kern_lwp.c revision 1.110.2.4 1 /* $NetBSD: kern_lwp.c,v 1.110.2.4 2008/06/23 04:31:50 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 * then the LWP is not on a run queue, but may be soon.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is: a) about to switch away into oblivion b) has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > STOPPED > SLEEP
125 * > SUSPENDED > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > SUSPENDED
136 *
137 * Other state transitions are possible with kernel threads (eg
138 * ONPROC -> IDL), but only happen under tightly controlled
139 * circumstances the side effects are understood.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * Note that an LWP is considered running or likely to run soon if in
200 * one of the following states. This affects the value of p_nrlwps:
201 *
202 * LSRUN, LSONPROC, LSSLEEP
203 *
204 * p_lock does not need to be held when transitioning among these
205 * three states.
206 */
207
208 #include <sys/cdefs.h>
209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.110.2.4 2008/06/23 04:31:50 wrstuden Exp $");
210
211 #include "opt_ddb.h"
212 #include "opt_lockdebug.h"
213
214 #define _LWP_API_PRIVATE
215
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/sa.h>
222 #include <sys/savar.h>
223 #include <sys/syscallargs.h>
224 #include <sys/syscall_stats.h>
225 #include <sys/kauth.h>
226 #include <sys/sleepq.h>
227 #include <sys/user.h>
228 #include <sys/lockdebug.h>
229 #include <sys/kmem.h>
230 #include <sys/pset.h>
231 #include <sys/intr.h>
232 #include <sys/lwpctl.h>
233 #include <sys/atomic.h>
234
235 #include <uvm/uvm_extern.h>
236 #include <uvm/uvm_object.h>
237
238 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
239
240 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
241 &pool_allocator_nointr, IPL_NONE);
242
243 static pool_cache_t lwp_cache;
244 static specificdata_domain_t lwp_specificdata_domain;
245
246 void
247 lwpinit(void)
248 {
249
250 lwp_specificdata_domain = specificdata_domain_create();
251 KASSERT(lwp_specificdata_domain != NULL);
252 lwp_sys_init();
253 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
254 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
255 }
256
257 /*
258 * Set an suspended.
259 *
260 * Must be called with p_lock held, and the LWP locked. Will unlock the
261 * LWP before return.
262 */
263 int
264 lwp_suspend(struct lwp *curl, struct lwp *t)
265 {
266 int error;
267
268 KASSERT(mutex_owned(t->l_proc->p_lock));
269 KASSERT(lwp_locked(t, NULL));
270
271 KASSERT(curl != t || curl->l_stat == LSONPROC);
272
273 /*
274 * If the current LWP has been told to exit, we must not suspend anyone
275 * else or deadlock could occur. We won't return to userspace.
276 */
277 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
278 lwp_unlock(t);
279 return (EDEADLK);
280 }
281
282 error = 0;
283
284 switch (t->l_stat) {
285 case LSRUN:
286 case LSONPROC:
287 t->l_flag |= LW_WSUSPEND;
288 lwp_need_userret(t);
289 lwp_unlock(t);
290 break;
291
292 case LSSLEEP:
293 t->l_flag |= LW_WSUSPEND;
294
295 /*
296 * Kick the LWP and try to get it to the kernel boundary
297 * so that it will release any locks that it holds.
298 * setrunnable() will release the lock.
299 */
300 if ((t->l_flag & LW_SINTR) != 0)
301 setrunnable(t);
302 else
303 lwp_unlock(t);
304 break;
305
306 case LSSUSPENDED:
307 lwp_unlock(t);
308 break;
309
310 case LSSTOP:
311 t->l_flag |= LW_WSUSPEND;
312 setrunnable(t);
313 break;
314
315 case LSIDL:
316 case LSZOMB:
317 error = EINTR; /* It's what Solaris does..... */
318 lwp_unlock(t);
319 break;
320 }
321
322 return (error);
323 }
324
325 /*
326 * Restart a suspended LWP.
327 *
328 * Must be called with p_lock held, and the LWP locked. Will unlock the
329 * LWP before return.
330 */
331 void
332 lwp_continue(struct lwp *l)
333 {
334
335 KASSERT(mutex_owned(l->l_proc->p_lock));
336 KASSERT(lwp_locked(l, NULL));
337
338 /* If rebooting or not suspended, then just bail out. */
339 if ((l->l_flag & LW_WREBOOT) != 0) {
340 lwp_unlock(l);
341 return;
342 }
343
344 l->l_flag &= ~LW_WSUSPEND;
345
346 if (l->l_stat != LSSUSPENDED) {
347 lwp_unlock(l);
348 return;
349 }
350
351 /* setrunnable() will release the lock. */
352 setrunnable(l);
353 }
354
355 /*
356 * Wait for an LWP within the current process to exit. If 'lid' is
357 * non-zero, we are waiting for a specific LWP.
358 *
359 * Must be called with p->p_lock held.
360 */
361 int
362 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
363 {
364 struct proc *p = l->l_proc;
365 struct lwp *l2;
366 int nfound, error;
367 lwpid_t curlid;
368 bool exiting;
369
370 KASSERT(mutex_owned(p->p_lock));
371
372 p->p_nlwpwait++;
373 l->l_waitingfor = lid;
374 curlid = l->l_lid;
375 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
376
377 for (;;) {
378 /*
379 * Avoid a race between exit1() and sigexit(): if the
380 * process is dumping core, then we need to bail out: call
381 * into lwp_userret() where we will be suspended until the
382 * deed is done.
383 */
384 if ((p->p_sflag & PS_WCORE) != 0) {
385 mutex_exit(p->p_lock);
386 lwp_userret(l);
387 #ifdef DIAGNOSTIC
388 panic("lwp_wait1");
389 #endif
390 /* NOTREACHED */
391 }
392
393 /*
394 * First off, drain any detached LWP that is waiting to be
395 * reaped.
