Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.106.2.5
      1 /*	$NetBSD: kern_lwp.c,v 1.106.2.5 2009/09/16 13:38:00 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.  If the LWP is not swapped in (LW_INMEM == 0)
     64  *		then the LWP is not on a run queue, but may be soon.
     65  *
     66  *	LSIDL
     67  *
     68  *		Idle: the LWP has been created but has not yet executed,
     69  *		or it has ceased executing a unit of work and is waiting
     70  *		to be started again.
     71  *
     72  *	LSSUSPENDED:
     73  *
     74  *		Suspended: the LWP has had its execution suspended by
     75  *		another LWP in the same process using the _lwp_suspend()
     76  *		system call.  User-level LWPs also enter the suspended
     77  *		state when the system is shutting down.
     78  *
     79  *	The second set represent a "statement of intent" on behalf of the
     80  *	LWP.  The LWP may in fact be executing on a processor, may be
     81  *	sleeping or idle. It is expected to take the necessary action to
     82  *	stop executing or become "running" again within a short timeframe.
     83  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     84  *	Importantly, it indicates that its state is tied to a CPU.
     85  *
     86  *	LSZOMB:
     87  *
     88  *		Dead or dying: the LWP has released most of its resources
     89  *		and is about to switch away into oblivion, or has already
     90  *		switched away.  When it switches away, its few remaining
     91  *		resources can be collected.
     92  *
     93  *	LSSLEEP:
     94  *
     95  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     96  *		has switched away or will switch away shortly to allow other
     97  *		LWPs to run on the CPU.
     98  *
     99  *	LSSTOP:
    100  *
    101  *		Stopped: the LWP has been stopped as a result of a job
    102  *		control signal, or as a result of the ptrace() interface.
    103  *
    104  *		Stopped LWPs may run briefly within the kernel to handle
    105  *		signals that they receive, but will not return to user space
    106  *		until their process' state is changed away from stopped.
    107  *
    108  *		Single LWPs within a process can not be set stopped
    109  *		selectively: all actions that can stop or continue LWPs
    110  *		occur at the process level.
    111  *
    112  * State transitions
    113  *
    114  *	Note that the LSSTOP state may only be set when returning to
    115  *	user space in userret(), or when sleeping interruptably.  The
    116  *	LSSUSPENDED state may only be set in userret().  Before setting
    117  *	those states, we try to ensure that the LWPs will release all
    118  *	locks that they hold, and at a minimum try to ensure that the
    119  *	LWP can be set runnable again by a signal.
    120  *
    121  *	LWPs may transition states in the following ways:
    122  *
    123  *	 RUN -------> ONPROC		ONPROC -----> RUN
    124  *		    				    > SLEEP
    125  *		    				    > STOPPED
    126  *						    > SUSPENDED
    127  *						    > ZOMB
    128  *						    > IDL (special cases)
    129  *
    130  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    131  *	            > SLEEP
    132  *
    133  *	 SLEEP -----> ONPROC		IDL --------> RUN
    134  *		    > RUN			    > SUSPENDED
    135  *		    > STOPPED			    > STOPPED
    136  *						    > ONPROC (special cases)
    137  *
    138  *	Some state transitions are only possible with kernel threads (eg
    139  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    140  *	free of unwanted side effects.
    141  *
    142  * Migration
    143  *
    144  *	Migration of threads from one CPU to another could be performed
    145  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    146  *	functions.  The universal lwp_migrate() function should be used for
    147  *	any other cases.  Subsystems in the kernel must be aware that CPU
    148  *	of LWP may change, while it is not locked.
    149  *
    150  * Locking
    151  *
    152  *	The majority of fields in 'struct lwp' are covered by a single,
    153  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    154  *	each field are documented in sys/lwp.h.
    155  *
    156  *	State transitions must be made with the LWP's general lock held,
    157  *	and may cause the LWP's lock pointer to change. Manipulation of
    158  *	the general lock is not performed directly, but through calls to
    159  *	lwp_lock(), lwp_relock() and similar.
    160  *
    161  *	States and their associated locks:
    162  *
    163  *	LSONPROC, LSZOMB:
    164  *
    165  *		Always covered by spc_lwplock, which protects running LWPs.
    166  *		This is a per-CPU lock and matches lwp::l_cpu.
    167  *
    168  *	LSIDL, LSRUN:
    169  *
    170  *		Always covered by spc_mutex, which protects the run queues.
    171  *		This is a per-CPU lock and matches lwp::l_cpu.
    172  *
    173  *	LSSLEEP:
    174  *
    175  *		Covered by a lock associated with the sleep queue that the
    176  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    177  *
    178  *	LSSTOP, LSSUSPENDED:
    179  *
    180  *		If the LWP was previously sleeping (l_wchan != NULL), then
    181  *		l_mutex references the sleep queue lock.  If the LWP was
    182  *		runnable or on the CPU when halted, or has been removed from
    183  *		the sleep queue since halted, then the lock is spc_lwplock.
    184  *
    185  *	The lock order is as follows:
    186  *
    187  *		spc::spc_lwplock ->
    188  *		    sleeptab::st_mutex ->
    189  *			tschain_t::tc_mutex ->
    190  *			    spc::spc_mutex
    191  *
    192  *	Each process has an scheduler state lock (proc::p_lock), and a
    193  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    194  *	so on.  When an LWP is to be entered into or removed from one of the
    195  *	following states, p_lock must be held and the process wide counters
    196  *	adjusted:
    197  *
    198  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    199  *
    200  *	(But not always for kernel threads.  There are some special cases
    201  *	as mentioned above.  See kern_softint.c.)
    202  *
    203  *	Note that an LWP is considered running or likely to run soon if in
    204  *	one of the following states.  This affects the value of p_nrlwps:
    205  *
    206  *		LSRUN, LSONPROC, LSSLEEP
    207  *
    208  *	p_lock does not need to be held when transitioning among these
    209  *	three states, hence p_lock is rarely taken for state transitions.
    210  */
    211 
    212 #include <sys/cdefs.h>
    213 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.106.2.5 2009/09/16 13:38:00 yamt Exp $");
    214 
    215 #include "opt_ddb.h"
    216 #include "opt_lockdebug.h"
    217 #include "opt_sa.h"
    218 
    219 #define _LWP_API_PRIVATE
    220 
    221 #include <sys/param.h>
    222 #include <sys/systm.h>
    223 #include <sys/cpu.h>
    224 #include <sys/pool.h>
    225 #include <sys/proc.h>
    226 #include <sys/sa.h>
    227 #include <sys/savar.h>
    228 #include <sys/syscallargs.h>
    229 #include <sys/syscall_stats.h>
    230 #include <sys/kauth.h>
    231 #include <sys/sleepq.h>
    232 #include <sys/user.h>
    233 #include <sys/lockdebug.h>
    234 #include <sys/kmem.h>
    235 #include <sys/pset.h>
    236 #include <sys/intr.h>
    237 #include <sys/lwpctl.h>
    238 #include <sys/atomic.h>
    239 #include <sys/filedesc.h>
    240 
    241 #include <uvm/uvm_extern.h>
    242 #include <uvm/uvm_object.h>
    243 
    244 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    245 
    246 struct pool lwp_uc_pool;
    247 
    248 static pool_cache_t lwp_cache;
    249 static specificdata_domain_t lwp_specificdata_domain;
    250 
    251 void
    252 lwpinit(void)
    253 {
    254 
    255 	pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    256 	    &pool_allocator_nointr, IPL_NONE);
    257 	lwp_specificdata_domain = specificdata_domain_create();
    258 	KASSERT(lwp_specificdata_domain != NULL);
    259 	lwp_sys_init();
    260 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    261 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    262 }
    263 
    264 /*
    265  * Set an suspended.
