kern_lwp.c revision 1.107 1 /* $NetBSD: kern_lwp.c,v 1.107 2008/04/28 15:36:01 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by an idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, it indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is: a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSONPROC, LSZOMB:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSIDL, LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This is a per-CPU lock.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_lock), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_lock must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_lock does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.107 2008/04/28 15:36:01 ad Exp $");
209
210 #include "opt_ddb.h"
211 #include "opt_multiprocessor.h"
212 #include "opt_lockdebug.h"
213
214 #define _LWP_API_PRIVATE
215
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/syscallargs.h>
222 #include <sys/syscall_stats.h>
223 #include <sys/kauth.h>
224 #include <sys/sleepq.h>
225 #include <sys/user.h>
226 #include <sys/lockdebug.h>
227 #include <sys/kmem.h>
228 #include <sys/pset.h>
229 #include <sys/intr.h>
230 #include <sys/lwpctl.h>
231 #include <sys/atomic.h>
232
233 #include <uvm/uvm_extern.h>
234 #include <uvm/uvm_object.h>
235
236 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
237
238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
239 &pool_allocator_nointr, IPL_NONE);
240
241 static pool_cache_t lwp_cache;
242 static specificdata_domain_t lwp_specificdata_domain;
243
244 void
245 lwpinit(void)
246 {
247
248 lwp_specificdata_domain = specificdata_domain_create();
249 KASSERT(lwp_specificdata_domain != NULL);
250 lwp_sys_init();
251 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
252 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
253 }
254
255 /*
256 * Set an suspended.
257 *
258 * Must be called with p_lock held, and the LWP locked. Will unlock the
259 * LWP before return.
260 */
261 int
262 lwp_suspend(struct lwp *curl, struct lwp *t)
263 {
264 int error;
265
266 KASSERT(mutex_owned(t->l_proc->p_lock));
267 KASSERT(lwp_locked(t, NULL));
268
269 KASSERT(curl != t || curl->l_stat == LSONPROC);
270
271 /*
272 * If the current LWP has been told to exit, we must not suspend anyone
273 * else or deadlock could occur. We won't return to userspace.
274 */
275 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
276 lwp_unlock(t);
277 return (EDEADLK);
278 }
279
280 error = 0;
281
282 switch (t->l_stat) {
283 case LSRUN:
284 case LSONPROC:
285 t->l_flag |= LW_WSUSPEND;
286 lwp_need_userret(t);
287 lwp_unlock(t);
288 break;
289
290 case LSSLEEP:
291 t->l_flag |= LW_WSUSPEND;
292
293 /*
294 * Kick the LWP and try to get it to the kernel boundary
295 * so that it will release any locks that it holds.
296 * setrunnable() will release the lock.
297 */
298 if ((t->l_flag & LW_SINTR) != 0)
299 setrunnable(t);
300 else
301 lwp_unlock(t);
302 break;
303
304 case LSSUSPENDED:
305 lwp_unlock(t);
306 break;
307
308 case LSSTOP:
309 t->l_flag |= LW_WSUSPEND;
310 setrunnable(t);
311 break;
312
313 case LSIDL:
314 case LSZOMB:
315 error = EINTR; /* It's what Solaris does..... */
316 lwp_unlock(t);
317 break;
318 }
319
320 return (error);
321 }
322
323 /*
324 * Restart a suspended LWP.
325 *
326 * Must be called with p_lock held, and the LWP locked. Will unlock the
327 * LWP before return.
328 */
329 void
330 lwp_continue(struct lwp *l)
331 {
332
333 KASSERT(mutex_owned(l->l_proc->p_lock));
334 KASSERT(lwp_locked(l, NULL));
335
336 /* If rebooting or not suspended, then just bail out. */
337 if ((l->l_flag & LW_WREBOOT) != 0) {
338 lwp_unlock(l);
339 return;
340 }
341
342 l->l_flag &= ~LW_WSUSPEND;
343
344 if (l->l_stat != LSSUSPENDED) {
345 lwp_unlock(l);
346 return;
347 }
348
349 /* setrunnable() will release the lock. */
350 setrunnable(l);
351 }
352
353 /*
354 * Wait for an LWP within the current process to exit. If 'lid' is
355 * non-zero, we are waiting for a specific LWP.
356 *
357 * Must be called with p->p_lock held.
358 */
359 int
360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
361 {
362 struct proc *p = l->l_proc;
363 struct lwp *l2;
364 int nfound, error;
365 lwpid_t curlid;
366 bool exiting;
367
368 KASSERT(mutex_owned(p->p_lock));
369
370 p->p_nlwpwait++;
371 l->l_waitingfor = lid;
372 curlid = l->l_lid;
373 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
374
375 for (;;) {
376 /*
377 * Avoid a race between exit1() and sigexit(): if the
378 * process is dumping core, then we need to bail out: call
379 * into lwp_userret() where we will be suspended until the
380 * deed is done.
381 */
382 if ((p->p_sflag & PS_WCORE) != 0) {
383 mutex_exit(p->p_lock);
384 lwp_userret(l);
385 #ifdef DIAGNOSTIC
386 panic("lwp_wait1");
387 #endif
388 /* NOTREACHED */
389 }
390
391 /*
392 * First off, drain any detached LWP that is waiting to be
393 * reaped.
394 */
395 while ((l2 = p->p_zomblwp) != NULL) {
396 p->p_zomblwp = NULL;
397 lwp_free(l2, false, false);/* releases proc mutex */
398 mutex_enter(p->p_lock);
399 }
400
401 /*
402 * Now look for an LWP to collect. If the whole process is
403 * exiting, count detached LWPs as eligible to be collected,
404 * but don't drain them here.
