kern_lwp.c revision 1.106.2.6 1 /* $NetBSD: kern_lwp.c,v 1.106.2.6 2010/03/11 15:04:16 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock and matches lwp::l_cpu.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock and matches lwp::l_cpu.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * (But not always for kernel threads. There are some special cases
200 * as mentioned above. See kern_softint.c.)
201 *
202 * Note that an LWP is considered running or likely to run soon if in
203 * one of the following states. This affects the value of p_nrlwps:
204 *
205 * LSRUN, LSONPROC, LSSLEEP
206 *
207 * p_lock does not need to be held when transitioning among these
208 * three states, hence p_lock is rarely taken for state transitions.
209 */
210
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.106.2.6 2010/03/11 15:04:16 yamt Exp $");
213
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_sa.h"
217 #include "opt_dtrace.h"
218
219 #define _LWP_API_PRIVATE
220
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/sa.h>
227 #include <sys/savar.h>
228 #include <sys/syscallargs.h>
229 #include <sys/syscall_stats.h>
230 #include <sys/kauth.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241
242 #include <uvm/uvm_extern.h>
243 #include <uvm/uvm_object.h>
244
245 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
246
247 struct pool lwp_uc_pool;
248
249 static pool_cache_t lwp_cache;
250 static specificdata_domain_t lwp_specificdata_domain;
251
252 /* DTrace proc provider probes */
253 SDT_PROBE_DEFINE(proc,,,lwp_create,
254 "struct lwp *", NULL,
255 NULL, NULL, NULL, NULL,
256 NULL, NULL, NULL, NULL);
257 SDT_PROBE_DEFINE(proc,,,lwp_start,
258 "struct lwp *", NULL,
259 NULL, NULL, NULL, NULL,
260 NULL, NULL, NULL, NULL);
261 SDT_PROBE_DEFINE(proc,,,lwp_exit,
262 "struct lwp *", NULL,
263 NULL, NULL, NULL, NULL,
264 NULL, NULL, NULL, NULL);
265
266 void
267 lwpinit(void)
268 {
269
270 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
271 &pool_allocator_nointr, IPL_NONE);
272 lwp_specificdata_domain = specificdata_domain_create();
273 KASSERT(lwp_specificdata_domain != NULL);
274 lwp_sys_init();
275 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
276 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
277 }
278
279 /*
280 * Set an suspended.
281 *
282 * Must be called with p_lock held, and the LWP locked. Will unlock the
283 * LWP before return.
284 */
285 int
286 lwp_suspend(struct lwp *curl, struct lwp *t)
287 {
288 int error;
289
290 KASSERT(mutex_owned(t->l_proc->p_lock));
291 KASSERT(lwp_locked(t, NULL));
292
293 KASSERT(curl != t || curl->l_stat == LSONPROC);
294
295 /*
296 * If the current LWP has been told to exit, we must not suspend anyone
297 * else or deadlock could occur. We won't return to userspace.
298 */
299 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
300 lwp_unlock(t);
301 return (EDEADLK);
302 }
303
304 error = 0;
305
306 switch (t->l_stat) {
307 case LSRUN:
308 case LSONPROC:
309 t->l_flag |= LW_WSUSPEND;
310 lwp_need_userret(t);
311 lwp_unlock(t);
312 break;
313
314 case LSSLEEP:
315 t->l_flag |= LW_WSUSPEND;
316
317 /*
318 * Kick the LWP and try to get it to the kernel boundary
319 * so that it will release any locks that it holds.
320 * setrunnable() will release the lock.
321 */
322 if ((t->l_flag & LW_SINTR) != 0)
323 setrunnable(t);
324 else
325 lwp_unlock(t);
326 break;
327
328 case LSSUSPENDED:
329 lwp_unlock(t);
330 break;
331
332 case LSSTOP:
333 t->l_flag |= LW_WSUSPEND;
334 setrunnable(t);
335 break;
336
337 case LSIDL:
338 case LSZOMB:
339 error = EINTR; /* It's what Solaris does..... */
340 lwp_unlock(t);
341 break;
342 }
343
344 return (error);
345 }
346
347 /*
348 * Restart a suspended LWP.
349 *
350 * Must be called with p_lock held, and the LWP locked. Will unlock the
351 * LWP before return.
352 */
353 void
354 lwp_continue(struct lwp *l)
355 {
356
357 KASSERT(mutex_owned(l->l_proc->p_lock));
358 KASSERT(lwp_locked(l, NULL));
359
360 /* If rebooting or not suspended, then just bail out. */
361 if ((l->l_flag & LW_WREBOOT) != 0) {
362 lwp_unlock(l);
363 return;
364 }
365
366 l->l_flag &= ~LW_WSUSPEND;
367
368 if (l->l_stat != LSSUSPENDED) {
369 lwp_unlock(l);
370 return;
371 }
372
373 /* setrunnable() will release the lock. */
374 setrunnable(l);
375 }
376
377 /*
378 * Wait for an LWP within the current process to exit. If 'lid' is
379 * non-zero, we are waiting for a specific LWP.
380 *
381 * Must be called with p->p_lock held.
382 */
383 int
384 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
385 {
386 struct proc *p = l->l_proc;
387 struct lwp *l2;
388 int nfound, error;
389 lwpid_t curlid;
390 bool exiting;
391
392 KASSERT(mutex_owned(p->p_lock));
393
394 p->p_nlwpwait++;
395 l->l_waitingfor = lid;
396 curlid = l->l_lid;
397 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
398
399 for (;;) {
400 /*
401 * Avoid a race between exit1() and sigexit(): if the
402 * process is dumping core, then we need to bail out: call
403 * into lwp_userret() where we will be suspended until the
404 * deed is done.
