Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.106.2.6
      1 /*	$NetBSD: kern_lwp.c,v 1.106.2.6 2010/03/11 15:04:16 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.
     64  *
     65  *	LSIDL
     66  *
     67  *		Idle: the LWP has been created but has not yet executed,
     68  *		or it has ceased executing a unit of work and is waiting
     69  *		to be started again.
     70  *
     71  *	LSSUSPENDED:
     72  *
     73  *		Suspended: the LWP has had its execution suspended by
     74  *		another LWP in the same process using the _lwp_suspend()
     75  *		system call.  User-level LWPs also enter the suspended
     76  *		state when the system is shutting down.
     77  *
     78  *	The second set represent a "statement of intent" on behalf of the
     79  *	LWP.  The LWP may in fact be executing on a processor, may be
     80  *	sleeping or idle. It is expected to take the necessary action to
     81  *	stop executing or become "running" again within a short timeframe.
     82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83  *	Importantly, it indicates that its state is tied to a CPU.
     84  *
     85  *	LSZOMB:
     86  *
     87  *		Dead or dying: the LWP has released most of its resources
     88  *		and is about to switch away into oblivion, or has already
     89  *		switched away.  When it switches away, its few remaining
     90  *		resources can be collected.
     91  *
     92  *	LSSLEEP:
     93  *
     94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95  *		has switched away or will switch away shortly to allow other
     96  *		LWPs to run on the CPU.
     97  *
     98  *	LSSTOP:
     99  *
    100  *		Stopped: the LWP has been stopped as a result of a job
    101  *		control signal, or as a result of the ptrace() interface.
    102  *
    103  *		Stopped LWPs may run briefly within the kernel to handle
    104  *		signals that they receive, but will not return to user space
    105  *		until their process' state is changed away from stopped.
    106  *
    107  *		Single LWPs within a process can not be set stopped
    108  *		selectively: all actions that can stop or continue LWPs
    109  *		occur at the process level.
    110  *
    111  * State transitions
    112  *
    113  *	Note that the LSSTOP state may only be set when returning to
    114  *	user space in userret(), or when sleeping interruptably.  The
    115  *	LSSUSPENDED state may only be set in userret().  Before setting
    116  *	those states, we try to ensure that the LWPs will release all
    117  *	locks that they hold, and at a minimum try to ensure that the
    118  *	LWP can be set runnable again by a signal.
    119  *
    120  *	LWPs may transition states in the following ways:
    121  *
    122  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123  *		    				    > SLEEP
    124  *		    				    > STOPPED
    125  *						    > SUSPENDED
    126  *						    > ZOMB
    127  *						    > IDL (special cases)
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *						    > ONPROC (special cases)
    136  *
    137  *	Some state transitions are only possible with kernel threads (eg
    138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139  *	free of unwanted side effects.
    140  *
    141  * Migration
    142  *
    143  *	Migration of threads from one CPU to another could be performed
    144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  *	functions.  The universal lwp_migrate() function should be used for
    146  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  *	of LWP may change, while it is not locked.
    148  *
    149  * Locking
    150  *
    151  *	The majority of fields in 'struct lwp' are covered by a single,
    152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153  *	each field are documented in sys/lwp.h.
    154  *
    155  *	State transitions must be made with the LWP's general lock held,
    156  *	and may cause the LWP's lock pointer to change. Manipulation of
    157  *	the general lock is not performed directly, but through calls to
    158  *	lwp_lock(), lwp_relock() and similar.
    159  *
    160  *	States and their associated locks:
    161  *
    162  *	LSONPROC, LSZOMB:
    163  *
    164  *		Always covered by spc_lwplock, which protects running LWPs.
    165  *		This is a per-CPU lock and matches lwp::l_cpu.
    166  *
    167  *	LSIDL, LSRUN:
    168  *
    169  *		Always covered by spc_mutex, which protects the run queues.
    170  *		This is a per-CPU lock and matches lwp::l_cpu.
    171  *
    172  *	LSSLEEP:
    173  *
    174  *		Covered by a lock associated with the sleep queue that the
    175  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    176  *
    177  *	LSSTOP, LSSUSPENDED:
    178  *
    179  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180  *		l_mutex references the sleep queue lock.  If the LWP was
    181  *		runnable or on the CPU when halted, or has been removed from
    182  *		the sleep queue since halted, then the lock is spc_lwplock.
    183  *
    184  *	The lock order is as follows:
    185  *
    186  *		spc::spc_lwplock ->
    187  *		    sleeptab::st_mutex ->
    188  *			tschain_t::tc_mutex ->
    189  *			    spc::spc_mutex
    190  *
    191  *	Each process has an scheduler state lock (proc::p_lock), and a
    192  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    193  *	so on.  When an LWP is to be entered into or removed from one of the
    194  *	following states, p_lock must be held and the process wide counters
    195  *	adjusted:
    196  *
    197  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    198  *
    199  *	(But not always for kernel threads.  There are some special cases
    200  *	as mentioned above.  See kern_softint.c.)
    201  *
    202  *	Note that an LWP is considered running or likely to run soon if in
    203  *	one of the following states.  This affects the value of p_nrlwps:
    204  *
    205  *		LSRUN, LSONPROC, LSSLEEP
    206  *
    207  *	p_lock does not need to be held when transitioning among these
    208  *	three states, hence p_lock is rarely taken for state transitions.
    209  */
    210 
    211 #include <sys/cdefs.h>
    212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.106.2.6 2010/03/11 15:04:16 yamt Exp $");
    213 
    214 #include "opt_ddb.h"
    215 #include "opt_lockdebug.h"
    216 #include "opt_sa.h"
    217 #include "opt_dtrace.h"
    218 
    219 #define _LWP_API_PRIVATE
    220 
    221 #include <sys/param.h>
    222 #include <sys/systm.h>
    223 #include <sys/cpu.h>
    224 #include <sys/pool.h>
    225 #include <sys/proc.h>
    226 #include <sys/sa.h>
    227 #include <sys/savar.h>
    228 #include <sys/syscallargs.h>
    229 #include <sys/syscall_stats.h>
    230 #include <sys/kauth.h>
    231 #include <sys/sleepq.h>
    232 #include <sys/lockdebug.h>
    233 #include <sys/kmem.h>
    234 #include <sys/pset.h>
    235 #include <sys/intr.h>
    236 #include <sys/lwpctl.h>
    237 #include <sys/atomic.h>
    238 #include <sys/filedesc.h>
    239 #include <sys/dtrace_bsd.h>
    240 #include <sys/sdt.h>
    241 
    242 #include <uvm/uvm_extern.h>
    243 #include <uvm/uvm_object.h>
    244 
    245 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    246 
    247 struct pool lwp_uc_pool;
    248 
    249 static pool_cache_t lwp_cache;
    250 static specificdata_domain_t lwp_specificdata_domain;
    251 
    252 /* DTrace proc provider probes */
    253 SDT_PROBE_DEFINE(proc,,,lwp_create,
    254 	"struct lwp *", NULL,
    255 	NULL, NULL, NULL, NULL,
    256 	NULL, NULL, NULL, NULL);
    257 SDT_PROBE_DEFINE(proc,,,lwp_start,
    258 	"struct lwp *", NULL,
    259 	NULL, NULL, NULL, NULL,
    260 	NULL, NULL, NULL, NULL);
    261 SDT_PROBE_DEFINE(proc,,,lwp_exit,
    262 	"struct lwp *", NULL,
    263 	NULL, NULL, NULL, NULL,
    264 	NULL, NULL, NULL, NULL);
    265 
    266 void
    267 lwpinit(void)
    268 {
    269 
    270 	pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    271 	    &pool_allocator_nointr, IPL_NONE);
    272 	lwp_specificdata_domain = specificdata_domain_create();
    273 	KASSERT(lwp_specificdata_domain != NULL);
    274 	lwp_sys_init();
    275 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    276 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    277 }
    278 
    279 /*
    280  * Set an suspended.