    266  *
    267  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    268  * LWP before return.
    269  */
    270 int
    271 lwp_suspend(struct lwp *curl, struct lwp *t)
    272 {
    273 	int error;
    274 
    275 	KASSERT(mutex_owned(t->l_proc->p_lock));
    276 	KASSERT(lwp_locked(t, NULL));
    277 
    278 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    279 
    280 	/*
    281 	 * If the current LWP has been told to exit, we must not suspend anyone
    282 	 * else or deadlock could occur.  We won't return to userspace.
    283 	 */
    284 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    285 		lwp_unlock(t);
    286 		return (EDEADLK);
    287 	}
    288 
    289 	error = 0;
    290 
    291 	switch (t->l_stat) {
    292 	case LSRUN:
    293 	case LSONPROC:
    294 		t->l_flag |= LW_WSUSPEND;
    295 		lwp_need_userret(t);
    296 		lwp_unlock(t);
    297 		break;
    298 
    299 	case LSSLEEP:
    300 		t->l_flag |= LW_WSUSPEND;
    301 
    302 		/*
    303 		 * Kick the LWP and try to get it to the kernel boundary
    304 		 * so that it will release any locks that it holds.
    305 		 * setrunnable() will release the lock.
    306 		 */
    307 		if ((t->l_flag & LW_SINTR) != 0)
    308 			setrunnable(t);
    309 		else
    310 			lwp_unlock(t);
    311 		break;
    312 
    313 	case LSSUSPENDED:
    314 		lwp_unlock(t);
    315 		break;
    316 
    317 	case LSSTOP:
    318 		t->l_flag |= LW_WSUSPEND;
    319 		setrunnable(t);
    320 		break;
    321 
    322 	case LSIDL:
    323 	case LSZOMB:
    324 		error = EINTR; /* It's what Solaris does..... */
    325 		lwp_unlock(t);
    326 		break;
    327 	}
    328 
    329 	return (error);
    330 }
    331 
    332 /*
    333  * Restart a suspended LWP.
    334  *
    335  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    336  * LWP before return.
    337  */
    338 void
    339 lwp_continue(struct lwp *l)
    340 {
    341 
    342 	KASSERT(mutex_owned(l->l_proc->p_lock));
    343 	KASSERT(lwp_locked(l, NULL));
    344 
    345 	/* If rebooting or not suspended, then just bail out. */
    346 	if ((l->l_flag & LW_WREBOOT) != 0) {
    347 		lwp_unlock(l);
    348 		return;
    349 	}
    350 
    351 	l->l_flag &= ~LW_WSUSPEND;
    352 
    353 	if (l->l_stat != LSSUSPENDED) {
    354 		lwp_unlock(l);
    355 		return;
    356 	}
    357 
    358 	/* setrunnable() will release the lock. */
    359 	setrunnable(l);
    360 }
    361 
    362 /*
    363  * Wait for an LWP within the current process to exit.  If 'lid' is
    364  * non-zero, we are waiting for a specific LWP.
    365  *
    366  * Must be called with p->p_lock held.
    367  */
    368 int
    369 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    370 {
    371 	struct proc *p = l->l_proc;
    372 	struct lwp *l2;
    373 	int nfound, error;
    374 	lwpid_t curlid;
    375 	bool exiting;
    376 
    377 	KASSERT(mutex_owned(p->p_lock));
    378 
    379 	p->p_nlwpwait++;
    380 	l->l_waitingfor = lid;
    381 	curlid = l->l_lid;
    382 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    383 
    384 	for (;;) {
    385 		/*
    386 		 * Avoid a race between exit1() and sigexit(): if the
    387 		 * process is dumping core, then we need to bail out: call
    388 		 * into lwp_userret() where we will be suspended until the
    389 		 * deed is done.
    390 		 */
    391 		if ((p->p_sflag & PS_WCORE) != 0) {
    392 			mutex_exit(p->p_lock);
    393 			lwp_userret(l);
    394 #ifdef DIAGNOSTIC
    395 			panic("lwp_wait1");
    396 #endif
    397 			/* NOTREACHED */
    398 		}
    399 
    400 		/*
    401 		 * First off, drain any detached LWP that is waiting to be
    402 		 * reaped.
    403 		 */
    404 		while ((l2 = p->p_zomblwp) != NULL) {
    405 			p->p_zomblwp = NULL;
    406 			lwp_free(l2, false, false);/* releases proc mutex */
    407 			mutex_enter(p->p_lock);
    408 		}
    409 
    410 		/*
    411 		 * Now look for an LWP to collect.  If the whole process is
    412 		 * exiting, count detached LWPs as eligible to be collected,
    413 		 * but don't drain them here.
    414 		 */
    415 		nfound = 0;
    416 		error = 0;
    417 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    418 			/*
    419 			 * If a specific wait and the target is waiting on
    420 			 * us, then avoid deadlock.  This also traps LWPs
    421 			 * that try to wait on themselves.
    422 			 *
    423 			 * Note that this does not handle more complicated
    424 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    425 			 * can still be killed so it is not a major problem.
    426 			 */
    427 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    428 				error = EDEADLK;
    429 				break;
    430 			}
    431 			if (l2 == l)
    432 				continue;
    433 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    434 				nfound += exiting;
    435 				continue;
    436 			}
    437 			if (lid != 0) {
    438 				if (l2->l_lid != lid)
    439 					continue;
    440 				/*
    441 				 * Mark this LWP as the first waiter, if there
    442 				 * is no other.
    443 				 */
    444 				if (l2->l_waiter == 0)
    445 					l2->l_waiter = curlid;
    446 			} else if (l2->l_waiter != 0) {
    447 				/*
    448 				 * It already has a waiter - so don't
    449 				 * collect it.  If the waiter doesn't
    450 				 * grab it we'll get another chance
    451 				 * later.
    452 				 */
    453 				nfound++;
    454 				continue;
    455 			}
    456 			nfound++;
    457 
    458 			/* No need to lock the LWP in order to see LSZOMB. */
    459 			if (l2->l_stat != LSZOMB)
    460 				continue;
    461 
    462 			/*
    463 			 * We're no longer waiting.  Reset the "first waiter"
    464 			 * pointer on the target, in case it was us.
