running = l;
983 cnt++;
984 break;
985 case LSSLEEP:
986 sleeping = l;
987 break;
988 case LSSTOP:
989 stopped = l;
990 break;
991 case LSSUSPENDED:
992 suspended = l;
993 break;
994 }
995 }
996 if (nrlwps)
997 *nrlwps = cnt;
998 if (signalled)
999 l = signalled;
1000 else if (onproc)
1001 l = onproc;
1002 else if (running)
1003 l = running;
1004 else if (sleeping)
1005 l = sleeping;
1006 else if (stopped)
1007 l = stopped;
1008 else if (suspended)
1009 l = suspended;
1010 else
1011 break;
1012 return l;
1013 #ifdef DIAGNOSTIC
1014 case SIDL:
1015 case SZOMB:
1016 case SDYING:
1017 case SDEAD:
1018 if (locking)
1019 mutex_exit(p->p_lock);
1020 /* We have more than one LWP and we're in SIDL?
1021 * How'd that happen?
1022 */
1023 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1024 p->p_pid, p->p_comm, p->p_stat);
1025 break;
1026 default:
1027 if (locking)
1028 mutex_exit(p->p_lock);
1029 panic("Process %d (%s) in unknown state %d",
1030 p->p_pid, p->p_comm, p->p_stat);
1031 #endif
1032 }
1033
1034 if (locking)
1035 mutex_exit(p->p_lock);
1036 panic("proc_representative_lwp: couldn't find a lwp for process"
1037 " %d (%s)", p->p_pid, p->p_comm);
1038 /* NOTREACHED */
1039 return NULL;
1040 }
1041
1042 /*
1043 * Migrate the LWP to the another CPU. Unlocks the LWP.
1044 */
1045 void
1046 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1047 {
1048 struct schedstate_percpu *tspc;
1049 KASSERT(lwp_locked(l, NULL));
1050 KASSERT(tci != NULL);
1051
1052 /*
1053 * If LWP is still on the CPU, it must be handled like on LSONPROC.
1054 * The destination CPU could be changed while previous migration
1055 * was not finished.
1056 */
1057 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_target_cpu != NULL) {
1058 l->l_target_cpu = tci;
1059 lwp_unlock(l);
1060 return;
1061 }
1062
1063 /* Nothing to do if trying to migrate to the same CPU */
1064 if (l->l_cpu == tci) {
1065 lwp_unlock(l);
1066 return;
1067 }
1068
1069 KASSERT(l->l_target_cpu == NULL);
1070 tspc = &tci->ci_schedstate;
1071 switch (l->l_stat) {
1072 case LSRUN:
1073 if (l->l_flag & LW_INMEM) {
1074 l->l_target_cpu = tci;
1075 lwp_unlock(l);
1076 return;
1077 }
1078 case LSIDL:
1079 l->l_cpu = tci;
1080 lwp_unlock_to(l, tspc->spc_mutex);
1081 return;
1082 case LSSLEEP:
1083 l->l_cpu = tci;
1084 break;
1085 case LSSTOP:
1086 case LSSUSPENDED:
1087 l->l_cpu = tci;
1088 if (l->l_wchan == NULL) {
1089 lwp_unlock_to(l, tspc->spc_lwplock);
1090 return;
1091 }
1092 break;
1093 case LSONPROC:
1094 l->l_target_cpu = tci;
1095 spc_lock(l->l_cpu);
1096 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1097 spc_unlock(l->l_cpu);
1098 break;
1099 }
1100 lwp_unlock(l);
1101 }
1102
1103 /*
1104 * Find the LWP in the process. Arguments may be zero, in such case,
1105 * the calling process and first LWP in the list will be used.
1106 * On success - returns proc locked.
1107 */
1108 struct lwp *
1109 lwp_find2(pid_t pid, lwpid_t lid)
1110 {
1111 proc_t *p;
1112 lwp_t *l;
1113
1114 /* Find the process */
1115 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1116 if (p == NULL)
1117 return NULL;
1118 mutex_enter(p->p_lock);
1119 if (pid != 0) {
1120 /* Case of p_find */
1121 mutex_exit(proc_lock);
1122 }
1123
1124 /* Find the thread */
1125 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1126 if (l == NULL) {
1127 mutex_exit(p->p_lock);
1128 }
1129
1130 return l;
1131 }
1132
1133 /*
1134 * Look up a live LWP within the speicifed process, and return it locked.