405 */
406 nfound = 0;
407 error = 0;
408 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
409 /*
410 * If a specific wait and the target is waiting on
411 * us, then avoid deadlock. This also traps LWPs
412 * that try to wait on themselves.
413 *
414 * Note that this does not handle more complicated
415 * cycles, like: t1 -> t2 -> t3 -> t1. The process
416 * can still be killed so it is not a major problem.
417 */
418 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
419 error = EDEADLK;
420 break;
421 }
422 if (l2 == l)
423 continue;
424 if ((l2->l_prflag & LPR_DETACHED) != 0) {
425 nfound += exiting;
426 continue;
427 }
428 if (lid != 0) {
429 if (l2->l_lid != lid)
430 continue;
431 /*
432 * Mark this LWP as the first waiter, if there
433 * is no other.
434 */
435 if (l2->l_waiter == 0)
436 l2->l_waiter = curlid;
437 } else if (l2->l_waiter != 0) {
438 /*
439 * It already has a waiter - so don't
440 * collect it. If the waiter doesn't
441 * grab it we'll get another chance
442 * later.
443 */
444 nfound++;
445 continue;
446 }
447 nfound++;
448
449 /* No need to lock the LWP in order to see LSZOMB. */
450 if (l2->l_stat != LSZOMB)
451 continue;
452
453 /*
454 * We're no longer waiting. Reset the "first waiter"
455 * pointer on the target, in case it was us.
456 */
457 l->l_waitingfor = 0;
458 l2->l_waiter = 0;
459 p->p_nlwpwait--;
460 if (departed)
461 *departed = l2->l_lid;
462 sched_lwp_collect(l2);
463
464 /* lwp_free() releases the proc lock. */
465 lwp_free(l2, false, false);
466 mutex_enter(p->p_lock);
467 return 0;
468 }
469
470 if (error != 0)
471 break;
472 if (nfound == 0) {
473 error = ESRCH;
474 break;
475 }
476
477 /*
478 * The kernel is careful to ensure that it can not deadlock
479 * when exiting - just keep waiting.
480 */
481 if (exiting) {
482 KASSERT(p->p_nlwps > 1);
483 cv_wait(&p->p_lwpcv, p->p_lock);
484 continue;
485 }
486
487 /*
488 * If all other LWPs are waiting for exits or suspends
489 * and the supply of zombies and potential zombies is
490 * exhausted, then we are about to deadlock.
491 *
492 * If the process is exiting (and this LWP is not the one
493 * that is coordinating the exit) then bail out now.
494 */
495 if ((p->p_sflag & PS_WEXIT) != 0 ||
496 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
497 error = EDEADLK;
498 break;
499 }
500
501 /*
502 * Sit around and wait for something to happen. We'll be
503 * awoken if any of the conditions examined change: if an
504 * LWP exits, is collected, or is detached.
505 */
506 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
507 break;
508 }
509
510 /*
511 * We didn't find any LWPs to collect, we may have received a
512 * signal, or some other condition has caused us to bail out.
513 *
514 * If waiting on a specific LWP, clear the waiters marker: some
515 * other LWP may want it. Then, kick all the remaining waiters
516 * so that they can re-check for zombies and for deadlock.
517 */
518 if (lid != 0) {
519 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
520 if (l2->l_lid == lid) {
521 if (l2->l_waiter == curlid)
522 l2->l_waiter = 0;
523 break;
524 }
525 }
526 }
527 p->p_nlwpwait--;
528 l->l_waitingfor = 0;
529 cv_broadcast(&p->p_lwpcv);
530
531 return error;
532 }
533
534 /*
535 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
536 * The new LWP is created in state LSIDL and must be set running,
537 * suspended, or stopped by the caller.
538 */
539 int
540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
541 void *stack, size_t stacksize, void (*func)(void *), void *arg,
542 lwp_t **rnewlwpp, int sclass)
543 {
544 struct lwp *l2, *isfree;
545 turnstile_t *ts;
546
547 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
548
549 /*
550 * First off, reap any detached LWP waiting to be collected.
551 * We can re-use its LWP structure and turnstile.
552 */
553 isfree = NULL;
554 if (p2->p_zomblwp != NULL) {
555 mutex_enter(p2->p_lock);
556 if ((isfree = p2->p_zomblwp) != NULL) {
557 p2->p_zomblwp = NULL;
558 lwp_free(isfree, true, false);/* releases proc mutex */
559 } else
560 mutex_exit(p2->p_lock);
561 }
562 if (isfree == NULL) {
563 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
564 memset(l2, 0, sizeof(*l2));
565 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
566 SLIST_INIT(&l2->l_pi_lenders);
567 } else {
568 l2 = isfree;
569 ts = l2->l_ts;
570 KASSERT(l2->l_inheritedprio == -1);
571 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
572 memset(l2, 0, sizeof(*l2));
573 l2->l_ts = ts;
574 }
575
576 l2->l_stat = LSIDL;
577 l2->l_proc = p2;
578 l2->l_refcnt = 1;
579 l2->l_class = sclass;
580 l2->l_kpriority = l1->l_kpriority;
581 l2->l_kpribase = PRI_KERNEL;
582 l2->l_priority = l1->l_priority;
583 l2->l_inheritedprio = -1;
584 l2->l_flag = inmem ? LW_INMEM : 0;
585 l2->l_pflag = LP_MPSAFE;
586 l2->l_fd = p2->p_fd;
587
588 if (p2->p_flag & PK_SYSTEM) {
589 /* Mark it as a system LWP and not a candidate for swapping */
590 l2->l_flag |= LW_SYSTEM;
591 }
592
593 kpreempt_disable();
594 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