    465 			 */
    466 			l->l_waitingfor = 0;
    467 			l2->l_waiter = 0;
    468 			p->p_nlwpwait--;
    469 			if (departed)
    470 				*departed = l2->l_lid;
    471 			sched_lwp_collect(l2);
    472 
    473 			/* lwp_free() releases the proc lock. */
    474 			lwp_free(l2, false, false);
    475 			mutex_enter(p->p_lock);
    476 			return 0;
    477 		}
    478 
    479 		if (error != 0)
    480 			break;
    481 		if (nfound == 0) {
    482 			error = ESRCH;
    483 			break;
    484 		}
    485 
    486 		/*
    487 		 * The kernel is careful to ensure that it can not deadlock
    488 		 * when exiting - just keep waiting.
    489 		 */
    490 		if (exiting) {
    491 			KASSERT(p->p_nlwps > 1);
    492 			cv_wait(&p->p_lwpcv, p->p_lock);
    493 			continue;
    494 		}
    495 
    496 		/*
    497 		 * If all other LWPs are waiting for exits or suspends
    498 		 * and the supply of zombies and potential zombies is
    499 		 * exhausted, then we are about to deadlock.
    500 		 *
    501 		 * If the process is exiting (and this LWP is not the one
    502 		 * that is coordinating the exit) then bail out now.
    503 		 */
    504 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    505 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    506 			error = EDEADLK;
    507 			break;
    508 		}
    509 
    510 		/*
    511 		 * Sit around and wait for something to happen.  We'll be
    512 		 * awoken if any of the conditions examined change: if an
    513 		 * LWP exits, is collected, or is detached.
    514 		 */
    515 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    516 			break;
    517 	}
    518 
    519 	/*
    520 	 * We didn't find any LWPs to collect, we may have received a
    521 	 * signal, or some other condition has caused us to bail out.
    522 	 *
    523 	 * If waiting on a specific LWP, clear the waiters marker: some
    524 	 * other LWP may want it.  Then, kick all the remaining waiters
    525 	 * so that they can re-check for zombies and for deadlock.
    526 	 */
    527 	if (lid != 0) {
    528 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    529 			if (l2->l_lid == lid) {
    530 				if (l2->l_waiter == curlid)
    531 					l2->l_waiter = 0;
    532 				break;
    533 			}
    534 		}
    535 	}
    536 	p->p_nlwpwait--;
    537 	l->l_waitingfor = 0;
    538 	cv_broadcast(&p->p_lwpcv);
    539 
    540 	return error;
    541 }
    542 
    543 /*
    544  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    545  * The new LWP is created in state LSIDL and must be set running,
    546  * suspended, or stopped by the caller.
    547  */
    548 int
    549 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
    550 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    551 	   lwp_t **rnewlwpp, int sclass)
    552 {
    553 	struct lwp *l2, *isfree;
    554 	turnstile_t *ts;
    555 
    556 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    557 
    558 	/*
    559 	 * First off, reap any detached LWP waiting to be collected.
    560 	 * We can re-use its LWP structure and turnstile.
    561 	 */
    562 	isfree = NULL;
    563 	if (p2->p_zomblwp != NULL) {
    564 		mutex_enter(p2->p_lock);
    565 		if ((isfree = p2->p_zomblwp) != NULL) {
    566 			p2->p_zomblwp = NULL;
    567 			lwp_free(isfree, true, false);/* releases proc mutex */
    568 		} else
    569 			mutex_exit(p2->p_lock);
    570 	}
    571 	if (isfree == NULL) {
    572 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    573 		memset(l2, 0, sizeof(*l2));
    574 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    575 		SLIST_INIT(&l2->l_pi_lenders);
    576 	} else {
    577 		l2 = isfree;
    578 		ts = l2->l_ts;
    579 		KASSERT(l2->l_inheritedprio == -1);
    580 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    581 		memset(l2, 0, sizeof(*l2));
    582 		l2->l_ts = ts;
    583 	}
    584 
    585 	l2->l_stat = LSIDL;
    586 	l2->l_proc = p2;
    587 	l2->l_refcnt = 1;
    588 	l2->l_class = sclass;
    589 
    590 	/*
    591 	 * If vfork(), we want the LWP to run fast and on the same CPU
    592 	 * as its parent, so that it can reuse the VM context and cache
    593 	 * footprint on the local CPU.
    594 	 */
    595 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    596 	l2->l_kpribase = PRI_KERNEL;
    597 	l2->l_priority = l1->l_priority;
    598 	l2->l_inheritedprio = -1;
    599 	l2->l_flag = inmem ? LW_INMEM : 0;
    600 	l2->l_pflag = LP_MPSAFE;
    601 	TAILQ_INIT(&l2->l_ld_locks);
    602 
    603 	/*
    604 	 * If not the first LWP in the process, grab a reference to the
    605 	 * descriptor table.
    606 	 */
    607 	l2->l_fd = p2->p_fd;
    608 	if (p2->p_nlwps != 0) {
    609 		KASSERT(l1->l_proc == p2);
    610 		atomic_inc_uint(&l2->l_fd->fd_refcnt);
    611 	} else {
    612 		KASSERT(l1->l_proc != p2);
    613 	}
    614 
    615 	if (p2->p_flag & PK_SYSTEM) {
    616 		/* Mark it as a system LWP and not a candidate for swapping */
    617 		l2->l_flag |= LW_SYSTEM;
    618 	}
    619 
    620 	kpreempt_disable();
    621 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    622 	l2->l_cpu = l1->l_cpu;
    623 	kpreempt_enable();
    624 
    625 	lwp_initspecific(l2);
    626 	sched_lwp_fork(l1, l2);
    627 	lwp_update_creds(l2);
    628 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    629 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    630 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    631 	cv_init(&l2->l_sigcv, "sigwait");
    632 	l2->l_syncobj = &sched_syncobj;
    633 
    634 	if (rnewlwpp != NULL)
    635 		*rnewlwpp = l2;
    636 
    637 	l2->l_addr = UAREA_TO_USER(uaddr);
    638 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    639 	    (arg != NULL) ? arg : l2);
    640 
    641 	mutex_enter(p2->p_lock);
    642 
    643 	if ((flags & LWP_DETACHED) != 0) {
    644 		l2->l_prflag = LPR_DETACHED;
    645 		p2->p_ndlwps++;
    646 	} else
    647 		l2->l_prflag = 0;
    648 
    649 	l2->l_sigmask = l1->l_sigmask;
    650 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    651 	sigemptyset(&l2->l_sigpend.sp_set);
    652 
    653 	p2->p_nlwpid++;
    654 	if (p2->p_nlwpid == 0)
    655 		p2->p_nlwpid++;
    656 	l2->l_lid = p2->p_nlwpid;
    657 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    658 	p2->p_nlwps++;
    659 
    660 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    661 		/* Inherit an affinity */
    662 		if (l1->l_flag & LW_AFFINITY) {
    663 			/*
    664 			 * Note that we hold the state lock while inheriting
    665 			 * the affinity to avoid race with sched_setaffinity().