396 */
397 while ((l2 = p->p_zomblwp) != NULL) {
398 p->p_zomblwp = NULL;
399 lwp_free(l2, false, false);/* releases proc mutex */
400 mutex_enter(p->p_lock);
401 }
402
403 /*
404 * Now look for an LWP to collect. If the whole process is
405 * exiting, count detached LWPs as eligible to be collected,
406 * but don't drain them here.
407 */
408 nfound = 0;
409 error = 0;
410 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
411 /*
412 * If a specific wait and the target is waiting on
413 * us, then avoid deadlock. This also traps LWPs
414 * that try to wait on themselves.
415 *
416 * Note that this does not handle more complicated
417 * cycles, like: t1 -> t2 -> t3 -> t1. The process
418 * can still be killed so it is not a major problem.
419 */
420 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
421 error = EDEADLK;
422 break;
423 }
424 if (l2 == l)
425 continue;
426 if ((l2->l_prflag & LPR_DETACHED) != 0) {
427 nfound += exiting;
428 continue;
429 }
430 if (lid != 0) {
431 if (l2->l_lid != lid)
432 continue;
433 /*
434 * Mark this LWP as the first waiter, if there
435 * is no other.
436 */
437 if (l2->l_waiter == 0)
438 l2->l_waiter = curlid;
439 } else if (l2->l_waiter != 0) {
440 /*
441 * It already has a waiter - so don't
442 * collect it. If the waiter doesn't
443 * grab it we'll get another chance
444 * later.
445 */
446 nfound++;
447 continue;
448 }
449 nfound++;
450
451 /* No need to lock the LWP in order to see LSZOMB. */
452 if (l2->l_stat != LSZOMB)
453 continue;
454
455 /*
456 * We're no longer waiting. Reset the "first waiter"
457 * pointer on the target, in case it was us.
458 */
459 l->l_waitingfor = 0;
460 l2->l_waiter = 0;
461 p->p_nlwpwait--;
462 if (departed)
463 *departed = l2->l_lid;
464 sched_lwp_collect(l2);
465
466 /* lwp_free() releases the proc lock. */
467 lwp_free(l2, false, false);
468 mutex_enter(p->p_lock);
469 return 0;
470 }
471
472 if (error != 0)
473 break;
474 if (nfound == 0) {
475 error = ESRCH;
476 break;
477 }
478
479 /*
480 * The kernel is careful to ensure that it can not deadlock
481 * when exiting - just keep waiting.
482 */
483 if (exiting) {
484 KASSERT(p->p_nlwps > 1);
485 cv_wait(&p->p_lwpcv, p->p_lock);
486 continue;
487 }
488
489 /*
490 * If all other LWPs are waiting for exits or suspends
491 * and the supply of zombies and potential zombies is
492 * exhausted, then we are about to deadlock.
493 *
494 * If the process is exiting (and this LWP is not the one
495 * that is coordinating the exit) then bail out now.
496 */
497 if ((p->p_sflag & PS_WEXIT) != 0 ||
498 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
499 error = EDEADLK;
500 break;
501 }
502
503 /*
504 * Sit around and wait for something to happen. We'll be
505 * awoken if any of the conditions examined change: if an
506 * LWP exits, is collected, or is detached.
507 */
508 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
509 break;
510 }
511
512 /*
513 * We didn't find any LWPs to collect, we may have received a
514 * signal, or some other condition has caused us to bail out.
515 *
516 * If waiting on a specific LWP, clear the waiters marker: some
517 * other LWP may want it. Then, kick all the remaining waiters
518 * so that they can re-check for zombies and for deadlock.
519 */
520 if (lid != 0) {
521 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
522 if (l2->l_lid == lid) {
523 if (l2->l_waiter == curlid)
524 l2->l_waiter = 0;
525 break;
526 }
527 }
528 }
529 p->p_nlwpwait--;
530 l->l_waitingfor = 0;
531 cv_broadcast(&p->p_lwpcv);
532
533 return error;
534 }
535
536 /*
537 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
538 * The new LWP is created in state LSIDL and must be set running,
539 * suspended, or stopped by the caller.
540 */
541 int
542 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
543 void *stack, size_t stacksize, void (*func)(void *), void *arg,
544 lwp_t **rnewlwpp, int sclass)
545 {
546 struct lwp *l2, *isfree;
547 turnstile_t *ts;
548
549 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
550
551 /*
552 * First off, reap any detached LWP waiting to be collected.
553 * We can re-use its LWP structure and turnstile.
554 */
555 isfree = NULL;
556 if (p2->p_zomblwp != NULL) {
557 mutex_enter(p2->p_lock);
558 if ((isfree = p2->p_zomblwp) != NULL) {
559 p2->p_zomblwp = NULL;
560 lwp_free(isfree, true, false);/* releases proc mutex */
561 } else
562 mutex_exit(p2->p_lock);
563 }
564 if (isfree == NULL) {
565 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
566 memset(l2, 0, sizeof(*l2));
567 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
568 SLIST_INIT(&l2->l_pi_lenders);
569 } else {
570 l2 = isfree;
571 ts = l2->l_ts;
572 KASSERT(l2->l_inheritedprio == -1);
573 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
574 memset(l2, 0, sizeof(*l2));
575 l2->l_ts = ts;
576 }
577
578 l2->l_stat = LSIDL;
579 l2->l_proc = p2;
580 l2->l_refcnt = 1;
581 l2->l_class = sclass;
582
583 /*
584 * If vfork(), we want the LWP to run fast and on the same CPU
585 * as its parent, so that it can reuse the VM context and cache
586 * footprint on the local CPU.
