Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.108
      1 /*	$NetBSD: kern_lwp.c,v 1.108 2008/04/28 20:24:03 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.  If the LWP is not swapped in (LW_INMEM == 0)
     64  *		then the LWP is not on a run queue, but may be soon.
     65  *
     66  *	LSIDL
     67  *
     68  *		Idle: the LWP has been created but has not yet executed,
     69  *		or it has ceased executing a unit of work and is waiting
     70  *		to be started again.
     71  *
     72  *	LSSUSPENDED:
     73  *
     74  *		Suspended: the LWP has had its execution suspended by
     75  *		another LWP in the same process using the _lwp_suspend()
     76  *		system call.  User-level LWPs also enter the suspended
     77  *		state when the system is shutting down.
     78  *
     79  *	The second set represent a "statement of intent" on behalf of the
     80  *	LWP.  The LWP may in fact be executing on a processor, may be
     81  *	sleeping or idle. It is expected to take the necessary action to
     82  *	stop executing or become "running" again within a short timeframe.
     83  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
     84  *	Importantly, it indicates that its state is tied to a CPU.
     85  *
     86  *	LSZOMB:
     87  *
     88  *		Dead or dying: the LWP has released most of its resources
     89  *		and is: a) about to switch away into oblivion b) has already
     90  *		switched away.  When it switches away, its few remaining
     91  *		resources can be collected.
     92  *
     93  *	LSSLEEP:
     94  *
     95  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     96  *		has switched away or will switch away shortly to allow other
     97  *		LWPs to run on the CPU.
     98  *
     99  *	LSSTOP:
    100  *
    101  *		Stopped: the LWP has been stopped as a result of a job
    102  *		control signal, or as a result of the ptrace() interface.
    103  *
    104  *		Stopped LWPs may run briefly within the kernel to handle
    105  *		signals that they receive, but will not return to user space
    106  *		until their process' state is changed away from stopped.
    107  *
    108  *		Single LWPs within a process can not be set stopped
    109  *		selectively: all actions that can stop or continue LWPs
    110  *		occur at the process level.
    111  *
    112  * State transitions
    113  *
    114  *	Note that the LSSTOP state may only be set when returning to
    115  *	user space in userret(), or when sleeping interruptably.  The
    116  *	LSSUSPENDED state may only be set in userret().  Before setting
    117  *	those states, we try to ensure that the LWPs will release all
    118  *	locks that they hold, and at a minimum try to ensure that the
    119  *	LWP can be set runnable again by a signal.
    120  *
    121  *	LWPs may transition states in the following ways:
    122  *
    123  *	 RUN -------> ONPROC		ONPROC -----> RUN
    124  *		    > STOPPED			    > SLEEP
    125  *		    > SUSPENDED			    > STOPPED
    126  *						    > SUSPENDED
    127  *						    > ZOMB
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP			    > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *		    > SUSPENDED
    136  *
    137  *	Other state transitions are possible with kernel threads (eg
    138  *	ONPROC -> IDL), but only happen under tightly controlled
    139  *	circumstances the side effects are understood.
    140  *
    141  * Locking
    142  *
    143  *	The majority of fields in 'struct lwp' are covered by a single,
    144  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    145  *	each field are documented in sys/lwp.h.
    146  *
    147  *	State transitions must be made with the LWP's general lock held,
    148  *	and may cause the LWP's lock pointer to change. Manipulation of
    149  *	the general lock is not performed directly, but through calls to
    150  *	lwp_lock(), lwp_relock() and similar.
    151  *
    152  *	States and their associated locks:
    153  *
    154  *	LSONPROC, LSZOMB:
    155  *
    156  *		Always covered by spc_lwplock, which protects running LWPs.
    157  *		This is a per-CPU lock.
    158  *
    159  *	LSIDL, LSRUN:
    160  *
    161  *		Always covered by spc_mutex, which protects the run queues.
    162  *		This is a per-CPU lock.
    163  *
    164  *	LSSLEEP:
    165  *
    166  *		Covered by a lock associated with the sleep queue that the
    167  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    168  *
    169  *	LSSTOP, LSSUSPENDED:
    170  *
    171  *		If the LWP was previously sleeping (l_wchan != NULL), then
    172  *		l_mutex references the sleep queue lock.  If the LWP was
    173  *		runnable or on the CPU when halted, or has been removed from
    174  *		the sleep queue since halted, then the lock is spc_lwplock.
    175  *
    176  *	The lock order is as follows:
    177  *
    178  *		spc::spc_lwplock ->
    179  *		    sleepq_t::sq_mutex ->
    180  *			tschain_t::tc_mutex ->
    181  *			    spc::spc_mutex
    182  *
    183  *	Each process has an scheduler state lock (proc::p_lock), and a
    184  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    185  *	so on.  When an LWP is to be entered into or removed from one of the
    186  *	following states, p_lock must be held and the process wide counters
    187  *	adjusted:
    188  *
    189  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    190  *
    191  *	Note that an LWP is considered running or likely to run soon if in
    192  *	one of the following states.  This affects the value of p_nrlwps:
    193  *
    194  *		LSRUN, LSONPROC, LSSLEEP
    195  *
    196  *	p_lock does not need to be held when transitioning among these
    197  *	three states.
    198  */
    199 
    200 #include <sys/cdefs.h>
    201 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.108 2008/04/28 20:24:03 martin Exp $");
    202 
    203 #include "opt_ddb.h"
    204 #include "opt_multiprocessor.h"
    205 #include "opt_lockdebug.h"
    206 
    207 #define _LWP_API_PRIVATE
    208 
    209 #include <sys/param.h>
    210 #include <sys/systm.h>
    211 #include <sys/cpu.h>
    212 #include <sys/pool.h>
    213 #include <sys/proc.h>
    214 #include <sys/syscallargs.h>
    215 #include <sys/syscall_stats.h>
    216 #include <sys/kauth.h>
    217 #include <sys/sleepq.h>
    218 #include <sys/user.h>
    219 #include <sys/lockdebug.h>
    220 #include <sys/kmem.h>
    221 #include <sys/pset.h>
    222 #include <sys/intr.h>
    223 #include <sys/lwpctl.h>
    224 #include <sys/atomic.h>
    225 
    226 #include <uvm/uvm_extern.h>
    227 #include <uvm/uvm_object.h>
    228 
    229 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    230 
    231 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    232     &pool_allocator_nointr, IPL_NONE);
    233 
    234 static pool_cache_t lwp_cache;
    235 static specificdata_domain_t lwp_specificdata_domain;
    236 
    237 void
    238 lwpinit(void)
    239 {
    240 
    241 	lwp_specificdata_domain = specificdata_domain_create();
    242 	KASSERT(lwp_specificdata_domain != NULL);
    243 	lwp_sys_init();
    244 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    245 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    246 }
    247 
    248 /*
    249  * Set an suspended.
    250  *
    251  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    252  * LWP before return.