    666 			 */
    667 			lwp_lock(l1);
    668 			if (l1->l_flag & LW_AFFINITY) {
    669 				kcpuset_use(l1->l_affinity);
    670 				l2->l_affinity = l1->l_affinity;
    671 				l2->l_flag |= LW_AFFINITY;
    672 			}
    673 			lwp_unlock(l1);
    674 		}
    675 		lwp_lock(l2);
    676 		/* Inherit a processor-set */
    677 		l2->l_psid = l1->l_psid;
    678 		/* Look for a CPU to start */
    679 		l2->l_cpu = sched_takecpu(l2);
    680 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    681 	}
    682 	mutex_exit(p2->p_lock);
    683 
    684 	mutex_enter(proc_lock);
    685 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    686 	mutex_exit(proc_lock);
    687 
    688 	SYSCALL_TIME_LWP_INIT(l2);
    689 
    690 	if (p2->p_emul->e_lwp_fork)
    691 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    692 
    693 	return (0);
    694 }
    695 
    696 /*
    697  * Called by MD code when a new LWP begins execution.  Must be called
    698  * with the previous LWP locked (so at splsched), or if there is no
    699  * previous LWP, at splsched.
    700  */
    701 void
    702 lwp_startup(struct lwp *prev, struct lwp *new)
    703 {
    704 
    705 	KASSERT(kpreempt_disabled());
    706 	if (prev != NULL) {
    707 		/*
    708 		 * Normalize the count of the spin-mutexes, it was
    709 		 * increased in mi_switch().  Unmark the state of
    710 		 * context switch - it is finished for previous LWP.
    711 		 */
    712 		curcpu()->ci_mtx_count++;
    713 		membar_exit();
    714 		prev->l_ctxswtch = 0;
    715 	}
    716 	KPREEMPT_DISABLE(new);
    717 	spl0();
    718 	pmap_activate(new);
    719 	LOCKDEBUG_BARRIER(NULL, 0);
    720 	KPREEMPT_ENABLE(new);
    721 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    722 		KERNEL_LOCK(1, new);
    723 	}
    724 }
    725 
    726 /*
    727  * Exit an LWP.
    728  */
    729 void
    730 lwp_exit(struct lwp *l)
    731 {
    732 	struct proc *p = l->l_proc;
    733 	struct lwp *l2;
    734 	bool current;
    735 
    736 	current = (l == curlwp);
    737 
    738 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    739 	KASSERT(p == curproc);
    740 
    741 	/*
    742 	 * Verify that we hold no locks other than the kernel lock.
    743 	 */
    744 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    745 
    746 	/*
    747 	 * If we are the last live LWP in a process, we need to exit the
    748 	 * entire process.  We do so with an exit status of zero, because
    749 	 * it's a "controlled" exit, and because that's what Solaris does.
    750 	 *
    751 	 * We are not quite a zombie yet, but for accounting purposes we
    752 	 * must increment the count of zombies here.
    753 	 *
    754 	 * Note: the last LWP's specificdata will be deleted here.
    755 	 */
    756 	mutex_enter(p->p_lock);
    757 	if (p->p_nlwps - p->p_nzlwps == 1) {
    758 		KASSERT(current == true);
    759 		/* XXXSMP kernel_lock not held */
    760 		exit1(l, 0);
    761 		/* NOTREACHED */
    762 	}
    763 	p->p_nzlwps++;
    764 	mutex_exit(p->p_lock);
    765 
    766 	if (p->p_emul->e_lwp_exit)
    767 		(*p->p_emul->e_lwp_exit)(l);
    768 
    769 	/* Drop filedesc reference. */
    770 	fd_free();
    771 
    772 	/* Delete the specificdata while it's still safe to sleep. */
    773 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    774 
    775 	/*
    776 	 * Release our cached credentials.
    777 	 */
    778 	kauth_cred_free(l->l_cred);
    779 	callout_destroy(&l->l_timeout_ch);
    780 
    781 	/*
    782 	 * While we can still block, mark the LWP as unswappable to
    783 	 * prevent conflicts with the with the swapper.
    784 	 */
    785 	if (current)
    786 		uvm_lwp_hold(l);
    787 
    788 	/*
    789 	 * Remove the LWP from the global list.
    790 	 */
    791 	mutex_enter(proc_lock);
    792 	LIST_REMOVE(l, l_list);
    793 	mutex_exit(proc_lock);
    794 
    795 	/*
    796 	 * Get rid of all references to the LWP that others (e.g. procfs)
    797 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    798 	 * mark it waiting for collection in the proc structure.  Note that
    799 	 * before we can do that, we need to free any other dead, deatched
    800 	 * LWP waiting to meet its maker.
    801 	 */
    802 	mutex_enter(p->p_lock);
    803 	lwp_drainrefs(l);
    804 
    805 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    806 		while ((l2 = p->p_zomblwp) != NULL) {
    807 			p->p_zomblwp = NULL;
    808 			lwp_free(l2, false, false);/* releases proc mutex */
    809 			mutex_enter(p->p_lock);
    810 			l->l_refcnt++;
    811 			lwp_drainrefs(l);
    812 		}
    813 		p->p_zomblwp = l;
    814 	}
    815 
    816 	/*
    817 	 * If we find a pending signal for the process and we have been
    818 	 * asked to check for signals, then we loose: arrange to have
    819 	 * all other LWPs in the process check for signals.
    820 	 */
    821 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    822 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    823 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    824 			lwp_lock(l2);
    825 			l2->l_flag |= LW_PENDSIG;
    826 			lwp_unlock(l2);
    827 		}
    828 	}
    829 
    830 	lwp_lock(l);
    831 	l->l_stat = LSZOMB;
    832 	if (l->l_name != NULL)
    833 		strcpy(l->l_name, "(zombie)");
    834 	if (l->l_flag & LW_AFFINITY) {
    835 		l->l_flag &= ~LW_AFFINITY;
    836 	} else {
    837 		KASSERT(l->l_affinity == NULL);
    838 	}
    839 	lwp_unlock(l);
    840 	p->p_nrlwps--;
    841 	cv_broadcast(&p->p_lwpcv);
    842 	if (l->l_lwpctl != NULL)
    843 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    844 	mutex_exit(p->p_lock);
    845 
    846 	/* Safe without lock since LWP is in zombie state */
    847 	if (l->l_affinity) {
    848 		kcpuset_unuse(l->l_affinity, NULL);
    849 		l->l_affinity = NULL;
    850 	}
    851 
    852 	/*
    853 	 * We can no longer block.  At this point, lwp_free() may already
    854 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    855 	 *
    856 	 * Free MD LWP resources.
    857 	 */
    858 #ifndef __NO_CPU_LWP_FREE
    859 	cpu_lwp_free(l, 0);
    860 #endif
    861 
    862 	if (current) {
    863 		pmap_deactivate(l);
    864 
    865 		/*
    866 		 * Release the kernel lock, and switch away into
    867 		 * oblivion.
    868 		 */
    869 #ifdef notyet
    870 		/* XXXSMP hold in lwp_userret() */
    871 		KERNEL_UNLOCK_LAST(l);
    872 #else
    873 		KERNEL_UNLOCK_ALL(l, NULL);
    874 #endif
    875 		lwp_exit_switchaway(l);
    876 	}
    877 }
    878 
    879 /*
    880  * Free a dead LWP's remaining resources.
    881  *
    882  * XXXLWP limits.