405 */
406 if ((p->p_sflag & PS_WCORE) != 0) {
407 mutex_exit(p->p_lock);
408 lwp_userret(l);
409 #ifdef DIAGNOSTIC
410 panic("lwp_wait1");
411 #endif
412 /* NOTREACHED */
413 }
414
415 /*
416 * First off, drain any detached LWP that is waiting to be
417 * reaped.
418 */
419 while ((l2 = p->p_zomblwp) != NULL) {
420 p->p_zomblwp = NULL;
421 lwp_free(l2, false, false);/* releases proc mutex */
422 mutex_enter(p->p_lock);
423 }
424
425 /*
426 * Now look for an LWP to collect. If the whole process is
427 * exiting, count detached LWPs as eligible to be collected,
428 * but don't drain them here.
429 */
430 nfound = 0;
431 error = 0;
432 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
433 /*
434 * If a specific wait and the target is waiting on
435 * us, then avoid deadlock. This also traps LWPs
436 * that try to wait on themselves.
437 *
438 * Note that this does not handle more complicated
439 * cycles, like: t1 -> t2 -> t3 -> t1. The process
440 * can still be killed so it is not a major problem.
441 */
442 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
443 error = EDEADLK;
444 break;
445 }
446 if (l2 == l)
447 continue;
448 if ((l2->l_prflag & LPR_DETACHED) != 0) {
449 nfound += exiting;
450 continue;
451 }
452 if (lid != 0) {
453 if (l2->l_lid != lid)
454 continue;
455 /*
456 * Mark this LWP as the first waiter, if there
457 * is no other.
458 */
459 if (l2->l_waiter == 0)
460 l2->l_waiter = curlid;
461 } else if (l2->l_waiter != 0) {
462 /*
463 * It already has a waiter - so don't
464 * collect it. If the waiter doesn't
465 * grab it we'll get another chance
466 * later.
467 */
468 nfound++;
469 continue;
470 }
471 nfound++;
472
473 /* No need to lock the LWP in order to see LSZOMB. */
474 if (l2->l_stat != LSZOMB)
475 continue;
476
477 /*
478 * We're no longer waiting. Reset the "first waiter"
479 * pointer on the target, in case it was us.
480 */
481 l->l_waitingfor = 0;
482 l2->l_waiter = 0;
483 p->p_nlwpwait--;
484 if (departed)
485 *departed = l2->l_lid;
486 sched_lwp_collect(l2);
487
488 /* lwp_free() releases the proc lock. */
489 lwp_free(l2, false, false);
490 mutex_enter(p->p_lock);
491 return 0;
492 }
493
494 if (error != 0)
495 break;
496 if (nfound == 0) {
497 error = ESRCH;
498 break;
499 }
500
501 /*
502 * The kernel is careful to ensure that it can not deadlock
503 * when exiting - just keep waiting.
504 */
505 if (exiting) {
506 KASSERT(p->p_nlwps > 1);
507 cv_wait(&p->p_lwpcv, p->p_lock);
508 continue;
509 }
510
511 /*
512 * If all other LWPs are waiting for exits or suspends
513 * and the supply of zombies and potential zombies is
514 * exhausted, then we are about to deadlock.
515 *
516 * If the process is exiting (and this LWP is not the one
517 * that is coordinating the exit) then bail out now.
518 */
519 if ((p->p_sflag & PS_WEXIT) != 0 ||
520 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
521 error = EDEADLK;
522 break;
523 }
524
525 /*
526 * Sit around and wait for something to happen. We'll be
527 * awoken if any of the conditions examined change: if an
528 * LWP exits, is collected, or is detached.
529 */
530 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
531 break;
532 }
533
534 /*
535 * We didn't find any LWPs to collect, we may have received a
536 * signal, or some other condition has caused us to bail out.
537 *
538 * If waiting on a specific LWP, clear the waiters marker: some
539 * other LWP may want it. Then, kick all the remaining waiters
540 * so that they can re-check for zombies and for deadlock.
541 */
542 if (lid != 0) {
543 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
544 if (l2->l_lid == lid) {
545 if (l2->l_waiter == curlid)
546 l2->l_waiter = 0;
547 break;
548 }
549 }
550 }
551 p->p_nlwpwait--;
552 l->l_waitingfor = 0;
553 cv_broadcast(&p->p_lwpcv);
554
555 return error;
556 }
557
558 /*
559 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
560 * The new LWP is created in state LSIDL and must be set running,
561 * suspended, or stopped by the caller.
562 */
563 int
564 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
565 void *stack, size_t stacksize, void (*func)(void *), void *arg,
566 lwp_t **rnewlwpp, int sclass)
567 {
568 struct lwp *l2, *isfree;
569 turnstile_t *ts;
570
571 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
572
573 /*
574 * First off, reap any detached LWP waiting to be collected.
575 * We can re-use its LWP structure and turnstile.
576 */
577 isfree = NULL;
578 if (p2->p_zomblwp != NULL) {
579 mutex_enter(p2->p_lock);
580 if ((isfree = p2->p_zomblwp) != NULL) {
581 p2->p_zomblwp = NULL;
582 lwp_free(isfree, true, false);/* releases proc mutex */
583 } else
584 mutex_exit(p2->p_lock);
585 }
586 if (isfree == NULL) {
587 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
588 memset(l2, 0, sizeof(*l2));
589 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
590 SLIST_INIT(&l2->l_pi_lenders);
591 } else {
592 l2 = isfree;
593 ts = l2->l_ts;
594 KASSERT(l2->l_inheritedprio == -1);
595 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
596 memset(l2, 0, sizeof(*l2));
597 l2->l_ts = ts;
598 }
599
600 l2->l_stat = LSIDL;
601 l2->l_proc = p2;
602 l2->l_refcnt = 1;
603 l2->l_class = sclass;
604
605 /*
606 * If vfork(), we want the LWP to run fast and on the same CPU
607 * as its parent, so that it can reuse the VM context and cache
608 * footprint on the local CPU.