595 l2->l_cpu = l1->l_cpu;
596 kpreempt_enable();
597
598 lwp_initspecific(l2);
599 sched_lwp_fork(l1, l2);
600 lwp_update_creds(l2);
601 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
602 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
603 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
604 cv_init(&l2->l_sigcv, "sigwait");
605 l2->l_syncobj = &sched_syncobj;
606
607 if (rnewlwpp != NULL)
608 *rnewlwpp = l2;
609
610 l2->l_addr = UAREA_TO_USER(uaddr);
611 uvm_lwp_fork(l1, l2, stack, stacksize, func,
612 (arg != NULL) ? arg : l2);
613
614 mutex_enter(p2->p_lock);
615
616 if ((flags & LWP_DETACHED) != 0) {
617 l2->l_prflag = LPR_DETACHED;
618 p2->p_ndlwps++;
619 } else
620 l2->l_prflag = 0;
621
622 l2->l_sigmask = l1->l_sigmask;
623 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
624 sigemptyset(&l2->l_sigpend.sp_set);
625
626 p2->p_nlwpid++;
627 if (p2->p_nlwpid == 0)
628 p2->p_nlwpid++;
629 l2->l_lid = p2->p_nlwpid;
630 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
631 p2->p_nlwps++;
632
633 mutex_exit(p2->p_lock);
634
635 mutex_enter(proc_lock);
636 LIST_INSERT_HEAD(&alllwp, l2, l_list);
637 mutex_exit(proc_lock);
638
639 if ((p2->p_flag & PK_SYSTEM) == 0) {
640 /* Locking is needed, since LWP is in the list of all LWPs */
641 lwp_lock(l2);
642 /* Inherit a processor-set */
643 l2->l_psid = l1->l_psid;
644 /* Inherit an affinity */
645 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
646 /* Look for a CPU to start */
647 l2->l_cpu = sched_takecpu(l2);
648 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
649 }
650
651 SYSCALL_TIME_LWP_INIT(l2);
652
653 if (p2->p_emul->e_lwp_fork)
654 (*p2->p_emul->e_lwp_fork)(l1, l2);
655
656 return (0);
657 }
658
659 /*
660 * Called by MD code when a new LWP begins execution. Must be called
661 * with the previous LWP locked (so at splsched), or if there is no
662 * previous LWP, at splsched.
663 */
664 void
665 lwp_startup(struct lwp *prev, struct lwp *new)
666 {
667
668 KASSERT(kpreempt_disabled());
669 if (prev != NULL) {
670 /*
671 * Normalize the count of the spin-mutexes, it was
672 * increased in mi_switch(). Unmark the state of
673 * context switch - it is finished for previous LWP.
674 */
675 curcpu()->ci_mtx_count++;
676 membar_exit();
677 prev->l_ctxswtch = 0;
678 }
679 KPREEMPT_DISABLE(new);
680 spl0();
681 pmap_activate(new);
682 LOCKDEBUG_BARRIER(NULL, 0);
683 KPREEMPT_ENABLE(new);
684 if ((new->l_pflag & LP_MPSAFE) == 0) {
685 KERNEL_LOCK(1, new);
686 }
687 }
688
689 /*
690 * Exit an LWP.
691 */
692 void
693 lwp_exit(struct lwp *l)
694 {
695 struct proc *p = l->l_proc;
696 struct lwp *l2;
697 bool current;
698
699 current = (l == curlwp);
700
701 KASSERT(current || l->l_stat == LSIDL);
702
703 /*
704 * Verify that we hold no locks other than the kernel lock.
705 */
706 #ifdef MULTIPROCESSOR
707 LOCKDEBUG_BARRIER(&kernel_lock, 0);
708 #else
709 LOCKDEBUG_BARRIER(NULL, 0);
710 #endif
711
712 /*
713 * If we are the last live LWP in a process, we need to exit the
714 * entire process. We do so with an exit status of zero, because
715 * it's a "controlled" exit, and because that's what Solaris does.
716 *
717 * We are not quite a zombie yet, but for accounting purposes we
718 * must increment the count of zombies here.
719 *
720 * Note: the last LWP's specificdata will be deleted here.
721 */
722 mutex_enter(p->p_lock);
723 if (p->p_nlwps - p->p_nzlwps == 1) {
724 KASSERT(current == true);
725 /* XXXSMP kernel_lock not held */
726 exit1(l, 0);
727 /* NOTREACHED */
728 }
729 p->p_nzlwps++;
730 mutex_exit(p->p_lock);
731
732 if (p->p_emul->e_lwp_exit)
733 (*p->p_emul->e_lwp_exit)(l);
734
735 /* Delete the specificdata while it's still safe to sleep. */
736 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
737
738 /*
739 * Release our cached credentials.
740 */
741 kauth_cred_free(l->l_cred);
742 callout_destroy(&l->l_timeout_ch);
743
744 /*
745 * While we can still block, mark the LWP as unswappable to
746 * prevent conflicts with the with the swapper.
747 */
748 if (current)
749 uvm_lwp_hold(l);
750
751 /*
752 * Remove the LWP from the global list.
753 */
754 mutex_enter(proc_lock);
755 LIST_REMOVE(l, l_list);
756 mutex_exit(proc_lock);
757
758 /*
759 * Get rid of all references to the LWP that others (e.g. procfs)
760 * may have, and mark the LWP as a zombie. If the LWP is detached,
761 * mark it waiting for collection in the proc structure. Note that
762 * before we can do that, we need to free any other dead, deatched
763 * LWP waiting to meet its maker.
764 */
765 mutex_enter(p->p_lock);
766 lwp_drainrefs(l);
767
768 if ((l->l_prflag & LPR_DETACHED) != 0) {
769 while ((l2 = p->p_zomblwp) != NULL) {
770 p->p_zomblwp = NULL;
771 lwp_free(l2, false, false);/* releases proc mutex */
772 mutex_enter(p->p_lock);
773 l->l_refcnt++;
774 lwp_drainrefs(l);
775 }
776 p->p_zomblwp = l;
777 }
778
779 /*
780 * If we find a pending signal for the process and we have been
781 * asked to check for signals, then we loose: arrange to have
782 * all other LWPs in the process check for signals.