    253  */
    254 int
    255 lwp_suspend(struct lwp *curl, struct lwp *t)
    256 {
    257 	int error;
    258 
    259 	KASSERT(mutex_owned(t->l_proc->p_lock));
    260 	KASSERT(lwp_locked(t, NULL));
    261 
    262 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    263 
    264 	/*
    265 	 * If the current LWP has been told to exit, we must not suspend anyone
    266 	 * else or deadlock could occur.  We won't return to userspace.
    267 	 */
    268 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    269 		lwp_unlock(t);
    270 		return (EDEADLK);
    271 	}
    272 
    273 	error = 0;
    274 
    275 	switch (t->l_stat) {
    276 	case LSRUN:
    277 	case LSONPROC:
    278 		t->l_flag |= LW_WSUSPEND;
    279 		lwp_need_userret(t);
    280 		lwp_unlock(t);
    281 		break;
    282 
    283 	case LSSLEEP:
    284 		t->l_flag |= LW_WSUSPEND;
    285 
    286 		/*
    287 		 * Kick the LWP and try to get it to the kernel boundary
    288 		 * so that it will release any locks that it holds.
    289 		 * setrunnable() will release the lock.
    290 		 */
    291 		if ((t->l_flag & LW_SINTR) != 0)
    292 			setrunnable(t);
    293 		else
    294 			lwp_unlock(t);
    295 		break;
    296 
    297 	case LSSUSPENDED:
    298 		lwp_unlock(t);
    299 		break;
    300 
    301 	case LSSTOP:
    302 		t->l_flag |= LW_WSUSPEND;
    303 		setrunnable(t);
    304 		break;
    305 
    306 	case LSIDL:
    307 	case LSZOMB:
    308 		error = EINTR; /* It's what Solaris does..... */
    309 		lwp_unlock(t);
    310 		break;
    311 	}
    312 
    313 	return (error);
    314 }
    315 
    316 /*
    317  * Restart a suspended LWP.
    318  *
    319  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    320  * LWP before return.
    321  */
    322 void
    323 lwp_continue(struct lwp *l)
    324 {
    325 
    326 	KASSERT(mutex_owned(l->l_proc->p_lock));
    327 	KASSERT(lwp_locked(l, NULL));
    328 
    329 	/* If rebooting or not suspended, then just bail out. */
    330 	if ((l->l_flag & LW_WREBOOT) != 0) {
    331 		lwp_unlock(l);
    332 		return;
    333 	}
    334 
    335 	l->l_flag &= ~LW_WSUSPEND;
    336 
    337 	if (l->l_stat != LSSUSPENDED) {
    338 		lwp_unlock(l);
    339 		return;
    340 	}
    341 
    342 	/* setrunnable() will release the lock. */
    343 	setrunnable(l);
    344 }
    345 
    346 /*
    347  * Wait for an LWP within the current process to exit.  If 'lid' is
    348  * non-zero, we are waiting for a specific LWP.
    349  *
    350  * Must be called with p->p_lock held.
    351  */
    352 int
    353 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    354 {
    355 	struct proc *p = l->l_proc;
    356 	struct lwp *l2;
    357 	int nfound, error;
    358 	lwpid_t curlid;
    359 	bool exiting;
    360 
    361 	KASSERT(mutex_owned(p->p_lock));
    362 
    363 	p->p_nlwpwait++;
    364 	l->l_waitingfor = lid;
    365 	curlid = l->l_lid;
    366 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    367 
    368 	for (;;) {
    369 		/*
    370 		 * Avoid a race between exit1() and sigexit(): if the
    371 		 * process is dumping core, then we need to bail out: call
    372 		 * into lwp_userret() where we will be suspended until the
    373 		 * deed is done.
    374 		 */
    375 		if ((p->p_sflag & PS_WCORE) != 0) {
    376 			mutex_exit(p->p_lock);
    377 			lwp_userret(l);
    378 #ifdef DIAGNOSTIC
    379 			panic("lwp_wait1");
    380 #endif
    381 			/* NOTREACHED */
    382 		}
    383 
    384 		/*
    385 		 * First off, drain any detached LWP that is waiting to be
    386 		 * reaped.
    387 		 */
    388 		while ((l2 = p->p_zomblwp) != NULL) {
    389 			p->p_zomblwp = NULL;
    390 			lwp_free(l2, false, false);/* releases proc mutex */
    391 			mutex_enter(p->p_lock);
    392 		}
    393 
    394 		/*
    395 		 * Now look for an LWP to collect.  If the whole process is
    396 		 * exiting, count detached LWPs as eligible to be collected,
    397 		 * but don't drain them here.
    398 		 */
    399 		nfound = 0;
    400 		error = 0;
    401 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    402 			/*
    403 			 * If a specific wait and the target is waiting on
    404 			 * us, then avoid deadlock.  This also traps LWPs
    405 			 * that try to wait on themselves.
    406 			 *
    407 			 * Note that this does not handle more complicated
    408 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    409 			 * can still be killed so it is not a major problem.
    410 			 */
    411 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    412 				error = EDEADLK;
    413 				break;
    414 			}
    415 			if (l2 == l)
    416 				continue;
    417 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    418 				nfound += exiting;
    419 				continue;
    420 			}
    421 			if (lid != 0) {
    422 				if (l2->l_lid != lid)
    423 					continue;
    424 				/*
    425 				 * Mark this LWP as the first waiter, if there
    426 				 * is no other.
    427 				 */
    428 				if (l2->l_waiter == 0)
    429 					l2->l_waiter = curlid;
    430 			} else if (l2->l_waiter != 0) {
    431 				/*
    432 				 * It already has a waiter - so don't
    433 				 * collect it.  If the waiter doesn't
    434 				 * grab it we'll get another chance
    435 				 * later.
    436 				 */
    437 				nfound++;
    438 				continue;
    439 			}
    440 			nfound++;
    441 
    442 			/* No need to lock the LWP in order to see LSZOMB. */
    443 			if (l2->l_stat != LSZOMB)
    444 				continue;
    445 
    446 			/*
    447 			 * We're no longer waiting.  Reset the "first waiter"
    448 			 * pointer on the target, in case it was us.
    449 			 */
    450 			l->l_waitingfor = 0;
    451 			l2->l_waiter = 0;
    452 			p->p_nlwpwait--;
    453 			if (departed)
    454 				*departed = l2->l_lid;
    455 			sched_lwp_collect(l2);
    456 
    457 			/* lwp_free() releases the proc lock. */
    458 			lwp_free(l2, false, false);
    459 			mutex_enter(p->p_lock);
    460 			return 0;
    461 		}
    462 
    463 		if (error != 0)
    464 			break;
    465 		if (nfound == 0) {
    466 			error = ESRCH;
    467 			break;
    468 		}
    469 
    470 		/*
    471 		 * The kernel is careful to ensure that it can not deadlock
    472 		 * when exiting - just keep waiting.
