kern_lwp.c revision 1.108 1 /* $NetBSD: kern_lwp.c,v 1.108 2008/04/28 20:24:03 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 * then the LWP is not on a run queue, but may be soon.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is: a) about to switch away into oblivion b) has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > STOPPED > SLEEP
125 * > SUSPENDED > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > SUSPENDED
136 *
137 * Other state transitions are possible with kernel threads (eg
138 * ONPROC -> IDL), but only happen under tightly controlled
139 * circumstances the side effects are understood.
140 *
141 * Locking
142 *
143 * The majority of fields in 'struct lwp' are covered by a single,
144 * general spin lock pointed to by lwp::l_mutex. The locks covering
145 * each field are documented in sys/lwp.h.
146 *
147 * State transitions must be made with the LWP's general lock held,
148 * and may cause the LWP's lock pointer to change. Manipulation of
149 * the general lock is not performed directly, but through calls to
150 * lwp_lock(), lwp_relock() and similar.
151 *
152 * States and their associated locks:
153 *
154 * LSONPROC, LSZOMB:
155 *
156 * Always covered by spc_lwplock, which protects running LWPs.
157 * This is a per-CPU lock.
158 *
159 * LSIDL, LSRUN:
160 *
161 * Always covered by spc_mutex, which protects the run queues.
162 * This is a per-CPU lock.
163 *
164 * LSSLEEP:
165 *
166 * Covered by a lock associated with the sleep queue that the
167 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
168 *
169 * LSSTOP, LSSUSPENDED:
170 *
171 * If the LWP was previously sleeping (l_wchan != NULL), then
172 * l_mutex references the sleep queue lock. If the LWP was
173 * runnable or on the CPU when halted, or has been removed from
174 * the sleep queue since halted, then the lock is spc_lwplock.
175 *
176 * The lock order is as follows:
177 *
178 * spc::spc_lwplock ->
179 * sleepq_t::sq_mutex ->
180 * tschain_t::tc_mutex ->
181 * spc::spc_mutex
182 *
183 * Each process has an scheduler state lock (proc::p_lock), and a
184 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
185 * so on. When an LWP is to be entered into or removed from one of the
186 * following states, p_lock must be held and the process wide counters
187 * adjusted:
188 *
189 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
190 *
191 * Note that an LWP is considered running or likely to run soon if in
192 * one of the following states. This affects the value of p_nrlwps:
193 *
194 * LSRUN, LSONPROC, LSSLEEP
195 *
196 * p_lock does not need to be held when transitioning among these
197 * three states.
198 */
199
200 #include <sys/cdefs.h>
201 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.108 2008/04/28 20:24:03 martin Exp $");
202
203 #include "opt_ddb.h"
204 #include "opt_multiprocessor.h"
205 #include "opt_lockdebug.h"
206
207 #define _LWP_API_PRIVATE
208
209 #include <sys/param.h>
210 #include <sys/systm.h>
211 #include <sys/cpu.h>
212 #include <sys/pool.h>
213 #include <sys/proc.h>
214 #include <sys/syscallargs.h>
215 #include <sys/syscall_stats.h>
216 #include <sys/kauth.h>
217 #include <sys/sleepq.h>
218 #include <sys/user.h>
219 #include <sys/lockdebug.h>
220 #include <sys/kmem.h>
221 #include <sys/pset.h>
222 #include <sys/intr.h>
223 #include <sys/lwpctl.h>
224 #include <sys/atomic.h>
225
226 #include <uvm/uvm_extern.h>
227 #include <uvm/uvm_object.h>
228
229 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
230
231 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
232 &pool_allocator_nointr, IPL_NONE);
233
234 static pool_cache_t lwp_cache;
235 static specificdata_domain_t lwp_specificdata_domain;
236
237 void
238 lwpinit(void)
239 {
240
241 lwp_specificdata_domain = specificdata_domain_create();
242 KASSERT(lwp_specificdata_domain != NULL);
243 lwp_sys_init();
244 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
245 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
246 }
247
248 /*
249 * Set an suspended.
250 *
251 * Must be called with p_lock held, and the LWP locked. Will unlock the
252 * LWP before return.
253 */
254 int
255 lwp_suspend(struct lwp *curl, struct lwp *t)
256 {
257 int error;
258
259 KASSERT(mutex_owned(t->l_proc->p_lock));
260 KASSERT(lwp_locked(t, NULL));
261
262 KASSERT(curl != t || curl->l_stat == LSONPROC);
263
264 /*
265 * If the current LWP has been told to exit, we must not suspend anyone
266 * else or deadlock could occur. We won't return to userspace.
267 */
268 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
269 lwp_unlock(t);
270 return (EDEADLK);
271 }
272
273 error = 0;
274
275 switch (t->l_stat) {
276 case LSRUN:
277 case LSONPROC:
278 t->l_flag |= LW_WSUSPEND;
279 lwp_need_userret(t);
280 lwp_unlock(t);
281 break;
282
283 case LSSLEEP:
284 t->l_flag |= LW_WSUSPEND;
285
286 /*
287 * Kick the LWP and try to get it to the kernel boundary
288 * so that it will release any locks that it holds.
289 * setrunnable() will release the lock.
290 */
291 if ((t->l_flag & LW_SINTR) != 0)
292 setrunnable(t);
293 else
294 lwp_unlock(t);
295 break;
296
297 case LSSUSPENDED:
298 lwp_unlock(t);
299 break;
300
301 case LSSTOP:
302 t->l_flag |= LW_WSUSPEND;
303 setrunnable(t);
304 break;
305
306 case LSIDL:
307 case LSZOMB:
308 error = EINTR; /* It's what Solaris does..... */
309 lwp_unlock(t);
310 break;
311 }
312
313 return (error);
314 }
315
316 /*
317 * Restart a suspended LWP.
318 *
319 * Must be called with p_lock held, and the LWP locked. Will unlock the
320 * LWP before return.
