kern_lwp.c revision 1.106.2.7 1 /* $NetBSD: kern_lwp.c,v 1.106.2.7 2010/08/11 22:54:39 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock and matches lwp::l_cpu.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock and matches lwp::l_cpu.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * (But not always for kernel threads. There are some special cases
200 * as mentioned above. See kern_softint.c.)
201 *
202 * Note that an LWP is considered running or likely to run soon if in
203 * one of the following states. This affects the value of p_nrlwps:
204 *
205 * LSRUN, LSONPROC, LSSLEEP
206 *
207 * p_lock does not need to be held when transitioning among these
208 * three states, hence p_lock is rarely taken for state transitions.
209 */
210
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.106.2.7 2010/08/11 22:54:39 yamt Exp $");
213
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_sa.h"
217 #include "opt_dtrace.h"
218
219 #define _LWP_API_PRIVATE
220
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/sa.h>
227 #include <sys/savar.h>
228 #include <sys/syscallargs.h>
229 #include <sys/syscall_stats.h>
230 #include <sys/kauth.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241
242 #include <uvm/uvm_extern.h>
243 #include <uvm/uvm_object.h>
244
245 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
246 static pool_cache_t lwp_cache;
247
248 /* DTrace proc provider probes */
249 SDT_PROBE_DEFINE(proc,,,lwp_create,
250 "struct lwp *", NULL,
251 NULL, NULL, NULL, NULL,
252 NULL, NULL, NULL, NULL);
253 SDT_PROBE_DEFINE(proc,,,lwp_start,
254 "struct lwp *", NULL,
255 NULL, NULL, NULL, NULL,
256 NULL, NULL, NULL, NULL);
257 SDT_PROBE_DEFINE(proc,,,lwp_exit,
258 "struct lwp *", NULL,
259 NULL, NULL, NULL, NULL,
260 NULL, NULL, NULL, NULL);
261
262 struct turnstile turnstile0;
263 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
264 #ifdef LWP0_CPU_INFO
265 .l_cpu = LWP0_CPU_INFO,
266 #endif
267 .l_proc = &proc0,
268 .l_lid = 1,
269 .l_flag = LW_SYSTEM,
270 .l_stat = LSONPROC,
271 .l_ts = &turnstile0,
272 .l_syncobj = &sched_syncobj,
273 .l_refcnt = 1,
274 .l_priority = PRI_USER + NPRI_USER - 1,
275 .l_inheritedprio = -1,
276 .l_class = SCHED_OTHER,
277 .l_psid = PS_NONE,
278 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
279 .l_name = __UNCONST("swapper"),
280 .l_fd = &filedesc0,
281 };
282
283 void
284 lwpinit(void)
285 {
286
287 lwpinit_specificdata();
288 lwp_sys_init();
289 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
290 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
291 }
292
293 void
294 lwp0_init(void)
295 {
296 struct lwp *l = &lwp0;
297
298 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
299 KASSERT(l->l_lid == proc0.p_nlwpid);
300
301 LIST_INSERT_HEAD(&alllwp, l, l_list);
302
303 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
304 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
305 cv_init(&l->l_sigcv, "sigwait");
306
307 kauth_cred_hold(proc0.p_cred);
308 l->l_cred = proc0.p_cred;
309
310 lwp_initspecific(l);
311
312 SYSCALL_TIME_LWP_INIT(l);
313 }
314
315 /*
316 * Set an suspended.
317 *
318 * Must be called with p_lock held, and the LWP locked. Will unlock the
319 * LWP before return.
320 */
321 int
322 lwp_suspend(struct lwp *curl, struct lwp *t)
323 {
324 int error;
325
326 KASSERT(mutex_owned(t->l_proc->p_lock));
327 KASSERT(lwp_locked(t, NULL));
328
329 KASSERT(curl != t || curl->l_stat == LSONPROC);
330
331 /*
332 * If the current LWP has been told to exit, we must not suspend anyone
333 * else or deadlock could occur. We won't return to userspace.
334 */
335 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
336 lwp_unlock(t);
337 return (EDEADLK);
338 }
339
340 error = 0;
341
342 switch (t->l_stat) {
343 case LSRUN:
344 case LSONPROC:
345 t->l_flag |= LW_WSUSPEND;
346 lwp_need_userret(t);
347 lwp_unlock(t);
348 break;
349
350 case LSSLEEP:
351 t->l_flag |= LW_WSUSPEND;
352
353 /*
354 * Kick the LWP and try to get it to the kernel boundary
355 * so that it will release any locks that it holds.
356 * setrunnable() will release the lock.
357 */
358 if ((t->l_flag & LW_SINTR) != 0)
359 setrunnable(t);
360 else
361 lwp_unlock(t);
362 break;
363
364 case LSSUSPENDED:
365 lwp_unlock(t);
366 break;
367
368 case LSSTOP:
369 t->l_flag |= LW_WSUSPEND;
370 setrunnable(t);
371 break;
372
373 case LSIDL:
374 case LSZOMB:
375 error = EINTR; /* It's what Solaris does..... */
376 lwp_unlock(t);
377 break;
378 }
379
380 return (error);
381 }
382
383 /*
384 * Restart a suspended LWP.
385 *
386 * Must be called with p_lock held, and the LWP locked. Will unlock the
387 * LWP before return.
388 */
389 void
390 lwp_continue(struct lwp *l)
391 {
392
393 KASSERT(mutex_owned(l->l_proc->p_lock));
394 KASSERT(lwp_locked(l, NULL));
395
396 /* If rebooting or not suspended, then just bail out. */
397 if ((l->l_flag & LW_WREBOOT) != 0) {
398 lwp_unlock(l);
399 return;
400 }
401
402 l->l_flag &= ~LW_WSUSPEND;
403
404 if (l->l_stat != LSSUSPENDED) {
405 lwp_unlock(l);
406 return;
407 }
408
409 /* setrunnable() will release the lock. */
410 setrunnable(l);
411 }
412
413 /*
414 * Restart a stopped LWP.