587 */
588 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
589 l2->l_kpribase = PRI_KERNEL;
590 l2->l_priority = l1->l_priority;
591 l2->l_inheritedprio = -1;
592 l2->l_flag = inmem ? LW_INMEM : 0;
593 l2->l_pflag = LP_MPSAFE;
594 l2->l_fd = p2->p_fd;
595 TAILQ_INIT(&l2->l_ld_locks);
596
597 if (p2->p_flag & PK_SYSTEM) {
598 /* Mark it as a system LWP and not a candidate for swapping */
599 l2->l_flag |= LW_SYSTEM;
600 }
601
602 kpreempt_disable();
603 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
604 l2->l_cpu = l1->l_cpu;
605 kpreempt_enable();
606
607 lwp_initspecific(l2);
608 sched_lwp_fork(l1, l2);
609 lwp_update_creds(l2);
610 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
611 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
612 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
613 cv_init(&l2->l_sigcv, "sigwait");
614 l2->l_syncobj = &sched_syncobj;
615
616 if (rnewlwpp != NULL)
617 *rnewlwpp = l2;
618
619 l2->l_addr = UAREA_TO_USER(uaddr);
620 uvm_lwp_fork(l1, l2, stack, stacksize, func,
621 (arg != NULL) ? arg : l2);
622
623 mutex_enter(p2->p_lock);
624
625 if ((flags & LWP_DETACHED) != 0) {
626 l2->l_prflag = LPR_DETACHED;
627 p2->p_ndlwps++;
628 } else
629 l2->l_prflag = 0;
630
631 l2->l_sigmask = l1->l_sigmask;
632 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
633 sigemptyset(&l2->l_sigpend.sp_set);
634
635 p2->p_nlwpid++;
636 if (p2->p_nlwpid == 0)
637 p2->p_nlwpid++;
638 l2->l_lid = p2->p_nlwpid;
639 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
640 p2->p_nlwps++;
641
642 mutex_exit(p2->p_lock);
643
644 mutex_enter(proc_lock);
645 LIST_INSERT_HEAD(&alllwp, l2, l_list);
646 mutex_exit(proc_lock);
647
648 if ((p2->p_flag & PK_SYSTEM) == 0) {
649 /* Locking is needed, since LWP is in the list of all LWPs */
650 lwp_lock(l2);
651 /* Inherit a processor-set */
652 l2->l_psid = l1->l_psid;
653 /* Inherit an affinity */
654 if (l1->l_affinity) {
655 kcpuset_use(l1->l_affinity);
656 l2->l_affinity = l1->l_affinity;
657 }
658 /* Look for a CPU to start */
659 l2->l_cpu = sched_takecpu(l2);
660 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
661 }
662
663 SYSCALL_TIME_LWP_INIT(l2);
664
665 if (p2->p_emul->e_lwp_fork)
666 (*p2->p_emul->e_lwp_fork)(l1, l2);
667
668 return (0);
669 }
670
671 /*
672 * Called by MD code when a new LWP begins execution. Must be called
673 * with the previous LWP locked (so at splsched), or if there is no
674 * previous LWP, at splsched.
675 */
676 void
677 lwp_startup(struct lwp *prev, struct lwp *new)
678 {
679
680 KASSERT(kpreempt_disabled());
681 if (prev != NULL) {
682 /*
683 * Normalize the count of the spin-mutexes, it was
684 * increased in mi_switch(). Unmark the state of
685 * context switch - it is finished for previous LWP.
686 */
687 curcpu()->ci_mtx_count++;
688 membar_exit();
689 prev->l_ctxswtch = 0;
690 }
691 KPREEMPT_DISABLE(new);
692 spl0();
693 pmap_activate(new);
694 LOCKDEBUG_BARRIER(NULL, 0);
695 KPREEMPT_ENABLE(new);
696 if ((new->l_pflag & LP_MPSAFE) == 0) {
697 KERNEL_LOCK(1, new);
698 }
699 }
700
701 /*
702 * Exit an LWP.
703 */
704 void
705 lwp_exit(struct lwp *l)
706 {
707 struct proc *p = l->l_proc;
708 struct lwp *l2;
709 bool current;
710
711 current = (l == curlwp);
712
713 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
714
715 /*
716 * Verify that we hold no locks other than the kernel lock.
717 */
718 LOCKDEBUG_BARRIER(&kernel_lock, 0);
719
720 /*
721 * If we are the last live LWP in a process, we need to exit the
722 * entire process. We do so with an exit status of zero, because
723 * it's a "controlled" exit, and because that's what Solaris does.
724 *
725 * We are not quite a zombie yet, but for accounting purposes we
726 * must increment the count of zombies here.
727 *
728 * Note: the last LWP's specificdata will be deleted here.
729 */
730 mutex_enter(p->p_lock);
731 if (p->p_nlwps - p->p_nzlwps == 1) {
732 KASSERT(current == true);
733 /* XXXSMP kernel_lock not held */
734 exit1(l, 0);
735 /* NOTREACHED */
736 }
737 p->p_nzlwps++;
738 mutex_exit(p->p_lock);
739
740 if (p->p_emul->e_lwp_exit)
741 (*p->p_emul->e_lwp_exit)(l);
742
743 /* Delete the specificdata while it's still safe to sleep. */
744 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
745
746 /*
747 * Release our cached credentials.
748 */
749 kauth_cred_free(l->l_cred);
750 callout_destroy(&l->l_timeout_ch);
751
752 if (l->l_affinity) {
753 kcpuset_unuse(l->l_affinity, NULL);
754 l->l_affinity = NULL;
755 }
756
757 /*
758 * While we can still block, mark the LWP as unswappable to
759 * prevent conflicts with the with the swapper.
760 */
761 if (current)
762 uvm_lwp_hold(l);
763
764 /*
765 * Remove the LWP from the global list.
766 */
767 mutex_enter(proc_lock);
768 LIST_REMOVE(l, l_list);
769 mutex_exit(proc_lock);
770
771 /*
772 * Get rid of all references to the LWP that others (e.g. procfs)
773 * may have, and mark the LWP as a zombie. If the LWP is detached,
774 * mark it waiting for collection in the proc structure. Note that
775 * before we can do that, we need to free any other dead, deatched
776 * LWP waiting to meet its maker.