321 */
322 void
323 lwp_continue(struct lwp *l)
324 {
325
326 KASSERT(mutex_owned(l->l_proc->p_lock));
327 KASSERT(lwp_locked(l, NULL));
328
329 /* If rebooting or not suspended, then just bail out. */
330 if ((l->l_flag & LW_WREBOOT) != 0) {
331 lwp_unlock(l);
332 return;
333 }
334
335 l->l_flag &= ~LW_WSUSPEND;
336
337 if (l->l_stat != LSSUSPENDED) {
338 lwp_unlock(l);
339 return;
340 }
341
342 /* setrunnable() will release the lock. */
343 setrunnable(l);
344 }
345
346 /*
347 * Wait for an LWP within the current process to exit. If 'lid' is
348 * non-zero, we are waiting for a specific LWP.
349 *
350 * Must be called with p->p_lock held.
351 */
352 int
353 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
354 {
355 struct proc *p = l->l_proc;
356 struct lwp *l2;
357 int nfound, error;
358 lwpid_t curlid;
359 bool exiting;
360
361 KASSERT(mutex_owned(p->p_lock));
362
363 p->p_nlwpwait++;
364 l->l_waitingfor = lid;
365 curlid = l->l_lid;
366 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
367
368 for (;;) {
369 /*
370 * Avoid a race between exit1() and sigexit(): if the
371 * process is dumping core, then we need to bail out: call
372 * into lwp_userret() where we will be suspended until the
373 * deed is done.
374 */
375 if ((p->p_sflag & PS_WCORE) != 0) {
376 mutex_exit(p->p_lock);
377 lwp_userret(l);
378 #ifdef DIAGNOSTIC
379 panic("lwp_wait1");
380 #endif
381 /* NOTREACHED */
382 }
383
384 /*
385 * First off, drain any detached LWP that is waiting to be
386 * reaped.
387 */
388 while ((l2 = p->p_zomblwp) != NULL) {
389 p->p_zomblwp = NULL;
390 lwp_free(l2, false, false);/* releases proc mutex */
391 mutex_enter(p->p_lock);
392 }
393
394 /*
395 * Now look for an LWP to collect. If the whole process is
396 * exiting, count detached LWPs as eligible to be collected,
397 * but don't drain them here.
398 */
399 nfound = 0;
400 error = 0;
401 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
402 /*
403 * If a specific wait and the target is waiting on
404 * us, then avoid deadlock. This also traps LWPs
405 * that try to wait on themselves.
406 *
407 * Note that this does not handle more complicated
408 * cycles, like: t1 -> t2 -> t3 -> t1. The process
409 * can still be killed so it is not a major problem.
410 */
411 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
412 error = EDEADLK;
413 break;
414 }
415 if (l2 == l)
416 continue;
417 if ((l2->l_prflag & LPR_DETACHED) != 0) {
418 nfound += exiting;
419 continue;
420 }
421 if (lid != 0) {
422 if (l2->l_lid != lid)
423 continue;
424 /*
425 * Mark this LWP as the first waiter, if there
426 * is no other.
427 */
428 if (l2->l_waiter == 0)
429 l2->l_waiter = curlid;
430 } else if (l2->l_waiter != 0) {
431 /*
432 * It already has a waiter - so don't
433 * collect it. If the waiter doesn't
434 * grab it we'll get another chance
435 * later.
436 */
437 nfound++;
438 continue;
439 }
440 nfound++;
441
442 /* No need to lock the LWP in order to see LSZOMB. */
443 if (l2->l_stat != LSZOMB)
444 continue;
445
446 /*
447 * We're no longer waiting. Reset the "first waiter"
448 * pointer on the target, in case it was us.
449 */
450 l->l_waitingfor = 0;
451 l2->l_waiter = 0;
452 p->p_nlwpwait--;
453 if (departed)
454 *departed = l2->l_lid;
455 sched_lwp_collect(l2);
456
457 /* lwp_free() releases the proc lock. */
458 lwp_free(l2, false, false);
459 mutex_enter(p->p_lock);
460 return 0;
461 }
462
463 if (error != 0)
464 break;
465 if (nfound == 0) {
466 error = ESRCH;
467 break;
468 }
469
470 /*
471 * The kernel is careful to ensure that it can not deadlock
472 * when exiting - just keep waiting.
473 */
474 if (exiting) {
475 KASSERT(p->p_nlwps > 1);
476 cv_wait(&p->p_lwpcv, p->p_lock);
477 continue;
478 }
479
480 /*
481 * If all other LWPs are waiting for exits or suspends
482 * and the supply of zombies and potential zombies is
483 * exhausted, then we are about to deadlock.
484 *
485 * If the process is exiting (and this LWP is not the one
486 * that is coordinating the exit) then bail out now.
487 */
488 if ((p->p_sflag & PS_WEXIT) != 0 ||
489 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
490 error = EDEADLK;
491 break;
492 }
493
494 /*
495 * Sit around and wait for something to happen. We'll be
496 * awoken if any of the conditions examined change: if an
497 * LWP exits, is collected, or is detached.
498 */
499 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
500 break;
501 }
502
503 /*
504 * We didn't find any LWPs to collect, we may have received a
505 * signal, or some other condition has caused us to bail out.
506 *
507 * If waiting on a specific LWP, clear the waiters marker: some
508 * other LWP may want it. Then, kick all the remaining waiters
509 * so that they can re-check for zombies and for deadlock.
510 */
511 if (lid != 0) {
512 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
513 if (l2->l_lid == lid) {
514 if (l2->l_waiter == curlid)
515 l2->l_waiter = 0;
516 break;
517 }
518 }
519 }
520 p->p_nlwpwait--;
521 l->l_waitingfor = 0;
522 cv_broadcast(&p->p_lwpcv);
523
524 return error;
525 }
526
527 /*
528 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
529 * The new LWP is created in state LSIDL and must be set running,
530 * suspended, or stopped by the caller.
531 */
532 int
533 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
534 void *stack, size_t stacksize, void (*func)(void *), void *arg,
535 lwp_t **rnewlwpp, int sclass)
536 {
537 struct lwp *l2, *isfree;
538 turnstile_t *ts;
539
540 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
541
542 /*
543 * First off, reap any detached LWP waiting to be collected.