    883  */
    884 void
    885 lwp_free(struct lwp *l, bool recycle, bool last)
    886 {
    887 	struct proc *p = l->l_proc;
    888 	struct rusage *ru;
    889 	ksiginfoq_t kq;
    890 
    891 	KASSERT(l != curlwp);
    892 
    893 	/*
    894 	 * If this was not the last LWP in the process, then adjust
    895 	 * counters and unlock.
    896 	 */
    897 	if (!last) {
    898 		/*
    899 		 * Add the LWP's run time to the process' base value.
    900 		 * This needs to co-incide with coming off p_lwps.
    901 		 */
    902 		bintime_add(&p->p_rtime, &l->l_rtime);
    903 		p->p_pctcpu += l->l_pctcpu;
    904 		ru = &p->p_stats->p_ru;
    905 		ruadd(ru, &l->l_ru);
    906 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    907 		ru->ru_nivcsw += l->l_nivcsw;
    908 		LIST_REMOVE(l, l_sibling);
    909 		p->p_nlwps--;
    910 		p->p_nzlwps--;
    911 		if ((l->l_prflag & LPR_DETACHED) != 0)
    912 			p->p_ndlwps--;
    913 
    914 		/*
    915 		 * Have any LWPs sleeping in lwp_wait() recheck for
    916 		 * deadlock.
    917 		 */
    918 		cv_broadcast(&p->p_lwpcv);
    919 		mutex_exit(p->p_lock);
    920 	}
    921 
    922 #ifdef MULTIPROCESSOR
    923 	/*
    924 	 * In the unlikely event that the LWP is still on the CPU,
    925 	 * then spin until it has switched away.  We need to release
    926 	 * all locks to avoid deadlock against interrupt handlers on
    927 	 * the target CPU.
    928 	 */
    929 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    930 		int count;
    931 		(void)count; /* XXXgcc */
    932 		KERNEL_UNLOCK_ALL(curlwp, &count);
    933 		while ((l->l_pflag & LP_RUNNING) != 0 ||
    934 		    l->l_cpu->ci_curlwp == l)
    935 			SPINLOCK_BACKOFF_HOOK;
    936 		KERNEL_LOCK(count, curlwp);
    937 	}
    938 #endif
    939 
    940 	/*
    941 	 * Destroy the LWP's remaining signal information.
    942 	 */
    943 	ksiginfo_queue_init(&kq);
    944 	sigclear(&l->l_sigpend, NULL, &kq);
    945 	ksiginfo_queue_drain(&kq);
    946 	cv_destroy(&l->l_sigcv);
    947 	mutex_destroy(&l->l_swaplock);
    948 
    949 	/*
    950 	 * Free the LWP's turnstile and the LWP structure itself unless the
    951 	 * caller wants to recycle them.  Also, free the scheduler specific
    952 	 * data.
    953 	 *
    954 	 * We can't return turnstile0 to the pool (it didn't come from it),
    955 	 * so if it comes up just drop it quietly and move on.
    956 	 *
    957 	 * We don't recycle the VM resources at this time.
    958 	 */
    959 	if (l->l_lwpctl != NULL)
    960 		lwp_ctl_free(l);
    961 
    962 	if (!recycle && l->l_ts != &turnstile0)
    963 		pool_cache_put(turnstile_cache, l->l_ts);
    964 	if (l->l_name != NULL)
    965 		kmem_free(l->l_name, MAXCOMLEN);
    966 #ifndef __NO_CPU_LWP_FREE
    967 	cpu_lwp_free2(l);
    968 #endif
    969 	KASSERT((l->l_flag & LW_INMEM) != 0);
    970 	uvm_lwp_exit(l);
    971 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    972 	KASSERT(l->l_inheritedprio == -1);
    973 	if (!recycle)
    974 		pool_cache_put(lwp_cache, l);
    975 }
    976 
    977 /*
    978  * Migrate the LWP to the another CPU.  Unlocks the LWP.
    979  */
    980 void
    981 lwp_migrate(lwp_t *l, struct cpu_info *tci)
    982 {
    983 	struct schedstate_percpu *tspc;
    984 	int lstat = l->l_stat;
    985 
    986 	KASSERT(lwp_locked(l, NULL));
    987 	KASSERT(tci != NULL);
    988 
    989 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
    990 	if ((l->l_pflag & LP_RUNNING) != 0) {
    991 		lstat = LSONPROC;
    992 	}
    993 
    994 	/*
    995 	 * The destination CPU could be changed while previous migration
    996 	 * was not finished.
    997 	 */
    998 	if (l->l_target_cpu != NULL) {
    999 		l->l_target_cpu = tci;
   1000 		lwp_unlock(l);
   1001 		return;
   1002 	}
   1003 
   1004 	/* Nothing to do if trying to migrate to the same CPU */
   1005 	if (l->l_cpu == tci) {
   1006 		lwp_unlock(l);
   1007 		return;
   1008 	}
   1009 
   1010 	KASSERT(l->l_target_cpu == NULL);
   1011 	tspc = &tci->ci_schedstate;
   1012 	switch (lstat) {
   1013 	case LSRUN:
   1014 		if (l->l_flag & LW_INMEM) {
   1015 			l->l_target_cpu = tci;
   1016 			lwp_unlock(l);
   1017 			return;
   1018 		}
   1019 	case LSIDL:
   1020 		l->l_cpu = tci;
   1021 		lwp_unlock_to(l, tspc->spc_mutex);
   1022 		return;
   1023 	case LSSLEEP:
   1024 		l->l_cpu = tci;
   1025 		break;
   1026 	case LSSTOP:
   1027 	case LSSUSPENDED:
   1028 		l->l_cpu = tci;
   1029 		if (l->l_wchan == NULL) {
   1030 			lwp_unlock_to(l, tspc->spc_lwplock);
   1031 			return;
   1032 		}
   1033 		break;
   1034 	case LSONPROC:
   1035 		l->l_target_cpu = tci;
   1036 		spc_lock(l->l_cpu);
   1037 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1038 		spc_unlock(l->l_cpu);
   1039 		break;
   1040 	}
   1041 	lwp_unlock(l);
   1042 }
   1043 
   1044 /*
   1045  * Find the LWP in the process.  Arguments may be zero, in such case,
   1046  * the calling process and first LWP in the list will be used.
   1047  * On success - returns proc locked.
   1048  */
   1049 struct lwp *
   1050 lwp_find2(pid_t pid, lwpid_t lid)
   1051 {
   1052 	proc_t *p;
   1053 	lwp_t *l;
   1054 
   1055 	/* Find the process */
   1056 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
   1057 	if (p == NULL)
   1058 		return NULL;
   1059 	mutex_enter(p->p_lock);
   1060 	if (pid != 0) {
   1061 		/* Case of p_find */
   1062 		mutex_exit(proc_lock);
   1063 	}
   1064 
   1065 	/* Find the thread */
   1066 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
   1067 	if (l == NULL) {
   1068 		mutex_exit(p->p_lock);
   1069 	}
   1070 
   1071 	return l;
   1072 }
   1073 
   1074 /*
   1075  * Look up a live LWP within the speicifed process, and return it locked.