777 */
778 mutex_enter(p->p_lock);
779 lwp_drainrefs(l);
780
781 if ((l->l_prflag & LPR_DETACHED) != 0) {
782 while ((l2 = p->p_zomblwp) != NULL) {
783 p->p_zomblwp = NULL;
784 lwp_free(l2, false, false);/* releases proc mutex */
785 mutex_enter(p->p_lock);
786 l->l_refcnt++;
787 lwp_drainrefs(l);
788 }
789 p->p_zomblwp = l;
790 }
791
792 /*
793 * If we find a pending signal for the process and we have been
794 * asked to check for signals, then we loose: arrange to have
795 * all other LWPs in the process check for signals.
796 */
797 if ((l->l_flag & LW_PENDSIG) != 0 &&
798 firstsig(&p->p_sigpend.sp_set) != 0) {
799 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
800 lwp_lock(l2);
801 l2->l_flag |= LW_PENDSIG;
802 lwp_unlock(l2);
803 }
804 }
805
806 lwp_lock(l);
807 l->l_stat = LSZOMB;
808 if (l->l_name != NULL)
809 strcpy(l->l_name, "(zombie)");
810 lwp_unlock(l);
811 p->p_nrlwps--;
812 cv_broadcast(&p->p_lwpcv);
813 if (l->l_lwpctl != NULL)
814 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
815 mutex_exit(p->p_lock);
816
817 /*
818 * We can no longer block. At this point, lwp_free() may already
819 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
820 *
821 * Free MD LWP resources.
822 */
823 #ifndef __NO_CPU_LWP_FREE
824 cpu_lwp_free(l, 0);
825 #endif
826
827 if (current) {
828 pmap_deactivate(l);
829
830 /*
831 * Release the kernel lock, and switch away into
832 * oblivion.
833 */
834 #ifdef notyet
835 /* XXXSMP hold in lwp_userret() */
836 KERNEL_UNLOCK_LAST(l);
837 #else
838 KERNEL_UNLOCK_ALL(l, NULL);
839 #endif
840 lwp_exit_switchaway(l);
841 }
842 }
843
844 /*
845 * Free a dead LWP's remaining resources.
846 *
847 * XXXLWP limits.
848 */
849 void
850 lwp_free(struct lwp *l, bool recycle, bool last)
851 {
852 struct proc *p = l->l_proc;
853 struct rusage *ru;
854 ksiginfoq_t kq;
855
856 KASSERT(l != curlwp);
857
858 /*
859 * If this was not the last LWP in the process, then adjust
860 * counters and unlock.
861 */
862 if (!last) {
863 /*
864 * Add the LWP's run time to the process' base value.
865 * This needs to co-incide with coming off p_lwps.
866 */
867 bintime_add(&p->p_rtime, &l->l_rtime);
868 p->p_pctcpu += l->l_pctcpu;
869 ru = &p->p_stats->p_ru;
870 ruadd(ru, &l->l_ru);
871 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
872 ru->ru_nivcsw += l->l_nivcsw;
873 LIST_REMOVE(l, l_sibling);
874 p->p_nlwps--;
875 p->p_nzlwps--;
876 if ((l->l_prflag & LPR_DETACHED) != 0)
877 p->p_ndlwps--;
878
879 /*
880 * Have any LWPs sleeping in lwp_wait() recheck for
881 * deadlock.
882 */
883 cv_broadcast(&p->p_lwpcv);
884 mutex_exit(p->p_lock);
885 }
886
887 #ifdef MULTIPROCESSOR
888 /*
889 * In the unlikely event that the LWP is still on the CPU,
890 * then spin until it has switched away. We need to release
891 * all locks to avoid deadlock against interrupt handlers on
892 * the target CPU.
893 */
894 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
895 int count;
896 (void)count; /* XXXgcc */
897 KERNEL_UNLOCK_ALL(curlwp, &count);
898 while ((l->l_pflag & LP_RUNNING) != 0 ||
899 l->l_cpu->ci_curlwp == l)
900 SPINLOCK_BACKOFF_HOOK;
901 KERNEL_LOCK(count, curlwp);
902 }
903 #endif
904
905 /*
906 * Destroy the LWP's remaining signal information.
907 */
908 ksiginfo_queue_init(&kq);
909 sigclear(&l->l_sigpend, NULL, &kq);
910 ksiginfo_queue_drain(&kq);
911 cv_destroy(&l->l_sigcv);
912 mutex_destroy(&l->l_swaplock);
913
914 /*
915 * Free the LWP's turnstile and the LWP structure itself unless the
916 * caller wants to recycle them. Also, free the scheduler specific
917 * data.
918 *
919 * We can't return turnstile0 to the pool (it didn't come from it),
920 * so if it comes up just drop it quietly and move on.
921 *
922 * We don't recycle the VM resources at this time.
923 */
924 if (l->l_lwpctl != NULL)
925 lwp_ctl_free(l);
926 sched_lwp_exit(l);
927
928 if (!recycle && l->l_ts != &turnstile0)
929 pool_cache_put(turnstile_cache, l->l_ts);
930 if (l->l_name != NULL)
931 kmem_free(l->l_name, MAXCOMLEN);
932 #ifndef __NO_CPU_LWP_FREE
933 cpu_lwp_free2(l);
934 #endif
935 KASSERT((l->l_flag & LW_INMEM) != 0);
936 uvm_lwp_exit(l);
937 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
938 KASSERT(l->l_inheritedprio == -1);
939 if (!recycle)
940 pool_cache_put(lwp_cache, l);
941 }
942
943 /*
944 * Pick a LWP to represent the process for those operations which
945 * want information about a "process" that is actually associated
946 * with a LWP.
947 *
948 * If 'locking' is false, no locking or lock checks are performed.