    473 		 */
    474 		if (exiting) {
    475 			KASSERT(p->p_nlwps > 1);
    476 			cv_wait(&p->p_lwpcv, p->p_lock);
    477 			continue;
    478 		}
    479 
    480 		/*
    481 		 * If all other LWPs are waiting for exits or suspends
    482 		 * and the supply of zombies and potential zombies is
    483 		 * exhausted, then we are about to deadlock.
    484 		 *
    485 		 * If the process is exiting (and this LWP is not the one
    486 		 * that is coordinating the exit) then bail out now.
    487 		 */
    488 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    489 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    490 			error = EDEADLK;
    491 			break;
    492 		}
    493 
    494 		/*
    495 		 * Sit around and wait for something to happen.  We'll be
    496 		 * awoken if any of the conditions examined change: if an
    497 		 * LWP exits, is collected, or is detached.
    498 		 */
    499 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    500 			break;
    501 	}
    502 
    503 	/*
    504 	 * We didn't find any LWPs to collect, we may have received a
    505 	 * signal, or some other condition has caused us to bail out.
    506 	 *
    507 	 * If waiting on a specific LWP, clear the waiters marker: some
    508 	 * other LWP may want it.  Then, kick all the remaining waiters
    509 	 * so that they can re-check for zombies and for deadlock.
    510 	 */
    511 	if (lid != 0) {
    512 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    513 			if (l2->l_lid == lid) {
    514 				if (l2->l_waiter == curlid)
    515 					l2->l_waiter = 0;
    516 				break;
    517 			}
    518 		}
    519 	}
    520 	p->p_nlwpwait--;
    521 	l->l_waitingfor = 0;
    522 	cv_broadcast(&p->p_lwpcv);
    523 
    524 	return error;
    525 }
    526 
    527 /*
    528  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    529  * The new LWP is created in state LSIDL and must be set running,
    530  * suspended, or stopped by the caller.
    531  */
    532 int
    533 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
    534 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    535 	   lwp_t **rnewlwpp, int sclass)
    536 {
    537 	struct lwp *l2, *isfree;
    538 	turnstile_t *ts;
    539 
    540 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    541 
    542 	/*
    543 	 * First off, reap any detached LWP waiting to be collected.
    544 	 * We can re-use its LWP structure and turnstile.
    545 	 */
    546 	isfree = NULL;
    547 	if (p2->p_zomblwp != NULL) {
    548 		mutex_enter(p2->p_lock);
    549 		if ((isfree = p2->p_zomblwp) != NULL) {
    550 			p2->p_zomblwp = NULL;
    551 			lwp_free(isfree, true, false);/* releases proc mutex */
    552 		} else
    553 			mutex_exit(p2->p_lock);
    554 	}
    555 	if (isfree == NULL) {
    556 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    557 		memset(l2, 0, sizeof(*l2));
    558 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    559 		SLIST_INIT(&l2->l_pi_lenders);
    560 	} else {
    561 		l2 = isfree;
    562 		ts = l2->l_ts;
    563 		KASSERT(l2->l_inheritedprio == -1);
    564 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    565 		memset(l2, 0, sizeof(*l2));
    566 		l2->l_ts = ts;
    567 	}
    568 
    569 	l2->l_stat = LSIDL;
    570 	l2->l_proc = p2;
    571 	l2->l_refcnt = 1;
    572 	l2->l_class = sclass;
    573 	l2->l_kpriority = l1->l_kpriority;
    574 	l2->l_kpribase = PRI_KERNEL;
    575 	l2->l_priority = l1->l_priority;
    576 	l2->l_inheritedprio = -1;
    577 	l2->l_flag = inmem ? LW_INMEM : 0;
    578 	l2->l_pflag = LP_MPSAFE;
    579 	l2->l_fd = p2->p_fd;
    580 
    581 	if (p2->p_flag & PK_SYSTEM) {
    582 		/* Mark it as a system LWP and not a candidate for swapping */
    583 		l2->l_flag |= LW_SYSTEM;
    584 	}
    585 
    586 	kpreempt_disable();
    587 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    588 	l2->l_cpu = l1->l_cpu;
    589 	kpreempt_enable();
    590 
    591 	lwp_initspecific(l2);
    592 	sched_lwp_fork(l1, l2);
    593 	lwp_update_creds(l2);
    594 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    595 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    596 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    597 	cv_init(&l2->l_sigcv, "sigwait");
    598 	l2->l_syncobj = &sched_syncobj;
    599 
    600 	if (rnewlwpp != NULL)
    601 		*rnewlwpp = l2;
    602 
    603 	l2->l_addr = UAREA_TO_USER(uaddr);
    604 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    605 	    (arg != NULL) ? arg : l2);
    606 
    607 	mutex_enter(p2->p_lock);
    608 
    609 	if ((flags & LWP_DETACHED) != 0) {
    610 		l2->l_prflag = LPR_DETACHED;
    611 		p2->p_ndlwps++;
    612 	} else
    613 		l2->l_prflag = 0;
    614 
    615 	l2->l_sigmask = l1->l_sigmask;
    616 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    617 	sigemptyset(&l2->l_sigpend.sp_set);
    618 
    619 	p2->p_nlwpid++;
    620 	if (p2->p_nlwpid == 0)
    621 		p2->p_nlwpid++;
    622 	l2->l_lid = p2->p_nlwpid;
    623 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    624 	p2->p_nlwps++;
    625 
    626 	mutex_exit(p2->p_lock);
    627 
    628 	mutex_enter(proc_lock);
    629 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    630 	mutex_exit(proc_lock);
    631 
    632 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    633 		/* Locking is needed, since LWP is in the list of all LWPs */
    634 		lwp_lock(l2);
    635 		/* Inherit a processor-set */
    636 		l2->l_psid = l1->l_psid;
    637 		/* Inherit an affinity */
    638 		memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
    639 		/* Look for a CPU to start */
    640 		l2->l_cpu = sched_takecpu(l2);
    641 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    642 	}
    643 
    644 	SYSCALL_TIME_LWP_INIT(l2);
    645 
    646 	if (p2->p_emul->e_lwp_fork)
    647 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    648 
    649 	return (0);
    650 }
    651 
    652 /*
    653  * Called by MD code when a new LWP begins execution.  Must be called
    654  * with the previous LWP locked (so at splsched), or if there is no
    655  * previous LWP, at splsched.
    656  */
    657 void
    658 lwp_startup(struct lwp *prev, struct lwp *new)
    659 {
    660 
    661 	KASSERT(kpreempt_disabled());
    662 	if (prev != NULL) {
    663 		/*
    664 		 * Normalize the count of the spin-mutexes, it was
    665 		 * increased in mi_switch().  Unmark the state of
    666 		 * context switch - it is finished for previous LWP.
    667 		 */
    668 		curcpu()->ci_mtx_count++;
    669 		membar_exit();
    670 		prev->l_ctxswtch = 0;
    671 	}
    672 	KPREEMPT_DISABLE(new);
    673 	spl0();
    674 	pmap_activate(new);
    675 	LOCKDEBUG_BARRIER(NULL, 0);
    676 	KPREEMPT_ENABLE(new);
    677 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    678 		KERNEL_LOCK(1, new);
    679 	}
    680 }
    681 
    682 /*
    683  * Exit an LWP.