544 * We can re-use its LWP structure and turnstile.
545 */
546 isfree = NULL;
547 if (p2->p_zomblwp != NULL) {
548 mutex_enter(p2->p_lock);
549 if ((isfree = p2->p_zomblwp) != NULL) {
550 p2->p_zomblwp = NULL;
551 lwp_free(isfree, true, false);/* releases proc mutex */
552 } else
553 mutex_exit(p2->p_lock);
554 }
555 if (isfree == NULL) {
556 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
557 memset(l2, 0, sizeof(*l2));
558 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
559 SLIST_INIT(&l2->l_pi_lenders);
560 } else {
561 l2 = isfree;
562 ts = l2->l_ts;
563 KASSERT(l2->l_inheritedprio == -1);
564 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
565 memset(l2, 0, sizeof(*l2));
566 l2->l_ts = ts;
567 }
568
569 l2->l_stat = LSIDL;
570 l2->l_proc = p2;
571 l2->l_refcnt = 1;
572 l2->l_class = sclass;
573 l2->l_kpriority = l1->l_kpriority;
574 l2->l_kpribase = PRI_KERNEL;
575 l2->l_priority = l1->l_priority;
576 l2->l_inheritedprio = -1;
577 l2->l_flag = inmem ? LW_INMEM : 0;
578 l2->l_pflag = LP_MPSAFE;
579 l2->l_fd = p2->p_fd;
580
581 if (p2->p_flag & PK_SYSTEM) {
582 /* Mark it as a system LWP and not a candidate for swapping */
583 l2->l_flag |= LW_SYSTEM;
584 }
585
586 kpreempt_disable();
587 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
588 l2->l_cpu = l1->l_cpu;
589 kpreempt_enable();
590
591 lwp_initspecific(l2);
592 sched_lwp_fork(l1, l2);
593 lwp_update_creds(l2);
594 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
595 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
596 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
597 cv_init(&l2->l_sigcv, "sigwait");
598 l2->l_syncobj = &sched_syncobj;
599
600 if (rnewlwpp != NULL)
601 *rnewlwpp = l2;
602
603 l2->l_addr = UAREA_TO_USER(uaddr);
604 uvm_lwp_fork(l1, l2, stack, stacksize, func,
605 (arg != NULL) ? arg : l2);
606
607 mutex_enter(p2->p_lock);
608
609 if ((flags & LWP_DETACHED) != 0) {
610 l2->l_prflag = LPR_DETACHED;
611 p2->p_ndlwps++;
612 } else
613 l2->l_prflag = 0;
614
615 l2->l_sigmask = l1->l_sigmask;
616 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
617 sigemptyset(&l2->l_sigpend.sp_set);
618
619 p2->p_nlwpid++;
620 if (p2->p_nlwpid == 0)
621 p2->p_nlwpid++;
622 l2->l_lid = p2->p_nlwpid;
623 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
624 p2->p_nlwps++;
625
626 mutex_exit(p2->p_lock);
627
628 mutex_enter(proc_lock);
629 LIST_INSERT_HEAD(&alllwp, l2, l_list);
630 mutex_exit(proc_lock);
631
632 if ((p2->p_flag & PK_SYSTEM) == 0) {
633 /* Locking is needed, since LWP is in the list of all LWPs */
634 lwp_lock(l2);
635 /* Inherit a processor-set */
636 l2->l_psid = l1->l_psid;
637 /* Inherit an affinity */
638 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
639 /* Look for a CPU to start */
640 l2->l_cpu = sched_takecpu(l2);
641 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
642 }
643
644 SYSCALL_TIME_LWP_INIT(l2);
645
646 if (p2->p_emul->e_lwp_fork)
647 (*p2->p_emul->e_lwp_fork)(l1, l2);
648
649 return (0);
650 }
651
652 /*
653 * Called by MD code when a new LWP begins execution. Must be called
654 * with the previous LWP locked (so at splsched), or if there is no
655 * previous LWP, at splsched.
656 */
657 void
658 lwp_startup(struct lwp *prev, struct lwp *new)
659 {
660
661 KASSERT(kpreempt_disabled());
662 if (prev != NULL) {
663 /*
664 * Normalize the count of the spin-mutexes, it was
665 * increased in mi_switch(). Unmark the state of
666 * context switch - it is finished for previous LWP.
667 */
668 curcpu()->ci_mtx_count++;
669 membar_exit();
670 prev->l_ctxswtch = 0;
671 }
672 KPREEMPT_DISABLE(new);
673 spl0();
674 pmap_activate(new);
675 LOCKDEBUG_BARRIER(NULL, 0);
676 KPREEMPT_ENABLE(new);
677 if ((new->l_pflag & LP_MPSAFE) == 0) {
678 KERNEL_LOCK(1, new);
679 }
680 }
681
682 /*
683 * Exit an LWP.
684 */
685 void
686 lwp_exit(struct lwp *l)
687 {
688 struct proc *p = l->l_proc;
689 struct lwp *l2;
690 bool current;
691
692 current = (l == curlwp);
693
694 KASSERT(current || l->l_stat == LSIDL);
695
696 /*
697 * Verify that we hold no locks other than the kernel lock.
698 */
699 #ifdef MULTIPROCESSOR
700 LOCKDEBUG_BARRIER(&kernel_lock, 0);
701 #else
702 LOCKDEBUG_BARRIER(NULL, 0);
703 #endif
704
705 /*
706 * If we are the last live LWP in a process, we need to exit the
707 * entire process. We do so with an exit status of zero, because
708 * it's a "controlled" exit, and because that's what Solaris does.
709 *
710 * We are not quite a zombie yet, but for accounting purposes we
711 * must increment the count of zombies here.
712 *
713 * Note: the last LWP's specificdata will be deleted here.