949 * This is intended for use by DDB.
950 *
951 * We don't bother locking the LWP here, since code that uses this
952 * interface is broken by design and an exact match is not required.
953 */
954 struct lwp *
955 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
956 {
957 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
958 struct lwp *signalled;
959 int cnt;
960
961 if (locking) {
962 KASSERT(mutex_owned(p->p_lock));
963 }
964
965 /* Trivial case: only one LWP */
966 if (p->p_nlwps == 1) {
967 l = LIST_FIRST(&p->p_lwps);
968 if (nrlwps)
969 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
970 return l;
971 }
972
973 cnt = 0;
974 switch (p->p_stat) {
975 case SSTOP:
976 case SACTIVE:
977 /* Pick the most live LWP */
978 onproc = running = sleeping = stopped = suspended = NULL;
979 signalled = NULL;
980 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
981 if ((l->l_flag & LW_IDLE) != 0) {
982 continue;
983 }
984 if (l->l_lid == p->p_sigctx.ps_lwp)
985 signalled = l;
986 switch (l->l_stat) {
987 case LSONPROC:
988 onproc = l;
989 cnt++;
990 break;
991 case LSRUN:
992 running = l;
993 cnt++;
994 break;
995 case LSSLEEP:
996 sleeping = l;
997 break;
998 case LSSTOP:
999 stopped = l;
1000 break;
1001 case LSSUSPENDED:
1002 suspended = l;
1003 break;
1004 }
1005 }
1006 if (nrlwps)
1007 *nrlwps = cnt;
1008 if (signalled)
1009 l = signalled;
1010 else if (onproc)
1011 l = onproc;
1012 else if (running)
1013 l = running;
1014 else if (sleeping)
1015 l = sleeping;
1016 else if (stopped)
1017 l = stopped;
1018 else if (suspended)
1019 l = suspended;
1020 else
1021 break;
1022 return l;
1023 #ifdef DIAGNOSTIC
1024 case SIDL:
1025 case SZOMB:
1026 case SDYING:
1027 case SDEAD:
1028 if (locking)
1029 mutex_exit(p->p_lock);
1030 /* We have more than one LWP and we're in SIDL?
1031 * How'd that happen?
1032 */
1033 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1034 p->p_pid, p->p_comm, p->p_stat);
1035 break;
1036 default:
1037 if (locking)
1038 mutex_exit(p->p_lock);
1039 panic("Process %d (%s) in unknown state %d",
1040 p->p_pid, p->p_comm, p->p_stat);
1041 #endif
1042 }
1043
1044 if (locking)
1045 mutex_exit(p->p_lock);
1046 panic("proc_representative_lwp: couldn't find a lwp for process"
1047 " %d (%s)", p->p_pid, p->p_comm);
1048 /* NOTREACHED */
1049 return NULL;
1050 }
1051
1052 /*
1053 * Migrate the LWP to the another CPU. Unlocks the LWP.
1054 */
1055 void
1056 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1057 {
1058 struct schedstate_percpu *tspc;
1059 KASSERT(lwp_locked(l, NULL));
1060 KASSERT(tci != NULL);
1061
1062 /*
1063 * If LWP is still on the CPU, it must be handled like on LSONPROC.
1064 * The destination CPU could be changed while previous migration
1065 * was not finished.
1066 */
1067 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_target_cpu != NULL) {
1068 l->l_target_cpu = tci;
1069 lwp_unlock(l);
1070 return;
1071 }
1072
1073 /* Nothing to do if trying to migrate to the same CPU */
1074 if (l->l_cpu == tci) {
1075 lwp_unlock(l);
1076 return;
1077 }
1078
1079 KASSERT(l->l_target_cpu == NULL);
1080 tspc = &tci->ci_schedstate;
1081 switch (l->l_stat) {
1082 case LSRUN:
1083 if (l->l_flag & LW_INMEM) {
1084 l->l_target_cpu = tci;
1085 lwp_unlock(l);
1086 return;
1087 }
1088 case LSIDL:
1089 l->l_cpu = tci;
1090 lwp_unlock_to(l, tspc->spc_mutex);
1091 return;
1092 case LSSLEEP:
1093 l->l_cpu = tci;
1094 break;
1095 case LSSTOP:
1096 case LSSUSPENDED:
1097 l->l_cpu = tci;
1098 if (l->l_wchan == NULL) {
1099 lwp_unlock_to(l, tspc->spc_lwplock);
1100 return;
1101 }
1102 break;
1103 case LSONPROC:
1104 l->l_target_cpu = tci;
1105 spc_lock(l->l_cpu);
1106 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1107 spc_unlock(l->l_cpu);
1108 break;
1109 }
1110 lwp_unlock(l);
1111 }
1112
1113 /*
1114 * Find the LWP in the process. Arguments may be zero, in such case,
1115 * the calling process and first LWP in the list will be used.
1116 * On success - returns proc locked.
1117 */
1118 struct lwp *
1119 lwp_find2(pid_t pid, lwpid_t lid)
1120 {
1121 proc_t *p;
1122 lwp_t *l;
1123
1124 /* Find the process */
1125 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1126 if (p == NULL)
1127 return NULL;
1128 mutex_enter(p->p_lock);
1129 if (pid != 0) {
1130 /* Case of p_find */
1131 mutex_exit(proc_lock);
1132 }
1133
1134 /* Find the thread */
1135 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1136 if (l == NULL) {
1137 mutex_exit(p->p_lock);
1138 }
1139
1140 return l;
1141 }
1142
1143 /*
1144 * Look up a live LWP within the speicifed process, and return it locked.
1145 *
1146 * Must be called with p->p_lock held.
1147 */
1148 struct lwp *
1149 lwp_find(struct proc *p, int id)
1150 {
1151 struct lwp *l;
1152
1153 KASSERT(mutex_owned(p->p_lock));
1154
1155 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1156 if (l->l_lid == id)
1157 break;
1158 }
1159
1160 /*
1161 * No need to lock - all of these conditions will
1162 * be visible with the process level mutex held.