415 *
416 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
417 * LWP before return.
418 */
419 void
420 lwp_unstop(struct lwp *l)
421 {
422 struct proc *p = l->l_proc;
423
424 KASSERT(mutex_owned(proc_lock));
425 KASSERT(mutex_owned(p->p_lock));
426
427 lwp_lock(l);
428
429 /* If not stopped, then just bail out. */
430 if (l->l_stat != LSSTOP) {
431 lwp_unlock(l);
432 return;
433 }
434
435 p->p_stat = SACTIVE;
436 p->p_sflag &= ~PS_STOPPING;
437
438 if (!p->p_waited)
439 p->p_pptr->p_nstopchild--;
440
441 if (l->l_wchan == NULL) {
442 /* setrunnable() will release the lock. */
443 setrunnable(l);
444 } else {
445 l->l_stat = LSSLEEP;
446 p->p_nrlwps++;
447 lwp_unlock(l);
448 }
449 }
450
451 /*
452 * Wait for an LWP within the current process to exit. If 'lid' is
453 * non-zero, we are waiting for a specific LWP.
454 *
455 * Must be called with p->p_lock held.
456 */
457 int
458 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
459 {
460 struct proc *p = l->l_proc;
461 struct lwp *l2;
462 int nfound, error;
463 lwpid_t curlid;
464 bool exiting;
465
466 KASSERT(mutex_owned(p->p_lock));
467
468 p->p_nlwpwait++;
469 l->l_waitingfor = lid;
470 curlid = l->l_lid;
471 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
472
473 for (;;) {
474 /*
475 * Avoid a race between exit1() and sigexit(): if the
476 * process is dumping core, then we need to bail out: call
477 * into lwp_userret() where we will be suspended until the
478 * deed is done.
479 */
480 if ((p->p_sflag & PS_WCORE) != 0) {
481 mutex_exit(p->p_lock);
482 lwp_userret(l);
483 #ifdef DIAGNOSTIC
484 panic("lwp_wait1");
485 #endif
486 /* NOTREACHED */
487 }
488
489 /*
490 * First off, drain any detached LWP that is waiting to be
491 * reaped.
492 */
493 while ((l2 = p->p_zomblwp) != NULL) {
494 p->p_zomblwp = NULL;
495 lwp_free(l2, false, false);/* releases proc mutex */
496 mutex_enter(p->p_lock);
497 }
498
499 /*
500 * Now look for an LWP to collect. If the whole process is
501 * exiting, count detached LWPs as eligible to be collected,
502 * but don't drain them here.
503 */
504 nfound = 0;
505 error = 0;
506 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
507 /*
508 * If a specific wait and the target is waiting on
509 * us, then avoid deadlock. This also traps LWPs
510 * that try to wait on themselves.
511 *
512 * Note that this does not handle more complicated
513 * cycles, like: t1 -> t2 -> t3 -> t1. The process
514 * can still be killed so it is not a major problem.
515 */
516 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
517 error = EDEADLK;
518 break;
519 }
520 if (l2 == l)
521 continue;
522 if ((l2->l_prflag & LPR_DETACHED) != 0) {
523 nfound += exiting;
524 continue;
525 }
526 if (lid != 0) {
527 if (l2->l_lid != lid)
528 continue;
529 /*
530 * Mark this LWP as the first waiter, if there
531 * is no other.
532 */
533 if (l2->l_waiter == 0)
534 l2->l_waiter = curlid;
535 } else if (l2->l_waiter != 0) {
536 /*
537 * It already has a waiter - so don't
538 * collect it. If the waiter doesn't
539 * grab it we'll get another chance
540 * later.
541 */
542 nfound++;
543 continue;
544 }
545 nfound++;
546
547 /* No need to lock the LWP in order to see LSZOMB. */
548 if (l2->l_stat != LSZOMB)
549 continue;
550
551 /*
552 * We're no longer waiting. Reset the "first waiter"
553 * pointer on the target, in case it was us.
554 */
555 l->l_waitingfor = 0;
556 l2->l_waiter = 0;
557 p->p_nlwpwait--;
558 if (departed)
559 *departed = l2->l_lid;
560 sched_lwp_collect(l2);
561
562 /* lwp_free() releases the proc lock. */
563 lwp_free(l2, false, false);
564 mutex_enter(p->p_lock);
565 return 0;
566 }
567
568 if (error != 0)
569 break;
570 if (nfound == 0) {
571 error = ESRCH;
572 break;
573 }
574
575 /*
576 * The kernel is careful to ensure that it can not deadlock
577 * when exiting - just keep waiting.
578 */
579 if (exiting) {
580 KASSERT(p->p_nlwps > 1);
581 cv_wait(&p->p_lwpcv, p->p_lock);
582 continue;
583 }
584
585 /*
586 * If all other LWPs are waiting for exits or suspends
587 * and the supply of zombies and potential zombies is
588 * exhausted, then we are about to deadlock.
589 *
590 * If the process is exiting (and this LWP is not the one
591 * that is coordinating the exit) then bail out now.
592 */
593 if ((p->p_sflag & PS_WEXIT) != 0 ||
594 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
595 error = EDEADLK;
596 break;
597 }
598
599 /*
600 * Sit around and wait for something to happen. We'll be
601 * awoken if any of the conditions examined change: if an
602 * LWP exits, is collected, or is detached.
603 */
604 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
605 break;
606 }
607
608 /*
609 * We didn't find any LWPs to collect, we may have received a
610 * signal, or some other condition has caused us to bail out.
611 *
612 * If waiting on a specific LWP, clear the waiters marker: some
613 * other LWP may want it. Then, kick all the remaining waiters
614 * so that they can re-check for zombies and for deadlock.
615 */
616 if (lid != 0) {
617 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
618 if (l2->l_lid == lid) {
619 if (l2->l_waiter == curlid)
620 l2->l_waiter = 0;
621 break;
622 }
623 }
624 }
625 p->p_nlwpwait--;
626 l->l_waitingfor = 0;
627 cv_broadcast(&p->p_lwpcv);
628
629 return error;
630 }
631
632 /*
633 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
634 * The new LWP is created in state LSIDL and must be set running,
635 * suspended, or stopped by the caller.
