kern_lwp.c revision 1.106.2.5 1 /* $NetBSD: kern_lwp.c,v 1.106.2.5 2009/09/16 13:38:00 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 * then the LWP is not on a run queue, but may be soon.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is about to switch away into oblivion, or has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > SLEEP
125 * > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 * > IDL (special cases)
129 *
130 * STOPPED ---> RUN SUSPENDED --> RUN
131 * > SLEEP
132 *
133 * SLEEP -----> ONPROC IDL --------> RUN
134 * > RUN > SUSPENDED
135 * > STOPPED > STOPPED
136 * > ONPROC (special cases)
137 *
138 * Some state transitions are only possible with kernel threads (eg
139 * ONPROC -> IDL) and happen under tightly controlled circumstances
140 * free of unwanted side effects.
141 *
142 * Migration
143 *
144 * Migration of threads from one CPU to another could be performed
145 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
146 * functions. The universal lwp_migrate() function should be used for
147 * any other cases. Subsystems in the kernel must be aware that CPU
148 * of LWP may change, while it is not locked.
149 *
150 * Locking
151 *
152 * The majority of fields in 'struct lwp' are covered by a single,
153 * general spin lock pointed to by lwp::l_mutex. The locks covering
154 * each field are documented in sys/lwp.h.
155 *
156 * State transitions must be made with the LWP's general lock held,
157 * and may cause the LWP's lock pointer to change. Manipulation of
158 * the general lock is not performed directly, but through calls to
159 * lwp_lock(), lwp_relock() and similar.
160 *
161 * States and their associated locks:
162 *
163 * LSONPROC, LSZOMB:
164 *
165 * Always covered by spc_lwplock, which protects running LWPs.
166 * This is a per-CPU lock and matches lwp::l_cpu.
167 *
168 * LSIDL, LSRUN:
169 *
170 * Always covered by spc_mutex, which protects the run queues.
171 * This is a per-CPU lock and matches lwp::l_cpu.
172 *
173 * LSSLEEP:
174 *
175 * Covered by a lock associated with the sleep queue that the
176 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
177 *
178 * LSSTOP, LSSUSPENDED:
179 *
180 * If the LWP was previously sleeping (l_wchan != NULL), then
181 * l_mutex references the sleep queue lock. If the LWP was
182 * runnable or on the CPU when halted, or has been removed from
183 * the sleep queue since halted, then the lock is spc_lwplock.
184 *
185 * The lock order is as follows:
186 *
187 * spc::spc_lwplock ->
188 * sleeptab::st_mutex ->
189 * tschain_t::tc_mutex ->
190 * spc::spc_mutex
191 *
192 * Each process has an scheduler state lock (proc::p_lock), and a
193 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
194 * so on. When an LWP is to be entered into or removed from one of the
195 * following states, p_lock must be held and the process wide counters
196 * adjusted:
197 *
198 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
199 *
200 * (But not always for kernel threads. There are some special cases
201 * as mentioned above. See kern_softint.c.)
202 *
203 * Note that an LWP is considered running or likely to run soon if in
204 * one of the following states. This affects the value of p_nrlwps:
205 *
206 * LSRUN, LSONPROC, LSSLEEP
207 *
208 * p_lock does not need to be held when transitioning among these
209 * three states, hence p_lock is rarely taken for state transitions.
210 */
211
212 #include <sys/cdefs.h>
213 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.106.2.5 2009/09/16 13:38:00 yamt Exp $");
214
215 #include "opt_ddb.h"
216 #include "opt_lockdebug.h"
217 #include "opt_sa.h"
218
219 #define _LWP_API_PRIVATE
220
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/sa.h>
227 #include <sys/savar.h>
228 #include <sys/syscallargs.h>
229 #include <sys/syscall_stats.h>
230 #include <sys/kauth.h>
231 #include <sys/sleepq.h>
232 #include <sys/user.h>
233 #include <sys/lockdebug.h>
234 #include <sys/kmem.h>
235 #include <sys/pset.h>
236 #include <sys/intr.h>
237 #include <sys/lwpctl.h>
238 #include <sys/atomic.h>
239 #include <sys/filedesc.h>
240
241 #include <uvm/uvm_extern.h>
242 #include <uvm/uvm_object.h>
243
244 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
245
246 struct pool lwp_uc_pool;
247
248 static pool_cache_t lwp_cache;
249 static specificdata_domain_t lwp_specificdata_domain;
250
251 void
252 lwpinit(void)
253 {
254
255 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
256 &pool_allocator_nointr, IPL_NONE);
257 lwp_specificdata_domain = specificdata_domain_create();
258 KASSERT(lwp_specificdata_domain != NULL);
259 lwp_sys_init();
260 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
261 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
262 }
263
264 /*
265 * Set an suspended.
266 *
267 * Must be called with p_lock held, and the LWP locked. Will unlock the
268 * LWP before return.
269 */
270 int
271 lwp_suspend(struct lwp *curl, struct lwp *t)
272 {
273 int error;
274
275 KASSERT(mutex_owned(t->l_proc->p_lock));
276 KASSERT(lwp_locked(t, NULL));
277
278 KASSERT(curl != t || curl->l_stat == LSONPROC);
279
280 /*
281 * If the current LWP has been told to exit, we must not suspend anyone
282 * else or deadlock could occur. We won't return to userspace.
283 */
284 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
285 lwp_unlock(t);
286 return (EDEADLK);
287 }
288
289 error = 0;
290
291 switch (t->l_stat) {
292 case LSRUN:
293 case LSONPROC:
294 t->l_flag |= LW_WSUSPEND;
295 lwp_need_userret(t);
296 lwp_unlock(t);
297 break;
298
299 case LSSLEEP:
300 t->l_flag |= LW_WSUSPEND;
301
302 /*
303 * Kick the LWP and try to get it to the kernel boundary
304 * so that it will release any locks that it holds.
305 * setrunnable() will release the lock.