1163 */
1164 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1165 l = NULL;
1166
1167 return l;
1168 }
1169
1170 /*
1171 * Update an LWP's cached credentials to mirror the process' master copy.
1172 *
1173 * This happens early in the syscall path, on user trap, and on LWP
1174 * creation. A long-running LWP can also voluntarily choose to update
1175 * it's credentials by calling this routine. This may be called from
1176 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1177 */
1178 void
1179 lwp_update_creds(struct lwp *l)
1180 {
1181 kauth_cred_t oc;
1182 struct proc *p;
1183
1184 p = l->l_proc;
1185 oc = l->l_cred;
1186
1187 mutex_enter(p->p_lock);
1188 kauth_cred_hold(p->p_cred);
1189 l->l_cred = p->p_cred;
1190 l->l_prflag &= ~LPR_CRMOD;
1191 mutex_exit(p->p_lock);
1192 if (oc != NULL)
1193 kauth_cred_free(oc);
1194 }
1195
1196 /*
1197 * Verify that an LWP is locked, and optionally verify that the lock matches
1198 * one we specify.
1199 */
1200 int
1201 lwp_locked(struct lwp *l, kmutex_t *mtx)
1202 {
1203 kmutex_t *cur = l->l_mutex;
1204
1205 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1206 }
1207
1208 /*
1209 * Lock an LWP.
1210 */
1211 kmutex_t *
1212 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1213 {
1214
1215 /*
1216 * XXXgcc ignoring kmutex_t * volatile on i386
1217 *
1218 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1219 */
1220 #if 1
1221 while (l->l_mutex != old) {
1222 #else
1223 for (;;) {
1224 #endif
1225 mutex_spin_exit(old);
1226 old = l->l_mutex;
1227 mutex_spin_enter(old);
1228
1229 /*
1230 * mutex_enter() will have posted a read barrier. Re-test
1231 * l->l_mutex. If it has changed, we need to try again.
1232 */
1233 #if 1
1234 }
1235 #else
1236 } while (__predict_false(l->l_mutex != old));
1237 #endif
1238
1239 return old;
1240 }
1241
1242 /*
1243 * Lend a new mutex to an LWP. The old mutex must be held.
1244 */
1245 void
1246 lwp_setlock(struct lwp *l, kmutex_t *new)
1247 {
1248
1249 KASSERT(mutex_owned(l->l_mutex));
1250
1251 membar_exit();
1252 l->l_mutex = new;
1253 }
1254
1255 /*
1256 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1257 * must be held.
1258 */
1259 void
1260 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1261 {
1262 kmutex_t *old;
1263
1264 KASSERT(mutex_owned(l->l_mutex));
1265
1266 old = l->l_mutex;
1267 membar_exit();
1268 l->l_mutex = new;
1269 mutex_spin_exit(old);
1270 }
1271
1272 /*
1273 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1274 * locked.
1275 */
1276 void
1277 lwp_relock(struct lwp *l, kmutex_t *new)
1278 {
1279 kmutex_t *old;
1280
1281 KASSERT(mutex_owned(l->l_mutex));
1282
1283 old = l->l_mutex;
1284 if (old != new) {
1285 mutex_spin_enter(new);
1286 l->l_mutex = new;
1287 mutex_spin_exit(old);
1288 }
1289 }
1290
1291 int
1292 lwp_trylock(struct lwp *l)
1293 {
1294 kmutex_t *old;
1295
1296 for (;;) {
1297 if (!mutex_tryenter(old = l->l_mutex))
1298 return 0;
1299 if (__predict_true(l->l_mutex == old))
1300 return 1;
1301 mutex_spin_exit(old);
1302 }
1303 }
1304
1305 u_int
1306 lwp_unsleep(lwp_t *l, bool cleanup)
1307 {
1308
1309 KASSERT(mutex_owned(l->l_mutex));
1310
1311 return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1312 }
1313
1314
1315 /*
1316 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1317 * set.
1318 */
1319 void
1320 lwp_userret(struct lwp *l)
1321 {
1322 struct proc *p;
1323 void (*hook)(void);
1324 int sig;
1325
1326 KASSERT(l == curlwp);
1327 KASSERT(l->l_stat == LSONPROC);
1328 p = l->l_proc;
1329
1330 #ifndef __HAVE_FAST_SOFTINTS
1331 /* Run pending soft interrupts. */
1332 if (l->l_cpu->ci_data.cpu_softints != 0)
1333 softint_overlay();
1334 #endif
1335
1336 /*
1337 * It should be safe to do this read unlocked on a multiprocessor
1338 * system..
1339 */
1340 while ((l->l_flag & LW_USERRET) != 0) {
1341 /*
1342 * Process pending signals first, unless the process
1343 * is dumping core or exiting, where we will instead
1344 * enter the LW_WSUSPEND case below.
1345 */
1346 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1347 LW_PENDSIG) {
1348 mutex_enter(p->p_lock);
1349 while ((sig = issignal(l)) != 0)
1350 postsig(sig);
1351 mutex_exit(p->p_lock);
1352 }
1353
1354 /*
1355 * Core-dump or suspend pending.
1356 *
1357 * In case of core dump, suspend ourselves, so that the
1358 * kernel stack and therefore the userland registers saved
1359 * in the trapframe are around for coredump() to write them
1360 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1361 * will write the core file out once all other LWPs are
1362 * suspended.
