kern_lwp.c revision 1.110.2.2 1 /* $NetBSD: kern_lwp.c,v 1.110.2.2 2008/05/14 19:54:12 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 * then the LWP is not on a run queue, but may be soon.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is: a) about to switch away into oblivion b) has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > STOPPED > SLEEP
125 * > SUSPENDED > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > SUSPENDED
136 *
137 * Other state transitions are possible with kernel threads (eg
138 * ONPROC -> IDL), but only happen under tightly controlled
139 * circumstances the side effects are understood.
140 *
141 * Locking
142 *
143 * The majority of fields in 'struct lwp' are covered by a single,
144 * general spin lock pointed to by lwp::l_mutex. The locks covering
145 * each field are documented in sys/lwp.h.
146 *
147 * State transitions must be made with the LWP's general lock held,
148 * and may cause the LWP's lock pointer to change. Manipulation of
149 * the general lock is not performed directly, but through calls to
150 * lwp_lock(), lwp_relock() and similar.
151 *
152 * States and their associated locks:
153 *
154 * LSONPROC, LSZOMB:
155 *
156 * Always covered by spc_lwplock, which protects running LWPs.
157 * This is a per-CPU lock.
158 *
159 * LSIDL, LSRUN:
160 *
161 * Always covered by spc_mutex, which protects the run queues.
162 * This is a per-CPU lock.
163 *
164 * LSSLEEP:
165 *
166 * Covered by a lock associated with the sleep queue that the
167 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
168 *
169 * LSSTOP, LSSUSPENDED:
170 *
171 * If the LWP was previously sleeping (l_wchan != NULL), then
172 * l_mutex references the sleep queue lock. If the LWP was
173 * runnable or on the CPU when halted, or has been removed from
174 * the sleep queue since halted, then the lock is spc_lwplock.
175 *
176 * The lock order is as follows:
177 *
178 * spc::spc_lwplock ->
179 * sleepq_t::sq_mutex ->
180 * tschain_t::tc_mutex ->
181 * spc::spc_mutex
182 *
183 * Each process has an scheduler state lock (proc::p_lock), and a
184 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
185 * so on. When an LWP is to be entered into or removed from one of the
186 * following states, p_lock must be held and the process wide counters
187 * adjusted:
188 *
189 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
190 *
191 * Note that an LWP is considered running or likely to run soon if in
192 * one of the following states. This affects the value of p_nrlwps:
193 *
194 * LSRUN, LSONPROC, LSSLEEP
195 *
196 * p_lock does not need to be held when transitioning among these
197 * three states.
198 */
199
200 #include <sys/cdefs.h>
201 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.110.2.2 2008/05/14 19:54:12 wrstuden Exp $");
202
203 #include "opt_ddb.h"
204 #include "opt_multiprocessor.h"
205 #include "opt_lockdebug.h"
206
207 #define _LWP_API_PRIVATE
208
209 #include <sys/param.h>
210 #include <sys/systm.h>
211 #include <sys/cpu.h>
212 #include <sys/pool.h>
213 #include <sys/proc.h>
214 #include <sys/sa.h>
215 #include <sys/savar.h>
216 #include <sys/syscallargs.h>
217 #include <sys/syscall_stats.h>
218 #include <sys/kauth.h>
219 #include <sys/sleepq.h>
220 #include <sys/user.h>
221 #include <sys/lockdebug.h>
222 #include <sys/kmem.h>
223 #include <sys/pset.h>
224 #include <sys/intr.h>
225 #include <sys/lwpctl.h>
226 #include <sys/atomic.h>
227
228 #include <uvm/uvm_extern.h>
229 #include <uvm/uvm_object.h>
230
231 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
232
233 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
234 &pool_allocator_nointr, IPL_NONE);
235
236 static pool_cache_t lwp_cache;
237 static specificdata_domain_t lwp_specificdata_domain;
238
239 void
240 lwpinit(void)
241 {
242
243 lwp_specificdata_domain = specificdata_domain_create();
244 KASSERT(lwp_specificdata_domain != NULL);
245 lwp_sys_init();
246 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
247 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
248 }
249
250 /*
251 * Set an suspended.
252 *
253 * Must be called with p_lock held, and the LWP locked. Will unlock the
254 * LWP before return.
255 */
256 int
257 lwp_suspend(struct lwp *curl, struct lwp *t)
258 {
259 int error;
260
261 KASSERT(mutex_owned(t->l_proc->p_lock));
262 KASSERT(lwp_locked(t, NULL));
263
264 KASSERT(curl != t || curl->l_stat == LSONPROC);
265
266 /*
267 * If the current LWP has been told to exit, we must not suspend anyone
268 * else or deadlock could occur. We won't return to userspace.
269 */
270 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
271 lwp_unlock(t);
272 return (EDEADLK);
273 }
274
275 error = 0;
276
277 switch (t->l_stat) {
278 case LSRUN:
279 case LSONPROC:
280 t->l_flag |= LW_WSUSPEND;
281 lwp_need_userret(t);
282 lwp_unlock(t);
283 break;
284
285 case LSSLEEP:
286 t->l_flag |= LW_WSUSPEND;
287
288 /*
289 * Kick the LWP and try to get it to the kernel boundary
290 * so that it will release any locks that it holds.
291 * setrunnable() will release the lock.
292 */
293 if ((t->l_flag & LW_SINTR) != 0)
294 setrunnable(t);
295 else
296 lwp_unlock(t);
297 break;
298
299 case LSSUSPENDED:
300 lwp_unlock(t);
301 break;
302
303 case LSSTOP:
304 t->l_flag |= LW_WSUSPEND;
305 setrunnable(t);
306 break;
307
308 case LSIDL:
309 case LSZOMB:
310 error = EINTR; /* It's what Solaris does..... */
311 lwp_unlock(t);
312 break;
313 }
314
315 return (error);
316 }
317
318 /*
319 * Restart a suspended LWP.
320 *
321 * Must be called with p_lock held, and the LWP locked. Will unlock the
322 * LWP before return.