783 */
784 if ((l->l_flag & LW_PENDSIG) != 0 &&
785 firstsig(&p->p_sigpend.sp_set) != 0) {
786 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
787 lwp_lock(l2);
788 l2->l_flag |= LW_PENDSIG;
789 lwp_unlock(l2);
790 }
791 }
792
793 lwp_lock(l);
794 l->l_stat = LSZOMB;
795 if (l->l_name != NULL)
796 strcpy(l->l_name, "(zombie)");
797 lwp_unlock(l);
798 p->p_nrlwps--;
799 cv_broadcast(&p->p_lwpcv);
800 if (l->l_lwpctl != NULL)
801 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
802 mutex_exit(p->p_lock);
803
804 /*
805 * We can no longer block. At this point, lwp_free() may already
806 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
807 *
808 * Free MD LWP resources.
809 */
810 #ifndef __NO_CPU_LWP_FREE
811 cpu_lwp_free(l, 0);
812 #endif
813
814 if (current) {
815 pmap_deactivate(l);
816
817 /*
818 * Release the kernel lock, and switch away into
819 * oblivion.
820 */
821 #ifdef notyet
822 /* XXXSMP hold in lwp_userret() */
823 KERNEL_UNLOCK_LAST(l);
824 #else
825 KERNEL_UNLOCK_ALL(l, NULL);
826 #endif
827 lwp_exit_switchaway(l);
828 }
829 }
830
831 void
832 lwp_exit_switchaway(struct lwp *l)
833 {
834 struct cpu_info *ci;
835 struct lwp *idlelwp;
836
837 (void)splsched();
838 l->l_flag &= ~LW_RUNNING;
839 ci = curcpu();
840 ci->ci_data.cpu_nswtch++;
841 idlelwp = ci->ci_data.cpu_idlelwp;
842 idlelwp->l_stat = LSONPROC;
843
844 /*
845 * cpu_onproc must be updated with the CPU locked, as
846 * aston() may try to set a AST pending on the LWP (and
847 * it does so with the CPU locked). Otherwise, the LWP
848 * may be destroyed before the AST can be set, leading
849 * to a user-after-free.
850 */
851 spc_lock(ci);
852 ci->ci_data.cpu_onproc = idlelwp;
853 spc_unlock(ci);
854 cpu_switchto(NULL, idlelwp, false);
855 }
856
857 /*
858 * Free a dead LWP's remaining resources.
859 *
860 * XXXLWP limits.
861 */
862 void
863 lwp_free(struct lwp *l, bool recycle, bool last)
864 {
865 struct proc *p = l->l_proc;
866 struct rusage *ru;
867 ksiginfoq_t kq;
868
869 KASSERT(l != curlwp);
870
871 /*
872 * If this was not the last LWP in the process, then adjust
873 * counters and unlock.
874 */
875 if (!last) {
876 /*
877 * Add the LWP's run time to the process' base value.
878 * This needs to co-incide with coming off p_lwps.
879 */
880 bintime_add(&p->p_rtime, &l->l_rtime);
881 p->p_pctcpu += l->l_pctcpu;
882 ru = &p->p_stats->p_ru;
883 ruadd(ru, &l->l_ru);
884 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
885 ru->ru_nivcsw += l->l_nivcsw;
886 LIST_REMOVE(l, l_sibling);
887 p->p_nlwps--;
888 p->p_nzlwps--;
889 if ((l->l_prflag & LPR_DETACHED) != 0)
890 p->p_ndlwps--;
891
892 /*
893 * Have any LWPs sleeping in lwp_wait() recheck for
894 * deadlock.
895 */
896 cv_broadcast(&p->p_lwpcv);
897 mutex_exit(p->p_lock);
898 }
899
900 #ifdef MULTIPROCESSOR
901 /*
902 * In the unlikely event that the LWP is still on the CPU,
903 * then spin until it has switched away. We need to release
904 * all locks to avoid deadlock against interrupt handlers on
905 * the target CPU.
906 */
907 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
908 int count;
909 (void)count; /* XXXgcc */
910 KERNEL_UNLOCK_ALL(curlwp, &count);
911 while ((l->l_flag & LW_RUNNING) != 0 ||
912 l->l_cpu->ci_curlwp == l)
913 SPINLOCK_BACKOFF_HOOK;
914 KERNEL_LOCK(count, curlwp);
915 }
916 #endif
917
918 /*
919 * Destroy the LWP's remaining signal information.
920 */
921 ksiginfo_queue_init(&kq);
922 sigclear(&l->l_sigpend, NULL, &kq);
923 ksiginfo_queue_drain(&kq);
924 cv_destroy(&l->l_sigcv);
925 mutex_destroy(&l->l_swaplock);
926
927 /*
928 * Free the LWP's turnstile and the LWP structure itself unless the
929 * caller wants to recycle them. Also, free the scheduler specific
930 * data.
931 *
932 * We can't return turnstile0 to the pool (it didn't come from it),
933 * so if it comes up just drop it quietly and move on.
934 *
935 * We don't recycle the VM resources at this time.