714 */
715 mutex_enter(p->p_lock);
716 if (p->p_nlwps - p->p_nzlwps == 1) {
717 KASSERT(current == true);
718 /* XXXSMP kernel_lock not held */
719 exit1(l, 0);
720 /* NOTREACHED */
721 }
722 p->p_nzlwps++;
723 mutex_exit(p->p_lock);
724
725 if (p->p_emul->e_lwp_exit)
726 (*p->p_emul->e_lwp_exit)(l);
727
728 /* Delete the specificdata while it's still safe to sleep. */
729 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
730
731 /*
732 * Release our cached credentials.
733 */
734 kauth_cred_free(l->l_cred);
735 callout_destroy(&l->l_timeout_ch);
736
737 /*
738 * While we can still block, mark the LWP as unswappable to
739 * prevent conflicts with the with the swapper.
740 */
741 if (current)
742 uvm_lwp_hold(l);
743
744 /*
745 * Remove the LWP from the global list.
746 */
747 mutex_enter(proc_lock);
748 LIST_REMOVE(l, l_list);
749 mutex_exit(proc_lock);
750
751 /*
752 * Get rid of all references to the LWP that others (e.g. procfs)
753 * may have, and mark the LWP as a zombie. If the LWP is detached,
754 * mark it waiting for collection in the proc structure. Note that
755 * before we can do that, we need to free any other dead, deatched
756 * LWP waiting to meet its maker.
757 */
758 mutex_enter(p->p_lock);
759 lwp_drainrefs(l);
760
761 if ((l->l_prflag & LPR_DETACHED) != 0) {
762 while ((l2 = p->p_zomblwp) != NULL) {
763 p->p_zomblwp = NULL;
764 lwp_free(l2, false, false);/* releases proc mutex */
765 mutex_enter(p->p_lock);
766 l->l_refcnt++;
767 lwp_drainrefs(l);
768 }
769 p->p_zomblwp = l;
770 }
771
772 /*
773 * If we find a pending signal for the process and we have been
774 * asked to check for signals, then we loose: arrange to have
775 * all other LWPs in the process check for signals.
776 */
777 if ((l->l_flag & LW_PENDSIG) != 0 &&
778 firstsig(&p->p_sigpend.sp_set) != 0) {
779 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
780 lwp_lock(l2);
781 l2->l_flag |= LW_PENDSIG;
782 lwp_unlock(l2);
783 }
784 }
785
786 lwp_lock(l);
787 l->l_stat = LSZOMB;
788 if (l->l_name != NULL)
789 strcpy(l->l_name, "(zombie)");
790 lwp_unlock(l);
791 p->p_nrlwps--;
792 cv_broadcast(&p->p_lwpcv);
793 if (l->l_lwpctl != NULL)
794 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
795 mutex_exit(p->p_lock);
796
797 /*
798 * We can no longer block. At this point, lwp_free() may already
799 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
800 *
801 * Free MD LWP resources.
802 */
803 #ifndef __NO_CPU_LWP_FREE
804 cpu_lwp_free(l, 0);
805 #endif
806
807 if (current) {
808 pmap_deactivate(l);
809
810 /*
811 * Release the kernel lock, and switch away into
812 * oblivion.
813 */
814 #ifdef notyet
815 /* XXXSMP hold in lwp_userret() */
816 KERNEL_UNLOCK_LAST(l);
817 #else
818 KERNEL_UNLOCK_ALL(l, NULL);
819 #endif
820 lwp_exit_switchaway(l);
821 }
822 }
823
824 void
825 lwp_exit_switchaway(struct lwp *l)
826 {
827 struct cpu_info *ci;
828 struct lwp *idlelwp;
829
830 (void)splsched();
831 l->l_flag &= ~LW_RUNNING;
832 ci = curcpu();
833 ci->ci_data.cpu_nswtch++;
834 idlelwp = ci->ci_data.cpu_idlelwp;
835 idlelwp->l_stat = LSONPROC;
836
837 /*
838 * cpu_onproc must be updated with the CPU locked, as
839 * aston() may try to set a AST pending on the LWP (and
840 * it does so with the CPU locked). Otherwise, the LWP
841 * may be destroyed before the AST can be set, leading
842 * to a user-after-free.
843 */
844 spc_lock(ci);
845 ci->ci_data.cpu_onproc = idlelwp;
846 spc_unlock(ci);
847 cpu_switchto(NULL, idlelwp, false);
848 }
849
850 /*
851 * Free a dead LWP's remaining resources.
852 *
853 * XXXLWP limits.
854 */
855 void
856 lwp_free(struct lwp *l, bool recycle, bool last)
857 {
858 struct proc *p = l->l_proc;
859 struct rusage *ru;
860 ksiginfoq_t kq;
861
862 KASSERT(l != curlwp);
863
864 /*
865 * If this was not the last LWP in the process, then adjust
866 * counters and unlock.
867 */
868 if (!last) {
869 /*
870 * Add the LWP's run time to the process' base value.
871 * This needs to co-incide with coming off p_lwps.
872 */
873 bintime_add(&p->p_rtime, &l->l_rtime);
874 p->p_pctcpu += l->l_pctcpu;
875 ru = &p->p_stats->p_ru;
876 ruadd(ru, &l->l_ru);
877 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
878 ru->ru_nivcsw += l->l_nivcsw;
879 LIST_REMOVE(l, l_sibling);
880 p->p_nlwps--;
881 p->p_nzlwps--;
882 if ((l->l_prflag & LPR_DETACHED) != 0)
883 p->p_ndlwps--;
884
885 /*
886 * Have any LWPs sleeping in lwp_wait() recheck for
887 * deadlock.
888 */
889 cv_broadcast(&p->p_lwpcv);
890 mutex_exit(p->p_lock);
891 }
892
893 #ifdef MULTIPROCESSOR
894 /*
895 * In the unlikely event that the LWP is still on the CPU,
896 * then spin until it has switched away. We need to release
897 * all locks to avoid deadlock against interrupt handlers on
898 * the target CPU.
899 */
900 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
901 int count;
902 (void)count; /* XXXgcc */
903 KERNEL_UNLOCK_ALL(curlwp, &count);
904 while ((l->l_flag & LW_RUNNING) != 0 ||
905 l->l_cpu->ci_curlwp == l)
906 SPINLOCK_BACKOFF_HOOK;
907 KERNEL_LOCK(count, curlwp);
908 }
909 #endif
910
911 /*
912 * Destroy the LWP's remaining signal information.