323 */
324 void
325 lwp_continue(struct lwp *l)
326 {
327
328 KASSERT(mutex_owned(l->l_proc->p_lock));
329 KASSERT(lwp_locked(l, NULL));
330
331 /* If rebooting or not suspended, then just bail out. */
332 if ((l->l_flag & LW_WREBOOT) != 0) {
333 lwp_unlock(l);
334 return;
335 }
336
337 l->l_flag &= ~LW_WSUSPEND;
338
339 if (l->l_stat != LSSUSPENDED) {
340 lwp_unlock(l);
341 return;
342 }
343
344 /* setrunnable() will release the lock. */
345 setrunnable(l);
346 }
347
348 /*
349 * Wait for an LWP within the current process to exit. If 'lid' is
350 * non-zero, we are waiting for a specific LWP.
351 *
352 * Must be called with p->p_lock held.
353 */
354 int
355 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
356 {
357 struct proc *p = l->l_proc;
358 struct lwp *l2;
359 int nfound, error;
360 lwpid_t curlid;
361 bool exiting;
362
363 KASSERT(mutex_owned(p->p_lock));
364
365 p->p_nlwpwait++;
366 l->l_waitingfor = lid;
367 curlid = l->l_lid;
368 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
369
370 for (;;) {
371 /*
372 * Avoid a race between exit1() and sigexit(): if the
373 * process is dumping core, then we need to bail out: call
374 * into lwp_userret() where we will be suspended until the
375 * deed is done.
376 */
377 if ((p->p_sflag & PS_WCORE) != 0) {
378 mutex_exit(p->p_lock);
379 lwp_userret(l);
380 #ifdef DIAGNOSTIC
381 panic("lwp_wait1");
382 #endif
383 /* NOTREACHED */
384 }
385
386 /*
387 * First off, drain any detached LWP that is waiting to be
388 * reaped.
389 */
390 while ((l2 = p->p_zomblwp) != NULL) {
391 p->p_zomblwp = NULL;
392 lwp_free(l2, false, false);/* releases proc mutex */
393 mutex_enter(p->p_lock);
394 }
395
396 /*
397 * Now look for an LWP to collect. If the whole process is
398 * exiting, count detached LWPs as eligible to be collected,
399 * but don't drain them here.
400 */
401 nfound = 0;
402 error = 0;
403 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
404 /*
405 * If a specific wait and the target is waiting on
406 * us, then avoid deadlock. This also traps LWPs
407 * that try to wait on themselves.
408 *
409 * Note that this does not handle more complicated
410 * cycles, like: t1 -> t2 -> t3 -> t1. The process
411 * can still be killed so it is not a major problem.
412 */
413 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
414 error = EDEADLK;
415 break;
416 }
417 if (l2 == l)
418 continue;
419 if ((l2->l_prflag & LPR_DETACHED) != 0) {
420 nfound += exiting;
421 continue;
422 }
423 if (lid != 0) {
424 if (l2->l_lid != lid)
425 continue;
426 /*
427 * Mark this LWP as the first waiter, if there
428 * is no other.
429 */
430 if (l2->l_waiter == 0)
431 l2->l_waiter = curlid;
432 } else if (l2->l_waiter != 0) {
433 /*
434 * It already has a waiter - so don't
435 * collect it. If the waiter doesn't
436 * grab it we'll get another chance
437 * later.
438 */
439 nfound++;
440 continue;
441 }
442 nfound++;
443
444 /* No need to lock the LWP in order to see LSZOMB. */
445 if (l2->l_stat != LSZOMB)
446 continue;
447
448 /*
449 * We're no longer waiting. Reset the "first waiter"
450 * pointer on the target, in case it was us.
451 */
452 l->l_waitingfor = 0;
453 l2->l_waiter = 0;
454 p->p_nlwpwait--;
455 if (departed)
456 *departed = l2->l_lid;
457 sched_lwp_collect(l2);
458
459 /* lwp_free() releases the proc lock. */
460 lwp_free(l2, false, false);
461 mutex_enter(p->p_lock);
462 return 0;
463 }
464
465 if (error != 0)
466 break;
467 if (nfound == 0) {
468 error = ESRCH;
469 break;
470 }
471
472 /*
473 * The kernel is careful to ensure that it can not deadlock
474 * when exiting - just keep waiting.
475 */
476 if (exiting) {
477 KASSERT(p->p_nlwps > 1);
478 cv_wait(&p->p_lwpcv, p->p_lock);
479 continue;
480 }
481
482 /*
483 * If all other LWPs are waiting for exits or suspends
484 * and the supply of zombies and potential zombies is
485 * exhausted, then we are about to deadlock.
486 *
487 * If the process is exiting (and this LWP is not the one
488 * that is coordinating the exit) then bail out now.
489 */
490 if ((p->p_sflag & PS_WEXIT) != 0 ||
491 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
492 error = EDEADLK;
493 break;
494 }
495
496 /*
497 * Sit around and wait for something to happen. We'll be
498 * awoken if any of the conditions examined change: if an
499 * LWP exits, is collected, or is detached.
500 */
501 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
502 break;
503 }
504
505 /*
506 * We didn't find any LWPs to collect, we may have received a
507 * signal, or some other condition has caused us to bail out.
508 *
509 * If waiting on a specific LWP, clear the waiters marker: some
510 * other LWP may want it. Then, kick all the remaining waiters
511 * so that they can re-check for zombies and for deadlock.
512 */
513 if (lid != 0) {
514 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
515 if (l2->l_lid == lid) {
516 if (l2->l_waiter == curlid)
517 l2->l_waiter = 0;
518 break;
519 }
520 }
521 }
522 p->p_nlwpwait--;
523 l->l_waitingfor = 0;
524 cv_broadcast(&p->p_lwpcv);
525
526 return error;
527 }
528
529 /*
530 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
531 * The new LWP is created in state LSIDL and must be set running,
532 * suspended, or stopped by the caller.
533 */
534 int
535 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
536 void *stack, size_t stacksize, void (*func)(void *), void *arg,
537 lwp_t **rnewlwpp, int sclass)
538 {
539 struct lwp *l2, *isfree;
540 turnstile_t *ts;
541
542 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
543
544 /*
545 * First off, reap any detached LWP waiting to be collected.