636 */
637 int
638 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
639 void *stack, size_t stacksize, void (*func)(void *), void *arg,
640 lwp_t **rnewlwpp, int sclass)
641 {
642 struct lwp *l2, *isfree;
643 turnstile_t *ts;
644 lwpid_t lid;
645
646 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
647
648 /*
649 * First off, reap any detached LWP waiting to be collected.
650 * We can re-use its LWP structure and turnstile.
651 */
652 isfree = NULL;
653 if (p2->p_zomblwp != NULL) {
654 mutex_enter(p2->p_lock);
655 if ((isfree = p2->p_zomblwp) != NULL) {
656 p2->p_zomblwp = NULL;
657 lwp_free(isfree, true, false);/* releases proc mutex */
658 } else
659 mutex_exit(p2->p_lock);
660 }
661 if (isfree == NULL) {
662 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
663 memset(l2, 0, sizeof(*l2));
664 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
665 SLIST_INIT(&l2->l_pi_lenders);
666 } else {
667 l2 = isfree;
668 ts = l2->l_ts;
669 KASSERT(l2->l_inheritedprio == -1);
670 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
671 memset(l2, 0, sizeof(*l2));
672 l2->l_ts = ts;
673 }
674
675 l2->l_stat = LSIDL;
676 l2->l_proc = p2;
677 l2->l_refcnt = 1;
678 l2->l_class = sclass;
679
680 /*
681 * If vfork(), we want the LWP to run fast and on the same CPU
682 * as its parent, so that it can reuse the VM context and cache
683 * footprint on the local CPU.
684 */
685 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
686 l2->l_kpribase = PRI_KERNEL;
687 l2->l_priority = l1->l_priority;
688 l2->l_inheritedprio = -1;
689 l2->l_flag = 0;
690 l2->l_pflag = LP_MPSAFE;
691 TAILQ_INIT(&l2->l_ld_locks);
692
693 /*
694 * If not the first LWP in the process, grab a reference to the
695 * descriptor table.
696 */
697 l2->l_fd = p2->p_fd;
698 if (p2->p_nlwps != 0) {
699 KASSERT(l1->l_proc == p2);
700 fd_hold(l2);
701 } else {
702 KASSERT(l1->l_proc != p2);
703 }
704
705 if (p2->p_flag & PK_SYSTEM) {
706 /* Mark it as a system LWP. */
707 l2->l_flag |= LW_SYSTEM;
708 }
709
710 kpreempt_disable();
711 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
712 l2->l_cpu = l1->l_cpu;
713 kpreempt_enable();
714
715 kdtrace_thread_ctor(NULL, l2);
716 lwp_initspecific(l2);
717 sched_lwp_fork(l1, l2);
718 lwp_update_creds(l2);
719 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
720 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
721 cv_init(&l2->l_sigcv, "sigwait");
722 l2->l_syncobj = &sched_syncobj;
723
724 if (rnewlwpp != NULL)
725 *rnewlwpp = l2;
726
727 uvm_lwp_setuarea(l2, uaddr);
728 uvm_lwp_fork(l1, l2, stack, stacksize, func,
729 (arg != NULL) ? arg : l2);
730
731 if ((flags & LWP_PIDLID) != 0) {
732 lid = proc_alloc_pid(p2);
733 l2->l_pflag |= LP_PIDLID;
734 } else {
735 lid = 0;
736 }
737
738 mutex_enter(p2->p_lock);
739
740 if ((flags & LWP_DETACHED) != 0) {
741 l2->l_prflag = LPR_DETACHED;
742 p2->p_ndlwps++;
743 } else
744 l2->l_prflag = 0;
745
746 l2->l_sigmask = l1->l_sigmask;
747 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
748 sigemptyset(&l2->l_sigpend.sp_set);
749
750 if (lid == 0) {
751 p2->p_nlwpid++;
752 if (p2->p_nlwpid == 0)
753 p2->p_nlwpid++;
754 lid = p2->p_nlwpid;
755 }
756 l2->l_lid = lid;
757 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
758 p2->p_nlwps++;
759 p2->p_nrlwps++;
760
761 if ((p2->p_flag & PK_SYSTEM) == 0) {
762 /* Inherit an affinity */
763 if (l1->l_flag & LW_AFFINITY) {
764 /*
765 * Note that we hold the state lock while inheriting
766 * the affinity to avoid race with sched_setaffinity().
767 */
768 lwp_lock(l1);
769 if (l1->l_flag & LW_AFFINITY) {
770 kcpuset_use(l1->l_affinity);
771 l2->l_affinity = l1->l_affinity;
772 l2->l_flag |= LW_AFFINITY;
773 }
774 lwp_unlock(l1);
775 }
776 lwp_lock(l2);
777 /* Inherit a processor-set */
778 l2->l_psid = l1->l_psid;
779 /* Look for a CPU to start */
780 l2->l_cpu = sched_takecpu(l2);
781 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
782 }
783 mutex_exit(p2->p_lock);
784
785 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
786
787 mutex_enter(proc_lock);
788 LIST_INSERT_HEAD(&alllwp, l2, l_list);
789 mutex_exit(proc_lock);
790
791 SYSCALL_TIME_LWP_INIT(l2);
792
793 if (p2->p_emul->e_lwp_fork)
794 (*p2->p_emul->e_lwp_fork)(l1, l2);
795
796 return (0);
797 }
798
799 /*
800 * Called by MD code when a new LWP begins execution. Must be called
801 * with the previous LWP locked (so at splsched), or if there is no
802 * previous LWP, at splsched.
803 */
804 void
805 lwp_startup(struct lwp *prev, struct lwp *new)
806 {
807
808 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
809
810 KASSERT(kpreempt_disabled());
811 if (prev != NULL) {
812 /*
813 * Normalize the count of the spin-mutexes, it was
814 * increased in mi_switch(). Unmark the state of
815 * context switch - it is finished for previous LWP.