609 */
610 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
611 l2->l_kpribase = PRI_KERNEL;
612 l2->l_priority = l1->l_priority;
613 l2->l_inheritedprio = -1;
614 l2->l_flag = 0;
615 l2->l_pflag = LP_MPSAFE;
616 TAILQ_INIT(&l2->l_ld_locks);
617
618 /*
619 * If not the first LWP in the process, grab a reference to the
620 * descriptor table.
621 */
622 l2->l_fd = p2->p_fd;
623 if (p2->p_nlwps != 0) {
624 KASSERT(l1->l_proc == p2);
625 fd_hold(l2);
626 } else {
627 KASSERT(l1->l_proc != p2);
628 }
629
630 if (p2->p_flag & PK_SYSTEM) {
631 /* Mark it as a system LWP. */
632 l2->l_flag |= LW_SYSTEM;
633 }
634
635 kpreempt_disable();
636 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
637 l2->l_cpu = l1->l_cpu;
638 kpreempt_enable();
639
640 kdtrace_thread_ctor(NULL, l2);
641 lwp_initspecific(l2);
642 sched_lwp_fork(l1, l2);
643 lwp_update_creds(l2);
644 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
645 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
646 cv_init(&l2->l_sigcv, "sigwait");
647 l2->l_syncobj = &sched_syncobj;
648
649 if (rnewlwpp != NULL)
650 *rnewlwpp = l2;
651
652 uvm_lwp_setuarea(l2, uaddr);
653 uvm_lwp_fork(l1, l2, stack, stacksize, func,
654 (arg != NULL) ? arg : l2);
655
656 mutex_enter(p2->p_lock);
657
658 if ((flags & LWP_DETACHED) != 0) {
659 l2->l_prflag = LPR_DETACHED;
660 p2->p_ndlwps++;
661 } else
662 l2->l_prflag = 0;
663
664 l2->l_sigmask = l1->l_sigmask;
665 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
666 sigemptyset(&l2->l_sigpend.sp_set);
667
668 p2->p_nlwpid++;
669 if (p2->p_nlwpid == 0)
670 p2->p_nlwpid++;
671 l2->l_lid = p2->p_nlwpid;
672 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
673 p2->p_nlwps++;
674
675 if ((p2->p_flag & PK_SYSTEM) == 0) {
676 /* Inherit an affinity */
677 if (l1->l_flag & LW_AFFINITY) {
678 /*
679 * Note that we hold the state lock while inheriting
680 * the affinity to avoid race with sched_setaffinity().
681 */
682 lwp_lock(l1);
683 if (l1->l_flag & LW_AFFINITY) {
684 kcpuset_use(l1->l_affinity);
685 l2->l_affinity = l1->l_affinity;
686 l2->l_flag |= LW_AFFINITY;
687 }
688 lwp_unlock(l1);
689 }
690 lwp_lock(l2);
691 /* Inherit a processor-set */
692 l2->l_psid = l1->l_psid;
693 /* Look for a CPU to start */
694 l2->l_cpu = sched_takecpu(l2);
695 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
696 }
697 mutex_exit(p2->p_lock);
698
699 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
700
701 mutex_enter(proc_lock);
702 LIST_INSERT_HEAD(&alllwp, l2, l_list);
703 mutex_exit(proc_lock);
704
705 SYSCALL_TIME_LWP_INIT(l2);
706
707 if (p2->p_emul->e_lwp_fork)
708 (*p2->p_emul->e_lwp_fork)(l1, l2);
709
710 return (0);
711 }
712
713 /*
714 * Called by MD code when a new LWP begins execution. Must be called
715 * with the previous LWP locked (so at splsched), or if there is no
716 * previous LWP, at splsched.
717 */
718 void
719 lwp_startup(struct lwp *prev, struct lwp *new)
720 {
721
722 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
723
724 KASSERT(kpreempt_disabled());
725 if (prev != NULL) {
726 /*
727 * Normalize the count of the spin-mutexes, it was
728 * increased in mi_switch(). Unmark the state of
729 * context switch - it is finished for previous LWP.
730 */
731 curcpu()->ci_mtx_count++;
732 membar_exit();
733 prev->l_ctxswtch = 0;
734 }
735 KPREEMPT_DISABLE(new);
736 spl0();
737 pmap_activate(new);
738 LOCKDEBUG_BARRIER(NULL, 0);
739 KPREEMPT_ENABLE(new);
740 if ((new->l_pflag & LP_MPSAFE) == 0) {
741 KERNEL_LOCK(1, new);
742 }
743 }
744
745 /*
746 * Exit an LWP.
747 */
748 void
749 lwp_exit(struct lwp *l)
750 {
751 struct proc *p = l->l_proc;
752 struct lwp *l2;
753 bool current;
754
755 current = (l == curlwp);
756
757 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
758 KASSERT(p == curproc);
759
760 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
761
762 /*
763 * Verify that we hold no locks other than the kernel lock.
764 */
765 LOCKDEBUG_BARRIER(&kernel_lock, 0);
766
767 /*
768 * If we are the last live LWP in a process, we need to exit the
769 * entire process. We do so with an exit status of zero, because
770 * it's a "controlled" exit, and because that's what Solaris does.
771 *
772 * We are not quite a zombie yet, but for accounting purposes we
773 * must increment the count of zombies here.
774 *
775 * Note: the last LWP's specificdata will be deleted here.
776 */
777 mutex_enter(p->p_lock);
778 if (p->p_nlwps - p->p_nzlwps == 1) {
779 KASSERT(current == true);
780 /* XXXSMP kernel_lock not held */
781 exit1(l, 0);
782 /* NOTREACHED */
783 }
784 p->p_nzlwps++;
785 mutex_exit(p->p_lock);
786
787 if (p->p_emul->e_lwp_exit)
788 (*p->p_emul->e_lwp_exit)(l);
789
790 /* Drop filedesc reference. */
791 fd_free();
792
793 /* Delete the specificdata while it's still safe to sleep. */
794 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
795
796 /*
797 * Release our cached credentials.