1363 */
1364 if ((l->l_flag & LW_WSUSPEND) != 0) {
1365 mutex_enter(p->p_lock);
1366 p->p_nrlwps--;
1367 cv_broadcast(&p->p_lwpcv);
1368 lwp_lock(l);
1369 l->l_stat = LSSUSPENDED;
1370 lwp_unlock(l);
1371 mutex_exit(p->p_lock);
1372 lwp_lock(l);
1373 mi_switch(l);
1374 }
1375
1376 /* Process is exiting. */
1377 if ((l->l_flag & LW_WEXIT) != 0) {
1378 lwp_exit(l);
1379 KASSERT(0);
1380 /* NOTREACHED */
1381 }
1382
1383 /* Call userret hook; used by Linux emulation. */
1384 if ((l->l_flag & LW_WUSERRET) != 0) {
1385 lwp_lock(l);
1386 l->l_flag &= ~LW_WUSERRET;
1387 lwp_unlock(l);
1388 hook = p->p_userret;
1389 p->p_userret = NULL;
1390 (*hook)();
1391 }
1392 }
1393
1394 /*
1395 * Timer events are handled specially. We only try once to deliver
1396 * pending timer upcalls; if if fails, we can try again on the next
1397 * loop around. If we need to re-enter lwp_userret(), MD code will
1398 * bounce us back here through the trap path after we return.
1399 */
1400 if (p->p_timerpend)
1401 timerupcall(l);
1402 }
1403
1404 /*
1405 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1406 */
1407 void
1408 lwp_need_userret(struct lwp *l)
1409 {
1410 KASSERT(lwp_locked(l, NULL));
1411
1412 /*
1413 * Since the tests in lwp_userret() are done unlocked, make sure
1414 * that the condition will be seen before forcing the LWP to enter
1415 * kernel mode.
1416 */
1417 membar_producer();
1418 cpu_signotify(l);
1419 }
1420
1421 /*
1422 * Add one reference to an LWP. This will prevent the LWP from
1423 * exiting, thus keep the lwp structure and PCB around to inspect.
1424 */
1425 void
1426 lwp_addref(struct lwp *l)
1427 {
1428
1429 KASSERT(mutex_owned(l->l_proc->p_lock));
1430 KASSERT(l->l_stat != LSZOMB);
1431 KASSERT(l->l_refcnt != 0);
1432
1433 l->l_refcnt++;
1434 }
1435
1436 /*
1437 * Remove one reference to an LWP. If this is the last reference,
1438 * then we must finalize the LWP's death.
1439 */
1440 void
1441 lwp_delref(struct lwp *l)
1442 {
1443 struct proc *p = l->l_proc;
1444
1445 mutex_enter(p->p_lock);
1446 KASSERT(l->l_stat != LSZOMB);
1447 KASSERT(l->l_refcnt > 0);
1448 if (--l->l_refcnt == 0)
1449 cv_broadcast(&p->p_lwpcv);
1450 mutex_exit(p->p_lock);
1451 }
1452
1453 /*
1454 * Drain all references to the current LWP.
1455 */
1456 void
1457 lwp_drainrefs(struct lwp *l)
1458 {
1459 struct proc *p = l->l_proc;
1460
1461 KASSERT(mutex_owned(p->p_lock));
1462 KASSERT(l->l_refcnt != 0);
1463
1464 l->l_refcnt--;
1465 while (l->l_refcnt != 0)
1466 cv_wait(&p->p_lwpcv, p->p_lock);
1467 }
1468
1469 /*
1470 * lwp_specific_key_create --
1471 * Create a key for subsystem lwp-specific data.
1472 */
1473 int
1474 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1475 {
1476
1477 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1478 }
1479
1480 /*
1481 * lwp_specific_key_delete --
1482 * Delete a key for subsystem lwp-specific data.
1483 */
1484 void
1485 lwp_specific_key_delete(specificdata_key_t key)
1486 {
1487
1488 specificdata_key_delete(lwp_specificdata_domain, key);
1489 }
1490
1491 /*
1492 * lwp_initspecific --
1493 * Initialize an LWP's specificdata container.
1494 */
1495 void
1496 lwp_initspecific(struct lwp *l)
1497 {
1498 int error;
1499
1500 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1501 KASSERT(error == 0);
1502 }
1503
1504 /*
1505 * lwp_finispecific --
1506 * Finalize an LWP's specificdata container.
1507 */
1508 void
1509 lwp_finispecific(struct lwp *l)
1510 {
1511
1512 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1513 }
1514
1515 /*
1516 * lwp_getspecific --
1517 * Return lwp-specific data corresponding to the specified key.
1518 *
1519 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1520 * only its OWN SPECIFIC DATA. If it is necessary to access another
1521 * LWP's specifc data, care must be taken to ensure that doing so
1522 * would not cause internal data structure inconsistency (i.e. caller
1523 * can guarantee that the target LWP is not inside an lwp_getspecific()
1524 * or lwp_setspecific() call).
1525 */
1526 void *
1527 lwp_getspecific(specificdata_key_t key)
1528 {
1529
1530 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1531 &curlwp->l_specdataref, key));
1532 }
1533
1534 void *
1535 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1536 {
1537
1538 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1539 &l->l_specdataref, key));
1540 }
1541
1542 /*
1543 * lwp_setspecific --
1544 * Set lwp-specific data corresponding to the specified key.
1545 */
1546 void
1547 lwp_setspecific(specificdata_key_t key, void *data)
1548 {
1549
1550 specificdata_setspecific(lwp_specificdata_domain,
1551 &curlwp->l_specdataref, key, data);
1552 }
1553
1554 /*
1555 * Allocate a new lwpctl structure for a user LWP.