306 */
307 if ((t->l_flag & LW_SINTR) != 0)
308 setrunnable(t);
309 else
310 lwp_unlock(t);
311 break;
312
313 case LSSUSPENDED:
314 lwp_unlock(t);
315 break;
316
317 case LSSTOP:
318 t->l_flag |= LW_WSUSPEND;
319 setrunnable(t);
320 break;
321
322 case LSIDL:
323 case LSZOMB:
324 error = EINTR; /* It's what Solaris does..... */
325 lwp_unlock(t);
326 break;
327 }
328
329 return (error);
330 }
331
332 /*
333 * Restart a suspended LWP.
334 *
335 * Must be called with p_lock held, and the LWP locked. Will unlock the
336 * LWP before return.
337 */
338 void
339 lwp_continue(struct lwp *l)
340 {
341
342 KASSERT(mutex_owned(l->l_proc->p_lock));
343 KASSERT(lwp_locked(l, NULL));
344
345 /* If rebooting or not suspended, then just bail out. */
346 if ((l->l_flag & LW_WREBOOT) != 0) {
347 lwp_unlock(l);
348 return;
349 }
350
351 l->l_flag &= ~LW_WSUSPEND;
352
353 if (l->l_stat != LSSUSPENDED) {
354 lwp_unlock(l);
355 return;
356 }
357
358 /* setrunnable() will release the lock. */
359 setrunnable(l);
360 }
361
362 /*
363 * Wait for an LWP within the current process to exit. If 'lid' is
364 * non-zero, we are waiting for a specific LWP.
365 *
366 * Must be called with p->p_lock held.
367 */
368 int
369 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
370 {
371 struct proc *p = l->l_proc;
372 struct lwp *l2;
373 int nfound, error;
374 lwpid_t curlid;
375 bool exiting;
376
377 KASSERT(mutex_owned(p->p_lock));
378
379 p->p_nlwpwait++;
380 l->l_waitingfor = lid;
381 curlid = l->l_lid;
382 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
383
384 for (;;) {
385 /*
386 * Avoid a race between exit1() and sigexit(): if the
387 * process is dumping core, then we need to bail out: call
388 * into lwp_userret() where we will be suspended until the
389 * deed is done.
390 */
391 if ((p->p_sflag & PS_WCORE) != 0) {
392 mutex_exit(p->p_lock);
393 lwp_userret(l);
394 #ifdef DIAGNOSTIC
395 panic("lwp_wait1");
396 #endif
397 /* NOTREACHED */
398 }
399
400 /*
401 * First off, drain any detached LWP that is waiting to be
402 * reaped.
403 */
404 while ((l2 = p->p_zomblwp) != NULL) {
405 p->p_zomblwp = NULL;
406 lwp_free(l2, false, false);/* releases proc mutex */
407 mutex_enter(p->p_lock);
408 }
409
410 /*
411 * Now look for an LWP to collect. If the whole process is
412 * exiting, count detached LWPs as eligible to be collected,
413 * but don't drain them here.
414 */
415 nfound = 0;
416 error = 0;
417 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
418 /*
419 * If a specific wait and the target is waiting on
420 * us, then avoid deadlock. This also traps LWPs
421 * that try to wait on themselves.
422 *
423 * Note that this does not handle more complicated
424 * cycles, like: t1 -> t2 -> t3 -> t1. The process
425 * can still be killed so it is not a major problem.
426 */
427 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
428 error = EDEADLK;
429 break;
430 }
431 if (l2 == l)
432 continue;
433 if ((l2->l_prflag & LPR_DETACHED) != 0) {
434 nfound += exiting;
435 continue;
436 }
437 if (lid != 0) {
438 if (l2->l_lid != lid)
439 continue;
440 /*
441 * Mark this LWP as the first waiter, if there
442 * is no other.
443 */
444 if (l2->l_waiter == 0)
445 l2->l_waiter = curlid;
446 } else if (l2->l_waiter != 0) {
447 /*
448 * It already has a waiter - so don't
449 * collect it. If the waiter doesn't
450 * grab it we'll get another chance
451 * later.
452 */
453 nfound++;
454 continue;
455 }
456 nfound++;
457
458 /* No need to lock the LWP in order to see LSZOMB. */
459 if (l2->l_stat != LSZOMB)
460 continue;
461
462 /*
463 * We're no longer waiting. Reset the "first waiter"
464 * pointer on the target, in case it was us.
465 */
466 l->l_waitingfor = 0;
467 l2->l_waiter = 0;
468 p->p_nlwpwait--;
469 if (departed)
470 *departed = l2->l_lid;
471 sched_lwp_collect(l2);
472
473 /* lwp_free() releases the proc lock. */
474 lwp_free(l2, false, false);
475 mutex_enter(p->p_lock);
476 return 0;
477 }
478
479 if (error != 0)
480 break;
481 if (nfound == 0) {
482 error = ESRCH;
483 break;
484 }
485
486 /*
487 * The kernel is careful to ensure that it can not deadlock
488 * when exiting - just keep waiting.
489 */
490 if (exiting) {
491 KASSERT(p->p_nlwps > 1);
492 cv_wait(&p->p_lwpcv, p->p_lock);
493 continue;
494 }
495
496 /*
497 * If all other LWPs are waiting for exits or suspends
498 * and the supply of zombies and potential zombies is
499 * exhausted, then we are about to deadlock.
500 *
501 * If the process is exiting (and this LWP is not the one
502 * that is coordinating the exit) then bail out now.
503 */
504 if ((p->p_sflag & PS_WEXIT) != 0 ||
505 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
506 error = EDEADLK;
507 break;
508 }
509
510 /*
511 * Sit around and wait for something to happen. We'll be
512 * awoken if any of the conditions examined change: if an
513 * LWP exits, is collected, or is detached.
514 */
515 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
516 break;
517 }
518
519 /*
520 * We didn't find any LWPs to collect, we may have received a
521 * signal, or some other condition has caused us to bail out.
522 *
523 * If waiting on a specific LWP, clear the waiters marker: some
524 * other LWP may want it. Then, kick all the remaining waiters
525 * so that they can re-check for zombies and for deadlock.
526 */
527 if (lid != 0) {
528 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
529 if (l2->l_lid == lid) {
530 if (l2->l_waiter == curlid)
531 l2->l_waiter = 0;
532 break;
533 }
534 }
535 }
536 p->p_nlwpwait--;
537 l->l_waitingfor = 0;
538 cv_broadcast(&p->p_lwpcv);
539
540 return error;
541 }
542
543 /*
544 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
545 * The new LWP is created in state LSIDL and must be set running,
546 * suspended, or stopped by the caller.