798 */
799 kauth_cred_free(l->l_cred);
800 callout_destroy(&l->l_timeout_ch);
801
802 /*
803 * Remove the LWP from the global list.
804 */
805 mutex_enter(proc_lock);
806 LIST_REMOVE(l, l_list);
807 mutex_exit(proc_lock);
808
809 /*
810 * Get rid of all references to the LWP that others (e.g. procfs)
811 * may have, and mark the LWP as a zombie. If the LWP is detached,
812 * mark it waiting for collection in the proc structure. Note that
813 * before we can do that, we need to free any other dead, deatched
814 * LWP waiting to meet its maker.
815 */
816 mutex_enter(p->p_lock);
817 lwp_drainrefs(l);
818
819 if ((l->l_prflag & LPR_DETACHED) != 0) {
820 while ((l2 = p->p_zomblwp) != NULL) {
821 p->p_zomblwp = NULL;
822 lwp_free(l2, false, false);/* releases proc mutex */
823 mutex_enter(p->p_lock);
824 l->l_refcnt++;
825 lwp_drainrefs(l);
826 }
827 p->p_zomblwp = l;
828 }
829
830 /*
831 * If we find a pending signal for the process and we have been
832 * asked to check for signals, then we loose: arrange to have
833 * all other LWPs in the process check for signals.
834 */
835 if ((l->l_flag & LW_PENDSIG) != 0 &&
836 firstsig(&p->p_sigpend.sp_set) != 0) {
837 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
838 lwp_lock(l2);
839 l2->l_flag |= LW_PENDSIG;
840 lwp_unlock(l2);
841 }
842 }
843
844 lwp_lock(l);
845 l->l_stat = LSZOMB;
846 if (l->l_name != NULL)
847 strcpy(l->l_name, "(zombie)");
848 if (l->l_flag & LW_AFFINITY) {
849 l->l_flag &= ~LW_AFFINITY;
850 } else {
851 KASSERT(l->l_affinity == NULL);
852 }
853 lwp_unlock(l);
854 p->p_nrlwps--;
855 cv_broadcast(&p->p_lwpcv);
856 if (l->l_lwpctl != NULL)
857 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
858 mutex_exit(p->p_lock);
859
860 /* Safe without lock since LWP is in zombie state */
861 if (l->l_affinity) {
862 kcpuset_unuse(l->l_affinity, NULL);
863 l->l_affinity = NULL;
864 }
865
866 /*
867 * We can no longer block. At this point, lwp_free() may already
868 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
869 *
870 * Free MD LWP resources.
871 */
872 cpu_lwp_free(l, 0);
873
874 if (current) {
875 pmap_deactivate(l);
876
877 /*
878 * Release the kernel lock, and switch away into
879 * oblivion.
880 */
881 #ifdef notyet
882 /* XXXSMP hold in lwp_userret() */
883 KERNEL_UNLOCK_LAST(l);
884 #else
885 KERNEL_UNLOCK_ALL(l, NULL);
886 #endif
887 lwp_exit_switchaway(l);
888 }
889 }
890
891 /*
892 * Free a dead LWP's remaining resources.
893 *
894 * XXXLWP limits.
895 */
896 void
897 lwp_free(struct lwp *l, bool recycle, bool last)
898 {
899 struct proc *p = l->l_proc;
900 struct rusage *ru;
901 ksiginfoq_t kq;
902
903 KASSERT(l != curlwp);
904
905 /*
906 * If this was not the last LWP in the process, then adjust
907 * counters and unlock.
908 */
909 if (!last) {
910 /*
911 * Add the LWP's run time to the process' base value.
912 * This needs to co-incide with coming off p_lwps.
913 */
914 bintime_add(&p->p_rtime, &l->l_rtime);
915 p->p_pctcpu += l->l_pctcpu;
916 ru = &p->p_stats->p_ru;
917 ruadd(ru, &l->l_ru);
918 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
919 ru->ru_nivcsw += l->l_nivcsw;
920 LIST_REMOVE(l, l_sibling);
921 p->p_nlwps--;
922 p->p_nzlwps--;
923 if ((l->l_prflag & LPR_DETACHED) != 0)
924 p->p_ndlwps--;
925
926 /*
927 * Have any LWPs sleeping in lwp_wait() recheck for
928 * deadlock.
929 */
930 cv_broadcast(&p->p_lwpcv);
931 mutex_exit(p->p_lock);
932 }
933
934 #ifdef MULTIPROCESSOR
935 /*
936 * In the unlikely event that the LWP is still on the CPU,
937 * then spin until it has switched away. We need to release
938 * all locks to avoid deadlock against interrupt handlers on
939 * the target CPU.
940 */
941 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
942 int count;
943 (void)count; /* XXXgcc */
944 KERNEL_UNLOCK_ALL(curlwp, &count);
945 while ((l->l_pflag & LP_RUNNING) != 0 ||
946 l->l_cpu->ci_curlwp == l)
947 SPINLOCK_BACKOFF_HOOK;
948 KERNEL_LOCK(count, curlwp);
949 }
950 #endif
951
952 /*
953 * Destroy the LWP's remaining signal information.
954 */
955 ksiginfo_queue_init(&kq);
956 sigclear(&l->l_sigpend, NULL, &kq);
957 ksiginfo_queue_drain(&kq);
958 cv_destroy(&l->l_sigcv);
959
960 /*
961 * Free the LWP's turnstile and the LWP structure itself unless the
962 * caller wants to recycle them. Also, free the scheduler specific
963 * data.