936 */
937 if (l->l_lwpctl != NULL)
938 lwp_ctl_free(l);
939 sched_lwp_exit(l);
940
941 if (!recycle && l->l_ts != &turnstile0)
942 pool_cache_put(turnstile_cache, l->l_ts);
943 if (l->l_name != NULL)
944 kmem_free(l->l_name, MAXCOMLEN);
945 #ifndef __NO_CPU_LWP_FREE
946 cpu_lwp_free2(l);
947 #endif
948 KASSERT((l->l_flag & LW_INMEM) != 0);
949 uvm_lwp_exit(l);
950 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
951 KASSERT(l->l_inheritedprio == -1);
952 if (!recycle)
953 pool_cache_put(lwp_cache, l);
954 }
955
956 /*
957 * Pick a LWP to represent the process for those operations which
958 * want information about a "process" that is actually associated
959 * with a LWP.
960 *
961 * If 'locking' is false, no locking or lock checks are performed.
962 * This is intended for use by DDB.
963 *
964 * We don't bother locking the LWP here, since code that uses this
965 * interface is broken by design and an exact match is not required.
966 */
967 struct lwp *
968 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
969 {
970 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
971 struct lwp *signalled;
972 int cnt;
973
974 if (locking) {
975 KASSERT(mutex_owned(p->p_lock));
976 }
977
978 /* Trivial case: only one LWP */
979 if (p->p_nlwps == 1) {
980 l = LIST_FIRST(&p->p_lwps);
981 if (nrlwps)
982 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
983 return l;
984 }
985
986 cnt = 0;
987 switch (p->p_stat) {
988 case SSTOP:
989 case SACTIVE:
990 /* Pick the most live LWP */
991 onproc = running = sleeping = stopped = suspended = NULL;
992 signalled = NULL;
993 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
994 if ((l->l_flag & LW_IDLE) != 0) {
995 continue;
996 }
997 if (l->l_lid == p->p_sigctx.ps_lwp)
998 signalled = l;
999 switch (l->l_stat) {
1000 case LSONPROC:
1001 onproc = l;
1002 cnt++;
1003 break;
1004 case LSRUN:
1005 running = l;
1006 cnt++;
1007 break;
1008 case LSSLEEP:
1009 sleeping = l;
1010 break;
1011 case LSSTOP:
1012 stopped = l;
1013 break;
1014 case LSSUSPENDED:
1015 suspended = l;
1016 break;
1017 }
1018 }
1019 if (nrlwps)
1020 *nrlwps = cnt;
1021 if (signalled)
1022 l = signalled;
1023 else if (onproc)
1024 l = onproc;
1025 else if (running)
1026 l = running;
1027 else if (sleeping)
1028 l = sleeping;
1029 else if (stopped)
1030 l = stopped;
1031 else if (suspended)
1032 l = suspended;
1033 else
1034 break;
1035 return l;
1036 #ifdef DIAGNOSTIC
1037 case SIDL:
1038 case SZOMB:
1039 case SDYING:
1040 case SDEAD:
1041 if (locking)
1042 mutex_exit(p->p_lock);
1043 /* We have more than one LWP and we're in SIDL?
1044 * How'd that happen?
1045 */
1046 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1047 p->p_pid, p->p_comm, p->p_stat);
1048 break;
1049 default:
1050 if (locking)
1051 mutex_exit(p->p_lock);
1052 panic("Process %d (%s) in unknown state %d",
1053 p->p_pid, p->p_comm, p->p_stat);
1054 #endif
1055 }
1056
1057 if (locking)
1058 mutex_exit(p->p_lock);
1059 panic("proc_representative_lwp: couldn't find a lwp for process"
1060 " %d (%s)", p->p_pid, p->p_comm);
1061 /* NOTREACHED */
1062 return NULL;
1063 }
1064
1065 /*
1066 * Migrate the LWP to the another CPU. Unlocks the LWP.
1067 */
1068 void
1069 lwp_migrate(lwp_t *l, struct cpu_info *ci)
1070 {
1071 struct schedstate_percpu *spc;
1072 KASSERT(lwp_locked(l, NULL));
1073
1074 if (l->l_cpu == ci) {
1075 lwp_unlock(l);
1076 return;
1077 }
1078
1079 spc = &ci->ci_schedstate;
1080 switch (l->l_stat) {
1081 case LSRUN:
1082 if (l->l_flag & LW_INMEM) {
1083 l->l_target_cpu = ci;
1084 break;
1085 }
1086 case LSIDL:
1087 l->l_cpu = ci;
1088 lwp_unlock_to(l, spc->spc_mutex);
1089 KASSERT(!mutex_owned(spc->spc_mutex));
1090 return;
1091 case LSSLEEP:
1092 l->l_cpu = ci;
1093 break;
1094 case LSSTOP:
1095 case LSSUSPENDED:
1096 if (l->l_wchan != NULL) {
1097 l->l_cpu = ci;
1098 break;
1099 }
1100 case LSONPROC:
1101 l->l_target_cpu = ci;
1102 break;
1103 }
1104 lwp_unlock(l);
1105 }
1106
1107 /*
1108 * Find the LWP in the process. Arguments may be zero, in such case,
1109 * the calling process and first LWP in the list will be used.
1110 * On success - returns proc locked.
1111 */
1112 struct lwp *
1113 lwp_find2(pid_t pid, lwpid_t lid)
1114 {
1115 proc_t *p;
1116 lwp_t *l;
1117
1118 /* Find the process */
1119 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1120 if (p == NULL)
1121 return NULL;
1122 mutex_enter(p->p_lock);
1123 if (pid != 0) {
1124 /* Case of p_find */
1125 mutex_exit(proc_lock);
1126 }
1127
1128 /* Find the thread */
1129 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1130 if (l == NULL) {
1131 mutex_exit(p->p_lock);
1132 }
1133
1134 return l;
1135 }
1136
1137 /*
1138 * Look up a live LWP within the speicifed process, and return it locked.
1139 *
1140 * Must be called with p->p_lock held.