547 */
548 int
549 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
550 void *stack, size_t stacksize, void (*func)(void *), void *arg,
551 lwp_t **rnewlwpp, int sclass)
552 {
553 struct lwp *l2, *isfree;
554 turnstile_t *ts;
555
556 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
557
558 /*
559 * First off, reap any detached LWP waiting to be collected.
560 * We can re-use its LWP structure and turnstile.
561 */
562 isfree = NULL;
563 if (p2->p_zomblwp != NULL) {
564 mutex_enter(p2->p_lock);
565 if ((isfree = p2->p_zomblwp) != NULL) {
566 p2->p_zomblwp = NULL;
567 lwp_free(isfree, true, false);/* releases proc mutex */
568 } else
569 mutex_exit(p2->p_lock);
570 }
571 if (isfree == NULL) {
572 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
573 memset(l2, 0, sizeof(*l2));
574 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
575 SLIST_INIT(&l2->l_pi_lenders);
576 } else {
577 l2 = isfree;
578 ts = l2->l_ts;
579 KASSERT(l2->l_inheritedprio == -1);
580 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
581 memset(l2, 0, sizeof(*l2));
582 l2->l_ts = ts;
583 }
584
585 l2->l_stat = LSIDL;
586 l2->l_proc = p2;
587 l2->l_refcnt = 1;
588 l2->l_class = sclass;
589
590 /*
591 * If vfork(), we want the LWP to run fast and on the same CPU
592 * as its parent, so that it can reuse the VM context and cache
593 * footprint on the local CPU.
594 */
595 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
596 l2->l_kpribase = PRI_KERNEL;
597 l2->l_priority = l1->l_priority;
598 l2->l_inheritedprio = -1;
599 l2->l_flag = inmem ? LW_INMEM : 0;
600 l2->l_pflag = LP_MPSAFE;
601 TAILQ_INIT(&l2->l_ld_locks);
602
603 /*
604 * If not the first LWP in the process, grab a reference to the
605 * descriptor table.
606 */
607 l2->l_fd = p2->p_fd;
608 if (p2->p_nlwps != 0) {
609 KASSERT(l1->l_proc == p2);
610 atomic_inc_uint(&l2->l_fd->fd_refcnt);
611 } else {
612 KASSERT(l1->l_proc != p2);
613 }
614
615 if (p2->p_flag & PK_SYSTEM) {
616 /* Mark it as a system LWP and not a candidate for swapping */
617 l2->l_flag |= LW_SYSTEM;
618 }
619
620 kpreempt_disable();
621 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
622 l2->l_cpu = l1->l_cpu;
623 kpreempt_enable();
624
625 lwp_initspecific(l2);
626 sched_lwp_fork(l1, l2);
627 lwp_update_creds(l2);
628 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
629 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
630 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
631 cv_init(&l2->l_sigcv, "sigwait");
632 l2->l_syncobj = &sched_syncobj;
633
634 if (rnewlwpp != NULL)
635 *rnewlwpp = l2;
636
637 l2->l_addr = UAREA_TO_USER(uaddr);
638 uvm_lwp_fork(l1, l2, stack, stacksize, func,
639 (arg != NULL) ? arg : l2);
640
641 mutex_enter(p2->p_lock);
642
643 if ((flags & LWP_DETACHED) != 0) {
644 l2->l_prflag = LPR_DETACHED;
645 p2->p_ndlwps++;
646 } else
647 l2->l_prflag = 0;
648
649 l2->l_sigmask = l1->l_sigmask;
650 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
651 sigemptyset(&l2->l_sigpend.sp_set);
652
653 p2->p_nlwpid++;
654 if (p2->p_nlwpid == 0)
655 p2->p_nlwpid++;
656 l2->l_lid = p2->p_nlwpid;
657 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
658 p2->p_nlwps++;
659
660 if ((p2->p_flag & PK_SYSTEM) == 0) {
661 /* Inherit an affinity */
662 if (l1->l_flag & LW_AFFINITY) {
663 /*
664 * Note that we hold the state lock while inheriting
665 * the affinity to avoid race with sched_setaffinity().
666 */
667 lwp_lock(l1);
668 if (l1->l_flag & LW_AFFINITY) {
669 kcpuset_use(l1->l_affinity);
670 l2->l_affinity = l1->l_affinity;
671 l2->l_flag |= LW_AFFINITY;
672 }
673 lwp_unlock(l1);
674 }
675 lwp_lock(l2);
676 /* Inherit a processor-set */
677 l2->l_psid = l1->l_psid;
678 /* Look for a CPU to start */
679 l2->l_cpu = sched_takecpu(l2);
680 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
681 }
682 mutex_exit(p2->p_lock);
683
684 mutex_enter(proc_lock);
685 LIST_INSERT_HEAD(&alllwp, l2, l_list);
686 mutex_exit(proc_lock);
687
688 SYSCALL_TIME_LWP_INIT(l2);
689
690 if (p2->p_emul->e_lwp_fork)
691 (*p2->p_emul->e_lwp_fork)(l1, l2);
692
693 return (0);
694 }
695
696 /*
697 * Called by MD code when a new LWP begins execution. Must be called
698 * with the previous LWP locked (so at splsched), or if there is no
699 * previous LWP, at splsched.
700 */
701 void
702 lwp_startup(struct lwp *prev, struct lwp *new)
703 {
704
705 KASSERT(kpreempt_disabled());
706 if (prev != NULL) {
707 /*
708 * Normalize the count of the spin-mutexes, it was
709 * increased in mi_switch(). Unmark the state of
710 * context switch - it is finished for previous LWP.
711 */
712 curcpu()->ci_mtx_count++;
713 membar_exit();
714 prev->l_ctxswtch = 0;
715 }
716 KPREEMPT_DISABLE(new);
717 spl0();
718 pmap_activate(new);
719 LOCKDEBUG_BARRIER(NULL, 0);
720 KPREEMPT_ENABLE(new);
721 if ((new->l_pflag & LP_MPSAFE) == 0) {
722 KERNEL_LOCK(1, new);
723 }
724 }
725
726 /*
727 * Exit an LWP.