    281  *
    282  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    283  * LWP before return.
    284  */
    285 int
    286 lwp_suspend(struct lwp *curl, struct lwp *t)
    287 {
    288 	int error;
    289 
    290 	KASSERT(mutex_owned(t->l_proc->p_lock));
    291 	KASSERT(lwp_locked(t, NULL));
    292 
    293 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    294 
    295 	/*
    296 	 * If the current LWP has been told to exit, we must not suspend anyone
    297 	 * else or deadlock could occur.  We won't return to userspace.
    298 	 */
    299 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    300 		lwp_unlock(t);
    301 		return (EDEADLK);
    302 	}
    303 
    304 	error = 0;
    305 
    306 	switch (t->l_stat) {
    307 	case LSRUN:
    308 	case LSONPROC:
    309 		t->l_flag |= LW_WSUSPEND;
    310 		lwp_need_userret(t);
    311 		lwp_unlock(t);
    312 		break;
    313 
    314 	case LSSLEEP:
    315 		t->l_flag |= LW_WSUSPEND;
    316 
    317 		/*
    318 		 * Kick the LWP and try to get it to the kernel boundary
    319 		 * so that it will release any locks that it holds.
    320 		 * setrunnable() will release the lock.
    321 		 */
    322 		if ((t->l_flag & LW_SINTR) != 0)
    323 			setrunnable(t);
    324 		else
    325 			lwp_unlock(t);
    326 		break;
    327 
    328 	case LSSUSPENDED:
    329 		lwp_unlock(t);
    330 		break;
    331 
    332 	case LSSTOP:
    333 		t->l_flag |= LW_WSUSPEND;
    334 		setrunnable(t);
    335 		break;
    336 
    337 	case LSIDL:
    338 	case LSZOMB:
    339 		error = EINTR; /* It's what Solaris does..... */
    340 		lwp_unlock(t);
    341 		break;
    342 	}
    343 
    344 	return (error);
    345 }
    346 
    347 /*
    348  * Restart a suspended LWP.
    349  *
    350  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    351  * LWP before return.
    352  */
    353 void
    354 lwp_continue(struct lwp *l)
    355 {
    356 
    357 	KASSERT(mutex_owned(l->l_proc->p_lock));
    358 	KASSERT(lwp_locked(l, NULL));
    359 
    360 	/* If rebooting or not suspended, then just bail out. */
    361 	if ((l->l_flag & LW_WREBOOT) != 0) {
    362 		lwp_unlock(l);
    363 		return;
    364 	}
    365 
    366 	l->l_flag &= ~LW_WSUSPEND;
    367 
    368 	if (l->l_stat != LSSUSPENDED) {
    369 		lwp_unlock(l);
    370 		return;
    371 	}
    372 
    373 	/* setrunnable() will release the lock. */
    374 	setrunnable(l);
    375 }
    376 
    377 /*
    378  * Wait for an LWP within the current process to exit.  If 'lid' is
    379  * non-zero, we are waiting for a specific LWP.
    380  *
    381  * Must be called with p->p_lock held.
    382  */
    383 int
    384 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    385 {
    386 	struct proc *p = l->l_proc;
    387 	struct lwp *l2;
    388 	int nfound, error;
    389 	lwpid_t curlid;
    390 	bool exiting;
    391 
    392 	KASSERT(mutex_owned(p->p_lock));
    393 
    394 	p->p_nlwpwait++;
    395 	l->l_waitingfor = lid;
    396 	curlid = l->l_lid;
    397 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    398 
    399 	for (;;) {
    400 		/*
    401 		 * Avoid a race between exit1() and sigexit(): if the
    402 		 * process is dumping core, then we need to bail out: call
    403 		 * into lwp_userret() where we will be suspended until the
    404 		 * deed is done.
    405 		 */
    406 		if ((p->p_sflag & PS_WCORE) != 0) {
    407 			mutex_exit(p->p_lock);
    408 			lwp_userret(l);
    409 #ifdef DIAGNOSTIC
    410 			panic("lwp_wait1");
    411 #endif
    412 			/* NOTREACHED */
    413 		}
    414 
    415 		/*
    416 		 * First off, drain any detached LWP that is waiting to be
    417 		 * reaped.
    418 		 */
    419 		while ((l2 = p->p_zomblwp) != NULL) {
    420 			p->p_zomblwp = NULL;
    421 			lwp_free(l2, false, false);/* releases proc mutex */
    422 			mutex_enter(p->p_lock);
    423 		}
    424 
    425 		/*
    426 		 * Now look for an LWP to collect.  If the whole process is
    427 		 * exiting, count detached LWPs as eligible to be collected,
    428 		 * but don't drain them here.
    429 		 */
    430 		nfound = 0;
    431 		error = 0;
    432 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    433 			/*
    434 			 * If a specific wait and the target is waiting on
    435 			 * us, then avoid deadlock.  This also traps LWPs
    436 			 * that try to wait on themselves.
    437 			 *
    438 			 * Note that this does not handle more complicated
    439 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    440 			 * can still be killed so it is not a major problem.
    441 			 */
    442 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    443 				error = EDEADLK;
    444 				break;
    445 			}
    446 			if (l2 == l)
    447 				continue;
    448 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    449 				nfound += exiting;
    450 				continue;
    451 			}
    452 			if (lid != 0) {
    453 				if (l2->l_lid != lid)
    454 					continue;
    455 				/*
    456 				 * Mark this LWP as the first waiter, if there
    457 				 * is no other.
    458 				 */
    459 				if (l2->l_waiter == 0)
    460 					l2->l_waiter = curlid;
    461 			} else if (l2->l_waiter != 0) {
    462 				/*
    463 				 * It already has a waiter - so don't
    464 				 * collect it.  If the waiter doesn't
    465 				 * grab it we'll get another chance
    466 				 * later.
    467 				 */
    468 				nfound++;
    469 				continue;
    470 			}
    471 			nfound++;
    472 
    473 			/* No need to lock the LWP in order to see LSZOMB. */
    474 			if (l2->l_stat != LSZOMB)
    475 				continue;
    476 
    477 			/*
    478 			 * We're no longer waiting.  Reset the "first waiter"
    479 			 * pointer on the target, in case it was us.