    684  */
    685 void
    686 lwp_exit(struct lwp *l)
    687 {
    688 	struct proc *p = l->l_proc;
    689 	struct lwp *l2;
    690 	bool current;
    691 
    692 	current = (l == curlwp);
    693 
    694 	KASSERT(current || l->l_stat == LSIDL);
    695 
    696 	/*
    697 	 * Verify that we hold no locks other than the kernel lock.
    698 	 */
    699 #ifdef MULTIPROCESSOR
    700 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    701 #else
    702 	LOCKDEBUG_BARRIER(NULL, 0);
    703 #endif
    704 
    705 	/*
    706 	 * If we are the last live LWP in a process, we need to exit the
    707 	 * entire process.  We do so with an exit status of zero, because
    708 	 * it's a "controlled" exit, and because that's what Solaris does.
    709 	 *
    710 	 * We are not quite a zombie yet, but for accounting purposes we
    711 	 * must increment the count of zombies here.
    712 	 *
    713 	 * Note: the last LWP's specificdata will be deleted here.
    714 	 */
    715 	mutex_enter(p->p_lock);
    716 	if (p->p_nlwps - p->p_nzlwps == 1) {
    717 		KASSERT(current == true);
    718 		/* XXXSMP kernel_lock not held */
    719 		exit1(l, 0);
    720 		/* NOTREACHED */
    721 	}
    722 	p->p_nzlwps++;
    723 	mutex_exit(p->p_lock);
    724 
    725 	if (p->p_emul->e_lwp_exit)
    726 		(*p->p_emul->e_lwp_exit)(l);
    727 
    728 	/* Delete the specificdata while it's still safe to sleep. */
    729 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    730 
    731 	/*
    732 	 * Release our cached credentials.
    733 	 */
    734 	kauth_cred_free(l->l_cred);
    735 	callout_destroy(&l->l_timeout_ch);
    736 
    737 	/*
    738 	 * While we can still block, mark the LWP as unswappable to
    739 	 * prevent conflicts with the with the swapper.
    740 	 */
    741 	if (current)
    742 		uvm_lwp_hold(l);
    743 
    744 	/*
    745 	 * Remove the LWP from the global list.
    746 	 */
    747 	mutex_enter(proc_lock);
    748 	LIST_REMOVE(l, l_list);
    749 	mutex_exit(proc_lock);
    750 
    751 	/*
    752 	 * Get rid of all references to the LWP that others (e.g. procfs)
    753 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    754 	 * mark it waiting for collection in the proc structure.  Note that
    755 	 * before we can do that, we need to free any other dead, deatched
    756 	 * LWP waiting to meet its maker.
    757 	 */
    758 	mutex_enter(p->p_lock);
    759 	lwp_drainrefs(l);
    760 
    761 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    762 		while ((l2 = p->p_zomblwp) != NULL) {
    763 			p->p_zomblwp = NULL;
    764 			lwp_free(l2, false, false);/* releases proc mutex */
    765 			mutex_enter(p->p_lock);
    766 			l->l_refcnt++;
    767 			lwp_drainrefs(l);
    768 		}
    769 		p->p_zomblwp = l;
    770 	}
    771 
    772 	/*
    773 	 * If we find a pending signal for the process and we have been
    774 	 * asked to check for signals, then we loose: arrange to have
    775 	 * all other LWPs in the process check for signals.
    776 	 */
    777 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    778 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    779 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    780 			lwp_lock(l2);
    781 			l2->l_flag |= LW_PENDSIG;
    782 			lwp_unlock(l2);
    783 		}
    784 	}
    785 
    786 	lwp_lock(l);
    787 	l->l_stat = LSZOMB;
    788 	if (l->l_name != NULL)
    789 		strcpy(l->l_name, "(zombie)");
    790 	lwp_unlock(l);
    791 	p->p_nrlwps--;
    792 	cv_broadcast(&p->p_lwpcv);
    793 	if (l->l_lwpctl != NULL)
    794 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    795 	mutex_exit(p->p_lock);
    796 
    797 	/*
    798 	 * We can no longer block.  At this point, lwp_free() may already
    799 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    800 	 *
    801 	 * Free MD LWP resources.
    802 	 */
    803 #ifndef __NO_CPU_LWP_FREE
    804 	cpu_lwp_free(l, 0);
    805 #endif
    806 
    807 	if (current) {
    808 		pmap_deactivate(l);
    809 
    810 		/*
    811 		 * Release the kernel lock, and switch away into
    812 		 * oblivion.
    813 		 */
    814 #ifdef notyet
    815 		/* XXXSMP hold in lwp_userret() */
    816 		KERNEL_UNLOCK_LAST(l);
    817 #else
    818 		KERNEL_UNLOCK_ALL(l, NULL);
    819 #endif
    820 		lwp_exit_switchaway(l);
    821 	}
    822 }
    823 
    824 void
    825 lwp_exit_switchaway(struct lwp *l)
    826 {
    827 	struct cpu_info *ci;
    828 	struct lwp *idlelwp;
    829 
    830 	(void)splsched();
    831 	l->l_flag &= ~LW_RUNNING;
    832 	ci = curcpu();
    833 	ci->ci_data.cpu_nswtch++;
    834 	idlelwp = ci->ci_data.cpu_idlelwp;
    835 	idlelwp->l_stat = LSONPROC;
    836 
    837 	/*
    838 	 * cpu_onproc must be updated with the CPU locked, as
    839 	 * aston() may try to set a AST pending on the LWP (and
    840 	 * it does so with the CPU locked).  Otherwise, the LWP
    841 	 * may be destroyed before the AST can be set, leading
    842 	 * to a user-after-free.
    843 	 */
    844 	spc_lock(ci);
    845 	ci->ci_data.cpu_onproc = idlelwp;
    846 	spc_unlock(ci);
    847 	cpu_switchto(NULL, idlelwp, false);
    848 }
    849 
    850 /*
    851  * Free a dead LWP's remaining resources.
    852  *
    853  * XXXLWP limits.
    854  */
    855 void
    856 lwp_free(struct lwp *l, bool recycle, bool last)
    857 {
    858 	struct proc *p = l->l_proc;
    859 	struct rusage *ru;
    860 	ksiginfoq_t kq;
    861 
    862 	KASSERT(l != curlwp);
    863 
    864 	/*
    865 	 * If this was not the last LWP in the process, then adjust
    866 	 * counters and unlock.
    867 	 */
    868 	if (!last) {
    869 		/*
    870 		 * Add the LWP's run time to the process' base value.
    871 		 * This needs to co-incide with coming off p_lwps.