728 */
729 void
730 lwp_exit(struct lwp *l)
731 {
732 struct proc *p = l->l_proc;
733 struct lwp *l2;
734 bool current;
735
736 current = (l == curlwp);
737
738 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
739 KASSERT(p == curproc);
740
741 /*
742 * Verify that we hold no locks other than the kernel lock.
743 */
744 LOCKDEBUG_BARRIER(&kernel_lock, 0);
745
746 /*
747 * If we are the last live LWP in a process, we need to exit the
748 * entire process. We do so with an exit status of zero, because
749 * it's a "controlled" exit, and because that's what Solaris does.
750 *
751 * We are not quite a zombie yet, but for accounting purposes we
752 * must increment the count of zombies here.
753 *
754 * Note: the last LWP's specificdata will be deleted here.
755 */
756 mutex_enter(p->p_lock);
757 if (p->p_nlwps - p->p_nzlwps == 1) {
758 KASSERT(current == true);
759 /* XXXSMP kernel_lock not held */
760 exit1(l, 0);
761 /* NOTREACHED */
762 }
763 p->p_nzlwps++;
764 mutex_exit(p->p_lock);
765
766 if (p->p_emul->e_lwp_exit)
767 (*p->p_emul->e_lwp_exit)(l);
768
769 /* Drop filedesc reference. */
770 fd_free();
771
772 /* Delete the specificdata while it's still safe to sleep. */
773 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
774
775 /*
776 * Release our cached credentials.
777 */
778 kauth_cred_free(l->l_cred);
779 callout_destroy(&l->l_timeout_ch);
780
781 /*
782 * While we can still block, mark the LWP as unswappable to
783 * prevent conflicts with the with the swapper.
784 */
785 if (current)
786 uvm_lwp_hold(l);
787
788 /*
789 * Remove the LWP from the global list.
790 */
791 mutex_enter(proc_lock);
792 LIST_REMOVE(l, l_list);
793 mutex_exit(proc_lock);
794
795 /*
796 * Get rid of all references to the LWP that others (e.g. procfs)
797 * may have, and mark the LWP as a zombie. If the LWP is detached,
798 * mark it waiting for collection in the proc structure. Note that
799 * before we can do that, we need to free any other dead, deatched
800 * LWP waiting to meet its maker.
801 */
802 mutex_enter(p->p_lock);
803 lwp_drainrefs(l);
804
805 if ((l->l_prflag & LPR_DETACHED) != 0) {
806 while ((l2 = p->p_zomblwp) != NULL) {
807 p->p_zomblwp = NULL;
808 lwp_free(l2, false, false);/* releases proc mutex */
809 mutex_enter(p->p_lock);
810 l->l_refcnt++;
811 lwp_drainrefs(l);
812 }
813 p->p_zomblwp = l;
814 }
815
816 /*
817 * If we find a pending signal for the process and we have been
818 * asked to check for signals, then we loose: arrange to have
819 * all other LWPs in the process check for signals.
820 */
821 if ((l->l_flag & LW_PENDSIG) != 0 &&
822 firstsig(&p->p_sigpend.sp_set) != 0) {
823 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
824 lwp_lock(l2);
825 l2->l_flag |= LW_PENDSIG;
826 lwp_unlock(l2);
827 }
828 }
829
830 lwp_lock(l);
831 l->l_stat = LSZOMB;
832 if (l->l_name != NULL)
833 strcpy(l->l_name, "(zombie)");
834 if (l->l_flag & LW_AFFINITY) {
835 l->l_flag &= ~LW_AFFINITY;
836 } else {
837 KASSERT(l->l_affinity == NULL);
838 }
839 lwp_unlock(l);
840 p->p_nrlwps--;
841 cv_broadcast(&p->p_lwpcv);
842 if (l->l_lwpctl != NULL)
843 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
844 mutex_exit(p->p_lock);
845
846 /* Safe without lock since LWP is in zombie state */
847 if (l->l_affinity) {
848 kcpuset_unuse(l->l_affinity, NULL);
849 l->l_affinity = NULL;
850 }
851
852 /*
853 * We can no longer block. At this point, lwp_free() may already
854 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
855 *
856 * Free MD LWP resources.
857 */
858 #ifndef __NO_CPU_LWP_FREE
859 cpu_lwp_free(l, 0);
860 #endif
861
862 if (current) {
863 pmap_deactivate(l);
864
865 /*
866 * Release the kernel lock, and switch away into
867 * oblivion.
868 */
869 #ifdef notyet
870 /* XXXSMP hold in lwp_userret() */
871 KERNEL_UNLOCK_LAST(l);
872 #else
873 KERNEL_UNLOCK_ALL(l, NULL);
874 #endif
875 lwp_exit_switchaway(l);
876 }
877 }
878
879 /*
880 * Free a dead LWP's remaining resources.
881 *
882 * XXXLWP limits.
883 */
884 void
885 lwp_free(struct lwp *l, bool recycle, bool last)
886 {
887 struct proc *p = l->l_proc;
888 struct rusage *ru;
889 ksiginfoq_t kq;
890
891 KASSERT(l != curlwp);
892
893 /*
894 * If this was not the last LWP in the process, then adjust
895 * counters and unlock.
896 */
897 if (!last) {
898 /*
899 * Add the LWP's run time to the process' base value.
900 * This needs to co-incide with coming off p_lwps.
901 */
902 bintime_add(&p->p_rtime, &l->l_rtime);
903 p->p_pctcpu += l->l_pctcpu;
904 ru = &p->p_stats->p_ru;
905 ruadd(ru, &l->l_ru);
906 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
907 ru->ru_nivcsw += l->l_nivcsw;
908 LIST_REMOVE(l, l_sibling);
909 p->p_nlwps--;
910 p->p_nzlwps--;
911 if ((l->l_prflag & LPR_DETACHED) != 0)
912 p->p_ndlwps--;
913
914 /*
915 * Have any LWPs sleeping in lwp_wait() recheck for
916 * deadlock.