1141 */
1142 struct lwp *
1143 lwp_find(struct proc *p, int id)
1144 {
1145 struct lwp *l;
1146
1147 KASSERT(mutex_owned(p->p_lock));
1148
1149 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1150 if (l->l_lid == id)
1151 break;
1152 }
1153
1154 /*
1155 * No need to lock - all of these conditions will
1156 * be visible with the process level mutex held.
1157 */
1158 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1159 l = NULL;
1160
1161 return l;
1162 }
1163
1164 /*
1165 * Update an LWP's cached credentials to mirror the process' master copy.
1166 *
1167 * This happens early in the syscall path, on user trap, and on LWP
1168 * creation. A long-running LWP can also voluntarily choose to update
1169 * it's credentials by calling this routine. This may be called from
1170 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1171 */
1172 void
1173 lwp_update_creds(struct lwp *l)
1174 {
1175 kauth_cred_t oc;
1176 struct proc *p;
1177
1178 p = l->l_proc;
1179 oc = l->l_cred;
1180
1181 mutex_enter(p->p_lock);
1182 kauth_cred_hold(p->p_cred);
1183 l->l_cred = p->p_cred;
1184 l->l_prflag &= ~LPR_CRMOD;
1185 mutex_exit(p->p_lock);
1186 if (oc != NULL)
1187 kauth_cred_free(oc);
1188 }
1189
1190 /*
1191 * Verify that an LWP is locked, and optionally verify that the lock matches
1192 * one we specify.
1193 */
1194 int
1195 lwp_locked(struct lwp *l, kmutex_t *mtx)
1196 {
1197 kmutex_t *cur = l->l_mutex;
1198
1199 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1200 }
1201
1202 /*
1203 * Lock an LWP.
1204 */
1205 void
1206 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1207 {
1208
1209 /*
1210 * XXXgcc ignoring kmutex_t * volatile on i386
1211 *
1212 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1213 */
1214 #if 1
1215 while (l->l_mutex != old) {
1216 #else
1217 for (;;) {
1218 #endif
1219 mutex_spin_exit(old);
1220 old = l->l_mutex;
1221 mutex_spin_enter(old);
1222
1223 /*
1224 * mutex_enter() will have posted a read barrier. Re-test
1225 * l->l_mutex. If it has changed, we need to try again.
1226 */
1227 #if 1
1228 }
1229 #else
1230 } while (__predict_false(l->l_mutex != old));
1231 #endif
1232 }
1233
1234 /*
1235 * Lend a new mutex to an LWP. The old mutex must be held.
1236 */
1237 void
1238 lwp_setlock(struct lwp *l, kmutex_t *new)
1239 {
1240
1241 KASSERT(mutex_owned(l->l_mutex));
1242
1243 membar_exit();
1244 l->l_mutex = new;
1245 }
1246
1247 /*
1248 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1249 * must be held.
1250 */
1251 void
1252 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1253 {
1254 kmutex_t *old;
1255
1256 KASSERT(mutex_owned(l->l_mutex));
1257
1258 old = l->l_mutex;
1259 membar_exit();
1260 l->l_mutex = new;
1261 mutex_spin_exit(old);
1262 }
1263
1264 /*
1265 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1266 * locked.
1267 */
1268 void
1269 lwp_relock(struct lwp *l, kmutex_t *new)
1270 {
1271 kmutex_t *old;
1272
1273 KASSERT(mutex_owned(l->l_mutex));
1274
1275 old = l->l_mutex;
1276 if (old != new) {
1277 mutex_spin_enter(new);
1278 l->l_mutex = new;
1279 mutex_spin_exit(old);
1280 }
1281 }
1282
1283 int
1284 lwp_trylock(struct lwp *l)
1285 {
1286 kmutex_t *old;
1287
1288 for (;;) {
1289 if (!mutex_tryenter(old = l->l_mutex))
1290 return 0;
1291 if (__predict_true(l->l_mutex == old))
1292 return 1;
1293 mutex_spin_exit(old);
1294 }
1295 }
1296
1297 u_int
1298 lwp_unsleep(lwp_t *l, bool cleanup)
1299 {
1300
1301 KASSERT(mutex_owned(l->l_mutex));
1302
1303 return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1304 }
1305
1306
1307 /*
1308 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1309 * set.
1310 */
1311 void
1312 lwp_userret(struct lwp *l)
1313 {
1314 struct proc *p;
1315 void (*hook)(void);
1316 int sig;
1317
1318 p = l->l_proc;
1319
1320 #ifndef __HAVE_FAST_SOFTINTS
1321 /* Run pending soft interrupts. */
1322 if (l->l_cpu->ci_data.cpu_softints != 0)
1323 softint_overlay();
1324 #endif
1325
1326 /*
1327 * It should be safe to do this read unlocked on a multiprocessor
1328 * system..
1329 */
1330 while ((l->l_flag & LW_USERRET) != 0) {
1331 /*
1332 * Process pending signals first, unless the process
1333 * is dumping core or exiting, where we will instead
1334 * enter the LW_WSUSPEND case below.
1335 */
1336 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1337 LW_PENDSIG) {
1338 mutex_enter(p->p_lock);
1339 while ((sig = issignal(l)) != 0)
1340 postsig(sig);
1341 mutex_exit(p->p_lock);
1342 }
1343
1344 /*
1345 * Core-dump or suspend pending.
1346 *
1347 * In case of core dump, suspend ourselves, so that the
1348 * kernel stack and therefore the userland registers saved
1349 * in the trapframe are around for coredump() to write them
1350 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1351 * will write the core file out once all other LWPs are
1352 * suspended.