964 *
965 * We can't return turnstile0 to the pool (it didn't come from it),
966 * so if it comes up just drop it quietly and move on.
967 *
968 * We don't recycle the VM resources at this time.
969 */
970 if (l->l_lwpctl != NULL)
971 lwp_ctl_free(l);
972
973 if (!recycle && l->l_ts != &turnstile0)
974 pool_cache_put(turnstile_cache, l->l_ts);
975 if (l->l_name != NULL)
976 kmem_free(l->l_name, MAXCOMLEN);
977
978 cpu_lwp_free2(l);
979 uvm_lwp_exit(l);
980
981 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
982 KASSERT(l->l_inheritedprio == -1);
983 kdtrace_thread_dtor(NULL, l);
984 if (!recycle)
985 pool_cache_put(lwp_cache, l);
986 }
987
988 /*
989 * Migrate the LWP to the another CPU. Unlocks the LWP.
990 */
991 void
992 lwp_migrate(lwp_t *l, struct cpu_info *tci)
993 {
994 struct schedstate_percpu *tspc;
995 int lstat = l->l_stat;
996
997 KASSERT(lwp_locked(l, NULL));
998 KASSERT(tci != NULL);
999
1000 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1001 if ((l->l_pflag & LP_RUNNING) != 0) {
1002 lstat = LSONPROC;
1003 }
1004
1005 /*
1006 * The destination CPU could be changed while previous migration
1007 * was not finished.
1008 */
1009 if (l->l_target_cpu != NULL) {
1010 l->l_target_cpu = tci;
1011 lwp_unlock(l);
1012 return;
1013 }
1014
1015 /* Nothing to do if trying to migrate to the same CPU */
1016 if (l->l_cpu == tci) {
1017 lwp_unlock(l);
1018 return;
1019 }
1020
1021 KASSERT(l->l_target_cpu == NULL);
1022 tspc = &tci->ci_schedstate;
1023 switch (lstat) {
1024 case LSRUN:
1025 l->l_target_cpu = tci;
1026 break;
1027 case LSIDL:
1028 l->l_cpu = tci;
1029 lwp_unlock_to(l, tspc->spc_mutex);
1030 return;
1031 case LSSLEEP:
1032 l->l_cpu = tci;
1033 break;
1034 case LSSTOP:
1035 case LSSUSPENDED:
1036 l->l_cpu = tci;
1037 if (l->l_wchan == NULL) {
1038 lwp_unlock_to(l, tspc->spc_lwplock);
1039 return;
1040 }
1041 break;
1042 case LSONPROC:
1043 l->l_target_cpu = tci;
1044 spc_lock(l->l_cpu);
1045 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1046 spc_unlock(l->l_cpu);
1047 break;
1048 }
1049 lwp_unlock(l);
1050 }
1051
1052 /*
1053 * Find the LWP in the process. Arguments may be zero, in such case,
1054 * the calling process and first LWP in the list will be used.
1055 * On success - returns proc locked.
1056 */
1057 struct lwp *
1058 lwp_find2(pid_t pid, lwpid_t lid)
1059 {
1060 proc_t *p;
1061 lwp_t *l;
1062
1063 /* Find the process */
1064 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1065 if (p == NULL)
1066 return NULL;
1067 mutex_enter(p->p_lock);
1068 if (pid != 0) {
1069 /* Case of p_find */
1070 mutex_exit(proc_lock);
1071 }
1072
1073 /* Find the thread */
1074 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1075 if (l == NULL) {
1076 mutex_exit(p->p_lock);
1077 }
1078
1079 return l;
1080 }
1081
1082 /*
1083 * Look up a live LWP within the speicifed process, and return it locked.
1084 *
1085 * Must be called with p->p_lock held.
1086 */
1087 struct lwp *
1088 lwp_find(struct proc *p, int id)
1089 {
1090 struct lwp *l;
1091
1092 KASSERT(mutex_owned(p->p_lock));
1093
1094 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1095 if (l->l_lid == id)
1096 break;
1097 }
1098
1099 /*
1100 * No need to lock - all of these conditions will
1101 * be visible with the process level mutex held.
1102 */
1103 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1104 l = NULL;
1105
1106 return l;
1107 }
1108
1109 /*
1110 * Update an LWP's cached credentials to mirror the process' master copy.
1111 *
1112 * This happens early in the syscall path, on user trap, and on LWP
1113 * creation. A long-running LWP can also voluntarily choose to update
1114 * it's credentials by calling this routine. This may be called from
1115 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1116 */
1117 void
1118 lwp_update_creds(struct lwp *l)
1119 {
1120 kauth_cred_t oc;
1121 struct proc *p;
1122
1123 p = l->l_proc;
1124 oc = l->l_cred;
1125
1126 mutex_enter(p->p_lock);
1127 kauth_cred_hold(p->p_cred);
1128 l->l_cred = p->p_cred;
1129 l->l_prflag &= ~LPR_CRMOD;
1130 mutex_exit(p->p_lock);
1131 if (oc != NULL)
1132 kauth_cred_free(oc);
1133 }
1134
1135 /*
1136 * Verify that an LWP is locked, and optionally verify that the lock matches
1137 * one we specify.
1138 */
1139 int
1140 lwp_locked(struct lwp *l, kmutex_t *mtx)
1141 {
1142 kmutex_t *cur = l->l_mutex;
1143
1144 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1145 }
1146
1147 /*
1148 * Lock an LWP.
1149 */
1150 kmutex_t *
1151 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1152 {
1153
1154 /*
1155 * XXXgcc ignoring kmutex_t * volatile on i386
1156 *
1157 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1158 */
1159 #if 1
1160 while (l->l_mutex != old) {
1161 #else
1162 for (;;) {
1163 #endif
1164 mutex_spin_exit(old);
1165 old = l->l_mutex;
1166 mutex_spin_enter(old);
1167
1168 /*
1169 * mutex_enter() will have posted a read barrier. Re-test
1170 * l->l_mutex. If it has changed, we need to try again.