    480 			 */
    481 			l->l_waitingfor = 0;
    482 			l2->l_waiter = 0;
    483 			p->p_nlwpwait--;
    484 			if (departed)
    485 				*departed = l2->l_lid;
    486 			sched_lwp_collect(l2);
    487 
    488 			/* lwp_free() releases the proc lock. */
    489 			lwp_free(l2, false, false);
    490 			mutex_enter(p->p_lock);
    491 			return 0;
    492 		}
    493 
    494 		if (error != 0)
    495 			break;
    496 		if (nfound == 0) {
    497 			error = ESRCH;
    498 			break;
    499 		}
    500 
    501 		/*
    502 		 * The kernel is careful to ensure that it can not deadlock
    503 		 * when exiting - just keep waiting.
    504 		 */
    505 		if (exiting) {
    506 			KASSERT(p->p_nlwps > 1);
    507 			cv_wait(&p->p_lwpcv, p->p_lock);
    508 			continue;
    509 		}
    510 
    511 		/*
    512 		 * If all other LWPs are waiting for exits or suspends
    513 		 * and the supply of zombies and potential zombies is
    514 		 * exhausted, then we are about to deadlock.
    515 		 *
    516 		 * If the process is exiting (and this LWP is not the one
    517 		 * that is coordinating the exit) then bail out now.
    518 		 */
    519 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    520 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    521 			error = EDEADLK;
    522 			break;
    523 		}
    524 
    525 		/*
    526 		 * Sit around and wait for something to happen.  We'll be
    527 		 * awoken if any of the conditions examined change: if an
    528 		 * LWP exits, is collected, or is detached.
    529 		 */
    530 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    531 			break;
    532 	}
    533 
    534 	/*
    535 	 * We didn't find any LWPs to collect, we may have received a
    536 	 * signal, or some other condition has caused us to bail out.
    537 	 *
    538 	 * If waiting on a specific LWP, clear the waiters marker: some
    539 	 * other LWP may want it.  Then, kick all the remaining waiters
    540 	 * so that they can re-check for zombies and for deadlock.
    541 	 */
    542 	if (lid != 0) {
    543 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    544 			if (l2->l_lid == lid) {
    545 				if (l2->l_waiter == curlid)
    546 					l2->l_waiter = 0;
    547 				break;
    548 			}
    549 		}
    550 	}
    551 	p->p_nlwpwait--;
    552 	l->l_waitingfor = 0;
    553 	cv_broadcast(&p->p_lwpcv);
    554 
    555 	return error;
    556 }
    557 
    558 /*
    559  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    560  * The new LWP is created in state LSIDL and must be set running,
    561  * suspended, or stopped by the caller.
    562  */
    563 int
    564 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    565 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    566 	   lwp_t **rnewlwpp, int sclass)
    567 {
    568 	struct lwp *l2, *isfree;
    569 	turnstile_t *ts;
    570 
    571 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    572 
    573 	/*
    574 	 * First off, reap any detached LWP waiting to be collected.
    575 	 * We can re-use its LWP structure and turnstile.
    576 	 */
    577 	isfree = NULL;
    578 	if (p2->p_zomblwp != NULL) {
    579 		mutex_enter(p2->p_lock);
    580 		if ((isfree = p2->p_zomblwp) != NULL) {
    581 			p2->p_zomblwp = NULL;
    582 			lwp_free(isfree, true, false);/* releases proc mutex */
    583 		} else
    584 			mutex_exit(p2->p_lock);
    585 	}
    586 	if (isfree == NULL) {
    587 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    588 		memset(l2, 0, sizeof(*l2));
    589 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    590 		SLIST_INIT(&l2->l_pi_lenders);
    591 	} else {
    592 		l2 = isfree;
    593 		ts = l2->l_ts;
    594 		KASSERT(l2->l_inheritedprio == -1);
    595 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    596 		memset(l2, 0, sizeof(*l2));
    597 		l2->l_ts = ts;
    598 	}
    599 
    600 	l2->l_stat = LSIDL;
    601 	l2->l_proc = p2;
    602 	l2->l_refcnt = 1;
    603 	l2->l_class = sclass;
    604 
    605 	/*
    606 	 * If vfork(), we want the LWP to run fast and on the same CPU
    607 	 * as its parent, so that it can reuse the VM context and cache
    608 	 * footprint on the local CPU.
    609 	 */
    610 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    611 	l2->l_kpribase = PRI_KERNEL;
    612 	l2->l_priority = l1->l_priority;
    613 	l2->l_inheritedprio = -1;
    614 	l2->l_flag = 0;
    615 	l2->l_pflag = LP_MPSAFE;
    616 	TAILQ_INIT(&l2->l_ld_locks);
    617 
    618 	/*
    619 	 * If not the first LWP in the process, grab a reference to the
    620 	 * descriptor table.
    621 	 */
    622 	l2->l_fd = p2->p_fd;
    623 	if (p2->p_nlwps != 0) {
    624 		KASSERT(l1->l_proc == p2);
    625 		fd_hold(l2);
    626 	} else {
    627 		KASSERT(l1->l_proc != p2);
    628 	}
    629 
    630 	if (p2->p_flag & PK_SYSTEM) {
    631 		/* Mark it as a system LWP. */
    632 		l2->l_flag |= LW_SYSTEM;
    633 	}
    634 
    635 	kpreempt_disable();
    636 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    637 	l2->l_cpu = l1->l_cpu;
    638 	kpreempt_enable();
    639 
    640 	kdtrace_thread_ctor(NULL, l2);
    641 	lwp_initspecific(l2);
    642 	sched_lwp_fork(l1, l2);
    643 	lwp_update_creds(l2);
    644 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    645 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    646 	cv_init(&l2->l_sigcv, "sigwait");
    647 	l2->l_syncobj = &sched_syncobj;
    648 
    649 	if (rnewlwpp != NULL)
    650 		*rnewlwpp = l2;
    651 
    652 	uvm_lwp_setuarea(l2, uaddr);
    653 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    654 	    (arg != NULL) ? arg : l2);
    655 
    656 	mutex_enter(p2->p_lock);
    657 
    658 	if ((flags & LWP_DETACHED) != 0) {
    659 		l2->l_prflag = LPR_DETACHED;
    660 		p2->p_ndlwps++;
    661 	} else
    662 		l2->l_prflag = 0;
    663 
    664 	l2->l_sigmask = l1->l_sigmask;
    665 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    666 	sigemptyset(&l2->l_sigpend.sp_set);
    667 
    668 	p2->p_nlwpid++;
    669 	if (p2->p_nlwpid == 0)
    670 		p2->p_nlwpid++;
    671 	l2->l_lid = p2->p_nlwpid;
    672 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    673 	p2->p_nlwps++;
    674 
    675 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    676 		/* Inherit an affinity */
    677 		if (l1->l_flag & LW_AFFINITY) {
    678 			/*
    679 			 * Note that we hold the state lock while inheriting
    680 			 * the affinity to avoid race with sched_setaffinity().
