kern_lwp.c revision 1.111 1 /* $NetBSD: kern_lwp.c,v 1.111 2008/05/19 17:06:02 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 * then the LWP is not on a run queue, but may be soon.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is: a) about to switch away into oblivion b) has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > STOPPED > SLEEP
125 * > SUSPENDED > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > SUSPENDED
136 *
137 * Other state transitions are possible with kernel threads (eg
138 * ONPROC -> IDL), but only happen under tightly controlled
139 * circumstances the side effects are understood.
140 *
141 * Locking
142 *
143 * The majority of fields in 'struct lwp' are covered by a single,
144 * general spin lock pointed to by lwp::l_mutex. The locks covering
145 * each field are documented in sys/lwp.h.
146 *
147 * State transitions must be made with the LWP's general lock held,
148 * and may cause the LWP's lock pointer to change. Manipulation of
149 * the general lock is not performed directly, but through calls to
150 * lwp_lock(), lwp_relock() and similar.
151 *
152 * States and their associated locks:
153 *
154 * LSONPROC, LSZOMB:
155 *
156 * Always covered by spc_lwplock, which protects running LWPs.
157 * This is a per-CPU lock.
158 *
159 * LSIDL, LSRUN:
160 *
161 * Always covered by spc_mutex, which protects the run queues.
162 * This is a per-CPU lock.
163 *
164 * LSSLEEP:
165 *
166 * Covered by a lock associated with the sleep queue that the
167 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
168 *
169 * LSSTOP, LSSUSPENDED:
170 *
171 * If the LWP was previously sleeping (l_wchan != NULL), then
172 * l_mutex references the sleep queue lock. If the LWP was
173 * runnable or on the CPU when halted, or has been removed from
174 * the sleep queue since halted, then the lock is spc_lwplock.
175 *
176 * The lock order is as follows:
177 *
178 * spc::spc_lwplock ->
179 * sleepq_t::sq_mutex ->
180 * tschain_t::tc_mutex ->
181 * spc::spc_mutex
182 *
183 * Each process has an scheduler state lock (proc::p_lock), and a
184 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
185 * so on. When an LWP is to be entered into or removed from one of the
186 * following states, p_lock must be held and the process wide counters
187 * adjusted:
188 *
189 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
190 *
191 * Note that an LWP is considered running or likely to run soon if in
192 * one of the following states. This affects the value of p_nrlwps:
193 *
194 * LSRUN, LSONPROC, LSSLEEP
195 *
196 * p_lock does not need to be held when transitioning among these
197 * three states.
198 */
199
200 #include <sys/cdefs.h>
201 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.111 2008/05/19 17:06:02 ad Exp $");
202
203 #include "opt_ddb.h"
204 #include "opt_lockdebug.h"
205
206 #define _LWP_API_PRIVATE
207
208 #include <sys/param.h>
209 #include <sys/systm.h>
210 #include <sys/cpu.h>
211 #include <sys/pool.h>
212 #include <sys/proc.h>
213 #include <sys/syscallargs.h>
214 #include <sys/syscall_stats.h>
215 #include <sys/kauth.h>
216 #include <sys/sleepq.h>
217 #include <sys/user.h>
218 #include <sys/lockdebug.h>
219 #include <sys/kmem.h>
220 #include <sys/pset.h>
221 #include <sys/intr.h>
222 #include <sys/lwpctl.h>
223 #include <sys/atomic.h>
224
225 #include <uvm/uvm_extern.h>
226 #include <uvm/uvm_object.h>
227
228 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
229
230 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
231 &pool_allocator_nointr, IPL_NONE);
232
233 static pool_cache_t lwp_cache;
234 static specificdata_domain_t lwp_specificdata_domain;
235
236 void
237 lwpinit(void)
238 {
239
240 lwp_specificdata_domain = specificdata_domain_create();
241 KASSERT(lwp_specificdata_domain != NULL);
242 lwp_sys_init();
243 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
244 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
245 }
246
247 /*
248 * Set an suspended.
249 *
250 * Must be called with p_lock held, and the LWP locked. Will unlock the
251 * LWP before return.
252 */
253 int
254 lwp_suspend(struct lwp *curl, struct lwp *t)
255 {
256 int error;
257
258 KASSERT(mutex_owned(t->l_proc->p_lock));
259 KASSERT(lwp_locked(t, NULL));
260
261 KASSERT(curl != t || curl->l_stat == LSONPROC);
262
263 /*
264 * If the current LWP has been told to exit, we must not suspend anyone
265 * else or deadlock could occur. We won't return to userspace.