1171 */
1172 #if 1
1173 }
1174 #else
1175 } while (__predict_false(l->l_mutex != old));
1176 #endif
1177
1178 return old;
1179 }
1180
1181 /*
1182 * Lend a new mutex to an LWP. The old mutex must be held.
1183 */
1184 void
1185 lwp_setlock(struct lwp *l, kmutex_t *new)
1186 {
1187
1188 KASSERT(mutex_owned(l->l_mutex));
1189
1190 membar_exit();
1191 l->l_mutex = new;
1192 }
1193
1194 /*
1195 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1196 * must be held.
1197 */
1198 void
1199 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1200 {
1201 kmutex_t *old;
1202
1203 KASSERT(mutex_owned(l->l_mutex));
1204
1205 old = l->l_mutex;
1206 membar_exit();
1207 l->l_mutex = new;
1208 mutex_spin_exit(old);
1209 }
1210
1211 /*
1212 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1213 * locked.
1214 */
1215 void
1216 lwp_relock(struct lwp *l, kmutex_t *new)
1217 {
1218 kmutex_t *old;
1219
1220 KASSERT(mutex_owned(l->l_mutex));
1221
1222 old = l->l_mutex;
1223 if (old != new) {
1224 mutex_spin_enter(new);
1225 l->l_mutex = new;
1226 mutex_spin_exit(old);
1227 }
1228 }
1229
1230 int
1231 lwp_trylock(struct lwp *l)
1232 {
1233 kmutex_t *old;
1234
1235 for (;;) {
1236 if (!mutex_tryenter(old = l->l_mutex))
1237 return 0;
1238 if (__predict_true(l->l_mutex == old))
1239 return 1;
1240 mutex_spin_exit(old);
1241 }
1242 }
1243
1244 void
1245 lwp_unsleep(lwp_t *l, bool cleanup)
1246 {
1247
1248 KASSERT(mutex_owned(l->l_mutex));
1249 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1250 }
1251
1252
1253 /*
1254 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1255 * set.
1256 */
1257 void
1258 lwp_userret(struct lwp *l)
1259 {
1260 struct proc *p;
1261 void (*hook)(void);
1262 int sig;
1263
1264 KASSERT(l == curlwp);
1265 KASSERT(l->l_stat == LSONPROC);
1266 p = l->l_proc;
1267
1268 #ifndef __HAVE_FAST_SOFTINTS
1269 /* Run pending soft interrupts. */
1270 if (l->l_cpu->ci_data.cpu_softints != 0)
1271 softint_overlay();
1272 #endif
1273
1274 #ifdef KERN_SA
1275 /* Generate UNBLOCKED upcall if needed */
1276 if (l->l_flag & LW_SA_BLOCKING) {
1277 sa_unblock_userret(l);
1278 /* NOTREACHED */
1279 }
1280 #endif
1281
1282 /*
1283 * It should be safe to do this read unlocked on a multiprocessor
1284 * system..
1285 *
1286 * LW_SA_UPCALL will be handled after the while() loop, so don't
1287 * consider it now.
1288 */
1289 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1290 /*
1291 * Process pending signals first, unless the process
1292 * is dumping core or exiting, where we will instead
1293 * enter the LW_WSUSPEND case below.
1294 */
1295 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1296 LW_PENDSIG) {
1297 mutex_enter(p->p_lock);
1298 while ((sig = issignal(l)) != 0)
1299 postsig(sig);
1300 mutex_exit(p->p_lock);
1301 }
1302
1303 /*
1304 * Core-dump or suspend pending.
1305 *
1306 * In case of core dump, suspend ourselves, so that the
1307 * kernel stack and therefore the userland registers saved
1308 * in the trapframe are around for coredump() to write them
1309 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1310 * will write the core file out once all other LWPs are
1311 * suspended.
1312 */
1313 if ((l->l_flag & LW_WSUSPEND) != 0) {
1314 mutex_enter(p->p_lock);
1315 p->p_nrlwps--;
1316 cv_broadcast(&p->p_lwpcv);
1317 lwp_lock(l);
1318 l->l_stat = LSSUSPENDED;
1319 lwp_unlock(l);
1320 mutex_exit(p->p_lock);
1321 lwp_lock(l);
1322 mi_switch(l);
1323 }
1324
1325 /* Process is exiting. */
1326 if ((l->l_flag & LW_WEXIT) != 0) {
1327 lwp_exit(l);
1328 KASSERT(0);
1329 /* NOTREACHED */
1330 }
1331
1332 /* Call userret hook; used by Linux emulation. */
1333 if ((l->l_flag & LW_WUSERRET) != 0) {
1334 lwp_lock(l);
1335 l->l_flag &= ~LW_WUSERRET;
1336 lwp_unlock(l);
1337 hook = p->p_userret;
1338 p->p_userret = NULL;
1339 (*hook)();
1340 }
1341 }
1342
1343 #ifdef KERN_SA
1344 /*
1345 * Timer events are handled specially. We only try once to deliver
1346 * pending timer upcalls; if if fails, we can try again on the next
1347 * loop around. If we need to re-enter lwp_userret(), MD code will
1348 * bounce us back here through the trap path after we return.
1349 */
1350 if (p->p_timerpend)
1351 timerupcall(l);
1352 if (l->l_flag & LW_SA_UPCALL)
1353 sa_upcall_userret(l);
1354 #endif /* KERN_SA */
1355 }
1356
1357 /*
1358 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1359 */
1360 void
1361 lwp_need_userret(struct lwp *l)
1362 {
1363 KASSERT(lwp_locked(l, NULL));
1364
1365 /*
1366 * Since the tests in lwp_userret() are done unlocked, make sure
1367 * that the condition will be seen before forcing the LWP to enter
1368 * kernel mode.