913 */
914 ksiginfo_queue_init(&kq);
915 sigclear(&l->l_sigpend, NULL, &kq);
916 ksiginfo_queue_drain(&kq);
917 cv_destroy(&l->l_sigcv);
918 mutex_destroy(&l->l_swaplock);
919
920 /*
921 * Free the LWP's turnstile and the LWP structure itself unless the
922 * caller wants to recycle them. Also, free the scheduler specific
923 * data.
924 *
925 * We can't return turnstile0 to the pool (it didn't come from it),
926 * so if it comes up just drop it quietly and move on.
927 *
928 * We don't recycle the VM resources at this time.
929 */
930 if (l->l_lwpctl != NULL)
931 lwp_ctl_free(l);
932 sched_lwp_exit(l);
933
934 if (!recycle && l->l_ts != &turnstile0)
935 pool_cache_put(turnstile_cache, l->l_ts);
936 if (l->l_name != NULL)
937 kmem_free(l->l_name, MAXCOMLEN);
938 #ifndef __NO_CPU_LWP_FREE
939 cpu_lwp_free2(l);
940 #endif
941 KASSERT((l->l_flag & LW_INMEM) != 0);
942 uvm_lwp_exit(l);
943 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
944 KASSERT(l->l_inheritedprio == -1);
945 if (!recycle)
946 pool_cache_put(lwp_cache, l);
947 }
948
949 /*
950 * Pick a LWP to represent the process for those operations which
951 * want information about a "process" that is actually associated
952 * with a LWP.
953 *
954 * If 'locking' is false, no locking or lock checks are performed.
955 * This is intended for use by DDB.
956 *
957 * We don't bother locking the LWP here, since code that uses this
958 * interface is broken by design and an exact match is not required.
959 */
960 struct lwp *
961 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
962 {
963 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
964 struct lwp *signalled;
965 int cnt;
966
967 if (locking) {
968 KASSERT(mutex_owned(p->p_lock));
969 }
970
971 /* Trivial case: only one LWP */
972 if (p->p_nlwps == 1) {
973 l = LIST_FIRST(&p->p_lwps);
974 if (nrlwps)
975 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
976 return l;
977 }
978
979 cnt = 0;
980 switch (p->p_stat) {
981 case SSTOP:
982 case SACTIVE:
983 /* Pick the most live LWP */
984 onproc = running = sleeping = stopped = suspended = NULL;
985 signalled = NULL;
986 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
987 if ((l->l_flag & LW_IDLE) != 0) {
988 continue;
989 }
990 if (l->l_lid == p->p_sigctx.ps_lwp)
991 signalled = l;
992 switch (l->l_stat) {
993 case LSONPROC:
994 onproc = l;
995 cnt++;
996 break;
997 case LSRUN:
998 running = l;
999 cnt++;
1000 break;
1001 case LSSLEEP:
1002 sleeping = l;
1003 break;
1004 case LSSTOP:
1005 stopped = l;
1006 break;
1007 case LSSUSPENDED:
1008 suspended = l;
1009 break;
1010 }
1011 }
1012 if (nrlwps)
1013 *nrlwps = cnt;
1014 if (signalled)
1015 l = signalled;
1016 else if (onproc)
1017 l = onproc;
1018 else if (running)
1019 l = running;
1020 else if (sleeping)
1021 l = sleeping;
1022 else if (stopped)
1023 l = stopped;
1024 else if (suspended)
1025 l = suspended;
1026 else
1027 break;
1028 return l;
1029 #ifdef DIAGNOSTIC
1030 case SIDL:
1031 case SZOMB:
1032 case SDYING:
1033 case SDEAD:
1034 if (locking)
1035 mutex_exit(p->p_lock);
1036 /* We have more than one LWP and we're in SIDL?
1037 * How'd that happen?
1038 */
1039 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1040 p->p_pid, p->p_comm, p->p_stat);
1041 break;
1042 default:
1043 if (locking)
1044 mutex_exit(p->p_lock);
1045 panic("Process %d (%s) in unknown state %d",
1046 p->p_pid, p->p_comm, p->p_stat);
1047 #endif
1048 }
1049
1050 if (locking)
1051 mutex_exit(p->p_lock);
1052 panic("proc_representative_lwp: couldn't find a lwp for process"
1053 " %d (%s)", p->p_pid, p->p_comm);
1054 /* NOTREACHED */
1055 return NULL;
1056 }
1057
1058 /*
1059 * Migrate the LWP to the another CPU. Unlocks the LWP.
1060 */
1061 void
1062 lwp_migrate(lwp_t *l, struct cpu_info *ci)
1063 {
1064 struct schedstate_percpu *spc;
1065 KASSERT(lwp_locked(l, NULL));
1066
1067 if (l->l_cpu == ci) {
1068 lwp_unlock(l);
1069 return;
1070 }
1071
1072 spc = &ci->ci_schedstate;
1073 switch (l->l_stat) {
1074 case LSRUN:
1075 if (l->l_flag & LW_INMEM) {
1076 l->l_target_cpu = ci;
1077 break;
1078 }
1079 case LSIDL:
1080 l->l_cpu = ci;
1081 lwp_unlock_to(l, spc->spc_mutex);
1082 KASSERT(!mutex_owned(spc->spc_mutex));
1083 return;
1084 case LSSLEEP:
1085 l->l_cpu = ci;
1086 break;
1087 case LSSTOP:
1088 case LSSUSPENDED:
1089 if (l->l_wchan != NULL) {
1090 l->l_cpu = ci;
1091 break;
1092 }
1093 case LSONPROC:
1094 l->l_target_cpu = ci;
1095 break;
1096 }
1097 lwp_unlock(l);
1098 }
1099
1100 /*
1101 * Find the LWP in the process. Arguments may be zero, in such case,
1102 * the calling process and first LWP in the list will be used.
1103 * On success - returns proc locked.