    872 		 */
    873 		bintime_add(&p->p_rtime, &l->l_rtime);
    874 		p->p_pctcpu += l->l_pctcpu;
    875 		ru = &p->p_stats->p_ru;
    876 		ruadd(ru, &l->l_ru);
    877 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    878 		ru->ru_nivcsw += l->l_nivcsw;
    879 		LIST_REMOVE(l, l_sibling);
    880 		p->p_nlwps--;
    881 		p->p_nzlwps--;
    882 		if ((l->l_prflag & LPR_DETACHED) != 0)
    883 			p->p_ndlwps--;
    884 
    885 		/*
    886 		 * Have any LWPs sleeping in lwp_wait() recheck for
    887 		 * deadlock.
    888 		 */
    889 		cv_broadcast(&p->p_lwpcv);
    890 		mutex_exit(p->p_lock);
    891 	}
    892 
    893 #ifdef MULTIPROCESSOR
    894 	/*
    895 	 * In the unlikely event that the LWP is still on the CPU,
    896 	 * then spin until it has switched away.  We need to release
    897 	 * all locks to avoid deadlock against interrupt handlers on
    898 	 * the target CPU.
    899 	 */
    900 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    901 		int count;
    902 		(void)count; /* XXXgcc */
    903 		KERNEL_UNLOCK_ALL(curlwp, &count);
    904 		while ((l->l_flag & LW_RUNNING) != 0 ||
    905 		    l->l_cpu->ci_curlwp == l)
    906 			SPINLOCK_BACKOFF_HOOK;
    907 		KERNEL_LOCK(count, curlwp);
    908 	}
    909 #endif
    910 
    911 	/*
    912 	 * Destroy the LWP's remaining signal information.
    913 	 */
    914 	ksiginfo_queue_init(&kq);
    915 	sigclear(&l->l_sigpend, NULL, &kq);
    916 	ksiginfo_queue_drain(&kq);
    917 	cv_destroy(&l->l_sigcv);
    918 	mutex_destroy(&l->l_swaplock);
    919 
    920 	/*
    921 	 * Free the LWP's turnstile and the LWP structure itself unless the
    922 	 * caller wants to recycle them.  Also, free the scheduler specific
    923 	 * data.
    924 	 *
    925 	 * We can't return turnstile0 to the pool (it didn't come from it),
    926 	 * so if it comes up just drop it quietly and move on.
    927 	 *
    928 	 * We don't recycle the VM resources at this time.
    929 	 */
    930 	if (l->l_lwpctl != NULL)
    931 		lwp_ctl_free(l);
    932 	sched_lwp_exit(l);
    933 
    934 	if (!recycle && l->l_ts != &turnstile0)
    935 		pool_cache_put(turnstile_cache, l->l_ts);
    936 	if (l->l_name != NULL)
    937 		kmem_free(l->l_name, MAXCOMLEN);
    938 #ifndef __NO_CPU_LWP_FREE
    939 	cpu_lwp_free2(l);
    940 #endif
    941 	KASSERT((l->l_flag & LW_INMEM) != 0);
    942 	uvm_lwp_exit(l);
    943 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    944 	KASSERT(l->l_inheritedprio == -1);
    945 	if (!recycle)
    946 		pool_cache_put(lwp_cache, l);
    947 }
    948 
    949 /*
    950  * Pick a LWP to represent the process for those operations which
    951  * want information about a "process" that is actually associated
    952  * with a LWP.
    953  *
    954  * If 'locking' is false, no locking or lock checks are performed.
    955  * This is intended for use by DDB.
    956  *
    957  * We don't bother locking the LWP here, since code that uses this
    958  * interface is broken by design and an exact match is not required.
    959  */
    960 struct lwp *
    961 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    962 {
    963 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    964 	struct lwp *signalled;
    965 	int cnt;
    966 
    967 	if (locking) {
    968 		KASSERT(mutex_owned(p->p_lock));
    969 	}
    970 
    971 	/* Trivial case: only one LWP */
    972 	if (p->p_nlwps == 1) {
    973 		l = LIST_FIRST(&p->p_lwps);
    974 		if (nrlwps)
    975 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
    976 		return l;
    977 	}
    978 
    979 	cnt = 0;
    980 	switch (p->p_stat) {
    981 	case SSTOP:
    982 	case SACTIVE:
    983 		/* Pick the most live LWP */
    984 		onproc = running = sleeping = stopped = suspended = NULL;
    985 		signalled = NULL;
    986 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    987 			if ((l->l_flag & LW_IDLE) != 0) {
    988 				continue;
    989 			}
    990 			if (l->l_lid == p->p_sigctx.ps_lwp)
    991 				signalled = l;
    992 			switch (l->l_stat) {
    993 			case LSONPROC:
    994 				onproc = l;
    995 				cnt++;
    996 				break;
    997 			case LSRUN:
    998 				running = l;
    999 				cnt++;
   1000 				break;
   1001 			case LSSLEEP:
   1002 				sleeping = l;
   1003 				break;
   1004 			case LSSTOP:
   1005 				stopped = l;
   1006 				break;
   1007 			case LSSUSPENDED:
   1008 				suspended = l;
   1009 				break;
   1010 			}
   1011 		}
   1012 		if (nrlwps)
   1013 			*nrlwps = cnt;
   1014 		if (signalled)
   1015 			l = signalled;
   1016 		else if (onproc)
   1017 			l = onproc;
   1018 		else if (running)
   1019 			l = running;
   1020 		else if (sleeping)
   1021 			l = sleeping;
   1022 		else if (stopped)
   1023 			l = stopped;
   1024 		else if (suspended)
   1025 			l = suspended;
   1026 		else
   1027 			break;
   1028 		return l;
   1029 #ifdef DIAGNOSTIC
   1030 	case SIDL:
   1031 	case SZOMB:
   1032 	case SDYING:
   1033 	case SDEAD:
   1034 		if (locking)
   1035 			mutex_exit(p->p_lock);
   1036 		/* We have more than one LWP and we're in SIDL?
   1037 		 * How'd that happen?
   1038 		 */
   1039 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
   1040 		    p->p_pid, p->p_comm, p->p_stat);
   1041 		break;
   1042 	default:
   1043 		if (locking)
   1044 			mutex_exit(p->p_lock);
   1045 		panic("Process %d (%s) in unknown state %d",
   1046 		    p->p_pid, p->p_comm, p->p_stat);
   1047 #endif
   1048 	}
   1049 
   1050 	if (locking)
   1051 		mutex_exit(p->p_lock);
   1052 	panic("proc_representative_lwp: couldn't find a lwp for process"
   1053 		" %d (%s)", p->p_pid, p->p_comm);
   1054 	/* NOTREACHED */
   1055 	return NULL;
   1056 }
   1057 
   1058 /*
   1059  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1060  */
   1061 void
   1062 lwp_migrate(lwp_t *l, struct cpu_info *ci)
   1063 {
   1064 	struct schedstate_percpu *spc;
   1065 	KASSERT(lwp_locked(l, NULL));
   1066 
   1067 	if (l->l_cpu == ci) {
   1068 		lwp_unlock(l);
   1069 		return;
   1070 	}
   1071 
   1072 	spc = &ci->ci_schedstate;
   1073 	switch (l->l_stat) {
   1074 	case LSRUN:
   1075 		if (l->l_flag & LW_INMEM) {
   1076 			l->l_target_cpu = ci;
   1077 			break;
   1078 		}
   1079 	case LSIDL:
   1080 		l->l_cpu = ci;
   1081 		lwp_unlock_to(l, spc->spc_mutex);
   1082 		KASSERT(!mutex_owned(spc->spc_mutex));
   1083 		return;
   1084 	case LSSLEEP:
   1085 		l->l_cpu = ci;
   1086 		break;
   1087 	case LSSTOP:
   1088 	case LSSUSPENDED:
   1089 		if (l->l_wchan != NULL) {
   1090 			l->l_cpu = ci;
   1091 			break;
   1092 		}
   1093 	case LSONPROC:
   1094 		l->l_target_cpu = ci;
   1095 		break;
   1096 	}
   1097 	lwp_unlock(l);
   1098 }
   1099 
   1100 /*
   1101  * Find the LWP in the process.  Arguments may be zero, in such case,
   1102  * the calling process and first LWP in the list will be used.