816 */
817 curcpu()->ci_mtx_count++;
818 membar_exit();
819 prev->l_ctxswtch = 0;
820 }
821 KPREEMPT_DISABLE(new);
822 spl0();
823 pmap_activate(new);
824 LOCKDEBUG_BARRIER(NULL, 0);
825 KPREEMPT_ENABLE(new);
826 if ((new->l_pflag & LP_MPSAFE) == 0) {
827 KERNEL_LOCK(1, new);
828 }
829 }
830
831 /*
832 * Exit an LWP.
833 */
834 void
835 lwp_exit(struct lwp *l)
836 {
837 struct proc *p = l->l_proc;
838 struct lwp *l2;
839 bool current;
840
841 current = (l == curlwp);
842
843 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
844 KASSERT(p == curproc);
845
846 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
847
848 /*
849 * Verify that we hold no locks other than the kernel lock.
850 */
851 LOCKDEBUG_BARRIER(&kernel_lock, 0);
852
853 /*
854 * If we are the last live LWP in a process, we need to exit the
855 * entire process. We do so with an exit status of zero, because
856 * it's a "controlled" exit, and because that's what Solaris does.
857 *
858 * We are not quite a zombie yet, but for accounting purposes we
859 * must increment the count of zombies here.
860 *
861 * Note: the last LWP's specificdata will be deleted here.
862 */
863 mutex_enter(p->p_lock);
864 if (p->p_nlwps - p->p_nzlwps == 1) {
865 KASSERT(current == true);
866 /* XXXSMP kernel_lock not held */
867 exit1(l, 0);
868 /* NOTREACHED */
869 }
870 p->p_nzlwps++;
871 mutex_exit(p->p_lock);
872
873 if (p->p_emul->e_lwp_exit)
874 (*p->p_emul->e_lwp_exit)(l);
875
876 /* Drop filedesc reference. */
877 fd_free();
878
879 /* Delete the specificdata while it's still safe to sleep. */
880 lwp_finispecific(l);
881
882 /*
883 * Release our cached credentials.
884 */
885 kauth_cred_free(l->l_cred);
886 callout_destroy(&l->l_timeout_ch);
887
888 /*
889 * Remove the LWP from the global list.
890 * Free its LID from the PID namespace if needed.
891 */
892 mutex_enter(proc_lock);
893 LIST_REMOVE(l, l_list);
894 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
895 proc_free_pid(l->l_lid);
896 }
897 mutex_exit(proc_lock);
898
899 /*
900 * Get rid of all references to the LWP that others (e.g. procfs)
901 * may have, and mark the LWP as a zombie. If the LWP is detached,
902 * mark it waiting for collection in the proc structure. Note that
903 * before we can do that, we need to free any other dead, deatched
904 * LWP waiting to meet its maker.
905 */
906 mutex_enter(p->p_lock);
907 lwp_drainrefs(l);
908
909 if ((l->l_prflag & LPR_DETACHED) != 0) {
910 while ((l2 = p->p_zomblwp) != NULL) {
911 p->p_zomblwp = NULL;
912 lwp_free(l2, false, false);/* releases proc mutex */
913 mutex_enter(p->p_lock);
914 l->l_refcnt++;
915 lwp_drainrefs(l);
916 }
917 p->p_zomblwp = l;
918 }
919
920 /*
921 * If we find a pending signal for the process and we have been
922 * asked to check for signals, then we lose: arrange to have
923 * all other LWPs in the process check for signals.
924 */
925 if ((l->l_flag & LW_PENDSIG) != 0 &&
926 firstsig(&p->p_sigpend.sp_set) != 0) {
927 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
928 lwp_lock(l2);
929 l2->l_flag |= LW_PENDSIG;
930 lwp_unlock(l2);
931 }
932 }
933
934 lwp_lock(l);
935 l->l_stat = LSZOMB;
936 if (l->l_name != NULL)
937 strcpy(l->l_name, "(zombie)");
938 if (l->l_flag & LW_AFFINITY) {
939 l->l_flag &= ~LW_AFFINITY;
940 } else {
941 KASSERT(l->l_affinity == NULL);
942 }
943 lwp_unlock(l);
944 p->p_nrlwps--;
945 cv_broadcast(&p->p_lwpcv);
946 if (l->l_lwpctl != NULL)
947 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
948 mutex_exit(p->p_lock);
949
950 /* Safe without lock since LWP is in zombie state */
951 if (l->l_affinity) {
952 kcpuset_unuse(l->l_affinity, NULL);
953 l->l_affinity = NULL;
954 }
955
956 /*
957 * We can no longer block. At this point, lwp_free() may already
958 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
959 *
960 * Free MD LWP resources.
961 */
962 cpu_lwp_free(l, 0);
963
964 if (current) {
965 pmap_deactivate(l);
966
967 /*
968 * Release the kernel lock, and switch away into
969 * oblivion.
970 */
971 #ifdef notyet
972 /* XXXSMP hold in lwp_userret() */
973 KERNEL_UNLOCK_LAST(l);
974 #else
975 KERNEL_UNLOCK_ALL(l, NULL);
976 #endif
977 lwp_exit_switchaway(l);
978 }
979 }
980
981 /*
982 * Free a dead LWP's remaining resources.
983 *
984 * XXXLWP limits.
985 */
986 void
987 lwp_free(struct lwp *l, bool recycle, bool last)
988 {
989 struct proc *p = l->l_proc;
990 struct rusage *ru;
991 ksiginfoq_t kq;
992
993 KASSERT(l != curlwp);
994
995 /*
996 * If this was not the last LWP in the process, then adjust
997 * counters and unlock.
998 */
999 if (!last) {
1000 /*
1001 * Add the LWP's run time to the process' base value.
1002 * This needs to co-incide with coming off p_lwps.