    681 			 */
    682 			lwp_lock(l1);
    683 			if (l1->l_flag & LW_AFFINITY) {
    684 				kcpuset_use(l1->l_affinity);
    685 				l2->l_affinity = l1->l_affinity;
    686 				l2->l_flag |= LW_AFFINITY;
    687 			}
    688 			lwp_unlock(l1);
    689 		}
    690 		lwp_lock(l2);
    691 		/* Inherit a processor-set */
    692 		l2->l_psid = l1->l_psid;
    693 		/* Look for a CPU to start */
    694 		l2->l_cpu = sched_takecpu(l2);
    695 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    696 	}
    697 	mutex_exit(p2->p_lock);
    698 
    699 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
    700 
    701 	mutex_enter(proc_lock);
    702 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    703 	mutex_exit(proc_lock);
    704 
    705 	SYSCALL_TIME_LWP_INIT(l2);
    706 
    707 	if (p2->p_emul->e_lwp_fork)
    708 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    709 
    710 	return (0);
    711 }
    712 
    713 /*
    714  * Called by MD code when a new LWP begins execution.  Must be called
    715  * with the previous LWP locked (so at splsched), or if there is no
    716  * previous LWP, at splsched.
    717  */
    718 void
    719 lwp_startup(struct lwp *prev, struct lwp *new)
    720 {
    721 
    722 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
    723 
    724 	KASSERT(kpreempt_disabled());
    725 	if (prev != NULL) {
    726 		/*
    727 		 * Normalize the count of the spin-mutexes, it was
    728 		 * increased in mi_switch().  Unmark the state of
    729 		 * context switch - it is finished for previous LWP.
    730 		 */
    731 		curcpu()->ci_mtx_count++;
    732 		membar_exit();
    733 		prev->l_ctxswtch = 0;
    734 	}
    735 	KPREEMPT_DISABLE(new);
    736 	spl0();
    737 	pmap_activate(new);
    738 	LOCKDEBUG_BARRIER(NULL, 0);
    739 	KPREEMPT_ENABLE(new);
    740 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    741 		KERNEL_LOCK(1, new);
    742 	}
    743 }
    744 
    745 /*
    746  * Exit an LWP.
    747  */
    748 void
    749 lwp_exit(struct lwp *l)
    750 {
    751 	struct proc *p = l->l_proc;
    752 	struct lwp *l2;
    753 	bool current;
    754 
    755 	current = (l == curlwp);
    756 
    757 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    758 	KASSERT(p == curproc);
    759 
    760 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
    761 
    762 	/*
    763 	 * Verify that we hold no locks other than the kernel lock.
    764 	 */
    765 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    766 
    767 	/*
    768 	 * If we are the last live LWP in a process, we need to exit the
    769 	 * entire process.  We do so with an exit status of zero, because
    770 	 * it's a "controlled" exit, and because that's what Solaris does.
    771 	 *
    772 	 * We are not quite a zombie yet, but for accounting purposes we
    773 	 * must increment the count of zombies here.
    774 	 *
    775 	 * Note: the last LWP's specificdata will be deleted here.
    776 	 */
    777 	mutex_enter(p->p_lock);
    778 	if (p->p_nlwps - p->p_nzlwps == 1) {
    779 		KASSERT(current == true);
    780 		/* XXXSMP kernel_lock not held */
    781 		exit1(l, 0);
    782 		/* NOTREACHED */
    783 	}
    784 	p->p_nzlwps++;
    785 	mutex_exit(p->p_lock);
    786 
    787 	if (p->p_emul->e_lwp_exit)
    788 		(*p->p_emul->e_lwp_exit)(l);
    789 
    790 	/* Drop filedesc reference. */
    791 	fd_free();
    792 
    793 	/* Delete the specificdata while it's still safe to sleep. */
    794 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    795 
    796 	/*
    797 	 * Release our cached credentials.
    798 	 */
    799 	kauth_cred_free(l->l_cred);
    800 	callout_destroy(&l->l_timeout_ch);
    801 
    802 	/*
    803 	 * Remove the LWP from the global list.
    804 	 */
    805 	mutex_enter(proc_lock);
    806 	LIST_REMOVE(l, l_list);
    807 	mutex_exit(proc_lock);
    808 
    809 	/*
    810 	 * Get rid of all references to the LWP that others (e.g. procfs)
    811 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    812 	 * mark it waiting for collection in the proc structure.  Note that
    813 	 * before we can do that, we need to free any other dead, deatched
    814 	 * LWP waiting to meet its maker.
    815 	 */
    816 	mutex_enter(p->p_lock);
    817 	lwp_drainrefs(l);
    818 
    819 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    820 		while ((l2 = p->p_zomblwp) != NULL) {
    821 			p->p_zomblwp = NULL;
    822 			lwp_free(l2, false, false);/* releases proc mutex */
    823 			mutex_enter(p->p_lock);
    824 			l->l_refcnt++;
    825 			lwp_drainrefs(l);
    826 		}
    827 		p->p_zomblwp = l;
    828 	}
    829 
    830 	/*
    831 	 * If we find a pending signal for the process and we have been
    832 	 * asked to check for signals, then we loose: arrange to have
    833 	 * all other LWPs in the process check for signals.
    834 	 */
    835 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    836 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    837 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    838 			lwp_lock(l2);
    839 			l2->l_flag |= LW_PENDSIG;
    840 			lwp_unlock(l2);
    841 		}
    842 	}
    843 
    844 	lwp_lock(l);
    845 	l->l_stat = LSZOMB;
    846 	if (l->l_name != NULL)
    847 		strcpy(l->l_name, "(zombie)");
    848 	if (l->l_flag & LW_AFFINITY) {
    849 		l->l_flag &= ~LW_AFFINITY;
    850 	} else {
    851 		KASSERT(l->l_affinity == NULL);
    852 	}
    853 	lwp_unlock(l);
    854 	p->p_nrlwps--;
    855 	cv_broadcast(&p->p_lwpcv);
    856 	if (l->l_lwpctl != NULL)
    857 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    858 	mutex_exit(p->p_lock);
    859 
    860 	/* Safe without lock since LWP is in zombie state */
    861 	if (l->l_affinity) {
    862 		kcpuset_unuse(l->l_affinity, NULL);
    863 		l->l_affinity = NULL;
    864 	}
    865 
    866 	/*
    867 	 * We can no longer block.  At this point, lwp_free() may already
    868 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    869 	 *
    870 	 * Free MD LWP resources.
    871 	 */
    872 	cpu_lwp_free(l, 0);
    873 
    874 	if (current) {
    875 		pmap_deactivate(l);
    876 
    877 		/*
    878 		 * Release the kernel lock, and switch away into
    879 		 * oblivion.
    880 		 */
    881 #ifdef notyet
    882 		/* XXXSMP hold in lwp_userret() */
    883 		KERNEL_UNLOCK_LAST(l);
    884 #else
    885 		KERNEL_UNLOCK_ALL(l, NULL);
    886 #endif
    887 		lwp_exit_switchaway(l);
    888 	}
    889 }
    890 
    891 /*
    892  * Free a dead LWP's remaining resources.