   1103  * On success - returns proc locked.
   1104  */
   1105 struct lwp *
   1106 lwp_find2(pid_t pid, lwpid_t lid)
   1107 {
   1108 	proc_t *p;
   1109 	lwp_t *l;
   1110 
   1111 	/* Find the process */
   1112 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
   1113 	if (p == NULL)
   1114 		return NULL;
   1115 	mutex_enter(p->p_lock);
   1116 	if (pid != 0) {
   1117 		/* Case of p_find */
   1118 		mutex_exit(proc_lock);
   1119 	}
   1120 
   1121 	/* Find the thread */
   1122 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
   1123 	if (l == NULL) {
   1124 		mutex_exit(p->p_lock);
   1125 	}
   1126 
   1127 	return l;
   1128 }
   1129 
   1130 /*
   1131  * Look up a live LWP within the speicifed process, and return it locked.
   1132  *
   1133  * Must be called with p->p_lock held.
   1134  */
   1135 struct lwp *
   1136 lwp_find(struct proc *p, int id)
   1137 {
   1138 	struct lwp *l;
   1139 
   1140 	KASSERT(mutex_owned(p->p_lock));
   1141 
   1142 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1143 		if (l->l_lid == id)
   1144 			break;
   1145 	}
   1146 
   1147 	/*
   1148 	 * No need to lock - all of these conditions will
   1149 	 * be visible with the process level mutex held.
   1150 	 */
   1151 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1152 		l = NULL;
   1153 
   1154 	return l;
   1155 }
   1156 
   1157 /*
   1158  * Update an LWP's cached credentials to mirror the process' master copy.
   1159  *
   1160  * This happens early in the syscall path, on user trap, and on LWP
   1161  * creation.  A long-running LWP can also voluntarily choose to update
   1162  * it's credentials by calling this routine.  This may be called from
   1163  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1164  */
   1165 void
   1166 lwp_update_creds(struct lwp *l)
   1167 {
   1168 	kauth_cred_t oc;
   1169 	struct proc *p;
   1170 
   1171 	p = l->l_proc;
   1172 	oc = l->l_cred;
   1173 
   1174 	mutex_enter(p->p_lock);
   1175 	kauth_cred_hold(p->p_cred);
   1176 	l->l_cred = p->p_cred;
   1177 	l->l_prflag &= ~LPR_CRMOD;
   1178 	mutex_exit(p->p_lock);
   1179 	if (oc != NULL)
   1180 		kauth_cred_free(oc);
   1181 }
   1182 
   1183 /*
   1184  * Verify that an LWP is locked, and optionally verify that the lock matches
   1185  * one we specify.
   1186  */
   1187 int
   1188 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1189 {
   1190 	kmutex_t *cur = l->l_mutex;
   1191 
   1192 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1193 }
   1194 
   1195 /*
   1196  * Lock an LWP.
   1197  */
   1198 void
   1199 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1200 {
   1201 
   1202 	/*
   1203 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1204 	 *
   1205 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1206 	 */
   1207 #if 1
   1208 	while (l->l_mutex != old) {
   1209 #else
   1210 	for (;;) {
   1211 #endif
   1212 		mutex_spin_exit(old);
   1213 		old = l->l_mutex;
   1214 		mutex_spin_enter(old);
   1215 
   1216 		/*
   1217 		 * mutex_enter() will have posted a read barrier.  Re-test
   1218 		 * l->l_mutex.  If it has changed, we need to try again.
   1219 		 */
   1220 #if 1
   1221 	}
   1222 #else
   1223 	} while (__predict_false(l->l_mutex != old));
   1224 #endif
   1225 }
   1226 
   1227 /*
   1228  * Lend a new mutex to an LWP.  The old mutex must be held.
   1229  */
   1230 void
   1231 lwp_setlock(struct lwp *l, kmutex_t *new)
   1232 {
   1233 
   1234 	KASSERT(mutex_owned(l->l_mutex));
   1235 
   1236 	membar_exit();
   1237 	l->l_mutex = new;
   1238 }
   1239 
   1240 /*
   1241  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1242  * must be held.
   1243  */
   1244 void
   1245 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1246 {
   1247 	kmutex_t *old;
   1248 
   1249 	KASSERT(mutex_owned(l->l_mutex));
   1250 
   1251 	old = l->l_mutex;
   1252 	membar_exit();
   1253 	l->l_mutex = new;
   1254 	mutex_spin_exit(old);
   1255 }
   1256 
   1257 /*
   1258  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1259  * locked.
   1260  */
   1261 void
   1262 lwp_relock(struct lwp *l, kmutex_t *new)
   1263 {
   1264 	kmutex_t *old;
   1265 
   1266 	KASSERT(mutex_owned(l->l_mutex));
   1267 
   1268 	old = l->l_mutex;
   1269 	if (old != new) {
   1270 		mutex_spin_enter(new);
   1271 		l->l_mutex = new;
   1272 		mutex_spin_exit(old);
   1273 	}
   1274 }
   1275 
   1276 int
   1277 lwp_trylock(struct lwp *l)
   1278 {
   1279 	kmutex_t *old;
   1280 
   1281 	for (;;) {
   1282 		if (!mutex_tryenter(old = l->l_mutex))
   1283 			return 0;
   1284 		if (__predict_true(l->l_mutex == old))
   1285 			return 1;
   1286 		mutex_spin_exit(old);
   1287 	}
   1288 }
   1289 
   1290 u_int
   1291 lwp_unsleep(lwp_t *l, bool cleanup)
   1292 {
   1293 
   1294 	KASSERT(mutex_owned(l->l_mutex));
   1295 
   1296 	return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1297 }
   1298 
   1299 
   1300 /*
   1301  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1302  * set.