546 * We can re-use its LWP structure and turnstile.
547 */
548 isfree = NULL;
549 if (p2->p_zomblwp != NULL) {
550 mutex_enter(p2->p_lock);
551 if ((isfree = p2->p_zomblwp) != NULL) {
552 p2->p_zomblwp = NULL;
553 lwp_free(isfree, true, false);/* releases proc mutex */
554 } else
555 mutex_exit(p2->p_lock);
556 }
557 if (isfree == NULL) {
558 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
559 memset(l2, 0, sizeof(*l2));
560 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
561 SLIST_INIT(&l2->l_pi_lenders);
562 } else {
563 l2 = isfree;
564 ts = l2->l_ts;
565 KASSERT(l2->l_inheritedprio == -1);
566 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
567 memset(l2, 0, sizeof(*l2));
568 l2->l_ts = ts;
569 }
570
571 l2->l_stat = LSIDL;
572 l2->l_proc = p2;
573 l2->l_refcnt = 1;
574 l2->l_class = sclass;
575 l2->l_kpriority = l1->l_kpriority;
576 l2->l_kpribase = PRI_KERNEL;
577 l2->l_priority = l1->l_priority;
578 l2->l_inheritedprio = -1;
579 l2->l_flag = inmem ? LW_INMEM : 0;
580 l2->l_pflag = LP_MPSAFE;
581 l2->l_fd = p2->p_fd;
582 TAILQ_INIT(&l2->l_ld_locks);
583
584 if (p2->p_flag & PK_SYSTEM) {
585 /* Mark it as a system LWP and not a candidate for swapping */
586 l2->l_flag |= LW_SYSTEM;
587 }
588
589 kpreempt_disable();
590 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
591 l2->l_cpu = l1->l_cpu;
592 kpreempt_enable();
593
594 lwp_initspecific(l2);
595 sched_lwp_fork(l1, l2);
596 lwp_update_creds(l2);
597 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
598 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
599 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
600 cv_init(&l2->l_sigcv, "sigwait");
601 l2->l_syncobj = &sched_syncobj;
602
603 if (rnewlwpp != NULL)
604 *rnewlwpp = l2;
605
606 l2->l_addr = UAREA_TO_USER(uaddr);
607 uvm_lwp_fork(l1, l2, stack, stacksize, func,
608 (arg != NULL) ? arg : l2);
609
610 mutex_enter(p2->p_lock);
611
612 if ((flags & LWP_DETACHED) != 0) {
613 l2->l_prflag = LPR_DETACHED;
614 p2->p_ndlwps++;
615 } else
616 l2->l_prflag = 0;
617
618 l2->l_sigmask = l1->l_sigmask;
619 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
620 sigemptyset(&l2->l_sigpend.sp_set);
621
622 p2->p_nlwpid++;
623 if (p2->p_nlwpid == 0)
624 p2->p_nlwpid++;
625 l2->l_lid = p2->p_nlwpid;
626 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
627 p2->p_nlwps++;
628
629 mutex_exit(p2->p_lock);
630
631 mutex_enter(proc_lock);
632 LIST_INSERT_HEAD(&alllwp, l2, l_list);
633 mutex_exit(proc_lock);
634
635 if ((p2->p_flag & PK_SYSTEM) == 0) {
636 /* Locking is needed, since LWP is in the list of all LWPs */
637 lwp_lock(l2);
638 /* Inherit a processor-set */
639 l2->l_psid = l1->l_psid;
640 /* Inherit an affinity */
641 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
642 /* Look for a CPU to start */
643 l2->l_cpu = sched_takecpu(l2);
644 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
645 }
646
647 SYSCALL_TIME_LWP_INIT(l2);
648
649 if (p2->p_emul->e_lwp_fork)
650 (*p2->p_emul->e_lwp_fork)(l1, l2);
651
652 return (0);
653 }
654
655 /*
656 * Called by MD code when a new LWP begins execution. Must be called
657 * with the previous LWP locked (so at splsched), or if there is no
658 * previous LWP, at splsched.
659 */
660 void
661 lwp_startup(struct lwp *prev, struct lwp *new)
662 {
663
664 KASSERT(kpreempt_disabled());
665 if (prev != NULL) {
666 /*
667 * Normalize the count of the spin-mutexes, it was
668 * increased in mi_switch(). Unmark the state of
669 * context switch - it is finished for previous LWP.
670 */
671 curcpu()->ci_mtx_count++;
672 membar_exit();
673 prev->l_ctxswtch = 0;
674 }
675 KPREEMPT_DISABLE(new);
676 spl0();
677 pmap_activate(new);
678 LOCKDEBUG_BARRIER(NULL, 0);
679 KPREEMPT_ENABLE(new);
680 if ((new->l_pflag & LP_MPSAFE) == 0) {
681 KERNEL_LOCK(1, new);
682 }
683 }
684
685 /*
686 * Exit an LWP.
687 */
688 void
689 lwp_exit(struct lwp *l)
690 {
691 struct proc *p = l->l_proc;
692 struct lwp *l2;
693 bool current;
694
695 current = (l == curlwp);
696
697 KASSERT(current || l->l_stat == LSIDL);
698
699 /*
700 * Verify that we hold no locks other than the kernel lock.
701 */
702 #ifdef MULTIPROCESSOR
703 LOCKDEBUG_BARRIER(&kernel_lock, 0);
704 #else
705 LOCKDEBUG_BARRIER(NULL, 0);
706 #endif
707
708 /*
709 * If we are the last live LWP in a process, we need to exit the
710 * entire process. We do so with an exit status of zero, because
711 * it's a "controlled" exit, and because that's what Solaris does.
712 *
713 * We are not quite a zombie yet, but for accounting purposes we
714 * must increment the count of zombies here.
715 *
716 * Note: the last LWP's specificdata will be deleted here.