1003 */
1004 bintime_add(&p->p_rtime, &l->l_rtime);
1005 p->p_pctcpu += l->l_pctcpu;
1006 ru = &p->p_stats->p_ru;
1007 ruadd(ru, &l->l_ru);
1008 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1009 ru->ru_nivcsw += l->l_nivcsw;
1010 LIST_REMOVE(l, l_sibling);
1011 p->p_nlwps--;
1012 p->p_nzlwps--;
1013 if ((l->l_prflag & LPR_DETACHED) != 0)
1014 p->p_ndlwps--;
1015
1016 /*
1017 * Have any LWPs sleeping in lwp_wait() recheck for
1018 * deadlock.
1019 */
1020 cv_broadcast(&p->p_lwpcv);
1021 mutex_exit(p->p_lock);
1022 }
1023
1024 #ifdef MULTIPROCESSOR
1025 /*
1026 * In the unlikely event that the LWP is still on the CPU,
1027 * then spin until it has switched away. We need to release
1028 * all locks to avoid deadlock against interrupt handlers on
1029 * the target CPU.
1030 */
1031 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1032 int count;
1033 (void)count; /* XXXgcc */
1034 KERNEL_UNLOCK_ALL(curlwp, &count);
1035 while ((l->l_pflag & LP_RUNNING) != 0 ||
1036 l->l_cpu->ci_curlwp == l)
1037 SPINLOCK_BACKOFF_HOOK;
1038 KERNEL_LOCK(count, curlwp);
1039 }
1040 #endif
1041
1042 /*
1043 * Destroy the LWP's remaining signal information.
1044 */
1045 ksiginfo_queue_init(&kq);
1046 sigclear(&l->l_sigpend, NULL, &kq);
1047 ksiginfo_queue_drain(&kq);
1048 cv_destroy(&l->l_sigcv);
1049
1050 /*
1051 * Free the LWP's turnstile and the LWP structure itself unless the
1052 * caller wants to recycle them. Also, free the scheduler specific
1053 * data.
1054 *
1055 * We can't return turnstile0 to the pool (it didn't come from it),
1056 * so if it comes up just drop it quietly and move on.
1057 *
1058 * We don't recycle the VM resources at this time.
1059 */
1060 if (l->l_lwpctl != NULL)
1061 lwp_ctl_free(l);
1062
1063 if (!recycle && l->l_ts != &turnstile0)
1064 pool_cache_put(turnstile_cache, l->l_ts);
1065 if (l->l_name != NULL)
1066 kmem_free(l->l_name, MAXCOMLEN);
1067
1068 cpu_lwp_free2(l);
1069 uvm_lwp_exit(l);
1070
1071 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1072 KASSERT(l->l_inheritedprio == -1);
1073 kdtrace_thread_dtor(NULL, l);
1074 if (!recycle)
1075 pool_cache_put(lwp_cache, l);
1076 }
1077
1078 /*
1079 * Migrate the LWP to the another CPU. Unlocks the LWP.
1080 */
1081 void
1082 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1083 {
1084 struct schedstate_percpu *tspc;
1085 int lstat = l->l_stat;
1086
1087 KASSERT(lwp_locked(l, NULL));
1088 KASSERT(tci != NULL);
1089
1090 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1091 if ((l->l_pflag & LP_RUNNING) != 0) {
1092 lstat = LSONPROC;
1093 }
1094
1095 /*
1096 * The destination CPU could be changed while previous migration
1097 * was not finished.
1098 */
1099 if (l->l_target_cpu != NULL) {
1100 l->l_target_cpu = tci;
1101 lwp_unlock(l);
1102 return;
1103 }
1104
1105 /* Nothing to do if trying to migrate to the same CPU */
1106 if (l->l_cpu == tci) {
1107 lwp_unlock(l);
1108 return;
1109 }
1110
1111 KASSERT(l->l_target_cpu == NULL);
1112 tspc = &tci->ci_schedstate;
1113 switch (lstat) {
1114 case LSRUN:
1115 l->l_target_cpu = tci;
1116 break;
1117 case LSIDL:
1118 l->l_cpu = tci;
1119 lwp_unlock_to(l, tspc->spc_mutex);
1120 return;
1121 case LSSLEEP:
1122 l->l_cpu = tci;
1123 break;
1124 case LSSTOP:
1125 case LSSUSPENDED:
1126 l->l_cpu = tci;
1127 if (l->l_wchan == NULL) {
1128 lwp_unlock_to(l, tspc->spc_lwplock);
1129 return;
1130 }
1131 break;
1132 case LSONPROC:
1133 l->l_target_cpu = tci;
1134 spc_lock(l->l_cpu);
1135 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1136 spc_unlock(l->l_cpu);
1137 break;
1138 }
1139 lwp_unlock(l);
1140 }
1141
1142 /*
1143 * Find the LWP in the process. Arguments may be zero, in such case,
1144 * the calling process and first LWP in the list will be used.
1145 * On success - returns proc locked.
1146 */
1147 struct lwp *
1148 lwp_find2(pid_t pid, lwpid_t lid)
1149 {
1150 proc_t *p;
1151 lwp_t *l;
1152
1153 /* Find the process. */
1154 if (pid != 0) {
1155 mutex_enter(proc_lock);
1156 p = proc_find(pid);
1157 if (p == NULL) {
1158 mutex_exit(proc_lock);
1159 return NULL;
1160 }
1161 mutex_enter(p->p_lock);
1162 mutex_exit(proc_lock);
1163 } else {
1164 p = curlwp->l_proc;
1165 mutex_enter(p->p_lock);
1166 }
1167 /* Find the thread. */
1168 if (lid != 0) {
1169 l = lwp_find(p, lid);
1170 } else {
1171 l = LIST_FIRST(&p->p_lwps);
1172 }
1173 if (l == NULL) {
1174 mutex_exit(p->p_lock);
1175 }
1176 return l;
1177 }
1178
1179 /*
1180 * Look up a live LWP within the specified process, and return it locked.