   1303  */
   1304 void
   1305 lwp_userret(struct lwp *l)
   1306 {
   1307 	struct proc *p;
   1308 	void (*hook)(void);
   1309 	int sig;
   1310 
   1311 	p = l->l_proc;
   1312 
   1313 #ifndef __HAVE_FAST_SOFTINTS
   1314 	/* Run pending soft interrupts. */
   1315 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1316 		softint_overlay();
   1317 #endif
   1318 
   1319 	/*
   1320 	 * It should be safe to do this read unlocked on a multiprocessor
   1321 	 * system..
   1322 	 */
   1323 	while ((l->l_flag & LW_USERRET) != 0) {
   1324 		/*
   1325 		 * Process pending signals first, unless the process
   1326 		 * is dumping core or exiting, where we will instead
   1327 		 * enter the LW_WSUSPEND case below.
   1328 		 */
   1329 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1330 		    LW_PENDSIG) {
   1331 			mutex_enter(p->p_lock);
   1332 			while ((sig = issignal(l)) != 0)
   1333 				postsig(sig);
   1334 			mutex_exit(p->p_lock);
   1335 		}
   1336 
   1337 		/*
   1338 		 * Core-dump or suspend pending.
   1339 		 *
   1340 		 * In case of core dump, suspend ourselves, so that the
   1341 		 * kernel stack and therefore the userland registers saved
   1342 		 * in the trapframe are around for coredump() to write them
   1343 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1344 		 * will write the core file out once all other LWPs are
   1345 		 * suspended.
   1346 		 */
   1347 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1348 			mutex_enter(p->p_lock);
   1349 			p->p_nrlwps--;
   1350 			cv_broadcast(&p->p_lwpcv);
   1351 			lwp_lock(l);
   1352 			l->l_stat = LSSUSPENDED;
   1353 			lwp_unlock(l);
   1354 			mutex_exit(p->p_lock);
   1355 			lwp_lock(l);
   1356 			mi_switch(l);
   1357 		}
   1358 
   1359 		/* Process is exiting. */
   1360 		if ((l->l_flag & LW_WEXIT) != 0) {
   1361 			lwp_exit(l);
   1362 			KASSERT(0);
   1363 			/* NOTREACHED */
   1364 		}
   1365 
   1366 		/* Call userret hook; used by Linux emulation. */
   1367 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1368 			lwp_lock(l);
   1369 			l->l_flag &= ~LW_WUSERRET;
   1370 			lwp_unlock(l);
   1371 			hook = p->p_userret;
   1372 			p->p_userret = NULL;
   1373 			(*hook)();
   1374 		}
   1375 	}
   1376 }
   1377 
   1378 /*
   1379  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1380  */
   1381 void
   1382 lwp_need_userret(struct lwp *l)
   1383 {
   1384 	KASSERT(lwp_locked(l, NULL));
   1385 
   1386 	/*
   1387 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1388 	 * that the condition will be seen before forcing the LWP to enter
   1389 	 * kernel mode.
   1390 	 */
   1391 	membar_producer();
   1392 	cpu_signotify(l);
   1393 }
   1394 
   1395 /*
   1396  * Add one reference to an LWP.  This will prevent the LWP from
   1397  * exiting, thus keep the lwp structure and PCB around to inspect.
   1398  */
   1399 void
   1400 lwp_addref(struct lwp *l)
   1401 {
   1402 
   1403 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1404 	KASSERT(l->l_stat != LSZOMB);
   1405 	KASSERT(l->l_refcnt != 0);
   1406 
   1407 	l->l_refcnt++;
   1408 }
   1409 
   1410 /*
   1411  * Remove one reference to an LWP.  If this is the last reference,
   1412  * then we must finalize the LWP's death.
   1413  */
   1414 void
   1415 lwp_delref(struct lwp *l)
   1416 {
   1417 	struct proc *p = l->l_proc;
   1418 
   1419 	mutex_enter(p->p_lock);
   1420 	KASSERT(l->l_stat != LSZOMB);
   1421 	KASSERT(l->l_refcnt > 0);
   1422 	if (--l->l_refcnt == 0)
   1423 		cv_broadcast(&p->p_lwpcv);
   1424 	mutex_exit(p->p_lock);
   1425 }
   1426 
   1427 /*
   1428  * Drain all references to the current LWP.
   1429  */
   1430 void
   1431 lwp_drainrefs(struct lwp *l)
   1432 {
   1433 	struct proc *p = l->l_proc;
   1434 
   1435 	KASSERT(mutex_owned(p->p_lock));
   1436 	KASSERT(l->l_refcnt != 0);
   1437 
   1438 	l->l_refcnt--;
   1439 	while (l->l_refcnt != 0)
   1440 		cv_wait(&p->p_lwpcv, p->p_lock);
   1441 }
   1442 
   1443 /*
   1444  * lwp_specific_key_create --
   1445  *	Create a key for subsystem lwp-specific data.
   1446  */
   1447 int
   1448 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1449 {
   1450 
   1451 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1452 }
   1453 
   1454 /*
   1455  * lwp_specific_key_delete --
   1456  *	Delete a key for subsystem lwp-specific data.
   1457  */
   1458 void
   1459 lwp_specific_key_delete(specificdata_key_t key)
   1460 {
   1461 
   1462 	specificdata_key_delete(lwp_specificdata_domain, key);
   1463 }
   1464 
   1465 /*
   1466  * lwp_initspecific --
   1467  *	Initialize an LWP's specificdata container.
   1468  */
   1469 void
   1470 lwp_initspecific(struct lwp *l)
   1471 {
   1472 	int error;
   1473 
   1474 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1475 	KASSERT(error == 0);
   1476 }
   1477 
   1478 /*
   1479  * lwp_finispecific --
   1480  *	Finalize an LWP's specificdata container.
   1481  */
   1482 void
   1483 lwp_finispecific(struct lwp *l)
   1484 {
   1485 
   1486 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1487 }
   1488 
   1489 /*
   1490  * lwp_getspecific --
   1491  *	Return lwp-specific data corresponding to the specified key.
   1492  *
   1493  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1494  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1495  *	LWP's specifc data, care must be taken to ensure that doing so
   1496  *	would not cause internal data structure inconsistency (i.e. caller
   1497  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1498  *	or lwp_setspecific() call).
   1499  */
   1500 void *
   1501 lwp_getspecific(specificdata_key_t key)
   1502 {
   1503 
   1504 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1505 						  &curlwp->l_specdataref, key));
   1506 }
   1507 
   1508 void *
   1509 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1510 {
   1511 
   1512 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1513 						  &l->l_specdataref, key));
   1514 }
   1515 
   1516 /*
   1517  * lwp_setspecific --
   1518  *	Set lwp-specific data corresponding to the specified key.
   1519  */
   1520 void
   1521 lwp_setspecific(specificdata_key_t key, void *data)
   1522 {
   1523 
   1524 	specificdata_setspecific(lwp_specificdata_domain,
   1525 				 &curlwp->l_specdataref, key, data);
   1526 }
   1527 
   1528 /*
   1529  * Allocate a new lwpctl structure for a user LWP.