1556 */
1557 int
1558 lwp_ctl_alloc(vaddr_t *uaddr)
1559 {
1560 lcproc_t *lp;
1561 u_int bit, i, offset;
1562 struct uvm_object *uao;
1563 int error;
1564 lcpage_t *lcp;
1565 proc_t *p;
1566 lwp_t *l;
1567
1568 l = curlwp;
1569 p = l->l_proc;
1570
1571 if (l->l_lcpage != NULL) {
1572 lcp = l->l_lcpage;
1573 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1574 return (EINVAL);
1575 }
1576
1577 /* First time around, allocate header structure for the process. */
1578 if ((lp = p->p_lwpctl) == NULL) {
1579 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1580 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1581 lp->lp_uao = NULL;
1582 TAILQ_INIT(&lp->lp_pages);
1583 mutex_enter(p->p_lock);
1584 if (p->p_lwpctl == NULL) {
1585 p->p_lwpctl = lp;
1586 mutex_exit(p->p_lock);
1587 } else {
1588 mutex_exit(p->p_lock);
1589 mutex_destroy(&lp->lp_lock);
1590 kmem_free(lp, sizeof(*lp));
1591 lp = p->p_lwpctl;
1592 }
1593 }
1594
1595 /*
1596 * Set up an anonymous memory region to hold the shared pages.
1597 * Map them into the process' address space. The user vmspace
1598 * gets the first reference on the UAO.
1599 */
1600 mutex_enter(&lp->lp_lock);
1601 if (lp->lp_uao == NULL) {
1602 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1603 lp->lp_cur = 0;
1604 lp->lp_max = LWPCTL_UAREA_SZ;
1605 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1606 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1607 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1608 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1609 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1610 if (error != 0) {
1611 uao_detach(lp->lp_uao);
1612 lp->lp_uao = NULL;
1613 mutex_exit(&lp->lp_lock);
1614 return error;
1615 }
1616 }
1617
1618 /* Get a free block and allocate for this LWP. */
1619 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1620 if (lcp->lcp_nfree != 0)
1621 break;
1622 }
1623 if (lcp == NULL) {
1624 /* Nothing available - try to set up a free page. */
1625 if (lp->lp_cur == lp->lp_max) {
1626 mutex_exit(&lp->lp_lock);
1627 return ENOMEM;
1628 }
1629 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1630 if (lcp == NULL) {
1631 mutex_exit(&lp->lp_lock);
1632 return ENOMEM;
1633 }
1634 /*
1635 * Wire the next page down in kernel space. Since this
1636 * is a new mapping, we must add a reference.
1637 */
1638 uao = lp->lp_uao;
1639 (*uao->pgops->pgo_reference)(uao);
1640 lcp->lcp_kaddr = vm_map_min(kernel_map);
1641 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1642 uao, lp->lp_cur, PAGE_SIZE,
1643 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1644 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1645 if (error != 0) {
1646 mutex_exit(&lp->lp_lock);
1647 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1648 (*uao->pgops->pgo_detach)(uao);
1649 return error;
1650 }
1651 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1652 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1653 if (error != 0) {
1654 mutex_exit(&lp->lp_lock);
1655 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1656 lcp->lcp_kaddr + PAGE_SIZE);
1657 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1658 return error;
1659 }
1660 /* Prepare the page descriptor and link into the list. */
1661 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1662 lp->lp_cur += PAGE_SIZE;
1663 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1664 lcp->lcp_rotor = 0;
1665 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1666 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1667 }
1668 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1669 if (++i >= LWPCTL_BITMAP_ENTRIES)
1670 i = 0;
1671 }
1672 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1673 lcp->lcp_bitmap[i] ^= (1 << bit);
1674 lcp->lcp_rotor = i;
1675 lcp->lcp_nfree--;
1676 l->l_lcpage = lcp;
1677 offset = (i << 5) + bit;
1678 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1679 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1680 mutex_exit(&lp->lp_lock);
1681
1682 KPREEMPT_DISABLE(l);
1683 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1684 KPREEMPT_ENABLE(l);
1685
1686 return 0;
1687 }
1688
1689 /*
1690 * Free an lwpctl structure back to the per-process list.
1691 */
1692 void
1693 lwp_ctl_free(lwp_t *l)
1694 {
1695 lcproc_t *lp;
1696 lcpage_t *lcp;
1697 u_int map, offset;
1698
1699 lp = l->l_proc->p_lwpctl;
1700 KASSERT(lp != NULL);
1701
1702 lcp = l->l_lcpage;
1703 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1704 KASSERT(offset < LWPCTL_PER_PAGE);
1705
1706 mutex_enter(&lp->lp_lock);
1707 lcp->lcp_nfree++;
1708 map = offset >> 5;
1709 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1710 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1711 lcp->lcp_rotor = map;
1712 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1713 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1714 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1715 }
1716 mutex_exit(&lp->lp_lock);
1717 }
1718
1719 /*
1720 * Process is exiting; tear down lwpctl state. This can only be safely
1721 * called by the last LWP in the process.
1722 */
1723 void
1724 lwp_ctl_exit(void)
1725 {
1726 lcpage_t *lcp, *next;
1727 lcproc_t *lp;
1728 proc_t *p;
1729 lwp_t *l;
1730
1731 l = curlwp;
1732 l->l_lwpctl = NULL;
1733 l->l_lcpage = NULL;
1734 p = l->l_proc;
1735 lp = p->p_lwpctl;
1736
1737 KASSERT(lp != NULL);
1738 KASSERT(p->p_nlwps == 1);
1739
1740 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1741 next = TAILQ_NEXT(lcp, lcp_chain);
1742 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1743 lcp->lcp_kaddr + PAGE_SIZE);
1744 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1745 }
1746
1747 if (lp->lp_uao != NULL) {
1748 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1749 lp->lp_uva + LWPCTL_UAREA_SZ);
1750 }
1751
1752 mutex_destroy(&lp->lp_lock);
1753 kmem_free(lp, sizeof(*lp));
1754 p->p_lwpctl = NULL;
1755 }
1756
1757 #if defined(DDB)
1758 void
1759 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1760 {
1761 lwp_t *l;
1762
1763 LIST_FOREACH(l, &alllwp, l_list) {
1764 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1765
1766 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1767 continue;
1768 }
1769 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1770 (void *)addr, (void *)stack,
1771 (size_t)(addr - stack), l);
1772 }
1773 }
1774 #endif /* defined(DDB) */
1775