1104 */
1105 struct lwp *
1106 lwp_find2(pid_t pid, lwpid_t lid)
1107 {
1108 proc_t *p;
1109 lwp_t *l;
1110
1111 /* Find the process */
1112 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1113 if (p == NULL)
1114 return NULL;
1115 mutex_enter(p->p_lock);
1116 if (pid != 0) {
1117 /* Case of p_find */
1118 mutex_exit(proc_lock);
1119 }
1120
1121 /* Find the thread */
1122 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1123 if (l == NULL) {
1124 mutex_exit(p->p_lock);
1125 }
1126
1127 return l;
1128 }
1129
1130 /*
1131 * Look up a live LWP within the speicifed process, and return it locked.
1132 *
1133 * Must be called with p->p_lock held.
1134 */
1135 struct lwp *
1136 lwp_find(struct proc *p, int id)
1137 {
1138 struct lwp *l;
1139
1140 KASSERT(mutex_owned(p->p_lock));
1141
1142 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1143 if (l->l_lid == id)
1144 break;
1145 }
1146
1147 /*
1148 * No need to lock - all of these conditions will
1149 * be visible with the process level mutex held.
1150 */
1151 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1152 l = NULL;
1153
1154 return l;
1155 }
1156
1157 /*
1158 * Update an LWP's cached credentials to mirror the process' master copy.
1159 *
1160 * This happens early in the syscall path, on user trap, and on LWP
1161 * creation. A long-running LWP can also voluntarily choose to update
1162 * it's credentials by calling this routine. This may be called from
1163 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1164 */
1165 void
1166 lwp_update_creds(struct lwp *l)
1167 {
1168 kauth_cred_t oc;
1169 struct proc *p;
1170
1171 p = l->l_proc;
1172 oc = l->l_cred;
1173
1174 mutex_enter(p->p_lock);
1175 kauth_cred_hold(p->p_cred);
1176 l->l_cred = p->p_cred;
1177 l->l_prflag &= ~LPR_CRMOD;
1178 mutex_exit(p->p_lock);
1179 if (oc != NULL)
1180 kauth_cred_free(oc);
1181 }
1182
1183 /*
1184 * Verify that an LWP is locked, and optionally verify that the lock matches
1185 * one we specify.
1186 */
1187 int
1188 lwp_locked(struct lwp *l, kmutex_t *mtx)
1189 {
1190 kmutex_t *cur = l->l_mutex;
1191
1192 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1193 }
1194
1195 /*
1196 * Lock an LWP.
1197 */
1198 void
1199 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1200 {
1201
1202 /*
1203 * XXXgcc ignoring kmutex_t * volatile on i386
1204 *
1205 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1206 */
1207 #if 1
1208 while (l->l_mutex != old) {
1209 #else
1210 for (;;) {
1211 #endif
1212 mutex_spin_exit(old);
1213 old = l->l_mutex;
1214 mutex_spin_enter(old);
1215
1216 /*
1217 * mutex_enter() will have posted a read barrier. Re-test
1218 * l->l_mutex. If it has changed, we need to try again.
1219 */
1220 #if 1
1221 }
1222 #else
1223 } while (__predict_false(l->l_mutex != old));
1224 #endif
1225 }
1226
1227 /*
1228 * Lend a new mutex to an LWP. The old mutex must be held.
1229 */
1230 void
1231 lwp_setlock(struct lwp *l, kmutex_t *new)
1232 {
1233
1234 KASSERT(mutex_owned(l->l_mutex));
1235
1236 membar_exit();
1237 l->l_mutex = new;
1238 }
1239
1240 /*
1241 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1242 * must be held.
1243 */
1244 void
1245 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1246 {
1247 kmutex_t *old;
1248
1249 KASSERT(mutex_owned(l->l_mutex));
1250
1251 old = l->l_mutex;
1252 membar_exit();
1253 l->l_mutex = new;
1254 mutex_spin_exit(old);
1255 }
1256
1257 /*
1258 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1259 * locked.
1260 */
1261 void
1262 lwp_relock(struct lwp *l, kmutex_t *new)
1263 {
1264 kmutex_t *old;
1265
1266 KASSERT(mutex_owned(l->l_mutex));
1267
1268 old = l->l_mutex;
1269 if (old != new) {
1270 mutex_spin_enter(new);
1271 l->l_mutex = new;
1272 mutex_spin_exit(old);
1273 }
1274 }
1275
1276 int
1277 lwp_trylock(struct lwp *l)
1278 {
1279 kmutex_t *old;
1280
1281 for (;;) {
1282 if (!mutex_tryenter(old = l->l_mutex))
1283 return 0;
1284 if (__predict_true(l->l_mutex == old))
1285 return 1;
1286 mutex_spin_exit(old);
1287 }
1288 }
1289
1290 u_int
1291 lwp_unsleep(lwp_t *l, bool cleanup)
1292 {
1293
1294 KASSERT(mutex_owned(l->l_mutex));
1295
1296 return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1297 }
1298
1299
1300 /*
1301 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1302 * set.
1303 */
1304 void
1305 lwp_userret(struct lwp *l)
1306 {
1307 struct proc *p;
1308 void (*hook)(void);
1309 int sig;
1310
1311 p = l->l_proc;
1312
1313 #ifndef __HAVE_FAST_SOFTINTS
1314 /* Run pending soft interrupts. */
1315 if (l->l_cpu->ci_data.cpu_softints != 0)
1316 softint_overlay();
1317 #endif
1318
1319 /*
1320 * It should be safe to do this read unlocked on a multiprocessor
1321 * system..
1322 */
1323 while ((l->l_flag & LW_USERRET) != 0) {
1324 /*
1325 * Process pending signals first, unless the process
1326 * is dumping core or exiting, where we will instead
1327 * enter the LW_WSUSPEND case below.
1328 */
1329 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1330 LW_PENDSIG) {
1331 mutex_enter(p->p_lock);
1332 while ((sig = issignal(l)) != 0)
1333 postsig(sig);
1334 mutex_exit(p->p_lock);
1335 }
1336
1337 /*
1338 * Core-dump or suspend pending.