1369 */
1370 membar_producer();
1371 cpu_signotify(l);
1372 }
1373
1374 /*
1375 * Add one reference to an LWP. This will prevent the LWP from
1376 * exiting, thus keep the lwp structure and PCB around to inspect.
1377 */
1378 void
1379 lwp_addref(struct lwp *l)
1380 {
1381
1382 KASSERT(mutex_owned(l->l_proc->p_lock));
1383 KASSERT(l->l_stat != LSZOMB);
1384 KASSERT(l->l_refcnt != 0);
1385
1386 l->l_refcnt++;
1387 }
1388
1389 /*
1390 * Remove one reference to an LWP. If this is the last reference,
1391 * then we must finalize the LWP's death.
1392 */
1393 void
1394 lwp_delref(struct lwp *l)
1395 {
1396 struct proc *p = l->l_proc;
1397
1398 mutex_enter(p->p_lock);
1399 KASSERT(l->l_stat != LSZOMB);
1400 KASSERT(l->l_refcnt > 0);
1401 if (--l->l_refcnt == 0)
1402 cv_broadcast(&p->p_lwpcv);
1403 mutex_exit(p->p_lock);
1404 }
1405
1406 /*
1407 * Drain all references to the current LWP.
1408 */
1409 void
1410 lwp_drainrefs(struct lwp *l)
1411 {
1412 struct proc *p = l->l_proc;
1413
1414 KASSERT(mutex_owned(p->p_lock));
1415 KASSERT(l->l_refcnt != 0);
1416
1417 l->l_refcnt--;
1418 while (l->l_refcnt != 0)
1419 cv_wait(&p->p_lwpcv, p->p_lock);
1420 }
1421
1422 /*
1423 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1424 * be held.
1425 */
1426 bool
1427 lwp_alive(lwp_t *l)
1428 {
1429
1430 KASSERT(mutex_owned(l->l_proc->p_lock));
1431
1432 switch (l->l_stat) {
1433 case LSSLEEP:
1434 case LSRUN:
1435 case LSONPROC:
1436 case LSSTOP:
1437 case LSSUSPENDED:
1438 return true;
1439 default:
1440 return false;
1441 }
1442 }
1443
1444 /*
1445 * Return first live LWP in the process.
1446 */
1447 lwp_t *
1448 lwp_find_first(proc_t *p)
1449 {
1450 lwp_t *l;
1451
1452 KASSERT(mutex_owned(p->p_lock));
1453
1454 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1455 if (lwp_alive(l)) {
1456 return l;
1457 }
1458 }
1459
1460 return NULL;
1461 }
1462
1463 /*
1464 * lwp_specific_key_create --
1465 * Create a key for subsystem lwp-specific data.
1466 */
1467 int
1468 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1469 {
1470
1471 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1472 }
1473
1474 /*
1475 * lwp_specific_key_delete --
1476 * Delete a key for subsystem lwp-specific data.
1477 */
1478 void
1479 lwp_specific_key_delete(specificdata_key_t key)
1480 {
1481
1482 specificdata_key_delete(lwp_specificdata_domain, key);
1483 }
1484
1485 /*
1486 * lwp_initspecific --
1487 * Initialize an LWP's specificdata container.
1488 */
1489 void
1490 lwp_initspecific(struct lwp *l)
1491 {
1492 int error;
1493
1494 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1495 KASSERT(error == 0);
1496 }
1497
1498 /*
1499 * lwp_finispecific --
1500 * Finalize an LWP's specificdata container.
1501 */
1502 void
1503 lwp_finispecific(struct lwp *l)
1504 {
1505
1506 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1507 }
1508
1509 /*
1510 * lwp_getspecific --
1511 * Return lwp-specific data corresponding to the specified key.
1512 *
1513 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1514 * only its OWN SPECIFIC DATA. If it is necessary to access another
1515 * LWP's specifc data, care must be taken to ensure that doing so
1516 * would not cause internal data structure inconsistency (i.e. caller
1517 * can guarantee that the target LWP is not inside an lwp_getspecific()
1518 * or lwp_setspecific() call).
1519 */
1520 void *
1521 lwp_getspecific(specificdata_key_t key)
1522 {
1523
1524 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1525 &curlwp->l_specdataref, key));
1526 }
1527
1528 void *
1529 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1530 {
1531
1532 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1533 &l->l_specdataref, key));
1534 }
1535
1536 /*
1537 * lwp_setspecific --
1538 * Set lwp-specific data corresponding to the specified key.
1539 */
1540 void
1541 lwp_setspecific(specificdata_key_t key, void *data)
1542 {
1543
1544 specificdata_setspecific(lwp_specificdata_domain,
1545 &curlwp->l_specdataref, key, data);
1546 }
1547
1548 /*
1549 * Allocate a new lwpctl structure for a user LWP.
1550 */
1551 int
1552 lwp_ctl_alloc(vaddr_t *uaddr)
1553 {
1554 lcproc_t *lp;
1555 u_int bit, i, offset;
1556 struct uvm_object *uao;
1557 int error;
1558 lcpage_t *lcp;
1559 proc_t *p;
1560 lwp_t *l;
1561
1562 l = curlwp;
1563 p = l->l_proc;
1564
1565 if (l->l_lcpage != NULL) {
1566 lcp = l->l_lcpage;
1567 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1568 return (EINVAL);
1569 }
1570
1571 /* First time around, allocate header structure for the process. */
1572 if ((lp = p->p_lwpctl) == NULL) {
1573 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1574 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1575 lp->lp_uao = NULL;
1576 TAILQ_INIT(&lp->lp_pages);
1577 mutex_enter(p->p_lock);
1578 if (p->p_lwpctl == NULL) {
1579 p->p_lwpctl = lp;
1580 mutex_exit(p->p_lock);
1581 } else {
1582 mutex_exit(p->p_lock);
1583 mutex_destroy(&lp->lp_lock);
1584 kmem_free(lp, sizeof(*lp));
1585 lp = p->p_lwpctl;
1586 }
1587 }
1588
1589 /*
1590 * Set up an anonymous memory region to hold the shared pages.