717 */
718 mutex_enter(p->p_lock);
719 if (p->p_nlwps - p->p_nzlwps == 1) {
720 KASSERT(current == true);
721 /* XXXSMP kernel_lock not held */
722 exit1(l, 0);
723 /* NOTREACHED */
724 }
725 p->p_nzlwps++;
726 mutex_exit(p->p_lock);
727
728 if (p->p_emul->e_lwp_exit)
729 (*p->p_emul->e_lwp_exit)(l);
730
731 /* Delete the specificdata while it's still safe to sleep. */
732 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
733
734 /*
735 * Release our cached credentials.
736 */
737 kauth_cred_free(l->l_cred);
738 callout_destroy(&l->l_timeout_ch);
739
740 /*
741 * While we can still block, mark the LWP as unswappable to
742 * prevent conflicts with the with the swapper.
743 */
744 if (current)
745 uvm_lwp_hold(l);
746
747 /*
748 * Remove the LWP from the global list.
749 */
750 mutex_enter(proc_lock);
751 LIST_REMOVE(l, l_list);
752 mutex_exit(proc_lock);
753
754 /*
755 * Get rid of all references to the LWP that others (e.g. procfs)
756 * may have, and mark the LWP as a zombie. If the LWP is detached,
757 * mark it waiting for collection in the proc structure. Note that
758 * before we can do that, we need to free any other dead, deatched
759 * LWP waiting to meet its maker.
760 */
761 mutex_enter(p->p_lock);
762 lwp_drainrefs(l);
763
764 if ((l->l_prflag & LPR_DETACHED) != 0) {
765 while ((l2 = p->p_zomblwp) != NULL) {
766 p->p_zomblwp = NULL;
767 lwp_free(l2, false, false);/* releases proc mutex */
768 mutex_enter(p->p_lock);
769 l->l_refcnt++;
770 lwp_drainrefs(l);
771 }
772 p->p_zomblwp = l;
773 }
774
775 /*
776 * If we find a pending signal for the process and we have been
777 * asked to check for signals, then we loose: arrange to have
778 * all other LWPs in the process check for signals.
779 */
780 if ((l->l_flag & LW_PENDSIG) != 0 &&
781 firstsig(&p->p_sigpend.sp_set) != 0) {
782 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
783 lwp_lock(l2);
784 l2->l_flag |= LW_PENDSIG;
785 lwp_unlock(l2);
786 }
787 }
788
789 lwp_lock(l);
790 l->l_stat = LSZOMB;
791 if (l->l_name != NULL)
792 strcpy(l->l_name, "(zombie)");
793 lwp_unlock(l);
794 p->p_nrlwps--;
795 cv_broadcast(&p->p_lwpcv);
796 if (l->l_lwpctl != NULL)
797 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
798 mutex_exit(p->p_lock);
799
800 /*
801 * We can no longer block. At this point, lwp_free() may already
802 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
803 *
804 * Free MD LWP resources.
805 */
806 #ifndef __NO_CPU_LWP_FREE
807 cpu_lwp_free(l, 0);
808 #endif
809
810 if (current) {
811 pmap_deactivate(l);
812
813 /*
814 * Release the kernel lock, and switch away into
815 * oblivion.
816 */
817 #ifdef notyet
818 /* XXXSMP hold in lwp_userret() */
819 KERNEL_UNLOCK_LAST(l);
820 #else
821 KERNEL_UNLOCK_ALL(l, NULL);
822 #endif
823 lwp_exit_switchaway(l);
824 }
825 }
826
827 void
828 lwp_exit_switchaway(struct lwp *l)
829 {
830 struct cpu_info *ci;
831 struct lwp *idlelwp;
832
833 (void)splsched();
834 l->l_flag &= ~LW_RUNNING;
835 ci = curcpu();
836 ci->ci_data.cpu_nswtch++;
837 idlelwp = ci->ci_data.cpu_idlelwp;
838 idlelwp->l_stat = LSONPROC;
839
840 /*
841 * cpu_onproc must be updated with the CPU locked, as
842 * aston() may try to set a AST pending on the LWP (and
843 * it does so with the CPU locked). Otherwise, the LWP
844 * may be destroyed before the AST can be set, leading
845 * to a user-after-free.
846 */
847 spc_lock(ci);
848 ci->ci_data.cpu_onproc = idlelwp;
849 spc_unlock(ci);
850 cpu_switchto(NULL, idlelwp, false);
851 }
852
853 /*
854 * Free a dead LWP's remaining resources.
855 *
856 * XXXLWP limits.
857 */
858 void
859 lwp_free(struct lwp *l, bool recycle, bool last)
860 {
861 struct proc *p = l->l_proc;
862 struct rusage *ru;
863 ksiginfoq_t kq;
864
865 KASSERT(l != curlwp);
866
867 /*
868 * If this was not the last LWP in the process, then adjust
869 * counters and unlock.
870 */
871 if (!last) {
872 /*
873 * Add the LWP's run time to the process' base value.
874 * This needs to co-incide with coming off p_lwps.
875 */
876 bintime_add(&p->p_rtime, &l->l_rtime);
877 p->p_pctcpu += l->l_pctcpu;
878 ru = &p->p_stats->p_ru;
879 ruadd(ru, &l->l_ru);
880 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
881 ru->ru_nivcsw += l->l_nivcsw;
882 LIST_REMOVE(l, l_sibling);
883 p->p_nlwps--;
884 p->p_nzlwps--;
885 if ((l->l_prflag & LPR_DETACHED) != 0)
886 p->p_ndlwps--;
887
888 /*
889 * Have any LWPs sleeping in lwp_wait() recheck for
890 * deadlock.
891 */
892 cv_broadcast(&p->p_lwpcv);
893 mutex_exit(p->p_lock);
894 }
895
896 #ifdef MULTIPROCESSOR
897 /*
898 * In the unlikely event that the LWP is still on the CPU,
899 * then spin until it has switched away. We need to release
900 * all locks to avoid deadlock against interrupt handlers on
901 * the target CPU.