1353 */
1354 if ((l->l_flag & LW_WSUSPEND) != 0) {
1355 mutex_enter(p->p_lock);
1356 p->p_nrlwps--;
1357 cv_broadcast(&p->p_lwpcv);
1358 lwp_lock(l);
1359 l->l_stat = LSSUSPENDED;
1360 lwp_unlock(l);
1361 mutex_exit(p->p_lock);
1362 lwp_lock(l);
1363 mi_switch(l);
1364 }
1365
1366 /* Process is exiting. */
1367 if ((l->l_flag & LW_WEXIT) != 0) {
1368 lwp_exit(l);
1369 KASSERT(0);
1370 /* NOTREACHED */
1371 }
1372
1373 /* Call userret hook; used by Linux emulation. */
1374 if ((l->l_flag & LW_WUSERRET) != 0) {
1375 lwp_lock(l);
1376 l->l_flag &= ~LW_WUSERRET;
1377 lwp_unlock(l);
1378 hook = p->p_userret;
1379 p->p_userret = NULL;
1380 (*hook)();
1381 }
1382 }
1383 }
1384
1385 /*
1386 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1387 */
1388 void
1389 lwp_need_userret(struct lwp *l)
1390 {
1391 KASSERT(lwp_locked(l, NULL));
1392
1393 /*
1394 * Since the tests in lwp_userret() are done unlocked, make sure
1395 * that the condition will be seen before forcing the LWP to enter
1396 * kernel mode.
1397 */
1398 membar_producer();
1399 cpu_signotify(l);
1400 }
1401
1402 /*
1403 * Add one reference to an LWP. This will prevent the LWP from
1404 * exiting, thus keep the lwp structure and PCB around to inspect.
1405 */
1406 void
1407 lwp_addref(struct lwp *l)
1408 {
1409
1410 KASSERT(mutex_owned(l->l_proc->p_lock));
1411 KASSERT(l->l_stat != LSZOMB);
1412 KASSERT(l->l_refcnt != 0);
1413
1414 l->l_refcnt++;
1415 }
1416
1417 /*
1418 * Remove one reference to an LWP. If this is the last reference,
1419 * then we must finalize the LWP's death.
1420 */
1421 void
1422 lwp_delref(struct lwp *l)
1423 {
1424 struct proc *p = l->l_proc;
1425
1426 mutex_enter(p->p_lock);
1427 KASSERT(l->l_stat != LSZOMB);
1428 KASSERT(l->l_refcnt > 0);
1429 if (--l->l_refcnt == 0)
1430 cv_broadcast(&p->p_lwpcv);
1431 mutex_exit(p->p_lock);
1432 }
1433
1434 /*
1435 * Drain all references to the current LWP.
1436 */
1437 void
1438 lwp_drainrefs(struct lwp *l)
1439 {
1440 struct proc *p = l->l_proc;
1441
1442 KASSERT(mutex_owned(p->p_lock));
1443 KASSERT(l->l_refcnt != 0);
1444
1445 l->l_refcnt--;
1446 while (l->l_refcnt != 0)
1447 cv_wait(&p->p_lwpcv, p->p_lock);
1448 }
1449
1450 /*
1451 * lwp_specific_key_create --
1452 * Create a key for subsystem lwp-specific data.
1453 */
1454 int
1455 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1456 {
1457
1458 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1459 }
1460
1461 /*
1462 * lwp_specific_key_delete --
1463 * Delete a key for subsystem lwp-specific data.
1464 */
1465 void
1466 lwp_specific_key_delete(specificdata_key_t key)
1467 {
1468
1469 specificdata_key_delete(lwp_specificdata_domain, key);
1470 }
1471
1472 /*
1473 * lwp_initspecific --
1474 * Initialize an LWP's specificdata container.
1475 */
1476 void
1477 lwp_initspecific(struct lwp *l)
1478 {
1479 int error;
1480
1481 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1482 KASSERT(error == 0);
1483 }
1484
1485 /*
1486 * lwp_finispecific --
1487 * Finalize an LWP's specificdata container.
1488 */
1489 void
1490 lwp_finispecific(struct lwp *l)
1491 {
1492
1493 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1494 }
1495
1496 /*
1497 * lwp_getspecific --
1498 * Return lwp-specific data corresponding to the specified key.
1499 *
1500 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1501 * only its OWN SPECIFIC DATA. If it is necessary to access another
1502 * LWP's specifc data, care must be taken to ensure that doing so
1503 * would not cause internal data structure inconsistency (i.e. caller
1504 * can guarantee that the target LWP is not inside an lwp_getspecific()
1505 * or lwp_setspecific() call).
1506 */
1507 void *
1508 lwp_getspecific(specificdata_key_t key)
1509 {
1510
1511 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1512 &curlwp->l_specdataref, key));
1513 }
1514
1515 void *
1516 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1517 {
1518
1519 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1520 &l->l_specdataref, key));
1521 }
1522
1523 /*
1524 * lwp_setspecific --
1525 * Set lwp-specific data corresponding to the specified key.
1526 */
1527 void
1528 lwp_setspecific(specificdata_key_t key, void *data)
1529 {
1530
1531 specificdata_setspecific(lwp_specificdata_domain,
1532 &curlwp->l_specdataref, key, data);
1533 }
1534
1535 /*
1536 * Allocate a new lwpctl structure for a user LWP.
1537 */
1538 int
1539 lwp_ctl_alloc(vaddr_t *uaddr)
1540 {
1541 lcproc_t *lp;
1542 u_int bit, i, offset;
1543 struct uvm_object *uao;
1544 int error;
1545 lcpage_t *lcp;
1546 proc_t *p;
1547 lwp_t *l;
1548
1549 l = curlwp;
1550 p = l->l_proc;
1551
1552 if (l->l_lcpage != NULL) {
1553 lcp = l->l_lcpage;
1554 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1555 return (EINVAL);
1556 }
1557
1558 /* First time around, allocate header structure for the process. */
1559 if ((lp = p->p_lwpctl) == NULL) {
1560 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1561 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1562 lp->lp_uao = NULL;
1563 TAILQ_INIT(&lp->lp_pages);
1564 mutex_enter(p->p_lock);
1565 if (p->p_lwpctl == NULL) {
1566 p->p_lwpctl = lp;
1567 mutex_exit(p->p_lock);
1568 } else {
1569 mutex_exit(p->p_lock);
1570 mutex_destroy(&lp->lp_lock);
1571 kmem_free(lp, sizeof(*lp));
1572 lp = p->p_lwpctl;
1573 }
1574 }
1575
1576 /*
1577 * Set up an anonymous memory region to hold the shared pages.