    893  *
    894  * XXXLWP limits.
    895  */
    896 void
    897 lwp_free(struct lwp *l, bool recycle, bool last)
    898 {
    899 	struct proc *p = l->l_proc;
    900 	struct rusage *ru;
    901 	ksiginfoq_t kq;
    902 
    903 	KASSERT(l != curlwp);
    904 
    905 	/*
    906 	 * If this was not the last LWP in the process, then adjust
    907 	 * counters and unlock.
    908 	 */
    909 	if (!last) {
    910 		/*
    911 		 * Add the LWP's run time to the process' base value.
    912 		 * This needs to co-incide with coming off p_lwps.
    913 		 */
    914 		bintime_add(&p->p_rtime, &l->l_rtime);
    915 		p->p_pctcpu += l->l_pctcpu;
    916 		ru = &p->p_stats->p_ru;
    917 		ruadd(ru, &l->l_ru);
    918 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    919 		ru->ru_nivcsw += l->l_nivcsw;
    920 		LIST_REMOVE(l, l_sibling);
    921 		p->p_nlwps--;
    922 		p->p_nzlwps--;
    923 		if ((l->l_prflag & LPR_DETACHED) != 0)
    924 			p->p_ndlwps--;
    925 
    926 		/*
    927 		 * Have any LWPs sleeping in lwp_wait() recheck for
    928 		 * deadlock.
    929 		 */
    930 		cv_broadcast(&p->p_lwpcv);
    931 		mutex_exit(p->p_lock);
    932 	}
    933 
    934 #ifdef MULTIPROCESSOR
    935 	/*
    936 	 * In the unlikely event that the LWP is still on the CPU,
    937 	 * then spin until it has switched away.  We need to release
    938 	 * all locks to avoid deadlock against interrupt handlers on
    939 	 * the target CPU.
    940 	 */
    941 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    942 		int count;
    943 		(void)count; /* XXXgcc */
    944 		KERNEL_UNLOCK_ALL(curlwp, &count);
    945 		while ((l->l_pflag & LP_RUNNING) != 0 ||
    946 		    l->l_cpu->ci_curlwp == l)
    947 			SPINLOCK_BACKOFF_HOOK;
    948 		KERNEL_LOCK(count, curlwp);
    949 	}
    950 #endif
    951 
    952 	/*
    953 	 * Destroy the LWP's remaining signal information.
    954 	 */
    955 	ksiginfo_queue_init(&kq);
    956 	sigclear(&l->l_sigpend, NULL, &kq);
    957 	ksiginfo_queue_drain(&kq);
    958 	cv_destroy(&l->l_sigcv);
    959 
    960 	/*
    961 	 * Free the LWP's turnstile and the LWP structure itself unless the
    962 	 * caller wants to recycle them.  Also, free the scheduler specific
    963 	 * data.
    964 	 *
    965 	 * We can't return turnstile0 to the pool (it didn't come from it),
    966 	 * so if it comes up just drop it quietly and move on.
    967 	 *
    968 	 * We don't recycle the VM resources at this time.
    969 	 */
    970 	if (l->l_lwpctl != NULL)
    971 		lwp_ctl_free(l);
    972 
    973 	if (!recycle && l->l_ts != &turnstile0)
    974 		pool_cache_put(turnstile_cache, l->l_ts);
    975 	if (l->l_name != NULL)
    976 		kmem_free(l->l_name, MAXCOMLEN);
    977 
    978 	cpu_lwp_free2(l);
    979 	uvm_lwp_exit(l);
    980 
    981 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    982 	KASSERT(l->l_inheritedprio == -1);
    983 	kdtrace_thread_dtor(NULL, l);
    984 	if (!recycle)
    985 		pool_cache_put(lwp_cache, l);
    986 }
    987 
    988 /*
    989  * Migrate the LWP to the another CPU.  Unlocks the LWP.
    990  */
    991 void
    992 lwp_migrate(lwp_t *l, struct cpu_info *tci)
    993 {
    994 	struct schedstate_percpu *tspc;
    995 	int lstat = l->l_stat;
    996 
    997 	KASSERT(lwp_locked(l, NULL));
    998 	KASSERT(tci != NULL);
    999 
   1000 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1001 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1002 		lstat = LSONPROC;
   1003 	}
   1004 
   1005 	/*
   1006 	 * The destination CPU could be changed while previous migration
   1007 	 * was not finished.
   1008 	 */
   1009 	if (l->l_target_cpu != NULL) {
   1010 		l->l_target_cpu = tci;
   1011 		lwp_unlock(l);
   1012 		return;
   1013 	}
   1014 
   1015 	/* Nothing to do if trying to migrate to the same CPU */
   1016 	if (l->l_cpu == tci) {
   1017 		lwp_unlock(l);
   1018 		return;
   1019 	}
   1020 
   1021 	KASSERT(l->l_target_cpu == NULL);
   1022 	tspc = &tci->ci_schedstate;
   1023 	switch (lstat) {
   1024 	case LSRUN:
   1025 		l->l_target_cpu = tci;
   1026 		break;
   1027 	case LSIDL:
   1028 		l->l_cpu = tci;
   1029 		lwp_unlock_to(l, tspc->spc_mutex);
   1030 		return;
   1031 	case LSSLEEP:
   1032 		l->l_cpu = tci;
   1033 		break;
   1034 	case LSSTOP:
   1035 	case LSSUSPENDED:
   1036 		l->l_cpu = tci;
   1037 		if (l->l_wchan == NULL) {
   1038 			lwp_unlock_to(l, tspc->spc_lwplock);
   1039 			return;
   1040 		}
   1041 		break;
   1042 	case LSONPROC:
   1043 		l->l_target_cpu = tci;
   1044 		spc_lock(l->l_cpu);
   1045 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1046 		spc_unlock(l->l_cpu);
   1047 		break;
   1048 	}
   1049 	lwp_unlock(l);
   1050 }
   1051 
   1052 /*
   1053  * Find the LWP in the process.  Arguments may be zero, in such case,
   1054  * the calling process and first LWP in the list will be used.
   1055  * On success - returns proc locked.
   1056  */
   1057 struct lwp *
   1058 lwp_find2(pid_t pid, lwpid_t lid)
   1059 {
   1060 	proc_t *p;
   1061 	lwp_t *l;
   1062 
   1063 	/* Find the process */
   1064 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
   1065 	if (p == NULL)
   1066 		return NULL;
   1067 	mutex_enter(p->p_lock);
   1068 	if (pid != 0) {
   1069 		/* Case of p_find */
   1070 		mutex_exit(proc_lock);
   1071 	}
   1072 
   1073 	/* Find the thread */
   1074 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
   1075 	if (l == NULL) {
   1076 		mutex_exit(p->p_lock);
   1077 	}
   1078 
   1079 	return l;
   1080 }
   1081 
   1082 /*
   1083  * Look up a live LWP within the speicifed process, and return it locked.
   1084  *
   1085  * Must be called with p->p_lock held.