917 */
918 cv_broadcast(&p->p_lwpcv);
919 mutex_exit(p->p_lock);
920 }
921
922 #ifdef MULTIPROCESSOR
923 /*
924 * In the unlikely event that the LWP is still on the CPU,
925 * then spin until it has switched away. We need to release
926 * all locks to avoid deadlock against interrupt handlers on
927 * the target CPU.
928 */
929 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
930 int count;
931 (void)count; /* XXXgcc */
932 KERNEL_UNLOCK_ALL(curlwp, &count);
933 while ((l->l_pflag & LP_RUNNING) != 0 ||
934 l->l_cpu->ci_curlwp == l)
935 SPINLOCK_BACKOFF_HOOK;
936 KERNEL_LOCK(count, curlwp);
937 }
938 #endif
939
940 /*
941 * Destroy the LWP's remaining signal information.
942 */
943 ksiginfo_queue_init(&kq);
944 sigclear(&l->l_sigpend, NULL, &kq);
945 ksiginfo_queue_drain(&kq);
946 cv_destroy(&l->l_sigcv);
947 mutex_destroy(&l->l_swaplock);
948
949 /*
950 * Free the LWP's turnstile and the LWP structure itself unless the
951 * caller wants to recycle them. Also, free the scheduler specific
952 * data.
953 *
954 * We can't return turnstile0 to the pool (it didn't come from it),
955 * so if it comes up just drop it quietly and move on.
956 *
957 * We don't recycle the VM resources at this time.
958 */
959 if (l->l_lwpctl != NULL)
960 lwp_ctl_free(l);
961
962 if (!recycle && l->l_ts != &turnstile0)
963 pool_cache_put(turnstile_cache, l->l_ts);
964 if (l->l_name != NULL)
965 kmem_free(l->l_name, MAXCOMLEN);
966 #ifndef __NO_CPU_LWP_FREE
967 cpu_lwp_free2(l);
968 #endif
969 KASSERT((l->l_flag & LW_INMEM) != 0);
970 uvm_lwp_exit(l);
971 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
972 KASSERT(l->l_inheritedprio == -1);
973 if (!recycle)
974 pool_cache_put(lwp_cache, l);
975 }
976
977 /*
978 * Migrate the LWP to the another CPU. Unlocks the LWP.
979 */
980 void
981 lwp_migrate(lwp_t *l, struct cpu_info *tci)
982 {
983 struct schedstate_percpu *tspc;
984 int lstat = l->l_stat;
985
986 KASSERT(lwp_locked(l, NULL));
987 KASSERT(tci != NULL);
988
989 /* If LWP is still on the CPU, it must be handled like LSONPROC */
990 if ((l->l_pflag & LP_RUNNING) != 0) {
991 lstat = LSONPROC;
992 }
993
994 /*
995 * The destination CPU could be changed while previous migration
996 * was not finished.
997 */
998 if (l->l_target_cpu != NULL) {
999 l->l_target_cpu = tci;
1000 lwp_unlock(l);
1001 return;
1002 }
1003
1004 /* Nothing to do if trying to migrate to the same CPU */
1005 if (l->l_cpu == tci) {
1006 lwp_unlock(l);
1007 return;
1008 }
1009
1010 KASSERT(l->l_target_cpu == NULL);
1011 tspc = &tci->ci_schedstate;
1012 switch (lstat) {
1013 case LSRUN:
1014 if (l->l_flag & LW_INMEM) {
1015 l->l_target_cpu = tci;
1016 lwp_unlock(l);
1017 return;
1018 }
1019 case LSIDL:
1020 l->l_cpu = tci;
1021 lwp_unlock_to(l, tspc->spc_mutex);
1022 return;
1023 case LSSLEEP:
1024 l->l_cpu = tci;
1025 break;
1026 case LSSTOP:
1027 case LSSUSPENDED:
1028 l->l_cpu = tci;
1029 if (l->l_wchan == NULL) {
1030 lwp_unlock_to(l, tspc->spc_lwplock);
1031 return;
1032 }
1033 break;
1034 case LSONPROC:
1035 l->l_target_cpu = tci;
1036 spc_lock(l->l_cpu);
1037 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1038 spc_unlock(l->l_cpu);
1039 break;
1040 }
1041 lwp_unlock(l);
1042 }
1043
1044 /*
1045 * Find the LWP in the process. Arguments may be zero, in such case,
1046 * the calling process and first LWP in the list will be used.
1047 * On success - returns proc locked.
1048 */
1049 struct lwp *
1050 lwp_find2(pid_t pid, lwpid_t lid)
1051 {
1052 proc_t *p;
1053 lwp_t *l;
1054
1055 /* Find the process */
1056 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1057 if (p == NULL)
1058 return NULL;
1059 mutex_enter(p->p_lock);
1060 if (pid != 0) {
1061 /* Case of p_find */
1062 mutex_exit(proc_lock);
1063 }
1064
1065 /* Find the thread */
1066 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1067 if (l == NULL) {
1068 mutex_exit(p->p_lock);
1069 }
1070
1071 return l;
1072 }
1073
1074 /*
1075 * Look up a live LWP within the speicifed process, and return it locked.
1076 *
1077 * Must be called with p->p_lock held.
1078 */
1079 struct lwp *
1080 lwp_find(struct proc *p, int id)
1081 {
1082 struct lwp *l;
1083
1084 KASSERT(mutex_owned(p->p_lock));
1085
1086 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1087 if (l->l_lid == id)
1088 break;
1089 }
1090
1091 /*
1092 * No need to lock - all of these conditions will
1093 * be visible with the process level mutex held.
1094 */
1095 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1096 l = NULL;
1097
1098 return l;
1099 }
1100
1101 /*
1102 * Update an LWP's cached credentials to mirror the process' master copy.
1103 *
1104 * This happens early in the syscall path, on user trap, and on LWP
1105 * creation. A long-running LWP can also voluntarily choose to update
1106 * it's credentials by calling this routine. This may be called from
1107 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1108 */
1109 void
1110 lwp_update_creds(struct lwp *l)
1111 {
1112 kauth_cred_t oc;
1113 struct proc *p;
1114
1115 p = l->l_proc;
1116 oc = l->l_cred;
1117
1118 mutex_enter(p->p_lock);
1119 kauth_cred_hold(p->p_cred);
1120 l->l_cred = p->p_cred;
1121 l->l_prflag &= ~LPR_CRMOD;
1122 mutex_exit(p->p_lock);
1123 if (oc != NULL)
1124 kauth_cred_free(oc);
1125 }
1126
1127 /*
1128 * Verify that an LWP is locked, and optionally verify that the lock matches
1129 * one we specify.