1135 *
1136 * Must be called with p->p_lock held.
1137 */
1138 struct lwp *
1139 lwp_find(struct proc *p, int id)
1140 {
1141 struct lwp *l;
1142
1143 KASSERT(mutex_owned(p->p_lock));
1144
1145 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1146 if (l->l_lid == id)
1147 break;
1148 }
1149
1150 /*
1151 * No need to lock - all of these conditions will
1152 * be visible with the process level mutex held.
1153 */
1154 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1155 l = NULL;
1156
1157 return l;
1158 }
1159
1160 /*
1161 * Update an LWP's cached credentials to mirror the process' master copy.
1162 *
1163 * This happens early in the syscall path, on user trap, and on LWP
1164 * creation. A long-running LWP can also voluntarily choose to update
1165 * it's credentials by calling this routine. This may be called from
1166 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1167 */
1168 void
1169 lwp_update_creds(struct lwp *l)
1170 {
1171 kauth_cred_t oc;
1172 struct proc *p;
1173
1174 p = l->l_proc;
1175 oc = l->l_cred;
1176
1177 mutex_enter(p->p_lock);
1178 kauth_cred_hold(p->p_cred);
1179 l->l_cred = p->p_cred;
1180 l->l_prflag &= ~LPR_CRMOD;
1181 mutex_exit(p->p_lock);
1182 if (oc != NULL)
1183 kauth_cred_free(oc);
1184 }
1185
1186 /*
1187 * Verify that an LWP is locked, and optionally verify that the lock matches
1188 * one we specify.
1189 */
1190 int
1191 lwp_locked(struct lwp *l, kmutex_t *mtx)
1192 {
1193 kmutex_t *cur = l->l_mutex;
1194
1195 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1196 }
1197
1198 /*
1199 * Lock an LWP.
1200 */
1201 void
1202 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1203 {
1204
1205 /*
1206 * XXXgcc ignoring kmutex_t * volatile on i386
1207 *
1208 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1209 */
1210 #if 1
1211 while (l->l_mutex != old) {
1212 #else
1213 for (;;) {
1214 #endif
1215 mutex_spin_exit(old);
1216 old = l->l_mutex;
1217 mutex_spin_enter(old);
1218
1219 /*
1220 * mutex_enter() will have posted a read barrier. Re-test
1221 * l->l_mutex. If it has changed, we need to try again.
1222 */
1223 #if 1
1224 }
1225 #else
1226 } while (__predict_false(l->l_mutex != old));
1227 #endif
1228 }
1229
1230 /*
1231 * Lend a new mutex to an LWP. The old mutex must be held.
1232 */
1233 void
1234 lwp_setlock(struct lwp *l, kmutex_t *new)
1235 {
1236
1237 KASSERT(mutex_owned(l->l_mutex));
1238
1239 membar_exit();
1240 l->l_mutex = new;
1241 }
1242
1243 /*
1244 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1245 * must be held.
1246 */
1247 void
1248 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1249 {
1250 kmutex_t *old;
1251
1252 KASSERT(mutex_owned(l->l_mutex));
1253
1254 old = l->l_mutex;
1255 membar_exit();
1256 l->l_mutex = new;
1257 mutex_spin_exit(old);
1258 }
1259
1260 /*
1261 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1262 * locked.
1263 */
1264 void
1265 lwp_relock(struct lwp *l, kmutex_t *new)
1266 {
1267 kmutex_t *old;
1268
1269 KASSERT(mutex_owned(l->l_mutex));
1270
1271 old = l->l_mutex;
1272 if (old != new) {
1273 mutex_spin_enter(new);
1274 l->l_mutex = new;
1275 mutex_spin_exit(old);
1276 }
1277 }
1278
1279 int
1280 lwp_trylock(struct lwp *l)
1281 {
1282 kmutex_t *old;
1283
1284 for (;;) {
1285 if (!mutex_tryenter(old = l->l_mutex))
1286 return 0;
1287 if (__predict_true(l->l_mutex == old))
1288 return 1;
1289 mutex_spin_exit(old);
1290 }
1291 }
1292
1293 u_int
1294 lwp_unsleep(lwp_t *l, bool cleanup)
1295 {
1296
1297 KASSERT(mutex_owned(l->l_mutex));
1298
1299 return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1300 }
1301
1302
1303 /*
1304 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1305 * set.