902 */
903 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
904 int count;
905 (void)count; /* XXXgcc */
906 KERNEL_UNLOCK_ALL(curlwp, &count);
907 while ((l->l_flag & LW_RUNNING) != 0 ||
908 l->l_cpu->ci_curlwp == l)
909 SPINLOCK_BACKOFF_HOOK;
910 KERNEL_LOCK(count, curlwp);
911 }
912 #endif
913
914 /*
915 * Destroy the LWP's remaining signal information.
916 */
917 ksiginfo_queue_init(&kq);
918 sigclear(&l->l_sigpend, NULL, &kq);
919 ksiginfo_queue_drain(&kq);
920 cv_destroy(&l->l_sigcv);
921 mutex_destroy(&l->l_swaplock);
922
923 /*
924 * Free the LWP's turnstile and the LWP structure itself unless the
925 * caller wants to recycle them. Also, free the scheduler specific
926 * data.
927 *
928 * We can't return turnstile0 to the pool (it didn't come from it),
929 * so if it comes up just drop it quietly and move on.
930 *
931 * We don't recycle the VM resources at this time.
932 */
933 if (l->l_lwpctl != NULL)
934 lwp_ctl_free(l);
935 sched_lwp_exit(l);
936
937 if (!recycle && l->l_ts != &turnstile0)
938 pool_cache_put(turnstile_cache, l->l_ts);
939 if (l->l_name != NULL)
940 kmem_free(l->l_name, MAXCOMLEN);
941 #ifndef __NO_CPU_LWP_FREE
942 cpu_lwp_free2(l);
943 #endif
944 KASSERT((l->l_flag & LW_INMEM) != 0);
945 uvm_lwp_exit(l);
946 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
947 KASSERT(l->l_inheritedprio == -1);
948 if (!recycle)
949 pool_cache_put(lwp_cache, l);
950 }
951
952 /*
953 * Pick a LWP to represent the process for those operations which
954 * want information about a "process" that is actually associated
955 * with a LWP.
956 *
957 * If 'locking' is false, no locking or lock checks are performed.
958 * This is intended for use by DDB.
959 *
960 * We don't bother locking the LWP here, since code that uses this
961 * interface is broken by design and an exact match is not required.
962 */
963 struct lwp *
964 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
965 {
966 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
967 struct lwp *signalled;
968 int cnt;
969
970 if (locking) {
971 KASSERT(mutex_owned(p->p_lock));
972 }
973
974 /* Trivial case: only one LWP */
975 if (p->p_nlwps == 1) {
976 l = LIST_FIRST(&p->p_lwps);
977 if (nrlwps)
978 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
979 return l;
980 }
981
982 cnt = 0;
983 switch (p->p_stat) {
984 case SSTOP:
985 case SACTIVE:
986 /* Pick the most live LWP */
987 onproc = running = sleeping = stopped = suspended = NULL;
988 signalled = NULL;
989 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
990 if ((l->l_flag & LW_IDLE) != 0) {
991 continue;
992 }
993 if (l->l_lid == p->p_sigctx.ps_lwp)
994 signalled = l;
995 switch (l->l_stat) {
996 case LSONPROC:
997 onproc = l;
998 cnt++;
999 break;
1000 case LSRUN:
1001 running = l;
1002 cnt++;
1003 break;
1004 case LSSLEEP:
1005 sleeping = l;
1006 break;
1007 case LSSTOP:
1008 stopped = l;
1009 break;
1010 case LSSUSPENDED:
1011 suspended = l;
1012 break;
1013 }
1014 }
1015 if (nrlwps)
1016 *nrlwps = cnt;
1017 if (signalled)
1018 l = signalled;
1019 else if (onproc)
1020 l = onproc;
1021 else if (running)
1022 l = running;
1023 else if (sleeping)
1024 l = sleeping;
1025 else if (stopped)
1026 l = stopped;
1027 else if (suspended)
1028 l = suspended;
1029 else
1030 break;
1031 return l;
1032 #ifdef DIAGNOSTIC
1033 case SIDL:
1034 case SZOMB:
1035 case SDYING:
1036 case SDEAD:
1037 if (locking)
1038 mutex_exit(p->p_lock);
1039 /* We have more than one LWP and we're in SIDL?
1040 * How'd that happen?
1041 */
1042 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1043 p->p_pid, p->p_comm, p->p_stat);
1044 break;
1045 default:
1046 if (locking)
1047 mutex_exit(p->p_lock);
1048 panic("Process %d (%s) in unknown state %d",
1049 p->p_pid, p->p_comm, p->p_stat);
1050 #endif
1051 }
1052
1053 if (locking)
1054 mutex_exit(p->p_lock);
1055 panic("proc_representative_lwp: couldn't find a lwp for process"
1056 " %d (%s)", p->p_pid, p->p_comm);
1057 /* NOTREACHED */
1058 return NULL;
1059 }
1060
1061 /*
1062 * Migrate the LWP to the another CPU. Unlocks the LWP.
1063 */
1064 void
1065 lwp_migrate(lwp_t *l, struct cpu_info *ci)
1066 {
1067 struct schedstate_percpu *spc;
1068 KASSERT(lwp_locked(l, NULL));
1069
1070 if (l->l_cpu == ci) {
1071 lwp_unlock(l);
1072 return;
1073 }
1074
1075 spc = &ci->ci_schedstate;
1076 switch (l->l_stat) {
1077 case LSRUN:
1078 if (l->l_flag & LW_INMEM) {
1079 l->l_target_cpu = ci;
1080 break;
1081 }
1082 case LSIDL:
1083 l->l_cpu = ci;
1084 lwp_unlock_to(l, spc->spc_mutex);
1085 KASSERT(!mutex_owned(spc->spc_mutex));
1086 return;
1087 case LSSLEEP:
1088 l->l_cpu = ci;
1089 break;
1090 case LSSTOP:
1091 case LSSUSPENDED:
1092 if (l->l_wchan != NULL) {
1093 l->l_cpu = ci;
1094 break;
1095 }
1096 case LSONPROC:
1097 l->l_target_cpu = ci;
1098 break;
1099 }
1100 lwp_unlock(l);
1101 }
1102
1103 /*
1104 * Find the LWP in the process. Arguments may be zero, in such case,
1105 * the calling process and first LWP in the list will be used.