   1086  */
   1087 struct lwp *
   1088 lwp_find(struct proc *p, int id)
   1089 {
   1090 	struct lwp *l;
   1091 
   1092 	KASSERT(mutex_owned(p->p_lock));
   1093 
   1094 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1095 		if (l->l_lid == id)
   1096 			break;
   1097 	}
   1098 
   1099 	/*
   1100 	 * No need to lock - all of these conditions will
   1101 	 * be visible with the process level mutex held.
   1102 	 */
   1103 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1104 		l = NULL;
   1105 
   1106 	return l;
   1107 }
   1108 
   1109 /*
   1110  * Update an LWP's cached credentials to mirror the process' master copy.
   1111  *
   1112  * This happens early in the syscall path, on user trap, and on LWP
   1113  * creation.  A long-running LWP can also voluntarily choose to update
   1114  * it's credentials by calling this routine.  This may be called from
   1115  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1116  */
   1117 void
   1118 lwp_update_creds(struct lwp *l)
   1119 {
   1120 	kauth_cred_t oc;
   1121 	struct proc *p;
   1122 
   1123 	p = l->l_proc;
   1124 	oc = l->l_cred;
   1125 
   1126 	mutex_enter(p->p_lock);
   1127 	kauth_cred_hold(p->p_cred);
   1128 	l->l_cred = p->p_cred;
   1129 	l->l_prflag &= ~LPR_CRMOD;
   1130 	mutex_exit(p->p_lock);
   1131 	if (oc != NULL)
   1132 		kauth_cred_free(oc);
   1133 }
   1134 
   1135 /*
   1136  * Verify that an LWP is locked, and optionally verify that the lock matches
   1137  * one we specify.
   1138  */
   1139 int
   1140 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1141 {
   1142 	kmutex_t *cur = l->l_mutex;
   1143 
   1144 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1145 }
   1146 
   1147 /*
   1148  * Lock an LWP.
   1149  */
   1150 kmutex_t *
   1151 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1152 {
   1153 
   1154 	/*
   1155 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1156 	 *
   1157 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1158 	 */
   1159 #if 1
   1160 	while (l->l_mutex != old) {
   1161 #else
   1162 	for (;;) {
   1163 #endif
   1164 		mutex_spin_exit(old);
   1165 		old = l->l_mutex;
   1166 		mutex_spin_enter(old);
   1167 
   1168 		/*
   1169 		 * mutex_enter() will have posted a read barrier.  Re-test
   1170 		 * l->l_mutex.  If it has changed, we need to try again.
   1171 		 */
   1172 #if 1
   1173 	}
   1174 #else
   1175 	} while (__predict_false(l->l_mutex != old));
   1176 #endif
   1177 
   1178 	return old;
   1179 }
   1180 
   1181 /*
   1182  * Lend a new mutex to an LWP.  The old mutex must be held.
   1183  */
   1184 void
   1185 lwp_setlock(struct lwp *l, kmutex_t *new)
   1186 {
   1187 
   1188 	KASSERT(mutex_owned(l->l_mutex));
   1189 
   1190 	membar_exit();
   1191 	l->l_mutex = new;
   1192 }
   1193 
   1194 /*
   1195  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1196  * must be held.
   1197  */
   1198 void
   1199 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1200 {
   1201 	kmutex_t *old;
   1202 
   1203 	KASSERT(mutex_owned(l->l_mutex));
   1204 
   1205 	old = l->l_mutex;
   1206 	membar_exit();
   1207 	l->l_mutex = new;
   1208 	mutex_spin_exit(old);
   1209 }
   1210 
   1211 /*
   1212  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1213  * locked.
   1214  */
   1215 void
   1216 lwp_relock(struct lwp *l, kmutex_t *new)
   1217 {
   1218 	kmutex_t *old;
   1219 
   1220 	KASSERT(mutex_owned(l->l_mutex));
   1221 
   1222 	old = l->l_mutex;
   1223 	if (old != new) {
   1224 		mutex_spin_enter(new);
   1225 		l->l_mutex = new;
   1226 		mutex_spin_exit(old);
   1227 	}
   1228 }
   1229 
   1230 int
   1231 lwp_trylock(struct lwp *l)
   1232 {
   1233 	kmutex_t *old;
   1234 
   1235 	for (;;) {
   1236 		if (!mutex_tryenter(old = l->l_mutex))
   1237 			return 0;
   1238 		if (__predict_true(l->l_mutex == old))
   1239 			return 1;
   1240 		mutex_spin_exit(old);
   1241 	}
   1242 }
   1243 
   1244 void
   1245 lwp_unsleep(lwp_t *l, bool cleanup)
   1246 {
   1247 
   1248 	KASSERT(mutex_owned(l->l_mutex));
   1249 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1250 }
   1251 
   1252 
   1253 /*
   1254  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1255  * set.
   1256  */
   1257 void
   1258 lwp_userret(struct lwp *l)
   1259 {
   1260 	struct proc *p;
   1261 	void (*hook)(void);
   1262 	int sig;
   1263 
   1264 	KASSERT(l == curlwp);
   1265 	KASSERT(l->l_stat == LSONPROC);
   1266 	p = l->l_proc;
   1267 
   1268 #ifndef __HAVE_FAST_SOFTINTS
   1269 	/* Run pending soft interrupts. */
   1270 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1271 		softint_overlay();
   1272 #endif
   1273 
   1274 #ifdef KERN_SA
   1275 	/* Generate UNBLOCKED upcall if needed */
   1276 	if (l->l_flag & LW_SA_BLOCKING) {
   1277 		sa_unblock_userret(l);
   1278 		/* NOTREACHED */
   1279 	}
   1280 #endif
   1281 
   1282 	/*
   1283 	 * It should be safe to do this read unlocked on a multiprocessor
   1284 	 * system..
   1285 	 *
   1286 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
   1287 	 * consider it now.
   1288 	 */
   1289 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
   1290 		/*
   1291 		 * Process pending signals first, unless the process
   1292 		 * is dumping core or exiting, where we will instead
   1293 		 * enter the LW_WSUSPEND case below.
   1294 		 */
   1295 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1296 		    LW_PENDSIG) {
   1297 			mutex_enter(p->p_lock);
   1298 			while ((sig = issignal(l)) != 0)
   1299 				postsig(sig);
   1300 			mutex_exit(p->p_lock);
   1301 		}
   1302 
   1303 		/*
   1304 		 * Core-dump or suspend pending.
   1305 		 *
   1306 		 * In case of core dump, suspend ourselves, so that the
   1307 		 * kernel stack and therefore the userland registers saved
   1308 		 * in the trapframe are around for coredump() to write them
   1309 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1310 		 * will write the core file out once all other LWPs are
   1311 		 * suspended.