1130 */
1131 int
1132 lwp_locked(struct lwp *l, kmutex_t *mtx)
1133 {
1134 kmutex_t *cur = l->l_mutex;
1135
1136 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1137 }
1138
1139 /*
1140 * Lock an LWP.
1141 */
1142 kmutex_t *
1143 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1144 {
1145
1146 /*
1147 * XXXgcc ignoring kmutex_t * volatile on i386
1148 *
1149 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1150 */
1151 #if 1
1152 while (l->l_mutex != old) {
1153 #else
1154 for (;;) {
1155 #endif
1156 mutex_spin_exit(old);
1157 old = l->l_mutex;
1158 mutex_spin_enter(old);
1159
1160 /*
1161 * mutex_enter() will have posted a read barrier. Re-test
1162 * l->l_mutex. If it has changed, we need to try again.
1163 */
1164 #if 1
1165 }
1166 #else
1167 } while (__predict_false(l->l_mutex != old));
1168 #endif
1169
1170 return old;
1171 }
1172
1173 /*
1174 * Lend a new mutex to an LWP. The old mutex must be held.
1175 */
1176 void
1177 lwp_setlock(struct lwp *l, kmutex_t *new)
1178 {
1179
1180 KASSERT(mutex_owned(l->l_mutex));
1181
1182 membar_exit();
1183 l->l_mutex = new;
1184 }
1185
1186 /*
1187 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1188 * must be held.
1189 */
1190 void
1191 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1192 {
1193 kmutex_t *old;
1194
1195 KASSERT(mutex_owned(l->l_mutex));
1196
1197 old = l->l_mutex;
1198 membar_exit();
1199 l->l_mutex = new;
1200 mutex_spin_exit(old);
1201 }
1202
1203 /*
1204 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1205 * locked.
1206 */
1207 void
1208 lwp_relock(struct lwp *l, kmutex_t *new)
1209 {
1210 kmutex_t *old;
1211
1212 KASSERT(mutex_owned(l->l_mutex));
1213
1214 old = l->l_mutex;
1215 if (old != new) {
1216 mutex_spin_enter(new);
1217 l->l_mutex = new;
1218 mutex_spin_exit(old);
1219 }
1220 }
1221
1222 int
1223 lwp_trylock(struct lwp *l)
1224 {
1225 kmutex_t *old;
1226
1227 for (;;) {
1228 if (!mutex_tryenter(old = l->l_mutex))
1229 return 0;
1230 if (__predict_true(l->l_mutex == old))
1231 return 1;
1232 mutex_spin_exit(old);
1233 }
1234 }
1235
1236 u_int
1237 lwp_unsleep(lwp_t *l, bool cleanup)
1238 {
1239
1240 KASSERT(mutex_owned(l->l_mutex));
1241
1242 return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1243 }
1244
1245
1246 /*
1247 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1248 * set.
1249 */
1250 void
1251 lwp_userret(struct lwp *l)
1252 {
1253 struct proc *p;
1254 void (*hook)(void);
1255 int sig;
1256
1257 KASSERT(l == curlwp);
1258 KASSERT(l->l_stat == LSONPROC);
1259 p = l->l_proc;
1260
1261 #ifndef __HAVE_FAST_SOFTINTS
1262 /* Run pending soft interrupts. */
1263 if (l->l_cpu->ci_data.cpu_softints != 0)
1264 softint_overlay();
1265 #endif
1266
1267 #ifdef KERN_SA
1268 /* Generate UNBLOCKED upcall if needed */
1269 if (l->l_flag & LW_SA_BLOCKING) {
1270 sa_unblock_userret(l);
1271 /* NOTREACHED */
1272 }
1273 #endif
1274
1275 /*
1276 * It should be safe to do this read unlocked on a multiprocessor
1277 * system..
1278 *
1279 * LW_SA_UPCALL will be handled after the while() loop, so don't
1280 * consider it now.
1281 */
1282 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1283 /*
1284 * Process pending signals first, unless the process
1285 * is dumping core or exiting, where we will instead
1286 * enter the LW_WSUSPEND case below.
1287 */
1288 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1289 LW_PENDSIG) {
1290 mutex_enter(p->p_lock);
1291 while ((sig = issignal(l)) != 0)
1292 postsig(sig);
1293 mutex_exit(p->p_lock);
1294 }
1295
1296 /*
1297 * Core-dump or suspend pending.
1298 *
1299 * In case of core dump, suspend ourselves, so that the
1300 * kernel stack and therefore the userland registers saved
1301 * in the trapframe are around for coredump() to write them
1302 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1303 * will write the core file out once all other LWPs are
1304 * suspended.
1305 */
1306 if ((l->l_flag & LW_WSUSPEND) != 0) {
1307 mutex_enter(p->p_lock);
1308 p->p_nrlwps--;
1309 cv_broadcast(&p->p_lwpcv);
1310 lwp_lock(l);
1311 l->l_stat = LSSUSPENDED;
1312 lwp_unlock(l);
1313 mutex_exit(p->p_lock);
1314 lwp_lock(l);
1315 mi_switch(l);
1316 }
1317
1318 /* Process is exiting. */
1319 if ((l->l_flag & LW_WEXIT) != 0) {
1320 lwp_exit(l);
1321 KASSERT(0);
1322 /* NOTREACHED */
1323 }
1324
1325 /* Call userret hook; used by Linux emulation. */
1326 if ((l->l_flag & LW_WUSERRET) != 0) {
1327 lwp_lock(l);
1328 l->l_flag &= ~LW_WUSERRET;
1329 lwp_unlock(l);
1330 hook = p->p_userret;
1331 p->p_userret = NULL;
1332 (*hook)();
1333 }
1334 }
1335
1336 #ifdef KERN_SA
1337 /*
1338 * Timer events are handled specially. We only try once to deliver
1339 * pending timer upcalls; if if fails, we can try again on the next
1340 * loop around. If we need to re-enter lwp_userret(), MD code will
1341 * bounce us back here through the trap path after we return.