1339 *
1340 * In case of core dump, suspend ourselves, so that the
1341 * kernel stack and therefore the userland registers saved
1342 * in the trapframe are around for coredump() to write them
1343 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1344 * will write the core file out once all other LWPs are
1345 * suspended.
1346 */
1347 if ((l->l_flag & LW_WSUSPEND) != 0) {
1348 mutex_enter(p->p_lock);
1349 p->p_nrlwps--;
1350 cv_broadcast(&p->p_lwpcv);
1351 lwp_lock(l);
1352 l->l_stat = LSSUSPENDED;
1353 lwp_unlock(l);
1354 mutex_exit(p->p_lock);
1355 lwp_lock(l);
1356 mi_switch(l);
1357 }
1358
1359 /* Process is exiting. */
1360 if ((l->l_flag & LW_WEXIT) != 0) {
1361 lwp_exit(l);
1362 KASSERT(0);
1363 /* NOTREACHED */
1364 }
1365
1366 /* Call userret hook; used by Linux emulation. */
1367 if ((l->l_flag & LW_WUSERRET) != 0) {
1368 lwp_lock(l);
1369 l->l_flag &= ~LW_WUSERRET;
1370 lwp_unlock(l);
1371 hook = p->p_userret;
1372 p->p_userret = NULL;
1373 (*hook)();
1374 }
1375 }
1376 }
1377
1378 /*
1379 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1380 */
1381 void
1382 lwp_need_userret(struct lwp *l)
1383 {
1384 KASSERT(lwp_locked(l, NULL));
1385
1386 /*
1387 * Since the tests in lwp_userret() are done unlocked, make sure
1388 * that the condition will be seen before forcing the LWP to enter
1389 * kernel mode.
1390 */
1391 membar_producer();
1392 cpu_signotify(l);
1393 }
1394
1395 /*
1396 * Add one reference to an LWP. This will prevent the LWP from
1397 * exiting, thus keep the lwp structure and PCB around to inspect.
1398 */
1399 void
1400 lwp_addref(struct lwp *l)
1401 {
1402
1403 KASSERT(mutex_owned(l->l_proc->p_lock));
1404 KASSERT(l->l_stat != LSZOMB);
1405 KASSERT(l->l_refcnt != 0);
1406
1407 l->l_refcnt++;
1408 }
1409
1410 /*
1411 * Remove one reference to an LWP. If this is the last reference,
1412 * then we must finalize the LWP's death.
1413 */
1414 void
1415 lwp_delref(struct lwp *l)
1416 {
1417 struct proc *p = l->l_proc;
1418
1419 mutex_enter(p->p_lock);
1420 KASSERT(l->l_stat != LSZOMB);
1421 KASSERT(l->l_refcnt > 0);
1422 if (--l->l_refcnt == 0)
1423 cv_broadcast(&p->p_lwpcv);
1424 mutex_exit(p->p_lock);
1425 }
1426
1427 /*
1428 * Drain all references to the current LWP.
1429 */
1430 void
1431 lwp_drainrefs(struct lwp *l)
1432 {
1433 struct proc *p = l->l_proc;
1434
1435 KASSERT(mutex_owned(p->p_lock));
1436 KASSERT(l->l_refcnt != 0);
1437
1438 l->l_refcnt--;
1439 while (l->l_refcnt != 0)
1440 cv_wait(&p->p_lwpcv, p->p_lock);
1441 }
1442
1443 /*
1444 * lwp_specific_key_create --
1445 * Create a key for subsystem lwp-specific data.
1446 */
1447 int
1448 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1449 {
1450
1451 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1452 }
1453
1454 /*
1455 * lwp_specific_key_delete --
1456 * Delete a key for subsystem lwp-specific data.
1457 */
1458 void
1459 lwp_specific_key_delete(specificdata_key_t key)
1460 {
1461
1462 specificdata_key_delete(lwp_specificdata_domain, key);
1463 }
1464
1465 /*
1466 * lwp_initspecific --
1467 * Initialize an LWP's specificdata container.
1468 */
1469 void
1470 lwp_initspecific(struct lwp *l)
1471 {
1472 int error;
1473
1474 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1475 KASSERT(error == 0);
1476 }
1477
1478 /*
1479 * lwp_finispecific --
1480 * Finalize an LWP's specificdata container.
1481 */
1482 void
1483 lwp_finispecific(struct lwp *l)
1484 {
1485
1486 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1487 }
1488
1489 /*
1490 * lwp_getspecific --
1491 * Return lwp-specific data corresponding to the specified key.
1492 *
1493 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1494 * only its OWN SPECIFIC DATA. If it is necessary to access another
1495 * LWP's specifc data, care must be taken to ensure that doing so
1496 * would not cause internal data structure inconsistency (i.e. caller
1497 * can guarantee that the target LWP is not inside an lwp_getspecific()
1498 * or lwp_setspecific() call).
1499 */
1500 void *
1501 lwp_getspecific(specificdata_key_t key)
1502 {
1503
1504 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1505 &curlwp->l_specdataref, key));
1506 }
1507
1508 void *
1509 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1510 {
1511
1512 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1513 &l->l_specdataref, key));
1514 }
1515
1516 /*
1517 * lwp_setspecific --
1518 * Set lwp-specific data corresponding to the specified key.
1519 */
1520 void
1521 lwp_setspecific(specificdata_key_t key, void *data)
1522 {
1523
1524 specificdata_setspecific(lwp_specificdata_domain,
1525 &curlwp->l_specdataref, key, data);
1526 }
1527
1528 /*
1529 * Allocate a new lwpctl structure for a user LWP.