   1076  *
   1077  * Must be called with p->p_lock held.
   1078  */
   1079 struct lwp *
   1080 lwp_find(struct proc *p, int id)
   1081 {
   1082 	struct lwp *l;
   1083 
   1084 	KASSERT(mutex_owned(p->p_lock));
   1085 
   1086 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1087 		if (l->l_lid == id)
   1088 			break;
   1089 	}
   1090 
   1091 	/*
   1092 	 * No need to lock - all of these conditions will
   1093 	 * be visible with the process level mutex held.
   1094 	 */
   1095 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1096 		l = NULL;
   1097 
   1098 	return l;
   1099 }
   1100 
   1101 /*
   1102  * Update an LWP's cached credentials to mirror the process' master copy.
   1103  *
   1104  * This happens early in the syscall path, on user trap, and on LWP
   1105  * creation.  A long-running LWP can also voluntarily choose to update
   1106  * it's credentials by calling this routine.  This may be called from
   1107  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1108  */
   1109 void
   1110 lwp_update_creds(struct lwp *l)
   1111 {
   1112 	kauth_cred_t oc;
   1113 	struct proc *p;
   1114 
   1115 	p = l->l_proc;
   1116 	oc = l->l_cred;
   1117 
   1118 	mutex_enter(p->p_lock);
   1119 	kauth_cred_hold(p->p_cred);
   1120 	l->l_cred = p->p_cred;
   1121 	l->l_prflag &= ~LPR_CRMOD;
   1122 	mutex_exit(p->p_lock);
   1123 	if (oc != NULL)
   1124 		kauth_cred_free(oc);
   1125 }
   1126 
   1127 /*
   1128  * Verify that an LWP is locked, and optionally verify that the lock matches
   1129  * one we specify.
   1130  */
   1131 int
   1132 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1133 {
   1134 	kmutex_t *cur = l->l_mutex;
   1135 
   1136 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1137 }
   1138 
   1139 /*
   1140  * Lock an LWP.
   1141  */
   1142 kmutex_t *
   1143 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1144 {
   1145 
   1146 	/*
   1147 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1148 	 *
   1149 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1150 	 */
   1151 #if 1
   1152 	while (l->l_mutex != old) {
   1153 #else
   1154 	for (;;) {
   1155 #endif
   1156 		mutex_spin_exit(old);
   1157 		old = l->l_mutex;
   1158 		mutex_spin_enter(old);
   1159 
   1160 		/*
   1161 		 * mutex_enter() will have posted a read barrier.  Re-test
   1162 		 * l->l_mutex.  If it has changed, we need to try again.
   1163 		 */
   1164 #if 1
   1165 	}
   1166 #else
   1167 	} while (__predict_false(l->l_mutex != old));
   1168 #endif
   1169 
   1170 	return old;
   1171 }
   1172 
   1173 /*
   1174  * Lend a new mutex to an LWP.  The old mutex must be held.
   1175  */
   1176 void
   1177 lwp_setlock(struct lwp *l, kmutex_t *new)
   1178 {
   1179 
   1180 	KASSERT(mutex_owned(l->l_mutex));
   1181 
   1182 	membar_exit();
   1183 	l->l_mutex = new;
   1184 }
   1185 
   1186 /*
   1187  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1188  * must be held.
   1189  */
   1190 void
   1191 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1192 {
   1193 	kmutex_t *old;
   1194 
   1195 	KASSERT(mutex_owned(l->l_mutex));
   1196 
   1197 	old = l->l_mutex;
   1198 	membar_exit();
   1199 	l->l_mutex = new;
   1200 	mutex_spin_exit(old);
   1201 }
   1202 
   1203 /*
   1204  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1205  * locked.
   1206  */
   1207 void
   1208 lwp_relock(struct lwp *l, kmutex_t *new)
   1209 {
   1210 	kmutex_t *old;
   1211 
   1212 	KASSERT(mutex_owned(l->l_mutex));
   1213 
   1214 	old = l->l_mutex;
   1215 	if (old != new) {
   1216 		mutex_spin_enter(new);
   1217 		l->l_mutex = new;
   1218 		mutex_spin_exit(old);
   1219 	}
   1220 }
   1221 
   1222 int
   1223 lwp_trylock(struct lwp *l)
   1224 {
   1225 	kmutex_t *old;
   1226 
   1227 	for (;;) {
   1228 		if (!mutex_tryenter(old = l->l_mutex))
   1229 			return 0;
   1230 		if (__predict_true(l->l_mutex == old))
   1231 			return 1;
   1232 		mutex_spin_exit(old);
   1233 	}
   1234 }
   1235 
   1236 u_int
   1237 lwp_unsleep(lwp_t *l, bool cleanup)
   1238 {
   1239 
   1240 	KASSERT(mutex_owned(l->l_mutex));
   1241 
   1242 	return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1243 }
   1244 
   1245 
   1246 /*
   1247  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1248  * set.
   1249  */
   1250 void
   1251 lwp_userret(struct lwp *l)
   1252 {
   1253 	struct proc *p;
   1254 	void (*hook)(void);
   1255 	int sig;
   1256 
   1257 	KASSERT(l == curlwp);
   1258 	KASSERT(l->l_stat == LSONPROC);
   1259 	p = l->l_proc;
   1260 
   1261 #ifndef __HAVE_FAST_SOFTINTS
   1262 	/* Run pending soft interrupts. */
   1263 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1264 		softint_overlay();
   1265 #endif
   1266 
   1267 #ifdef KERN_SA
   1268 	/* Generate UNBLOCKED upcall if needed */
   1269 	if (l->l_flag & LW_SA_BLOCKING) {
   1270 		sa_unblock_userret(l);
   1271 		/* NOTREACHED */
   1272 	}
   1273 #endif
   1274 
   1275 	/*
   1276 	 * It should be safe to do this read unlocked on a multiprocessor
   1277 	 * system..
   1278 	 *
   1279 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
   1280 	 * consider it now.
   1281 	 */
   1282 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
   1283 		/*
   1284 		 * Process pending signals first, unless the process
   1285 		 * is dumping core or exiting, where we will instead
   1286 		 * enter the LW_WSUSPEND case below.
   1287 		 */
   1288 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1289 		    LW_PENDSIG) {
   1290 			mutex_enter(p->p_lock);
   1291 			while ((sig = issignal(l)) != 0)
   1292 				postsig(sig);
   1293 			mutex_exit(p->p_lock);
   1294 		}
   1295 
   1296 		/*
   1297 		 * Core-dump or suspend pending.
   1298 		 *
   1299 		 * In case of core dump, suspend ourselves, so that the
   1300 		 * kernel stack and therefore the userland registers saved
   1301 		 * in the trapframe are around for coredump() to write them
   1302 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1303 		 * will write the core file out once all other LWPs are
   1304 		 * suspended.