1342 */
1343 if (p->p_timerpend)
1344 timerupcall(l);
1345 if (l->l_flag & LW_SA_UPCALL)
1346 sa_upcall_userret(l);
1347 #endif /* KERN_SA */
1348 }
1349
1350 /*
1351 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1352 */
1353 void
1354 lwp_need_userret(struct lwp *l)
1355 {
1356 KASSERT(lwp_locked(l, NULL));
1357
1358 /*
1359 * Since the tests in lwp_userret() are done unlocked, make sure
1360 * that the condition will be seen before forcing the LWP to enter
1361 * kernel mode.
1362 */
1363 membar_producer();
1364 cpu_signotify(l);
1365 }
1366
1367 /*
1368 * Add one reference to an LWP. This will prevent the LWP from
1369 * exiting, thus keep the lwp structure and PCB around to inspect.
1370 */
1371 void
1372 lwp_addref(struct lwp *l)
1373 {
1374
1375 KASSERT(mutex_owned(l->l_proc->p_lock));
1376 KASSERT(l->l_stat != LSZOMB);
1377 KASSERT(l->l_refcnt != 0);
1378
1379 l->l_refcnt++;
1380 }
1381
1382 /*
1383 * Remove one reference to an LWP. If this is the last reference,
1384 * then we must finalize the LWP's death.
1385 */
1386 void
1387 lwp_delref(struct lwp *l)
1388 {
1389 struct proc *p = l->l_proc;
1390
1391 mutex_enter(p->p_lock);
1392 KASSERT(l->l_stat != LSZOMB);
1393 KASSERT(l->l_refcnt > 0);
1394 if (--l->l_refcnt == 0)
1395 cv_broadcast(&p->p_lwpcv);
1396 mutex_exit(p->p_lock);
1397 }
1398
1399 /*
1400 * Drain all references to the current LWP.
1401 */
1402 void
1403 lwp_drainrefs(struct lwp *l)
1404 {
1405 struct proc *p = l->l_proc;
1406
1407 KASSERT(mutex_owned(p->p_lock));
1408 KASSERT(l->l_refcnt != 0);
1409
1410 l->l_refcnt--;
1411 while (l->l_refcnt != 0)
1412 cv_wait(&p->p_lwpcv, p->p_lock);
1413 }
1414
1415 /*
1416 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1417 * be held.
1418 */
1419 bool
1420 lwp_alive(lwp_t *l)
1421 {
1422
1423 KASSERT(mutex_owned(l->l_proc->p_lock));
1424
1425 switch (l->l_stat) {
1426 case LSSLEEP:
1427 case LSRUN:
1428 case LSONPROC:
1429 case LSSTOP:
1430 case LSSUSPENDED:
1431 return true;
1432 default:
1433 return false;
1434 }
1435 }
1436
1437 /*
1438 * Return first live LWP in the process.
1439 */
1440 lwp_t *
1441 lwp_find_first(proc_t *p)
1442 {
1443 lwp_t *l;
1444
1445 KASSERT(mutex_owned(p->p_lock));
1446
1447 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1448 if (lwp_alive(l)) {
1449 return l;
1450 }
1451 }
1452
1453 return NULL;
1454 }
1455
1456 /*
1457 * lwp_specific_key_create --
1458 * Create a key for subsystem lwp-specific data.
1459 */
1460 int
1461 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1462 {
1463
1464 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1465 }
1466
1467 /*
1468 * lwp_specific_key_delete --
1469 * Delete a key for subsystem lwp-specific data.
1470 */
1471 void
1472 lwp_specific_key_delete(specificdata_key_t key)
1473 {
1474
1475 specificdata_key_delete(lwp_specificdata_domain, key);
1476 }
1477
1478 /*
1479 * lwp_initspecific --
1480 * Initialize an LWP's specificdata container.
1481 */
1482 void
1483 lwp_initspecific(struct lwp *l)
1484 {
1485 int error;
1486
1487 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1488 KASSERT(error == 0);
1489 }
1490
1491 /*
1492 * lwp_finispecific --
1493 * Finalize an LWP's specificdata container.
1494 */
1495 void
1496 lwp_finispecific(struct lwp *l)
1497 {
1498
1499 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1500 }
1501
1502 /*
1503 * lwp_getspecific --
1504 * Return lwp-specific data corresponding to the specified key.
1505 *
1506 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1507 * only its OWN SPECIFIC DATA. If it is necessary to access another
1508 * LWP's specifc data, care must be taken to ensure that doing so
1509 * would not cause internal data structure inconsistency (i.e. caller
1510 * can guarantee that the target LWP is not inside an lwp_getspecific()
1511 * or lwp_setspecific() call).
1512 */
1513 void *
1514 lwp_getspecific(specificdata_key_t key)
1515 {
1516
1517 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1518 &curlwp->l_specdataref, key));
1519 }
1520
1521 void *
1522 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1523 {
1524
1525 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1526 &l->l_specdataref, key));
1527 }
1528
1529 /*
1530 * lwp_setspecific --
1531 * Set lwp-specific data corresponding to the specified key.
1532 */
1533 void
1534 lwp_setspecific(specificdata_key_t key, void *data)
1535 {
1536
1537 specificdata_setspecific(lwp_specificdata_domain,
1538 &curlwp->l_specdataref, key, data);
1539 }
1540
1541 /*
1542 * Allocate a new lwpctl structure for a user LWP.