   1312 		 */
   1313 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1314 			mutex_enter(p->p_lock);
   1315 			p->p_nrlwps--;
   1316 			cv_broadcast(&p->p_lwpcv);
   1317 			lwp_lock(l);
   1318 			l->l_stat = LSSUSPENDED;
   1319 			lwp_unlock(l);
   1320 			mutex_exit(p->p_lock);
   1321 			lwp_lock(l);
   1322 			mi_switch(l);
   1323 		}
   1324 
   1325 		/* Process is exiting. */
   1326 		if ((l->l_flag & LW_WEXIT) != 0) {
   1327 			lwp_exit(l);
   1328 			KASSERT(0);
   1329 			/* NOTREACHED */
   1330 		}
   1331 
   1332 		/* Call userret hook; used by Linux emulation. */
   1333 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1334 			lwp_lock(l);
   1335 			l->l_flag &= ~LW_WUSERRET;
   1336 			lwp_unlock(l);
   1337 			hook = p->p_userret;
   1338 			p->p_userret = NULL;
   1339 			(*hook)();
   1340 		}
   1341 	}
   1342 
   1343 #ifdef KERN_SA
   1344 	/*
   1345 	 * Timer events are handled specially.  We only try once to deliver
   1346 	 * pending timer upcalls; if if fails, we can try again on the next
   1347 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
   1348 	 * bounce us back here through the trap path after we return.
   1349 	 */
   1350 	if (p->p_timerpend)
   1351 		timerupcall(l);
   1352 	if (l->l_flag & LW_SA_UPCALL)
   1353 		sa_upcall_userret(l);
   1354 #endif /* KERN_SA */
   1355 }
   1356 
   1357 /*
   1358  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1359  */
   1360 void
   1361 lwp_need_userret(struct lwp *l)
   1362 {
   1363 	KASSERT(lwp_locked(l, NULL));
   1364 
   1365 	/*
   1366 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1367 	 * that the condition will be seen before forcing the LWP to enter
   1368 	 * kernel mode.
   1369 	 */
   1370 	membar_producer();
   1371 	cpu_signotify(l);
   1372 }
   1373 
   1374 /*
   1375  * Add one reference to an LWP.  This will prevent the LWP from
   1376  * exiting, thus keep the lwp structure and PCB around to inspect.
   1377  */
   1378 void
   1379 lwp_addref(struct lwp *l)
   1380 {
   1381 
   1382 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1383 	KASSERT(l->l_stat != LSZOMB);
   1384 	KASSERT(l->l_refcnt != 0);
   1385 
   1386 	l->l_refcnt++;
   1387 }
   1388 
   1389 /*
   1390  * Remove one reference to an LWP.  If this is the last reference,
   1391  * then we must finalize the LWP's death.
   1392  */
   1393 void
   1394 lwp_delref(struct lwp *l)
   1395 {
   1396 	struct proc *p = l->l_proc;
   1397 
   1398 	mutex_enter(p->p_lock);
   1399 	KASSERT(l->l_stat != LSZOMB);
   1400 	KASSERT(l->l_refcnt > 0);
   1401 	if (--l->l_refcnt == 0)
   1402 		cv_broadcast(&p->p_lwpcv);
   1403 	mutex_exit(p->p_lock);
   1404 }
   1405 
   1406 /*
   1407  * Drain all references to the current LWP.
   1408  */
   1409 void
   1410 lwp_drainrefs(struct lwp *l)
   1411 {
   1412 	struct proc *p = l->l_proc;
   1413 
   1414 	KASSERT(mutex_owned(p->p_lock));
   1415 	KASSERT(l->l_refcnt != 0);
   1416 
   1417 	l->l_refcnt--;
   1418 	while (l->l_refcnt != 0)
   1419 		cv_wait(&p->p_lwpcv, p->p_lock);
   1420 }
   1421 
   1422 /*
   1423  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1424  * be held.
   1425  */
   1426 bool
   1427 lwp_alive(lwp_t *l)
   1428 {
   1429 
   1430 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1431 
   1432 	switch (l->l_stat) {
   1433 	case LSSLEEP:
   1434 	case LSRUN:
   1435 	case LSONPROC:
   1436 	case LSSTOP:
   1437 	case LSSUSPENDED:
   1438 		return true;
   1439 	default:
   1440 		return false;
   1441 	}
   1442 }
   1443 
   1444 /*
   1445  * Return first live LWP in the process.
   1446  */
   1447 lwp_t *
   1448 lwp_find_first(proc_t *p)
   1449 {
   1450 	lwp_t *l;
   1451 
   1452 	KASSERT(mutex_owned(p->p_lock));
   1453 
   1454 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1455 		if (lwp_alive(l)) {
   1456 			return l;
   1457 		}
   1458 	}
   1459 
   1460 	return NULL;
   1461 }
   1462 
   1463 /*
   1464  * lwp_specific_key_create --
   1465  *	Create a key for subsystem lwp-specific data.
   1466  */
   1467 int
   1468 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1469 {
   1470 
   1471 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1472 }
   1473 
   1474 /*
   1475  * lwp_specific_key_delete --
   1476  *	Delete a key for subsystem lwp-specific data.
   1477  */
   1478 void
   1479 lwp_specific_key_delete(specificdata_key_t key)
   1480 {
   1481 
   1482 	specificdata_key_delete(lwp_specificdata_domain, key);
   1483 }
   1484 
   1485 /*
   1486  * lwp_initspecific --
   1487  *	Initialize an LWP's specificdata container.
   1488  */
   1489 void
   1490 lwp_initspecific(struct lwp *l)
   1491 {
   1492 	int error;
   1493 
   1494 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1495 	KASSERT(error == 0);
   1496 }
   1497 
   1498 /*
   1499  * lwp_finispecific --
   1500  *	Finalize an LWP's specificdata container.
   1501  */
   1502 void
   1503 lwp_finispecific(struct lwp *l)
   1504 {
   1505 
   1506 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1507 }
   1508 
   1509 /*
   1510  * lwp_getspecific --
   1511  *	Return lwp-specific data corresponding to the specified key.
   1512  *
   1513  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1514  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1515  *	LWP's specifc data, care must be taken to ensure that doing so
   1516  *	would not cause internal data structure inconsistency (i.e. caller
   1517  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1518  *	or lwp_setspecific() call).
   1519  */
   1520 void *
   1521 lwp_getspecific(specificdata_key_t key)
   1522 {
   1523 
   1524 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1525 						  &curlwp->l_specdataref, key));
   1526 }
   1527 
   1528 void *
   1529 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1530 {
   1531 
   1532 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1533 						  &l->l_specdataref, key));
   1534 }
   1535 
   1536 /*
   1537  * lwp_setspecific --
   1538  *	Set lwp-specific data corresponding to the specified key.
   1539  */
   1540 void
   1541 lwp_setspecific(specificdata_key_t key, void *data)
   1542 {
   1543 
   1544 	specificdata_setspecific(lwp_specificdata_domain,
   1545 				 &curlwp->l_specdataref, key, data);
   1546 }
   1547 
   1548 /*
   1549  * Allocate a new lwpctl structure for a user LWP.