   1305 		 */
   1306 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1307 			mutex_enter(p->p_lock);
   1308 			p->p_nrlwps--;
   1309 			cv_broadcast(&p->p_lwpcv);
   1310 			lwp_lock(l);
   1311 			l->l_stat = LSSUSPENDED;
   1312 			lwp_unlock(l);
   1313 			mutex_exit(p->p_lock);
   1314 			lwp_lock(l);
   1315 			mi_switch(l);
   1316 		}
   1317 
   1318 		/* Process is exiting. */
   1319 		if ((l->l_flag & LW_WEXIT) != 0) {
   1320 			lwp_exit(l);
   1321 			KASSERT(0);
   1322 			/* NOTREACHED */
   1323 		}
   1324 
   1325 		/* Call userret hook; used by Linux emulation. */
   1326 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1327 			lwp_lock(l);
   1328 			l->l_flag &= ~LW_WUSERRET;
   1329 			lwp_unlock(l);
   1330 			hook = p->p_userret;
   1331 			p->p_userret = NULL;
   1332 			(*hook)();
   1333 		}
   1334 	}
   1335 
   1336 #ifdef KERN_SA
   1337 	/*
   1338 	 * Timer events are handled specially.  We only try once to deliver
   1339 	 * pending timer upcalls; if if fails, we can try again on the next
   1340 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
   1341 	 * bounce us back here through the trap path after we return.
   1342 	 */
   1343 	if (p->p_timerpend)
   1344 		timerupcall(l);
   1345 	if (l->l_flag & LW_SA_UPCALL)
   1346 		sa_upcall_userret(l);
   1347 #endif /* KERN_SA */
   1348 }
   1349 
   1350 /*
   1351  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1352  */
   1353 void
   1354 lwp_need_userret(struct lwp *l)
   1355 {
   1356 	KASSERT(lwp_locked(l, NULL));
   1357 
   1358 	/*
   1359 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1360 	 * that the condition will be seen before forcing the LWP to enter
   1361 	 * kernel mode.
   1362 	 */
   1363 	membar_producer();
   1364 	cpu_signotify(l);
   1365 }
   1366 
   1367 /*
   1368  * Add one reference to an LWP.  This will prevent the LWP from
   1369  * exiting, thus keep the lwp structure and PCB around to inspect.
   1370  */
   1371 void
   1372 lwp_addref(struct lwp *l)
   1373 {
   1374 
   1375 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1376 	KASSERT(l->l_stat != LSZOMB);
   1377 	KASSERT(l->l_refcnt != 0);
   1378 
   1379 	l->l_refcnt++;
   1380 }
   1381 
   1382 /*
   1383  * Remove one reference to an LWP.  If this is the last reference,
   1384  * then we must finalize the LWP's death.
   1385  */
   1386 void
   1387 lwp_delref(struct lwp *l)
   1388 {
   1389 	struct proc *p = l->l_proc;
   1390 
   1391 	mutex_enter(p->p_lock);
   1392 	KASSERT(l->l_stat != LSZOMB);
   1393 	KASSERT(l->l_refcnt > 0);
   1394 	if (--l->l_refcnt == 0)
   1395 		cv_broadcast(&p->p_lwpcv);
   1396 	mutex_exit(p->p_lock);
   1397 }
   1398 
   1399 /*
   1400  * Drain all references to the current LWP.
   1401  */
   1402 void
   1403 lwp_drainrefs(struct lwp *l)
   1404 {
   1405 	struct proc *p = l->l_proc;
   1406 
   1407 	KASSERT(mutex_owned(p->p_lock));
   1408 	KASSERT(l->l_refcnt != 0);
   1409 
   1410 	l->l_refcnt--;
   1411 	while (l->l_refcnt != 0)
   1412 		cv_wait(&p->p_lwpcv, p->p_lock);
   1413 }
   1414 
   1415 /*
   1416  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1417  * be held.
   1418  */
   1419 bool
   1420 lwp_alive(lwp_t *l)
   1421 {
   1422 
   1423 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1424 
   1425 	switch (l->l_stat) {
   1426 	case LSSLEEP:
   1427 	case LSRUN:
   1428 	case LSONPROC:
   1429 	case LSSTOP:
   1430 	case LSSUSPENDED:
   1431 		return true;
   1432 	default:
   1433 		return false;
   1434 	}
   1435 }
   1436 
   1437 /*
   1438  * Return first live LWP in the process.
   1439  */
   1440 lwp_t *
   1441 lwp_find_first(proc_t *p)
   1442 {
   1443 	lwp_t *l;
   1444 
   1445 	KASSERT(mutex_owned(p->p_lock));
   1446 
   1447 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1448 		if (lwp_alive(l)) {
   1449 			return l;
   1450 		}
   1451 	}
   1452 
   1453 	return NULL;
   1454 }
   1455 
   1456 /*
   1457  * lwp_specific_key_create --
   1458  *	Create a key for subsystem lwp-specific data.
   1459  */
   1460 int
   1461 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1462 {
   1463 
   1464 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1465 }
   1466 
   1467 /*
   1468  * lwp_specific_key_delete --
   1469  *	Delete a key for subsystem lwp-specific data.
   1470  */
   1471 void
   1472 lwp_specific_key_delete(specificdata_key_t key)
   1473 {
   1474 
   1475 	specificdata_key_delete(lwp_specificdata_domain, key);
   1476 }
   1477 
   1478 /*
   1479  * lwp_initspecific --
   1480  *	Initialize an LWP's specificdata container.
   1481  */
   1482 void
   1483 lwp_initspecific(struct lwp *l)
   1484 {
   1485 	int error;
   1486 
   1487 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1488 	KASSERT(error == 0);
   1489 }
   1490 
   1491 /*
   1492  * lwp_finispecific --
   1493  *	Finalize an LWP's specificdata container.
   1494  */
   1495 void
   1496 lwp_finispecific(struct lwp *l)
   1497 {
   1498 
   1499 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1500 }
   1501 
   1502 /*
   1503  * lwp_getspecific --
   1504  *	Return lwp-specific data corresponding to the specified key.
   1505  *
   1506  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1507  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1508  *	LWP's specifc data, care must be taken to ensure that doing so
   1509  *	would not cause internal data structure inconsistency (i.e. caller
   1510  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1511  *	or lwp_setspecific() call).
   1512  */
   1513 void *
   1514 lwp_getspecific(specificdata_key_t key)
   1515 {
   1516 
   1517 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1518 						  &curlwp->l_specdataref, key));
   1519 }
   1520 
   1521 void *
   1522 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1523 {
   1524 
   1525 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1526 						  &l->l_specdataref, key));
   1527 }
   1528 
   1529 /*
   1530  * lwp_setspecific --
   1531  *	Set lwp-specific data corresponding to the specified key.
   1532  */
   1533 void
   1534 lwp_setspecific(specificdata_key_t key, void *data)
   1535 {
   1536 
   1537 	specificdata_setspecific(lwp_specificdata_domain,
   1538 				 &curlwp->l_specdataref, key, data);
   1539 }
   1540 
   1541 /*
   1542  * Allocate a new lwpctl structure for a user LWP.