1181 *
1182 * Must be called with p->p_lock held.
1183 */
1184 struct lwp *
1185 lwp_find(struct proc *p, lwpid_t id)
1186 {
1187 struct lwp *l;
1188
1189 KASSERT(mutex_owned(p->p_lock));
1190
1191 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1192 if (l->l_lid == id)
1193 break;
1194 }
1195
1196 /*
1197 * No need to lock - all of these conditions will
1198 * be visible with the process level mutex held.
1199 */
1200 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1201 l = NULL;
1202
1203 return l;
1204 }
1205
1206 /*
1207 * Update an LWP's cached credentials to mirror the process' master copy.
1208 *
1209 * This happens early in the syscall path, on user trap, and on LWP
1210 * creation. A long-running LWP can also voluntarily choose to update
1211 * it's credentials by calling this routine. This may be called from
1212 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1213 */
1214 void
1215 lwp_update_creds(struct lwp *l)
1216 {
1217 kauth_cred_t oc;
1218 struct proc *p;
1219
1220 p = l->l_proc;
1221 oc = l->l_cred;
1222
1223 mutex_enter(p->p_lock);
1224 kauth_cred_hold(p->p_cred);
1225 l->l_cred = p->p_cred;
1226 l->l_prflag &= ~LPR_CRMOD;
1227 mutex_exit(p->p_lock);
1228 if (oc != NULL)
1229 kauth_cred_free(oc);
1230 }
1231
1232 /*
1233 * Verify that an LWP is locked, and optionally verify that the lock matches
1234 * one we specify.
1235 */
1236 int
1237 lwp_locked(struct lwp *l, kmutex_t *mtx)
1238 {
1239 kmutex_t *cur = l->l_mutex;
1240
1241 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1242 }
1243
1244 /*
1245 * Lock an LWP.
1246 */
1247 kmutex_t *
1248 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1249 {
1250
1251 /*
1252 * XXXgcc ignoring kmutex_t * volatile on i386
1253 *
1254 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1255 */
1256 #if 1
1257 while (l->l_mutex != old) {
1258 #else
1259 for (;;) {
1260 #endif
1261 mutex_spin_exit(old);
1262 old = l->l_mutex;
1263 mutex_spin_enter(old);
1264
1265 /*
1266 * mutex_enter() will have posted a read barrier. Re-test
1267 * l->l_mutex. If it has changed, we need to try again.
1268 */
1269 #if 1
1270 }
1271 #else
1272 } while (__predict_false(l->l_mutex != old));
1273 #endif
1274
1275 return old;
1276 }
1277
1278 /*
1279 * Lend a new mutex to an LWP. The old mutex must be held.
1280 */
1281 void
1282 lwp_setlock(struct lwp *l, kmutex_t *new)
1283 {
1284
1285 KASSERT(mutex_owned(l->l_mutex));
1286
1287 membar_exit();
1288 l->l_mutex = new;
1289 }
1290
1291 /*
1292 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1293 * must be held.
1294 */
1295 void
1296 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1297 {
1298 kmutex_t *old;
1299
1300 KASSERT(mutex_owned(l->l_mutex));
1301
1302 old = l->l_mutex;
1303 membar_exit();
1304 l->l_mutex = new;
1305 mutex_spin_exit(old);
1306 }
1307
1308 /*
1309 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1310 * locked.
1311 */
1312 void
1313 lwp_relock(struct lwp *l, kmutex_t *new)
1314 {
1315 kmutex_t *old;
1316
1317 KASSERT(mutex_owned(l->l_mutex));
1318
1319 old = l->l_mutex;
1320 if (old != new) {
1321 mutex_spin_enter(new);
1322 l->l_mutex = new;
1323 mutex_spin_exit(old);
1324 }
1325 }
1326
1327 int
1328 lwp_trylock(struct lwp *l)
1329 {
1330 kmutex_t *old;
1331
1332 for (;;) {
1333 if (!mutex_tryenter(old = l->l_mutex))
1334 return 0;
1335 if (__predict_true(l->l_mutex == old))
1336 return 1;
1337 mutex_spin_exit(old);
1338 }
1339 }
1340
1341 void
1342 lwp_unsleep(lwp_t *l, bool cleanup)
1343 {
1344
1345 KASSERT(mutex_owned(l->l_mutex));
1346 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1347 }
1348
1349
1350 /*
1351 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1352 * set.
1353 */
1354 void
1355 lwp_userret(struct lwp *l)
1356 {
1357 struct proc *p;
1358 int sig;
1359
1360 KASSERT(l == curlwp);
1361 KASSERT(l->l_stat == LSONPROC);
1362 p = l->l_proc;
1363
1364 #ifndef __HAVE_FAST_SOFTINTS
1365 /* Run pending soft interrupts. */
1366 if (l->l_cpu->ci_data.cpu_softints != 0)
1367 softint_overlay();
1368 #endif
1369
1370 #ifdef KERN_SA
1371 /* Generate UNBLOCKED upcall if needed */
1372 if (l->l_flag & LW_SA_BLOCKING) {
1373 sa_unblock_userret(l);
1374 /* NOTREACHED */
1375 }
1376 #endif
1377
1378 /*
1379 * It should be safe to do this read unlocked on a multiprocessor
1380 * system..
1381 *
1382 * LW_SA_UPCALL will be handled after the while() loop, so don't
1383 * consider it now.
1384 */
1385 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1386 /*
1387 * Process pending signals first, unless the process
1388 * is dumping core or exiting, where we will instead
1389 * enter the LW_WSUSPEND case below.
1390 */
1391 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1392 LW_PENDSIG) {
1393 mutex_enter(p->p_lock);
1394 while ((sig = issignal(l)) != 0)
1395 postsig(sig);
1396 mutex_exit(p->p_lock);
1397 }
1398
1399 /*
1400 * Core-dump or suspend pending.
1401 *
1402 * In case of core dump, suspend ourselves, so that the
1403 * kernel stack and therefore the userland registers saved
1404 * in the trapframe are around for coredump() to write them
1405 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1406 * will write the core file out once all other LWPs are
1407 * suspended.