1106 * On success - returns proc locked.
1107 */
1108 struct lwp *
1109 lwp_find2(pid_t pid, lwpid_t lid)
1110 {
1111 proc_t *p;
1112 lwp_t *l;
1113
1114 /* Find the process */
1115 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1116 if (p == NULL)
1117 return NULL;
1118 mutex_enter(p->p_lock);
1119 if (pid != 0) {
1120 /* Case of p_find */
1121 mutex_exit(proc_lock);
1122 }
1123
1124 /* Find the thread */
1125 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1126 if (l == NULL) {
1127 mutex_exit(p->p_lock);
1128 }
1129
1130 return l;
1131 }
1132
1133 /*
1134 * Look up a live LWP within the speicifed process, and return it locked.
1135 *
1136 * Must be called with p->p_lock held.
1137 */
1138 struct lwp *
1139 lwp_find(struct proc *p, int id)
1140 {
1141 struct lwp *l;
1142
1143 KASSERT(mutex_owned(p->p_lock));
1144
1145 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1146 if (l->l_lid == id)
1147 break;
1148 }
1149
1150 /*
1151 * No need to lock - all of these conditions will
1152 * be visible with the process level mutex held.
1153 */
1154 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1155 l = NULL;
1156
1157 return l;
1158 }
1159
1160 /*
1161 * Update an LWP's cached credentials to mirror the process' master copy.
1162 *
1163 * This happens early in the syscall path, on user trap, and on LWP
1164 * creation. A long-running LWP can also voluntarily choose to update
1165 * it's credentials by calling this routine. This may be called from
1166 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1167 */
1168 void
1169 lwp_update_creds(struct lwp *l)
1170 {
1171 kauth_cred_t oc;
1172 struct proc *p;
1173
1174 p = l->l_proc;
1175 oc = l->l_cred;
1176
1177 mutex_enter(p->p_lock);
1178 kauth_cred_hold(p->p_cred);
1179 l->l_cred = p->p_cred;
1180 l->l_prflag &= ~LPR_CRMOD;
1181 mutex_exit(p->p_lock);
1182 if (oc != NULL)
1183 kauth_cred_free(oc);
1184 }
1185
1186 /*
1187 * Verify that an LWP is locked, and optionally verify that the lock matches
1188 * one we specify.
1189 */
1190 int
1191 lwp_locked(struct lwp *l, kmutex_t *mtx)
1192 {
1193 kmutex_t *cur = l->l_mutex;
1194
1195 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1196 }
1197
1198 /*
1199 * Lock an LWP.
1200 */
1201 void
1202 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1203 {
1204
1205 /*
1206 * XXXgcc ignoring kmutex_t * volatile on i386
1207 *
1208 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1209 */
1210 #if 1
1211 while (l->l_mutex != old) {
1212 #else
1213 for (;;) {
1214 #endif
1215 mutex_spin_exit(old);
1216 old = l->l_mutex;
1217 mutex_spin_enter(old);
1218
1219 /*
1220 * mutex_enter() will have posted a read barrier. Re-test
1221 * l->l_mutex. If it has changed, we need to try again.
1222 */
1223 #if 1
1224 }
1225 #else
1226 } while (__predict_false(l->l_mutex != old));
1227 #endif
1228 }
1229
1230 /*
1231 * Lend a new mutex to an LWP. The old mutex must be held.
1232 */
1233 void
1234 lwp_setlock(struct lwp *l, kmutex_t *new)
1235 {
1236
1237 KASSERT(mutex_owned(l->l_mutex));
1238
1239 membar_exit();
1240 l->l_mutex = new;
1241 }
1242
1243 /*
1244 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1245 * must be held.
1246 */
1247 void
1248 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1249 {
1250 kmutex_t *old;
1251
1252 KASSERT(mutex_owned(l->l_mutex));
1253
1254 old = l->l_mutex;
1255 membar_exit();
1256 l->l_mutex = new;
1257 mutex_spin_exit(old);
1258 }
1259
1260 /*
1261 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1262 * locked.
1263 */
1264 void
1265 lwp_relock(struct lwp *l, kmutex_t *new)
1266 {
1267 kmutex_t *old;
1268
1269 KASSERT(mutex_owned(l->l_mutex));
1270
1271 old = l->l_mutex;
1272 if (old != new) {
1273 mutex_spin_enter(new);
1274 l->l_mutex = new;
1275 mutex_spin_exit(old);
1276 }
1277 }
1278
1279 int
1280 lwp_trylock(struct lwp *l)
1281 {
1282 kmutex_t *old;
1283
1284 for (;;) {
1285 if (!mutex_tryenter(old = l->l_mutex))
1286 return 0;
1287 if (__predict_true(l->l_mutex == old))
1288 return 1;
1289 mutex_spin_exit(old);
1290 }
1291 }
1292
1293 u_int
1294 lwp_unsleep(lwp_t *l, bool cleanup)
1295 {
1296
1297 KASSERT(mutex_owned(l->l_mutex));
1298
1299 return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1300 }
1301
1302
1303 /*
1304 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1305 * set.
1306 */
1307 void
1308 lwp_userret(struct lwp *l)
1309 {
1310 struct proc *p;
1311 void (*hook)(void);
1312 int sig;
1313
1314 p = l->l_proc;
1315
1316 #ifndef __HAVE_FAST_SOFTINTS
1317 /* Run pending soft interrupts. */
1318 if (l->l_cpu->ci_data.cpu_softints != 0)
1319 softint_overlay();
1320 #endif
1321
1322 /*
1323 * It should be safe to do this read unlocked on a multiprocessor
1324 * system..
1325 */
1326 while ((l->l_flag & LW_USERRET) != 0) {
1327 /*
1328 * Process pending signals first, unless the process
1329 * is dumping core or exiting, where we will instead
1330 * enter the LW_WSUSPEND case below.
1331 */
1332 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1333 LW_PENDSIG) {
1334 mutex_enter(p->p_lock);
1335 while ((sig = issignal(l)) != 0)
1336 postsig(sig);
1337 mutex_exit(p->p_lock);
1338 }
1339
1340 /*
1341 * Core-dump or suspend pending.