   1543  */
   1544 int
   1545 lwp_ctl_alloc(vaddr_t *uaddr)
   1546 {
   1547 	lcproc_t *lp;
   1548 	u_int bit, i, offset;
   1549 	struct uvm_object *uao;
   1550 	int error;
   1551 	lcpage_t *lcp;
   1552 	proc_t *p;
   1553 	lwp_t *l;
   1554 
   1555 	l = curlwp;
   1556 	p = l->l_proc;
   1557 
   1558 	if (l->l_lcpage != NULL) {
   1559 		lcp = l->l_lcpage;
   1560 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1561 		return (EINVAL);
   1562 	}
   1563 
   1564 	/* First time around, allocate header structure for the process. */
   1565 	if ((lp = p->p_lwpctl) == NULL) {
   1566 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1567 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1568 		lp->lp_uao = NULL;
   1569 		TAILQ_INIT(&lp->lp_pages);
   1570 		mutex_enter(p->p_lock);
   1571 		if (p->p_lwpctl == NULL) {
   1572 			p->p_lwpctl = lp;
   1573 			mutex_exit(p->p_lock);
   1574 		} else {
   1575 			mutex_exit(p->p_lock);
   1576 			mutex_destroy(&lp->lp_lock);
   1577 			kmem_free(lp, sizeof(*lp));
   1578 			lp = p->p_lwpctl;
   1579 		}
   1580 	}
   1581 
   1582  	/*
   1583  	 * Set up an anonymous memory region to hold the shared pages.
   1584  	 * Map them into the process' address space.  The user vmspace
   1585  	 * gets the first reference on the UAO.
   1586  	 */
   1587 	mutex_enter(&lp->lp_lock);
   1588 	if (lp->lp_uao == NULL) {
   1589 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1590 		lp->lp_cur = 0;
   1591 		lp->lp_max = LWPCTL_UAREA_SZ;
   1592 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1593 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1594 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1595 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1596 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1597 		if (error != 0) {
   1598 			uao_detach(lp->lp_uao);
   1599 			lp->lp_uao = NULL;
   1600 			mutex_exit(&lp->lp_lock);
   1601 			return error;
   1602 		}
   1603 	}
   1604 
   1605 	/* Get a free block and allocate for this LWP. */
   1606 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1607 		if (lcp->lcp_nfree != 0)
   1608 			break;
   1609 	}
   1610 	if (lcp == NULL) {
   1611 		/* Nothing available - try to set up a free page. */
   1612 		if (lp->lp_cur == lp->lp_max) {
   1613 			mutex_exit(&lp->lp_lock);
   1614 			return ENOMEM;
   1615 		}
   1616 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1617 		if (lcp == NULL) {
   1618 			mutex_exit(&lp->lp_lock);
   1619 			return ENOMEM;
   1620 		}
   1621 		/*
   1622 		 * Wire the next page down in kernel space.  Since this
   1623 		 * is a new mapping, we must add a reference.
   1624 		 */
   1625 		uao = lp->lp_uao;
   1626 		(*uao->pgops->pgo_reference)(uao);
   1627 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1628 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1629 		    uao, lp->lp_cur, PAGE_SIZE,
   1630 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1631 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1632 		if (error != 0) {
   1633 			mutex_exit(&lp->lp_lock);
   1634 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1635 			(*uao->pgops->pgo_detach)(uao);
   1636 			return error;
   1637 		}
   1638 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1639 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1640 		if (error != 0) {
   1641 			mutex_exit(&lp->lp_lock);
   1642 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1643 			    lcp->lcp_kaddr + PAGE_SIZE);
   1644 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1645 			return error;
   1646 		}
   1647 		/* Prepare the page descriptor and link into the list. */
   1648 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1649 		lp->lp_cur += PAGE_SIZE;
   1650 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1651 		lcp->lcp_rotor = 0;
   1652 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1653 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1654 	}
   1655 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1656 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1657 			i = 0;
   1658 	}
   1659 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1660 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1661 	lcp->lcp_rotor = i;
   1662 	lcp->lcp_nfree--;
   1663 	l->l_lcpage = lcp;
   1664 	offset = (i << 5) + bit;
   1665 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1666 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1667 	mutex_exit(&lp->lp_lock);
   1668 
   1669 	KPREEMPT_DISABLE(l);
   1670 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1671 	KPREEMPT_ENABLE(l);
   1672 
   1673 	return 0;
   1674 }
   1675 
   1676 /*
   1677  * Free an lwpctl structure back to the per-process list.
   1678  */
   1679 void
   1680 lwp_ctl_free(lwp_t *l)
   1681 {
   1682 	lcproc_t *lp;
   1683 	lcpage_t *lcp;
   1684 	u_int map, offset;
   1685 
   1686 	lp = l->l_proc->p_lwpctl;
   1687 	KASSERT(lp != NULL);
   1688 
   1689 	lcp = l->l_lcpage;
   1690 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1691 	KASSERT(offset < LWPCTL_PER_PAGE);
   1692 
   1693 	mutex_enter(&lp->lp_lock);
   1694 	lcp->lcp_nfree++;
   1695 	map = offset >> 5;
   1696 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1697 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1698 		lcp->lcp_rotor = map;
   1699 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1700 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1701 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1702 	}
   1703 	mutex_exit(&lp->lp_lock);
   1704 }
   1705 
   1706 /*
   1707  * Process is exiting; tear down lwpctl state.  This can only be safely
   1708  * called by the last LWP in the process.
   1709  */
   1710 void
   1711 lwp_ctl_exit(void)
   1712 {
   1713 	lcpage_t *lcp, *next;
   1714 	lcproc_t *lp;
   1715 	proc_t *p;
   1716 	lwp_t *l;
   1717 
   1718 	l = curlwp;
   1719 	l->l_lwpctl = NULL;
   1720 	l->l_lcpage = NULL;
   1721 	p = l->l_proc;
   1722 	lp = p->p_lwpctl;
   1723 
   1724 	KASSERT(lp != NULL);
   1725 	KASSERT(p->p_nlwps == 1);
   1726 
   1727 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1728 		next = TAILQ_NEXT(lcp, lcp_chain);
   1729 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1730 		    lcp->lcp_kaddr + PAGE_SIZE);
   1731 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1732 	}
   1733 
   1734 	if (lp->lp_uao != NULL) {
   1735 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1736 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1737 	}
   1738 
   1739 	mutex_destroy(&lp->lp_lock);
   1740 	kmem_free(lp, sizeof(*lp));
   1741 	p->p_lwpctl = NULL;
   1742 }
   1743 
   1744 /*
   1745  * Return the current LWP's "preemption counter".  Used to detect
   1746  * preemption across operations that can tolerate preemption without
   1747  * crashing, but which may generate incorrect results if preempted.
   1748  */
   1749 uint64_t
   1750 lwp_pctr(void)
   1751 {
   1752 
   1753 	return curlwp->l_ncsw;
   1754 }
   1755 
   1756 #if defined(DDB)
   1757 void
   1758 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1759 {
   1760 	lwp_t *l;
   1761 
   1762 	LIST_FOREACH(l, &alllwp, l_list) {
   1763 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1764 
   1765 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1766 			continue;
   1767 		}
   1768 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1769 		    (void *)addr, (void *)stack,
   1770 		    (size_t)(addr - stack), l);
   1771 	}
   1772 }
   1773 #endif /* defined(DDB) */
   1774