1578 * Map them into the process' address space. The user vmspace
1579 * gets the first reference on the UAO.
1580 */
1581 mutex_enter(&lp->lp_lock);
1582 if (lp->lp_uao == NULL) {
1583 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1584 lp->lp_cur = 0;
1585 lp->lp_max = LWPCTL_UAREA_SZ;
1586 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1587 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1588 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1589 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1590 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1591 if (error != 0) {
1592 uao_detach(lp->lp_uao);
1593 lp->lp_uao = NULL;
1594 mutex_exit(&lp->lp_lock);
1595 return error;
1596 }
1597 }
1598
1599 /* Get a free block and allocate for this LWP. */
1600 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1601 if (lcp->lcp_nfree != 0)
1602 break;
1603 }
1604 if (lcp == NULL) {
1605 /* Nothing available - try to set up a free page. */
1606 if (lp->lp_cur == lp->lp_max) {
1607 mutex_exit(&lp->lp_lock);
1608 return ENOMEM;
1609 }
1610 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1611 if (lcp == NULL) {
1612 mutex_exit(&lp->lp_lock);
1613 return ENOMEM;
1614 }
1615 /*
1616 * Wire the next page down in kernel space. Since this
1617 * is a new mapping, we must add a reference.
1618 */
1619 uao = lp->lp_uao;
1620 (*uao->pgops->pgo_reference)(uao);
1621 lcp->lcp_kaddr = vm_map_min(kernel_map);
1622 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1623 uao, lp->lp_cur, PAGE_SIZE,
1624 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1625 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1626 if (error != 0) {
1627 mutex_exit(&lp->lp_lock);
1628 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1629 (*uao->pgops->pgo_detach)(uao);
1630 return error;
1631 }
1632 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1633 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1634 if (error != 0) {
1635 mutex_exit(&lp->lp_lock);
1636 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1637 lcp->lcp_kaddr + PAGE_SIZE);
1638 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1639 return error;
1640 }
1641 /* Prepare the page descriptor and link into the list. */
1642 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1643 lp->lp_cur += PAGE_SIZE;
1644 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1645 lcp->lcp_rotor = 0;
1646 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1647 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1648 }
1649 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1650 if (++i >= LWPCTL_BITMAP_ENTRIES)
1651 i = 0;
1652 }
1653 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1654 lcp->lcp_bitmap[i] ^= (1 << bit);
1655 lcp->lcp_rotor = i;
1656 lcp->lcp_nfree--;
1657 l->l_lcpage = lcp;
1658 offset = (i << 5) + bit;
1659 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1660 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1661 mutex_exit(&lp->lp_lock);
1662
1663 KPREEMPT_DISABLE(l);
1664 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1665 KPREEMPT_ENABLE(l);
1666
1667 return 0;
1668 }
1669
1670 /*
1671 * Free an lwpctl structure back to the per-process list.
1672 */
1673 void
1674 lwp_ctl_free(lwp_t *l)
1675 {
1676 lcproc_t *lp;
1677 lcpage_t *lcp;
1678 u_int map, offset;
1679
1680 lp = l->l_proc->p_lwpctl;
1681 KASSERT(lp != NULL);
1682
1683 lcp = l->l_lcpage;
1684 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1685 KASSERT(offset < LWPCTL_PER_PAGE);
1686
1687 mutex_enter(&lp->lp_lock);
1688 lcp->lcp_nfree++;
1689 map = offset >> 5;
1690 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1691 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1692 lcp->lcp_rotor = map;
1693 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1694 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1695 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1696 }
1697 mutex_exit(&lp->lp_lock);
1698 }
1699
1700 /*
1701 * Process is exiting; tear down lwpctl state. This can only be safely
1702 * called by the last LWP in the process.
1703 */
1704 void
1705 lwp_ctl_exit(void)
1706 {
1707 lcpage_t *lcp, *next;
1708 lcproc_t *lp;
1709 proc_t *p;
1710 lwp_t *l;
1711
1712 l = curlwp;
1713 l->l_lwpctl = NULL;
1714 l->l_lcpage = NULL;
1715 p = l->l_proc;
1716 lp = p->p_lwpctl;
1717
1718 KASSERT(lp != NULL);
1719 KASSERT(p->p_nlwps == 1);
1720
1721 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1722 next = TAILQ_NEXT(lcp, lcp_chain);
1723 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1724 lcp->lcp_kaddr + PAGE_SIZE);
1725 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1726 }
1727
1728 if (lp->lp_uao != NULL) {
1729 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1730 lp->lp_uva + LWPCTL_UAREA_SZ);
1731 }
1732
1733 mutex_destroy(&lp->lp_lock);
1734 kmem_free(lp, sizeof(*lp));
1735 p->p_lwpctl = NULL;
1736 }
1737
1738 #if defined(DDB)
1739 void
1740 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1741 {
1742 lwp_t *l;
1743
1744 LIST_FOREACH(l, &alllwp, l_list) {
1745 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1746
1747 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1748 continue;
1749 }
1750 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1751 (void *)addr, (void *)stack,
1752 (size_t)(addr - stack), l);
1753 }
1754 }
1755 #endif /* defined(DDB) */
1756