1342 *
1343 * In case of core dump, suspend ourselves, so that the
1344 * kernel stack and therefore the userland registers saved
1345 * in the trapframe are around for coredump() to write them
1346 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1347 * will write the core file out once all other LWPs are
1348 * suspended.
1349 */
1350 if ((l->l_flag & LW_WSUSPEND) != 0) {
1351 mutex_enter(p->p_lock);
1352 p->p_nrlwps--;
1353 cv_broadcast(&p->p_lwpcv);
1354 lwp_lock(l);
1355 l->l_stat = LSSUSPENDED;
1356 lwp_unlock(l);
1357 mutex_exit(p->p_lock);
1358 lwp_lock(l);
1359 mi_switch(l);
1360 }
1361
1362 /* Process is exiting. */
1363 if ((l->l_flag & LW_WEXIT) != 0) {
1364 lwp_exit(l);
1365 KASSERT(0);
1366 /* NOTREACHED */
1367 }
1368
1369 /* Call userret hook; used by Linux emulation. */
1370 if ((l->l_flag & LW_WUSERRET) != 0) {
1371 lwp_lock(l);
1372 l->l_flag &= ~LW_WUSERRET;
1373 lwp_unlock(l);
1374 hook = p->p_userret;
1375 p->p_userret = NULL;
1376 (*hook)();
1377 }
1378 }
1379 }
1380
1381 /*
1382 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1383 */
1384 void
1385 lwp_need_userret(struct lwp *l)
1386 {
1387 KASSERT(lwp_locked(l, NULL));
1388
1389 /*
1390 * Since the tests in lwp_userret() are done unlocked, make sure
1391 * that the condition will be seen before forcing the LWP to enter
1392 * kernel mode.
1393 */
1394 membar_producer();
1395 cpu_signotify(l);
1396 }
1397
1398 /*
1399 * Add one reference to an LWP. This will prevent the LWP from
1400 * exiting, thus keep the lwp structure and PCB around to inspect.
1401 */
1402 void
1403 lwp_addref(struct lwp *l)
1404 {
1405
1406 KASSERT(mutex_owned(l->l_proc->p_lock));
1407 KASSERT(l->l_stat != LSZOMB);
1408 KASSERT(l->l_refcnt != 0);
1409
1410 l->l_refcnt++;
1411 }
1412
1413 /*
1414 * Remove one reference to an LWP. If this is the last reference,
1415 * then we must finalize the LWP's death.
1416 */
1417 void
1418 lwp_delref(struct lwp *l)
1419 {
1420 struct proc *p = l->l_proc;
1421
1422 mutex_enter(p->p_lock);
1423 KASSERT(l->l_stat != LSZOMB);
1424 KASSERT(l->l_refcnt > 0);
1425 if (--l->l_refcnt == 0)
1426 cv_broadcast(&p->p_lwpcv);
1427 mutex_exit(p->p_lock);
1428 }
1429
1430 /*
1431 * Drain all references to the current LWP.
1432 */
1433 void
1434 lwp_drainrefs(struct lwp *l)
1435 {
1436 struct proc *p = l->l_proc;
1437
1438 KASSERT(mutex_owned(p->p_lock));
1439 KASSERT(l->l_refcnt != 0);
1440
1441 l->l_refcnt--;
1442 while (l->l_refcnt != 0)
1443 cv_wait(&p->p_lwpcv, p->p_lock);
1444 }
1445
1446 /*
1447 * lwp_specific_key_create --
1448 * Create a key for subsystem lwp-specific data.
1449 */
1450 int
1451 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1452 {
1453
1454 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1455 }
1456
1457 /*
1458 * lwp_specific_key_delete --
1459 * Delete a key for subsystem lwp-specific data.
1460 */
1461 void
1462 lwp_specific_key_delete(specificdata_key_t key)
1463 {
1464
1465 specificdata_key_delete(lwp_specificdata_domain, key);
1466 }
1467
1468 /*
1469 * lwp_initspecific --
1470 * Initialize an LWP's specificdata container.
1471 */
1472 void
1473 lwp_initspecific(struct lwp *l)
1474 {
1475 int error;
1476
1477 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1478 KASSERT(error == 0);
1479 }
1480
1481 /*
1482 * lwp_finispecific --
1483 * Finalize an LWP's specificdata container.
1484 */
1485 void
1486 lwp_finispecific(struct lwp *l)
1487 {
1488
1489 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1490 }
1491
1492 /*
1493 * lwp_getspecific --
1494 * Return lwp-specific data corresponding to the specified key.
1495 *
1496 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1497 * only its OWN SPECIFIC DATA. If it is necessary to access another
1498 * LWP's specifc data, care must be taken to ensure that doing so
1499 * would not cause internal data structure inconsistency (i.e. caller
1500 * can guarantee that the target LWP is not inside an lwp_getspecific()
1501 * or lwp_setspecific() call).
1502 */
1503 void *
1504 lwp_getspecific(specificdata_key_t key)
1505 {
1506
1507 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1508 &curlwp->l_specdataref, key));
1509 }
1510
1511 void *
1512 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1513 {
1514
1515 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1516 &l->l_specdataref, key));
1517 }
1518
1519 /*
1520 * lwp_setspecific --
1521 * Set lwp-specific data corresponding to the specified key.
1522 */
1523 void
1524 lwp_setspecific(specificdata_key_t key, void *data)
1525 {
1526
1527 specificdata_setspecific(lwp_specificdata_domain,
1528 &curlwp->l_specdataref, key, data);
1529 }
1530
1531 /*
1532 * Allocate a new lwpctl structure for a user LWP.