1530 */
1531 int
1532 lwp_ctl_alloc(vaddr_t *uaddr)
1533 {
1534 lcproc_t *lp;
1535 u_int bit, i, offset;
1536 struct uvm_object *uao;
1537 int error;
1538 lcpage_t *lcp;
1539 proc_t *p;
1540 lwp_t *l;
1541
1542 l = curlwp;
1543 p = l->l_proc;
1544
1545 if (l->l_lcpage != NULL) {
1546 lcp = l->l_lcpage;
1547 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1548 return (EINVAL);
1549 }
1550
1551 /* First time around, allocate header structure for the process. */
1552 if ((lp = p->p_lwpctl) == NULL) {
1553 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1554 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1555 lp->lp_uao = NULL;
1556 TAILQ_INIT(&lp->lp_pages);
1557 mutex_enter(p->p_lock);
1558 if (p->p_lwpctl == NULL) {
1559 p->p_lwpctl = lp;
1560 mutex_exit(p->p_lock);
1561 } else {
1562 mutex_exit(p->p_lock);
1563 mutex_destroy(&lp->lp_lock);
1564 kmem_free(lp, sizeof(*lp));
1565 lp = p->p_lwpctl;
1566 }
1567 }
1568
1569 /*
1570 * Set up an anonymous memory region to hold the shared pages.
1571 * Map them into the process' address space. The user vmspace
1572 * gets the first reference on the UAO.
1573 */
1574 mutex_enter(&lp->lp_lock);
1575 if (lp->lp_uao == NULL) {
1576 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1577 lp->lp_cur = 0;
1578 lp->lp_max = LWPCTL_UAREA_SZ;
1579 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1580 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1581 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1582 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1583 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1584 if (error != 0) {
1585 uao_detach(lp->lp_uao);
1586 lp->lp_uao = NULL;
1587 mutex_exit(&lp->lp_lock);
1588 return error;
1589 }
1590 }
1591
1592 /* Get a free block and allocate for this LWP. */
1593 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1594 if (lcp->lcp_nfree != 0)
1595 break;
1596 }
1597 if (lcp == NULL) {
1598 /* Nothing available - try to set up a free page. */
1599 if (lp->lp_cur == lp->lp_max) {
1600 mutex_exit(&lp->lp_lock);
1601 return ENOMEM;
1602 }
1603 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1604 if (lcp == NULL) {
1605 mutex_exit(&lp->lp_lock);
1606 return ENOMEM;
1607 }
1608 /*
1609 * Wire the next page down in kernel space. Since this
1610 * is a new mapping, we must add a reference.
1611 */
1612 uao = lp->lp_uao;
1613 (*uao->pgops->pgo_reference)(uao);
1614 lcp->lcp_kaddr = vm_map_min(kernel_map);
1615 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1616 uao, lp->lp_cur, PAGE_SIZE,
1617 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1618 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1619 if (error != 0) {
1620 mutex_exit(&lp->lp_lock);
1621 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1622 (*uao->pgops->pgo_detach)(uao);
1623 return error;
1624 }
1625 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1626 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1627 if (error != 0) {
1628 mutex_exit(&lp->lp_lock);
1629 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1630 lcp->lcp_kaddr + PAGE_SIZE);
1631 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1632 return error;
1633 }
1634 /* Prepare the page descriptor and link into the list. */
1635 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1636 lp->lp_cur += PAGE_SIZE;
1637 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1638 lcp->lcp_rotor = 0;
1639 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1640 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1641 }
1642 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1643 if (++i >= LWPCTL_BITMAP_ENTRIES)
1644 i = 0;
1645 }
1646 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1647 lcp->lcp_bitmap[i] ^= (1 << bit);
1648 lcp->lcp_rotor = i;
1649 lcp->lcp_nfree--;
1650 l->l_lcpage = lcp;
1651 offset = (i << 5) + bit;
1652 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1653 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1654 mutex_exit(&lp->lp_lock);
1655
1656 KPREEMPT_DISABLE(l);
1657 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1658 KPREEMPT_ENABLE(l);
1659
1660 return 0;
1661 }
1662
1663 /*
1664 * Free an lwpctl structure back to the per-process list.
1665 */
1666 void
1667 lwp_ctl_free(lwp_t *l)
1668 {
1669 lcproc_t *lp;
1670 lcpage_t *lcp;
1671 u_int map, offset;
1672
1673 lp = l->l_proc->p_lwpctl;
1674 KASSERT(lp != NULL);
1675
1676 lcp = l->l_lcpage;
1677 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1678 KASSERT(offset < LWPCTL_PER_PAGE);
1679
1680 mutex_enter(&lp->lp_lock);
1681 lcp->lcp_nfree++;
1682 map = offset >> 5;
1683 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1684 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1685 lcp->lcp_rotor = map;
1686 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1687 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1688 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1689 }
1690 mutex_exit(&lp->lp_lock);
1691 }
1692
1693 /*
1694 * Process is exiting; tear down lwpctl state. This can only be safely
1695 * called by the last LWP in the process.
1696 */
1697 void
1698 lwp_ctl_exit(void)
1699 {
1700 lcpage_t *lcp, *next;
1701 lcproc_t *lp;
1702 proc_t *p;
1703 lwp_t *l;
1704
1705 l = curlwp;
1706 l->l_lwpctl = NULL;
1707 l->l_lcpage = NULL;
1708 p = l->l_proc;
1709 lp = p->p_lwpctl;
1710
1711 KASSERT(lp != NULL);
1712 KASSERT(p->p_nlwps == 1);
1713
1714 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1715 next = TAILQ_NEXT(lcp, lcp_chain);
1716 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1717 lcp->lcp_kaddr + PAGE_SIZE);
1718 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1719 }
1720
1721 if (lp->lp_uao != NULL) {
1722 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1723 lp->lp_uva + LWPCTL_UAREA_SZ);
1724 }
1725
1726 mutex_destroy(&lp->lp_lock);
1727 kmem_free(lp, sizeof(*lp));
1728 p->p_lwpctl = NULL;
1729 }
1730
1731 #if defined(DDB)
1732 void
1733 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1734 {
1735 lwp_t *l;
1736
1737 LIST_FOREACH(l, &alllwp, l_list) {
1738 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1739
1740 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1741 continue;
1742 }
1743 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1744 (void *)addr, (void *)stack,
1745 (size_t)(addr - stack), l);
1746 }
1747 }
1748 #endif /* defined(DDB) */
1749