1543 */
1544 int
1545 lwp_ctl_alloc(vaddr_t *uaddr)
1546 {
1547 lcproc_t *lp;
1548 u_int bit, i, offset;
1549 struct uvm_object *uao;
1550 int error;
1551 lcpage_t *lcp;
1552 proc_t *p;
1553 lwp_t *l;
1554
1555 l = curlwp;
1556 p = l->l_proc;
1557
1558 if (l->l_lcpage != NULL) {
1559 lcp = l->l_lcpage;
1560 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1561 return (EINVAL);
1562 }
1563
1564 /* First time around, allocate header structure for the process. */
1565 if ((lp = p->p_lwpctl) == NULL) {
1566 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1567 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1568 lp->lp_uao = NULL;
1569 TAILQ_INIT(&lp->lp_pages);
1570 mutex_enter(p->p_lock);
1571 if (p->p_lwpctl == NULL) {
1572 p->p_lwpctl = lp;
1573 mutex_exit(p->p_lock);
1574 } else {
1575 mutex_exit(p->p_lock);
1576 mutex_destroy(&lp->lp_lock);
1577 kmem_free(lp, sizeof(*lp));
1578 lp = p->p_lwpctl;
1579 }
1580 }
1581
1582 /*
1583 * Set up an anonymous memory region to hold the shared pages.
1584 * Map them into the process' address space. The user vmspace
1585 * gets the first reference on the UAO.
1586 */
1587 mutex_enter(&lp->lp_lock);
1588 if (lp->lp_uao == NULL) {
1589 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1590 lp->lp_cur = 0;
1591 lp->lp_max = LWPCTL_UAREA_SZ;
1592 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1593 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1594 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1595 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1596 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1597 if (error != 0) {
1598 uao_detach(lp->lp_uao);
1599 lp->lp_uao = NULL;
1600 mutex_exit(&lp->lp_lock);
1601 return error;
1602 }
1603 }
1604
1605 /* Get a free block and allocate for this LWP. */
1606 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1607 if (lcp->lcp_nfree != 0)
1608 break;
1609 }
1610 if (lcp == NULL) {
1611 /* Nothing available - try to set up a free page. */
1612 if (lp->lp_cur == lp->lp_max) {
1613 mutex_exit(&lp->lp_lock);
1614 return ENOMEM;
1615 }
1616 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1617 if (lcp == NULL) {
1618 mutex_exit(&lp->lp_lock);
1619 return ENOMEM;
1620 }
1621 /*
1622 * Wire the next page down in kernel space. Since this
1623 * is a new mapping, we must add a reference.
1624 */
1625 uao = lp->lp_uao;
1626 (*uao->pgops->pgo_reference)(uao);
1627 lcp->lcp_kaddr = vm_map_min(kernel_map);
1628 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1629 uao, lp->lp_cur, PAGE_SIZE,
1630 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1631 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1632 if (error != 0) {
1633 mutex_exit(&lp->lp_lock);
1634 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1635 (*uao->pgops->pgo_detach)(uao);
1636 return error;
1637 }
1638 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1639 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1640 if (error != 0) {
1641 mutex_exit(&lp->lp_lock);
1642 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1643 lcp->lcp_kaddr + PAGE_SIZE);
1644 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1645 return error;
1646 }
1647 /* Prepare the page descriptor and link into the list. */
1648 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1649 lp->lp_cur += PAGE_SIZE;
1650 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1651 lcp->lcp_rotor = 0;
1652 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1653 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1654 }
1655 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1656 if (++i >= LWPCTL_BITMAP_ENTRIES)
1657 i = 0;
1658 }
1659 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1660 lcp->lcp_bitmap[i] ^= (1 << bit);
1661 lcp->lcp_rotor = i;
1662 lcp->lcp_nfree--;
1663 l->l_lcpage = lcp;
1664 offset = (i << 5) + bit;
1665 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1666 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1667 mutex_exit(&lp->lp_lock);
1668
1669 KPREEMPT_DISABLE(l);
1670 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1671 KPREEMPT_ENABLE(l);
1672
1673 return 0;
1674 }
1675
1676 /*
1677 * Free an lwpctl structure back to the per-process list.
1678 */
1679 void
1680 lwp_ctl_free(lwp_t *l)
1681 {
1682 lcproc_t *lp;
1683 lcpage_t *lcp;
1684 u_int map, offset;
1685
1686 lp = l->l_proc->p_lwpctl;
1687 KASSERT(lp != NULL);
1688
1689 lcp = l->l_lcpage;
1690 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1691 KASSERT(offset < LWPCTL_PER_PAGE);
1692
1693 mutex_enter(&lp->lp_lock);
1694 lcp->lcp_nfree++;
1695 map = offset >> 5;
1696 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1697 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1698 lcp->lcp_rotor = map;
1699 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1700 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1701 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1702 }
1703 mutex_exit(&lp->lp_lock);
1704 }
1705
1706 /*
1707 * Process is exiting; tear down lwpctl state. This can only be safely
1708 * called by the last LWP in the process.
1709 */
1710 void
1711 lwp_ctl_exit(void)
1712 {
1713 lcpage_t *lcp, *next;
1714 lcproc_t *lp;
1715 proc_t *p;
1716 lwp_t *l;
1717
1718 l = curlwp;
1719 l->l_lwpctl = NULL;
1720 l->l_lcpage = NULL;
1721 p = l->l_proc;
1722 lp = p->p_lwpctl;
1723
1724 KASSERT(lp != NULL);
1725 KASSERT(p->p_nlwps == 1);
1726
1727 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1728 next = TAILQ_NEXT(lcp, lcp_chain);
1729 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1730 lcp->lcp_kaddr + PAGE_SIZE);
1731 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1732 }
1733
1734 if (lp->lp_uao != NULL) {
1735 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1736 lp->lp_uva + LWPCTL_UAREA_SZ);
1737 }
1738
1739 mutex_destroy(&lp->lp_lock);
1740 kmem_free(lp, sizeof(*lp));
1741 p->p_lwpctl = NULL;
1742 }
1743
1744 /*
1745 * Return the current LWP's "preemption counter". Used to detect
1746 * preemption across operations that can tolerate preemption without
1747 * crashing, but which may generate incorrect results if preempted.
1748 */
1749 uint64_t
1750 lwp_pctr(void)
1751 {
1752
1753 return curlwp->l_ncsw;
1754 }
1755
1756 #if defined(DDB)
1757 void
1758 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1759 {
1760 lwp_t *l;
1761
1762 LIST_FOREACH(l, &alllwp, l_list) {
1763 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1764
1765 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1766 continue;
1767 }
1768 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1769 (void *)addr, (void *)stack,
1770 (size_t)(addr - stack), l);
1771 }
1772 }
1773 #endif /* defined(DDB) */
1774