1306 */
1307 void
1308 lwp_userret(struct lwp *l)
1309 {
1310 struct proc *p;
1311 void (*hook)(void);
1312 int sig;
1313
1314 KASSERT(l == curlwp);
1315 KASSERT(l->l_stat == LSONPROC);
1316 p = l->l_proc;
1317
1318 #ifndef __HAVE_FAST_SOFTINTS
1319 /* Run pending soft interrupts. */
1320 if (l->l_cpu->ci_data.cpu_softints != 0)
1321 softint_overlay();
1322 #endif
1323
1324 /*
1325 * It should be safe to do this read unlocked on a multiprocessor
1326 * system..
1327 */
1328 while ((l->l_flag & LW_USERRET) != 0) {
1329 /*
1330 * Process pending signals first, unless the process
1331 * is dumping core or exiting, where we will instead
1332 * enter the LW_WSUSPEND case below.
1333 */
1334 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1335 LW_PENDSIG) {
1336 mutex_enter(p->p_lock);
1337 while ((sig = issignal(l)) != 0)
1338 postsig(sig);
1339 mutex_exit(p->p_lock);
1340 }
1341
1342 /*
1343 * Core-dump or suspend pending.
1344 *
1345 * In case of core dump, suspend ourselves, so that the
1346 * kernel stack and therefore the userland registers saved
1347 * in the trapframe are around for coredump() to write them
1348 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1349 * will write the core file out once all other LWPs are
1350 * suspended.
1351 */
1352 if ((l->l_flag & LW_WSUSPEND) != 0) {
1353 mutex_enter(p->p_lock);
1354 p->p_nrlwps--;
1355 cv_broadcast(&p->p_lwpcv);
1356 lwp_lock(l);
1357 l->l_stat = LSSUSPENDED;
1358 lwp_unlock(l);
1359 mutex_exit(p->p_lock);
1360 lwp_lock(l);
1361 mi_switch(l);
1362 }
1363
1364 /* Process is exiting. */
1365 if ((l->l_flag & LW_WEXIT) != 0) {
1366 lwp_exit(l);
1367 KASSERT(0);
1368 /* NOTREACHED */
1369 }
1370
1371 /* Call userret hook; used by Linux emulation. */
1372 if ((l->l_flag & LW_WUSERRET) != 0) {
1373 lwp_lock(l);
1374 l->l_flag &= ~LW_WUSERRET;
1375 lwp_unlock(l);
1376 hook = p->p_userret;
1377 p->p_userret = NULL;
1378 (*hook)();
1379 }
1380 }
1381 }
1382
1383 /*
1384 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1385 */
1386 void
1387 lwp_need_userret(struct lwp *l)
1388 {
1389 KASSERT(lwp_locked(l, NULL));
1390
1391 /*
1392 * Since the tests in lwp_userret() are done unlocked, make sure
1393 * that the condition will be seen before forcing the LWP to enter
1394 * kernel mode.
1395 */
1396 membar_producer();
1397 cpu_signotify(l);
1398 }
1399
1400 /*
1401 * Add one reference to an LWP. This will prevent the LWP from
1402 * exiting, thus keep the lwp structure and PCB around to inspect.
1403 */
1404 void
1405 lwp_addref(struct lwp *l)
1406 {
1407
1408 KASSERT(mutex_owned(l->l_proc->p_lock));
1409 KASSERT(l->l_stat != LSZOMB);
1410 KASSERT(l->l_refcnt != 0);
1411
1412 l->l_refcnt++;
1413 }
1414
1415 /*
1416 * Remove one reference to an LWP. If this is the last reference,
1417 * then we must finalize the LWP's death.
1418 */
1419 void
1420 lwp_delref(struct lwp *l)
1421 {
1422 struct proc *p = l->l_proc;
1423
1424 mutex_enter(p->p_lock);
1425 KASSERT(l->l_stat != LSZOMB);
1426 KASSERT(l->l_refcnt > 0);
1427 if (--l->l_refcnt == 0)
1428 cv_broadcast(&p->p_lwpcv);
1429 mutex_exit(p->p_lock);
1430 }
1431
1432 /*
1433 * Drain all references to the current LWP.
1434 */
1435 void
1436 lwp_drainrefs(struct lwp *l)
1437 {
1438 struct proc *p = l->l_proc;
1439
1440 KASSERT(mutex_owned(p->p_lock));
1441 KASSERT(l->l_refcnt != 0);
1442
1443 l->l_refcnt--;
1444 while (l->l_refcnt != 0)
1445 cv_wait(&p->p_lwpcv, p->p_lock);
1446 }
1447
1448 /*
1449 * lwp_specific_key_create --
1450 * Create a key for subsystem lwp-specific data.