1408 */
1409 if ((l->l_flag & LW_WSUSPEND) != 0) {
1410 mutex_enter(p->p_lock);
1411 p->p_nrlwps--;
1412 cv_broadcast(&p->p_lwpcv);
1413 lwp_lock(l);
1414 l->l_stat = LSSUSPENDED;
1415 lwp_unlock(l);
1416 mutex_exit(p->p_lock);
1417 lwp_lock(l);
1418 mi_switch(l);
1419 }
1420
1421 /* Process is exiting. */
1422 if ((l->l_flag & LW_WEXIT) != 0) {
1423 lwp_exit(l);
1424 KASSERT(0);
1425 /* NOTREACHED */
1426 }
1427 }
1428
1429 #ifdef KERN_SA
1430 /*
1431 * Timer events are handled specially. We only try once to deliver
1432 * pending timer upcalls; if if fails, we can try again on the next
1433 * loop around. If we need to re-enter lwp_userret(), MD code will
1434 * bounce us back here through the trap path after we return.
1435 */
1436 if (p->p_timerpend)
1437 timerupcall(l);
1438 if (l->l_flag & LW_SA_UPCALL)
1439 sa_upcall_userret(l);
1440 #endif /* KERN_SA */
1441 }
1442
1443 /*
1444 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1445 */
1446 void
1447 lwp_need_userret(struct lwp *l)
1448 {
1449 KASSERT(lwp_locked(l, NULL));
1450
1451 /*
1452 * Since the tests in lwp_userret() are done unlocked, make sure
1453 * that the condition will be seen before forcing the LWP to enter
1454 * kernel mode.
1455 */
1456 membar_producer();
1457 cpu_signotify(l);
1458 }
1459
1460 /*
1461 * Add one reference to an LWP. This will prevent the LWP from
1462 * exiting, thus keep the lwp structure and PCB around to inspect.
1463 */
1464 void
1465 lwp_addref(struct lwp *l)
1466 {
1467
1468 KASSERT(mutex_owned(l->l_proc->p_lock));
1469 KASSERT(l->l_stat != LSZOMB);
1470 KASSERT(l->l_refcnt != 0);
1471
1472 l->l_refcnt++;
1473 }
1474
1475 /*
1476 * Remove one reference to an LWP. If this is the last reference,
1477 * then we must finalize the LWP's death.
1478 */
1479 void
1480 lwp_delref(struct lwp *l)
1481 {
1482 struct proc *p = l->l_proc;
1483
1484 mutex_enter(p->p_lock);
1485 lwp_delref2(l);
1486 mutex_exit(p->p_lock);
1487 }
1488
1489 /*
1490 * Remove one reference to an LWP. If this is the last reference,
1491 * then we must finalize the LWP's death. The proc mutex is held
1492 * on entry.
1493 */
1494 void
1495 lwp_delref2(struct lwp *l)
1496 {
1497 struct proc *p = l->l_proc;
1498
1499 KASSERT(mutex_owned(p->p_lock));
1500 KASSERT(l->l_stat != LSZOMB);
1501 KASSERT(l->l_refcnt > 0);
1502 if (--l->l_refcnt == 0)
1503 cv_broadcast(&p->p_lwpcv);
1504 }
1505
1506 /*
1507 * Drain all references to the current LWP.
1508 */
1509 void
1510 lwp_drainrefs(struct lwp *l)
1511 {
1512 struct proc *p = l->l_proc;
1513
1514 KASSERT(mutex_owned(p->p_lock));
1515 KASSERT(l->l_refcnt != 0);
1516
1517 l->l_refcnt--;
1518 while (l->l_refcnt != 0)
1519 cv_wait(&p->p_lwpcv, p->p_lock);
1520 }
1521
1522 /*
1523 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1524 * be held.
1525 */
1526 bool
1527 lwp_alive(lwp_t *l)
1528 {
1529
1530 KASSERT(mutex_owned(l->l_proc->p_lock));
1531
1532 switch (l->l_stat) {
1533 case LSSLEEP:
1534 case LSRUN:
1535 case LSONPROC:
1536 case LSSTOP:
1537 case LSSUSPENDED:
1538 return true;
1539 default:
1540 return false;
1541 }
1542 }
1543
1544 /*
1545 * Return first live LWP in the process.
1546 */
1547 lwp_t *
1548 lwp_find_first(proc_t *p)
1549 {
1550 lwp_t *l;
1551
1552 KASSERT(mutex_owned(p->p_lock));
1553
1554 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1555 if (lwp_alive(l)) {
1556 return l;
1557 }
1558 }
1559
1560 return NULL;
1561 }
1562
1563 /*
1564 * Allocate a new lwpctl structure for a user LWP.
1565 */
1566 int
1567 lwp_ctl_alloc(vaddr_t *uaddr)
1568 {
1569 lcproc_t *lp;
1570 u_int bit, i, offset;
1571 struct uvm_object *uao;
1572 int error;
1573 lcpage_t *lcp;
1574 proc_t *p;
1575 lwp_t *l;
1576
1577 l = curlwp;
1578 p = l->l_proc;
1579
1580 if (l->l_lcpage != NULL) {
1581 lcp = l->l_lcpage;
1582 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1583 return 0;
1584 }
1585
1586 /* First time around, allocate header structure for the process. */
1587 if ((lp = p->p_lwpctl) == NULL) {
1588 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1589 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1590 lp->lp_uao = NULL;
1591 TAILQ_INIT(&lp->lp_pages);
1592 mutex_enter(p->p_lock);
1593 if (p->p_lwpctl == NULL) {
1594 p->p_lwpctl = lp;
1595 mutex_exit(p->p_lock);
1596 } else {
1597 mutex_exit(p->p_lock);
1598 mutex_destroy(&lp->lp_lock);
1599 kmem_free(lp, sizeof(*lp));
1600 lp = p->p_lwpctl;
1601 }
1602 }
1603
1604 /*
1605 * Set up an anonymous memory region to hold the shared pages.