   1530  */
   1531 int
   1532 lwp_ctl_alloc(vaddr_t *uaddr)
   1533 {
   1534 	lcproc_t *lp;
   1535 	u_int bit, i, offset;
   1536 	struct uvm_object *uao;
   1537 	int error;
   1538 	lcpage_t *lcp;
   1539 	proc_t *p;
   1540 	lwp_t *l;
   1541 
   1542 	l = curlwp;
   1543 	p = l->l_proc;
   1544 
   1545 	if (l->l_lcpage != NULL) {
   1546 		lcp = l->l_lcpage;
   1547 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1548 		return (EINVAL);
   1549 	}
   1550 
   1551 	/* First time around, allocate header structure for the process. */
   1552 	if ((lp = p->p_lwpctl) == NULL) {
   1553 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1554 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1555 		lp->lp_uao = NULL;
   1556 		TAILQ_INIT(&lp->lp_pages);
   1557 		mutex_enter(p->p_lock);
   1558 		if (p->p_lwpctl == NULL) {
   1559 			p->p_lwpctl = lp;
   1560 			mutex_exit(p->p_lock);
   1561 		} else {
   1562 			mutex_exit(p->p_lock);
   1563 			mutex_destroy(&lp->lp_lock);
   1564 			kmem_free(lp, sizeof(*lp));
   1565 			lp = p->p_lwpctl;
   1566 		}
   1567 	}
   1568 
   1569  	/*
   1570  	 * Set up an anonymous memory region to hold the shared pages.
   1571  	 * Map them into the process' address space.  The user vmspace
   1572  	 * gets the first reference on the UAO.
   1573  	 */
   1574 	mutex_enter(&lp->lp_lock);
   1575 	if (lp->lp_uao == NULL) {
   1576 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1577 		lp->lp_cur = 0;
   1578 		lp->lp_max = LWPCTL_UAREA_SZ;
   1579 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1580 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1581 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1582 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1583 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1584 		if (error != 0) {
   1585 			uao_detach(lp->lp_uao);
   1586 			lp->lp_uao = NULL;
   1587 			mutex_exit(&lp->lp_lock);
   1588 			return error;
   1589 		}
   1590 	}
   1591 
   1592 	/* Get a free block and allocate for this LWP. */
   1593 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1594 		if (lcp->lcp_nfree != 0)
   1595 			break;
   1596 	}
   1597 	if (lcp == NULL) {
   1598 		/* Nothing available - try to set up a free page. */
   1599 		if (lp->lp_cur == lp->lp_max) {
   1600 			mutex_exit(&lp->lp_lock);
   1601 			return ENOMEM;
   1602 		}
   1603 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1604 		if (lcp == NULL) {
   1605 			mutex_exit(&lp->lp_lock);
   1606 			return ENOMEM;
   1607 		}
   1608 		/*
   1609 		 * Wire the next page down in kernel space.  Since this
   1610 		 * is a new mapping, we must add a reference.
   1611 		 */
   1612 		uao = lp->lp_uao;
   1613 		(*uao->pgops->pgo_reference)(uao);
   1614 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1615 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1616 		    uao, lp->lp_cur, PAGE_SIZE,
   1617 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1618 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1619 		if (error != 0) {
   1620 			mutex_exit(&lp->lp_lock);
   1621 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1622 			(*uao->pgops->pgo_detach)(uao);
   1623 			return error;
   1624 		}
   1625 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1626 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1627 		if (error != 0) {
   1628 			mutex_exit(&lp->lp_lock);
   1629 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1630 			    lcp->lcp_kaddr + PAGE_SIZE);
   1631 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1632 			return error;
   1633 		}
   1634 		/* Prepare the page descriptor and link into the list. */
   1635 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1636 		lp->lp_cur += PAGE_SIZE;
   1637 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1638 		lcp->lcp_rotor = 0;
   1639 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1640 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1641 	}
   1642 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1643 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1644 			i = 0;
   1645 	}
   1646 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1647 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1648 	lcp->lcp_rotor = i;
   1649 	lcp->lcp_nfree--;
   1650 	l->l_lcpage = lcp;
   1651 	offset = (i << 5) + bit;
   1652 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1653 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1654 	mutex_exit(&lp->lp_lock);
   1655 
   1656 	KPREEMPT_DISABLE(l);
   1657 	l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
   1658 	KPREEMPT_ENABLE(l);
   1659 
   1660 	return 0;
   1661 }
   1662 
   1663 /*
   1664  * Free an lwpctl structure back to the per-process list.
   1665  */
   1666 void
   1667 lwp_ctl_free(lwp_t *l)
   1668 {
   1669 	lcproc_t *lp;
   1670 	lcpage_t *lcp;
   1671 	u_int map, offset;
   1672 
   1673 	lp = l->l_proc->p_lwpctl;
   1674 	KASSERT(lp != NULL);
   1675 
   1676 	lcp = l->l_lcpage;
   1677 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1678 	KASSERT(offset < LWPCTL_PER_PAGE);
   1679 
   1680 	mutex_enter(&lp->lp_lock);
   1681 	lcp->lcp_nfree++;
   1682 	map = offset >> 5;
   1683 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1684 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1685 		lcp->lcp_rotor = map;
   1686 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1687 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1688 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1689 	}
   1690 	mutex_exit(&lp->lp_lock);
   1691 }
   1692 
   1693 /*
   1694  * Process is exiting; tear down lwpctl state.  This can only be safely
   1695  * called by the last LWP in the process.
   1696  */
   1697 void
   1698 lwp_ctl_exit(void)
   1699 {
   1700 	lcpage_t *lcp, *next;
   1701 	lcproc_t *lp;
   1702 	proc_t *p;
   1703 	lwp_t *l;
   1704 
   1705 	l = curlwp;
   1706 	l->l_lwpctl = NULL;
   1707 	l->l_lcpage = NULL;
   1708 	p = l->l_proc;
   1709 	lp = p->p_lwpctl;
   1710 
   1711 	KASSERT(lp != NULL);
   1712 	KASSERT(p->p_nlwps == 1);
   1713 
   1714 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1715 		next = TAILQ_NEXT(lcp, lcp_chain);
   1716 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1717 		    lcp->lcp_kaddr + PAGE_SIZE);
   1718 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1719 	}
   1720 
   1721 	if (lp->lp_uao != NULL) {
   1722 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1723 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1724 	}
   1725 
   1726 	mutex_destroy(&lp->lp_lock);
   1727 	kmem_free(lp, sizeof(*lp));
   1728 	p->p_lwpctl = NULL;
   1729 }
   1730 
   1731 #if defined(DDB)
   1732 void
   1733 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1734 {
   1735 	lwp_t *l;
   1736 
   1737 	LIST_FOREACH(l, &alllwp, l_list) {
   1738 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1739 
   1740 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1741 			continue;
   1742 		}
   1743 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1744 		    (void *)addr, (void *)stack,
   1745 		    (size_t)(addr - stack), l);
   1746 	}
   1747 }
   1748 #endif /* defined(DDB) */
   1749