1451 */
1452 int
1453 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1454 {
1455
1456 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1457 }
1458
1459 /*
1460 * lwp_specific_key_delete --
1461 * Delete a key for subsystem lwp-specific data.
1462 */
1463 void
1464 lwp_specific_key_delete(specificdata_key_t key)
1465 {
1466
1467 specificdata_key_delete(lwp_specificdata_domain, key);
1468 }
1469
1470 /*
1471 * lwp_initspecific --
1472 * Initialize an LWP's specificdata container.
1473 */
1474 void
1475 lwp_initspecific(struct lwp *l)
1476 {
1477 int error;
1478
1479 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1480 KASSERT(error == 0);
1481 }
1482
1483 /*
1484 * lwp_finispecific --
1485 * Finalize an LWP's specificdata container.
1486 */
1487 void
1488 lwp_finispecific(struct lwp *l)
1489 {
1490
1491 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1492 }
1493
1494 /*
1495 * lwp_getspecific --
1496 * Return lwp-specific data corresponding to the specified key.
1497 *
1498 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1499 * only its OWN SPECIFIC DATA. If it is necessary to access another
1500 * LWP's specifc data, care must be taken to ensure that doing so
1501 * would not cause internal data structure inconsistency (i.e. caller
1502 * can guarantee that the target LWP is not inside an lwp_getspecific()
1503 * or lwp_setspecific() call).
1504 */
1505 void *
1506 lwp_getspecific(specificdata_key_t key)
1507 {
1508
1509 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1510 &curlwp->l_specdataref, key));
1511 }
1512
1513 void *
1514 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1515 {
1516
1517 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1518 &l->l_specdataref, key));
1519 }
1520
1521 /*
1522 * lwp_setspecific --
1523 * Set lwp-specific data corresponding to the specified key.
1524 */
1525 void
1526 lwp_setspecific(specificdata_key_t key, void *data)
1527 {
1528
1529 specificdata_setspecific(lwp_specificdata_domain,
1530 &curlwp->l_specdataref, key, data);
1531 }
1532
1533 /*
1534 * Allocate a new lwpctl structure for a user LWP.
1535 */
1536 int
1537 lwp_ctl_alloc(vaddr_t *uaddr)
1538 {
1539 lcproc_t *lp;
1540 u_int bit, i, offset;
1541 struct uvm_object *uao;
1542 int error;
1543 lcpage_t *lcp;
1544 proc_t *p;
1545 lwp_t *l;
1546
1547 l = curlwp;
1548 p = l->l_proc;
1549
1550 if (l->l_lcpage != NULL) {
1551 lcp = l->l_lcpage;
1552 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1553 return (EINVAL);
1554 }
1555
1556 /* First time around, allocate header structure for the process. */
1557 if ((lp = p->p_lwpctl) == NULL) {
1558 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1559 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1560 lp->lp_uao = NULL;
1561 TAILQ_INIT(&lp->lp_pages);
1562 mutex_enter(p->p_lock);
1563 if (p->p_lwpctl == NULL) {
1564 p->p_lwpctl = lp;
1565 mutex_exit(p->p_lock);
1566 } else {
1567 mutex_exit(p->p_lock);
1568 mutex_destroy(&lp->lp_lock);
1569 kmem_free(lp, sizeof(*lp));
1570 lp = p->p_lwpctl;
1571 }
1572 }
1573
1574 /*
1575 * Set up an anonymous memory region to hold the shared pages.
1576 * Map them into the process' address space. The user vmspace
1577 * gets the first reference on the UAO.
1578 */
1579 mutex_enter(&lp->lp_lock);
1580 if (lp->lp_uao == NULL) {
1581 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1582 lp->lp_cur = 0;
1583 lp->lp_max = LWPCTL_UAREA_SZ;
1584 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1585 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1586 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1587 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1588 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1589 if (error != 0) {
1590 uao_detach(lp->lp_uao);
1591 lp->lp_uao = NULL;
1592 mutex_exit(&lp->lp_lock);
1593 return error;
1594 }
1595 }
1596
1597 /* Get a free block and allocate for this LWP. */
1598 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1599 if (lcp->lcp_nfree != 0)
1600 break;
1601 }
1602 if (lcp == NULL) {
1603 /* Nothing available - try to set up a free page. */
1604 if (lp->lp_cur == lp->lp_max) {
1605 mutex_exit(&lp->lp_lock);
1606 return ENOMEM;
1607 }
1608 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1609 if (lcp == NULL) {
1610 mutex_exit(&lp->lp_lock);
1611 return ENOMEM;
1612 }
1613 /*
1614 * Wire the next page down in kernel space. Since this
1615 * is a new mapping, we must add a reference.