1591 * Map them into the process' address space. The user vmspace
1592 * gets the first reference on the UAO.
1593 */
1594 mutex_enter(&lp->lp_lock);
1595 if (lp->lp_uao == NULL) {
1596 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1597 lp->lp_cur = 0;
1598 lp->lp_max = LWPCTL_UAREA_SZ;
1599 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1600 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1601 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1602 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1603 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1604 if (error != 0) {
1605 uao_detach(lp->lp_uao);
1606 lp->lp_uao = NULL;
1607 mutex_exit(&lp->lp_lock);
1608 return error;
1609 }
1610 }
1611
1612 /* Get a free block and allocate for this LWP. */
1613 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1614 if (lcp->lcp_nfree != 0)
1615 break;
1616 }
1617 if (lcp == NULL) {
1618 /* Nothing available - try to set up a free page. */
1619 if (lp->lp_cur == lp->lp_max) {
1620 mutex_exit(&lp->lp_lock);
1621 return ENOMEM;
1622 }
1623 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1624 if (lcp == NULL) {
1625 mutex_exit(&lp->lp_lock);
1626 return ENOMEM;
1627 }
1628 /*
1629 * Wire the next page down in kernel space. Since this
1630 * is a new mapping, we must add a reference.
1631 */
1632 uao = lp->lp_uao;
1633 (*uao->pgops->pgo_reference)(uao);
1634 lcp->lcp_kaddr = vm_map_min(kernel_map);
1635 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1636 uao, lp->lp_cur, PAGE_SIZE,
1637 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1638 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1639 if (error != 0) {
1640 mutex_exit(&lp->lp_lock);
1641 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1642 (*uao->pgops->pgo_detach)(uao);
1643 return error;
1644 }
1645 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1646 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1647 if (error != 0) {
1648 mutex_exit(&lp->lp_lock);
1649 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1650 lcp->lcp_kaddr + PAGE_SIZE);
1651 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1652 return error;
1653 }
1654 /* Prepare the page descriptor and link into the list. */
1655 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1656 lp->lp_cur += PAGE_SIZE;
1657 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1658 lcp->lcp_rotor = 0;
1659 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1660 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1661 }
1662 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1663 if (++i >= LWPCTL_BITMAP_ENTRIES)
1664 i = 0;
1665 }
1666 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1667 lcp->lcp_bitmap[i] ^= (1 << bit);
1668 lcp->lcp_rotor = i;
1669 lcp->lcp_nfree--;
1670 l->l_lcpage = lcp;
1671 offset = (i << 5) + bit;
1672 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1673 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1674 mutex_exit(&lp->lp_lock);
1675
1676 KPREEMPT_DISABLE(l);
1677 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1678 KPREEMPT_ENABLE(l);
1679
1680 return 0;
1681 }
1682
1683 /*
1684 * Free an lwpctl structure back to the per-process list.
1685 */
1686 void
1687 lwp_ctl_free(lwp_t *l)
1688 {
1689 lcproc_t *lp;
1690 lcpage_t *lcp;
1691 u_int map, offset;
1692
1693 lp = l->l_proc->p_lwpctl;
1694 KASSERT(lp != NULL);
1695
1696 lcp = l->l_lcpage;
1697 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1698 KASSERT(offset < LWPCTL_PER_PAGE);
1699
1700 mutex_enter(&lp->lp_lock);
1701 lcp->lcp_nfree++;
1702 map = offset >> 5;
1703 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1704 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1705 lcp->lcp_rotor = map;
1706 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1707 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1708 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1709 }
1710 mutex_exit(&lp->lp_lock);
1711 }
1712
1713 /*
1714 * Process is exiting; tear down lwpctl state. This can only be safely
1715 * called by the last LWP in the process.
1716 */
1717 void
1718 lwp_ctl_exit(void)
1719 {
1720 lcpage_t *lcp, *next;
1721 lcproc_t *lp;
1722 proc_t *p;
1723 lwp_t *l;
1724
1725 l = curlwp;
1726 l->l_lwpctl = NULL;
1727 l->l_lcpage = NULL;
1728 p = l->l_proc;
1729 lp = p->p_lwpctl;
1730
1731 KASSERT(lp != NULL);
1732 KASSERT(p->p_nlwps == 1);
1733
1734 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1735 next = TAILQ_NEXT(lcp, lcp_chain);
1736 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1737 lcp->lcp_kaddr + PAGE_SIZE);
1738 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1739 }
1740
1741 if (lp->lp_uao != NULL) {
1742 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1743 lp->lp_uva + LWPCTL_UAREA_SZ);
1744 }
1745
1746 mutex_destroy(&lp->lp_lock);
1747 kmem_free(lp, sizeof(*lp));
1748 p->p_lwpctl = NULL;
1749 }
1750
1751 /*
1752 * Return the current LWP's "preemption counter". Used to detect
1753 * preemption across operations that can tolerate preemption without
1754 * crashing, but which may generate incorrect results if preempted.
1755 */
1756 uint64_t
1757 lwp_pctr(void)
1758 {
1759
1760 return curlwp->l_ncsw;
1761 }
1762
1763 #if defined(DDB)
1764 void
1765 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1766 {
1767 lwp_t *l;
1768
1769 LIST_FOREACH(l, &alllwp, l_list) {
1770 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1771
1772 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1773 continue;
1774 }
1775 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1776 (void *)addr, (void *)stack,
1777 (size_t)(addr - stack), l);
1778 }
1779 }
1780 #endif /* defined(DDB) */
1781