1533 */
1534 int
1535 lwp_ctl_alloc(vaddr_t *uaddr)
1536 {
1537 lcproc_t *lp;
1538 u_int bit, i, offset;
1539 struct uvm_object *uao;
1540 int error;
1541 lcpage_t *lcp;
1542 proc_t *p;
1543 lwp_t *l;
1544
1545 l = curlwp;
1546 p = l->l_proc;
1547
1548 if (l->l_lcpage != NULL) {
1549 lcp = l->l_lcpage;
1550 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1551 return (EINVAL);
1552 }
1553
1554 /* First time around, allocate header structure for the process. */
1555 if ((lp = p->p_lwpctl) == NULL) {
1556 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1557 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1558 lp->lp_uao = NULL;
1559 TAILQ_INIT(&lp->lp_pages);
1560 mutex_enter(p->p_lock);
1561 if (p->p_lwpctl == NULL) {
1562 p->p_lwpctl = lp;
1563 mutex_exit(p->p_lock);
1564 } else {
1565 mutex_exit(p->p_lock);
1566 mutex_destroy(&lp->lp_lock);
1567 kmem_free(lp, sizeof(*lp));
1568 lp = p->p_lwpctl;
1569 }
1570 }
1571
1572 /*
1573 * Set up an anonymous memory region to hold the shared pages.
1574 * Map them into the process' address space. The user vmspace
1575 * gets the first reference on the UAO.
1576 */
1577 mutex_enter(&lp->lp_lock);
1578 if (lp->lp_uao == NULL) {
1579 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1580 lp->lp_cur = 0;
1581 lp->lp_max = LWPCTL_UAREA_SZ;
1582 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1583 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1584 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1585 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1586 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1587 if (error != 0) {
1588 uao_detach(lp->lp_uao);
1589 lp->lp_uao = NULL;
1590 mutex_exit(&lp->lp_lock);
1591 return error;
1592 }
1593 }
1594
1595 /* Get a free block and allocate for this LWP. */
1596 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1597 if (lcp->lcp_nfree != 0)
1598 break;
1599 }
1600 if (lcp == NULL) {
1601 /* Nothing available - try to set up a free page. */
1602 if (lp->lp_cur == lp->lp_max) {
1603 mutex_exit(&lp->lp_lock);
1604 return ENOMEM;
1605 }
1606 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1607 if (lcp == NULL) {
1608 mutex_exit(&lp->lp_lock);
1609 return ENOMEM;
1610 }
1611 /*
1612 * Wire the next page down in kernel space. Since this
1613 * is a new mapping, we must add a reference.
1614 */
1615 uao = lp->lp_uao;
1616 (*uao->pgops->pgo_reference)(uao);
1617 lcp->lcp_kaddr = vm_map_min(kernel_map);
1618 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1619 uao, lp->lp_cur, PAGE_SIZE,
1620 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1621 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1622 if (error != 0) {
1623 mutex_exit(&lp->lp_lock);
1624 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1625 (*uao->pgops->pgo_detach)(uao);
1626 return error;
1627 }
1628 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1629 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1630 if (error != 0) {
1631 mutex_exit(&lp->lp_lock);
1632 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1633 lcp->lcp_kaddr + PAGE_SIZE);
1634 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1635 return error;
1636 }
1637 /* Prepare the page descriptor and link into the list. */
1638 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1639 lp->lp_cur += PAGE_SIZE;
1640 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1641 lcp->lcp_rotor = 0;
1642 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1643 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1644 }
1645 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1646 if (++i >= LWPCTL_BITMAP_ENTRIES)
1647 i = 0;
1648 }
1649 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1650 lcp->lcp_bitmap[i] ^= (1 << bit);
1651 lcp->lcp_rotor = i;
1652 lcp->lcp_nfree--;
1653 l->l_lcpage = lcp;
1654 offset = (i << 5) + bit;
1655 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1656 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1657 mutex_exit(&lp->lp_lock);
1658
1659 KPREEMPT_DISABLE(l);
1660 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1661 KPREEMPT_ENABLE(l);
1662
1663 return 0;
1664 }
1665
1666 /*
1667 * Free an lwpctl structure back to the per-process list.
1668 */
1669 void
1670 lwp_ctl_free(lwp_t *l)
1671 {
1672 lcproc_t *lp;
1673 lcpage_t *lcp;
1674 u_int map, offset;
1675
1676 lp = l->l_proc->p_lwpctl;
1677 KASSERT(lp != NULL);
1678
1679 lcp = l->l_lcpage;
1680 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1681 KASSERT(offset < LWPCTL_PER_PAGE);
1682
1683 mutex_enter(&lp->lp_lock);
1684 lcp->lcp_nfree++;
1685 map = offset >> 5;
1686 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1687 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1688 lcp->lcp_rotor = map;
1689 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1690 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1691 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1692 }
1693 mutex_exit(&lp->lp_lock);
1694 }
1695
1696 /*
1697 * Process is exiting; tear down lwpctl state. This can only be safely
1698 * called by the last LWP in the process.
1699 */
1700 void
1701 lwp_ctl_exit(void)
1702 {
1703 lcpage_t *lcp, *next;
1704 lcproc_t *lp;
1705 proc_t *p;
1706 lwp_t *l;
1707
1708 l = curlwp;
1709 l->l_lwpctl = NULL;
1710 l->l_lcpage = NULL;
1711 p = l->l_proc;
1712 lp = p->p_lwpctl;
1713
1714 KASSERT(lp != NULL);
1715 KASSERT(p->p_nlwps == 1);
1716
1717 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1718 next = TAILQ_NEXT(lcp, lcp_chain);
1719 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1720 lcp->lcp_kaddr + PAGE_SIZE);
1721 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1722 }
1723
1724 if (lp->lp_uao != NULL) {
1725 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1726 lp->lp_uva + LWPCTL_UAREA_SZ);
1727 }
1728
1729 mutex_destroy(&lp->lp_lock);
1730 kmem_free(lp, sizeof(*lp));
1731 p->p_lwpctl = NULL;
1732 }
1733
1734 #if defined(DDB)
1735 void
1736 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1737 {
1738 lwp_t *l;
1739
1740 LIST_FOREACH(l, &alllwp, l_list) {
1741 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1742
1743 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1744 continue;
1745 }
1746 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1747 (void *)addr, (void *)stack,
1748 (size_t)(addr - stack), l);
1749 }
1750 }
1751 #endif /* defined(DDB) */
1752