1606 * Map them into the process' address space. The user vmspace
1607 * gets the first reference on the UAO.
1608 */
1609 mutex_enter(&lp->lp_lock);
1610 if (lp->lp_uao == NULL) {
1611 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1612 lp->lp_cur = 0;
1613 lp->lp_max = LWPCTL_UAREA_SZ;
1614 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1615 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1616 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1617 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1618 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1619 if (error != 0) {
1620 uao_detach(lp->lp_uao);
1621 lp->lp_uao = NULL;
1622 mutex_exit(&lp->lp_lock);
1623 return error;
1624 }
1625 }
1626
1627 /* Get a free block and allocate for this LWP. */
1628 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1629 if (lcp->lcp_nfree != 0)
1630 break;
1631 }
1632 if (lcp == NULL) {
1633 /* Nothing available - try to set up a free page. */
1634 if (lp->lp_cur == lp->lp_max) {
1635 mutex_exit(&lp->lp_lock);
1636 return ENOMEM;
1637 }
1638 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1639 if (lcp == NULL) {
1640 mutex_exit(&lp->lp_lock);
1641 return ENOMEM;
1642 }
1643 /*
1644 * Wire the next page down in kernel space. Since this
1645 * is a new mapping, we must add a reference.
1646 */
1647 uao = lp->lp_uao;
1648 (*uao->pgops->pgo_reference)(uao);
1649 lcp->lcp_kaddr = vm_map_min(kernel_map);
1650 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1651 uao, lp->lp_cur, PAGE_SIZE,
1652 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1653 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1654 if (error != 0) {
1655 mutex_exit(&lp->lp_lock);
1656 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1657 (*uao->pgops->pgo_detach)(uao);
1658 return error;
1659 }
1660 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1661 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1662 if (error != 0) {
1663 mutex_exit(&lp->lp_lock);
1664 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1665 lcp->lcp_kaddr + PAGE_SIZE);
1666 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1667 return error;
1668 }
1669 /* Prepare the page descriptor and link into the list. */
1670 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1671 lp->lp_cur += PAGE_SIZE;
1672 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1673 lcp->lcp_rotor = 0;
1674 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1675 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1676 }
1677 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1678 if (++i >= LWPCTL_BITMAP_ENTRIES)
1679 i = 0;
1680 }
1681 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1682 lcp->lcp_bitmap[i] ^= (1 << bit);
1683 lcp->lcp_rotor = i;
1684 lcp->lcp_nfree--;
1685 l->l_lcpage = lcp;
1686 offset = (i << 5) + bit;
1687 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1688 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1689 mutex_exit(&lp->lp_lock);
1690
1691 KPREEMPT_DISABLE(l);
1692 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1693 KPREEMPT_ENABLE(l);
1694
1695 return 0;
1696 }
1697
1698 /*
1699 * Free an lwpctl structure back to the per-process list.
1700 */
1701 void
1702 lwp_ctl_free(lwp_t *l)
1703 {
1704 lcproc_t *lp;
1705 lcpage_t *lcp;
1706 u_int map, offset;
1707
1708 lp = l->l_proc->p_lwpctl;
1709 KASSERT(lp != NULL);
1710
1711 lcp = l->l_lcpage;
1712 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1713 KASSERT(offset < LWPCTL_PER_PAGE);
1714
1715 mutex_enter(&lp->lp_lock);
1716 lcp->lcp_nfree++;
1717 map = offset >> 5;
1718 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1719 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1720 lcp->lcp_rotor = map;
1721 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1722 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1723 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1724 }
1725 mutex_exit(&lp->lp_lock);
1726 }
1727
1728 /*
1729 * Process is exiting; tear down lwpctl state. This can only be safely
1730 * called by the last LWP in the process.
1731 */
1732 void
1733 lwp_ctl_exit(void)
1734 {
1735 lcpage_t *lcp, *next;
1736 lcproc_t *lp;
1737 proc_t *p;
1738 lwp_t *l;
1739
1740 l = curlwp;
1741 l->l_lwpctl = NULL;
1742 l->l_lcpage = NULL;
1743 p = l->l_proc;
1744 lp = p->p_lwpctl;
1745
1746 KASSERT(lp != NULL);
1747 KASSERT(p->p_nlwps == 1);
1748
1749 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1750 next = TAILQ_NEXT(lcp, lcp_chain);
1751 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1752 lcp->lcp_kaddr + PAGE_SIZE);
1753 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1754 }
1755
1756 if (lp->lp_uao != NULL) {
1757 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1758 lp->lp_uva + LWPCTL_UAREA_SZ);
1759 }
1760
1761 mutex_destroy(&lp->lp_lock);
1762 kmem_free(lp, sizeof(*lp));
1763 p->p_lwpctl = NULL;
1764 }
1765
1766 /*
1767 * Return the current LWP's "preemption counter". Used to detect
1768 * preemption across operations that can tolerate preemption without
1769 * crashing, but which may generate incorrect results if preempted.
1770 */
1771 uint64_t
1772 lwp_pctr(void)
1773 {
1774
1775 return curlwp->l_ncsw;
1776 }
1777
1778 /*
1779 * Set an LWP's private data pointer.
1780 */
1781 int
1782 lwp_setprivate(struct lwp *l, void *ptr)
1783 {
1784 int error = 0;
1785
1786 l->l_private = ptr;
1787 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1788 error = cpu_lwp_setprivate(l, ptr);
1789 #endif
1790 return error;
1791 }
1792
1793 #if defined(DDB)
1794 void
1795 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1796 {
1797 lwp_t *l;
1798
1799 LIST_FOREACH(l, &alllwp, l_list) {
1800 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1801
1802 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1803 continue;
1804 }
1805 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1806 (void *)addr, (void *)stack,
1807 (size_t)(addr - stack), l);
1808 }
1809 }
1810 #endif /* defined(DDB) */
1811