   1550  */
   1551 int
   1552 lwp_ctl_alloc(vaddr_t *uaddr)
   1553 {
   1554 	lcproc_t *lp;
   1555 	u_int bit, i, offset;
   1556 	struct uvm_object *uao;
   1557 	int error;
   1558 	lcpage_t *lcp;
   1559 	proc_t *p;
   1560 	lwp_t *l;
   1561 
   1562 	l = curlwp;
   1563 	p = l->l_proc;
   1564 
   1565 	if (l->l_lcpage != NULL) {
   1566 		lcp = l->l_lcpage;
   1567 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1568 		return (EINVAL);
   1569 	}
   1570 
   1571 	/* First time around, allocate header structure for the process. */
   1572 	if ((lp = p->p_lwpctl) == NULL) {
   1573 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1574 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1575 		lp->lp_uao = NULL;
   1576 		TAILQ_INIT(&lp->lp_pages);
   1577 		mutex_enter(p->p_lock);
   1578 		if (p->p_lwpctl == NULL) {
   1579 			p->p_lwpctl = lp;
   1580 			mutex_exit(p->p_lock);
   1581 		} else {
   1582 			mutex_exit(p->p_lock);
   1583 			mutex_destroy(&lp->lp_lock);
   1584 			kmem_free(lp, sizeof(*lp));
   1585 			lp = p->p_lwpctl;
   1586 		}
   1587 	}
   1588 
   1589  	/*
   1590  	 * Set up an anonymous memory region to hold the shared pages.
   1591  	 * Map them into the process' address space.  The user vmspace
   1592  	 * gets the first reference on the UAO.
   1593  	 */
   1594 	mutex_enter(&lp->lp_lock);
   1595 	if (lp->lp_uao == NULL) {
   1596 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1597 		lp->lp_cur = 0;
   1598 		lp->lp_max = LWPCTL_UAREA_SZ;
   1599 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1600 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1601 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1602 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1603 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1604 		if (error != 0) {
   1605 			uao_detach(lp->lp_uao);
   1606 			lp->lp_uao = NULL;
   1607 			mutex_exit(&lp->lp_lock);
   1608 			return error;
   1609 		}
   1610 	}
   1611 
   1612 	/* Get a free block and allocate for this LWP. */
   1613 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1614 		if (lcp->lcp_nfree != 0)
   1615 			break;
   1616 	}
   1617 	if (lcp == NULL) {
   1618 		/* Nothing available - try to set up a free page. */
   1619 		if (lp->lp_cur == lp->lp_max) {
   1620 			mutex_exit(&lp->lp_lock);
   1621 			return ENOMEM;
   1622 		}
   1623 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1624 		if (lcp == NULL) {
   1625 			mutex_exit(&lp->lp_lock);
   1626 			return ENOMEM;
   1627 		}
   1628 		/*
   1629 		 * Wire the next page down in kernel space.  Since this
   1630 		 * is a new mapping, we must add a reference.
   1631 		 */
   1632 		uao = lp->lp_uao;
   1633 		(*uao->pgops->pgo_reference)(uao);
   1634 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1635 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1636 		    uao, lp->lp_cur, PAGE_SIZE,
   1637 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1638 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1639 		if (error != 0) {
   1640 			mutex_exit(&lp->lp_lock);
   1641 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1642 			(*uao->pgops->pgo_detach)(uao);
   1643 			return error;
   1644 		}
   1645 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1646 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1647 		if (error != 0) {
   1648 			mutex_exit(&lp->lp_lock);
   1649 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1650 			    lcp->lcp_kaddr + PAGE_SIZE);
   1651 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1652 			return error;
   1653 		}
   1654 		/* Prepare the page descriptor and link into the list. */
   1655 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1656 		lp->lp_cur += PAGE_SIZE;
   1657 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1658 		lcp->lcp_rotor = 0;
   1659 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1660 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1661 	}
   1662 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1663 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1664 			i = 0;
   1665 	}
   1666 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1667 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1668 	lcp->lcp_rotor = i;
   1669 	lcp->lcp_nfree--;
   1670 	l->l_lcpage = lcp;
   1671 	offset = (i << 5) + bit;
   1672 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1673 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1674 	mutex_exit(&lp->lp_lock);
   1675 
   1676 	KPREEMPT_DISABLE(l);
   1677 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1678 	KPREEMPT_ENABLE(l);
   1679 
   1680 	return 0;
   1681 }
   1682 
   1683 /*
   1684  * Free an lwpctl structure back to the per-process list.
   1685  */
   1686 void
   1687 lwp_ctl_free(lwp_t *l)
   1688 {
   1689 	lcproc_t *lp;
   1690 	lcpage_t *lcp;
   1691 	u_int map, offset;
   1692 
   1693 	lp = l->l_proc->p_lwpctl;
   1694 	KASSERT(lp != NULL);
   1695 
   1696 	lcp = l->l_lcpage;
   1697 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1698 	KASSERT(offset < LWPCTL_PER_PAGE);
   1699 
   1700 	mutex_enter(&lp->lp_lock);
   1701 	lcp->lcp_nfree++;
   1702 	map = offset >> 5;
   1703 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1704 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1705 		lcp->lcp_rotor = map;
   1706 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1707 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1708 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1709 	}
   1710 	mutex_exit(&lp->lp_lock);
   1711 }
   1712 
   1713 /*
   1714  * Process is exiting; tear down lwpctl state.  This can only be safely
   1715  * called by the last LWP in the process.
   1716  */
   1717 void
   1718 lwp_ctl_exit(void)
   1719 {
   1720 	lcpage_t *lcp, *next;
   1721 	lcproc_t *lp;
   1722 	proc_t *p;
   1723 	lwp_t *l;
   1724 
   1725 	l = curlwp;
   1726 	l->l_lwpctl = NULL;
   1727 	l->l_lcpage = NULL;
   1728 	p = l->l_proc;
   1729 	lp = p->p_lwpctl;
   1730 
   1731 	KASSERT(lp != NULL);
   1732 	KASSERT(p->p_nlwps == 1);
   1733 
   1734 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1735 		next = TAILQ_NEXT(lcp, lcp_chain);
   1736 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1737 		    lcp->lcp_kaddr + PAGE_SIZE);
   1738 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1739 	}
   1740 
   1741 	if (lp->lp_uao != NULL) {
   1742 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1743 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1744 	}
   1745 
   1746 	mutex_destroy(&lp->lp_lock);
   1747 	kmem_free(lp, sizeof(*lp));
   1748 	p->p_lwpctl = NULL;
   1749 }
   1750 
   1751 /*
   1752  * Return the current LWP's "preemption counter".  Used to detect
   1753  * preemption across operations that can tolerate preemption without
   1754  * crashing, but which may generate incorrect results if preempted.
   1755  */
   1756 uint64_t
   1757 lwp_pctr(void)
   1758 {
   1759 
   1760 	return curlwp->l_ncsw;
   1761 }
   1762 
   1763 #if defined(DDB)
   1764 void
   1765 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1766 {
   1767 	lwp_t *l;
   1768 
   1769 	LIST_FOREACH(l, &alllwp, l_list) {
   1770 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1771 
   1772 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1773 			continue;
   1774 		}
   1775 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1776 		    (void *)addr, (void *)stack,
   1777 		    (size_t)(addr - stack), l);
   1778 	}
   1779 }
   1780 #endif /* defined(DDB) */
   1781