1616 */
1617 uao = lp->lp_uao;
1618 (*uao->pgops->pgo_reference)(uao);
1619 lcp->lcp_kaddr = vm_map_min(kernel_map);
1620 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1621 uao, lp->lp_cur, PAGE_SIZE,
1622 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1623 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1624 if (error != 0) {
1625 mutex_exit(&lp->lp_lock);
1626 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1627 (*uao->pgops->pgo_detach)(uao);
1628 return error;
1629 }
1630 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1631 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1632 if (error != 0) {
1633 mutex_exit(&lp->lp_lock);
1634 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1635 lcp->lcp_kaddr + PAGE_SIZE);
1636 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1637 return error;
1638 }
1639 /* Prepare the page descriptor and link into the list. */
1640 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1641 lp->lp_cur += PAGE_SIZE;
1642 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1643 lcp->lcp_rotor = 0;
1644 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1645 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1646 }
1647 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1648 if (++i >= LWPCTL_BITMAP_ENTRIES)
1649 i = 0;
1650 }
1651 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1652 lcp->lcp_bitmap[i] ^= (1 << bit);
1653 lcp->lcp_rotor = i;
1654 lcp->lcp_nfree--;
1655 l->l_lcpage = lcp;
1656 offset = (i << 5) + bit;
1657 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1658 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1659 mutex_exit(&lp->lp_lock);
1660
1661 KPREEMPT_DISABLE(l);
1662 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1663 KPREEMPT_ENABLE(l);
1664
1665 return 0;
1666 }
1667
1668 /*
1669 * Free an lwpctl structure back to the per-process list.
1670 */
1671 void
1672 lwp_ctl_free(lwp_t *l)
1673 {
1674 lcproc_t *lp;
1675 lcpage_t *lcp;
1676 u_int map, offset;
1677
1678 lp = l->l_proc->p_lwpctl;
1679 KASSERT(lp != NULL);
1680
1681 lcp = l->l_lcpage;
1682 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1683 KASSERT(offset < LWPCTL_PER_PAGE);
1684
1685 mutex_enter(&lp->lp_lock);
1686 lcp->lcp_nfree++;
1687 map = offset >> 5;
1688 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1689 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1690 lcp->lcp_rotor = map;
1691 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1692 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1693 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1694 }
1695 mutex_exit(&lp->lp_lock);
1696 }
1697
1698 /*
1699 * Process is exiting; tear down lwpctl state. This can only be safely
1700 * called by the last LWP in the process.
1701 */
1702 void
1703 lwp_ctl_exit(void)
1704 {
1705 lcpage_t *lcp, *next;
1706 lcproc_t *lp;
1707 proc_t *p;
1708 lwp_t *l;
1709
1710 l = curlwp;
1711 l->l_lwpctl = NULL;
1712 l->l_lcpage = NULL;
1713 p = l->l_proc;
1714 lp = p->p_lwpctl;
1715
1716 KASSERT(lp != NULL);
1717 KASSERT(p->p_nlwps == 1);
1718
1719 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1720 next = TAILQ_NEXT(lcp, lcp_chain);
1721 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1722 lcp->lcp_kaddr + PAGE_SIZE);
1723 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1724 }
1725
1726 if (lp->lp_uao != NULL) {
1727 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1728 lp->lp_uva + LWPCTL_UAREA_SZ);
1729 }
1730
1731 mutex_destroy(&lp->lp_lock);
1732 kmem_free(lp, sizeof(*lp));
1733 p->p_lwpctl = NULL;
1734 }
1735
1736 #if defined(DDB)
1737 void
1738 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1739 {
1740 lwp_t *l;
1741
1742 LIST_FOREACH(l, &alllwp, l_list) {
1743 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1744
1745 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1746 continue;
1747 }
1748 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1749 (void *)addr, (void *)stack,
1750 (size_t)(addr - stack), l);
1751 }
1752 }
1753 #endif /* defined(DDB) */
1754