266 */
267 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
268 lwp_unlock(t);
269 return (EDEADLK);
270 }
271
272 error = 0;
273
274 switch (t->l_stat) {
275 case LSRUN:
276 case LSONPROC:
277 t->l_flag |= LW_WSUSPEND;
278 lwp_need_userret(t);
279 lwp_unlock(t);
280 break;
281
282 case LSSLEEP:
283 t->l_flag |= LW_WSUSPEND;
284
285 /*
286 * Kick the LWP and try to get it to the kernel boundary
287 * so that it will release any locks that it holds.
288 * setrunnable() will release the lock.
289 */
290 if ((t->l_flag & LW_SINTR) != 0)
291 setrunnable(t);
292 else
293 lwp_unlock(t);
294 break;
295
296 case LSSUSPENDED:
297 lwp_unlock(t);
298 break;
299
300 case LSSTOP:
301 t->l_flag |= LW_WSUSPEND;
302 setrunnable(t);
303 break;
304
305 case LSIDL:
306 case LSZOMB:
307 error = EINTR; /* It's what Solaris does..... */
308 lwp_unlock(t);
309 break;
310 }
311
312 return (error);
313 }
314
315 /*
316 * Restart a suspended LWP.
317 *
318 * Must be called with p_lock held, and the LWP locked. Will unlock the
319 * LWP before return.
320 */
321 void
322 lwp_continue(struct lwp *l)
323 {
324
325 KASSERT(mutex_owned(l->l_proc->p_lock));
326 KASSERT(lwp_locked(l, NULL));
327
328 /* If rebooting or not suspended, then just bail out. */
329 if ((l->l_flag & LW_WREBOOT) != 0) {
330 lwp_unlock(l);
331 return;
332 }
333
334 l->l_flag &= ~LW_WSUSPEND;
335
336 if (l->l_stat != LSSUSPENDED) {
337 lwp_unlock(l);
338 return;
339 }
340
341 /* setrunnable() will release the lock. */
342 setrunnable(l);
343 }
344
345 /*
346 * Wait for an LWP within the current process to exit. If 'lid' is
347 * non-zero, we are waiting for a specific LWP.
348 *
349 * Must be called with p->p_lock held.
350 */
351 int
352 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
353 {
354 struct proc *p = l->l_proc;
355 struct lwp *l2;
356 int nfound, error;
357 lwpid_t curlid;
358 bool exiting;
359
360 KASSERT(mutex_owned(p->p_lock));
361
362 p->p_nlwpwait++;
363 l->l_waitingfor = lid;
364 curlid = l->l_lid;
365 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
366
367 for (;;) {
368 /*
369 * Avoid a race between exit1() and sigexit(): if the
370 * process is dumping core, then we need to bail out: call
371 * into lwp_userret() where we will be suspended until the
372 * deed is done.
373 */
374 if ((p->p_sflag & PS_WCORE) != 0) {
375 mutex_exit(p->p_lock);
376 lwp_userret(l);
377 #ifdef DIAGNOSTIC
378 panic("lwp_wait1");
379 #endif
380 /* NOTREACHED */
381 }
382
383 /*
384 * First off, drain any detached LWP that is waiting to be
385 * reaped.
386 */
387 while ((l2 = p->p_zomblwp) != NULL) {
388 p->p_zomblwp = NULL;
389 lwp_free(l2, false, false);/* releases proc mutex */
390 mutex_enter(p->p_lock);
391 }
392
393 /*
394 * Now look for an LWP to collect. If the whole process is
395 * exiting, count detached LWPs as eligible to be collected,
396 * but don't drain them here.
397 */
398 nfound = 0;
399 error = 0;
400 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
401 /*
402 * If a specific wait and the target is waiting on
403 * us, then avoid deadlock. This also traps LWPs
404 * that try to wait on themselves.
405 *
406 * Note that this does not handle more complicated
407 * cycles, like: t1 -> t2 -> t3 -> t1. The process
408 * can still be killed so it is not a major problem.
409 */
410 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
411 error = EDEADLK;
412 break;
413 }
414 if (l2 == l)
415 continue;
416 if ((l2->l_prflag & LPR_DETACHED) != 0) {
417 nfound += exiting;
418 continue;
419 }
420 if (lid != 0) {
421 if (l2->l_lid != lid)
422 continue;
423 /*
424 * Mark this LWP as the first waiter, if there
425 * is no other.
426 */
427 if (l2->l_waiter == 0)
428 l2->l_waiter = curlid;
429 } else if (l2->l_waiter != 0) {
430 /*
431 * It already has a waiter - so don't
432 * collect it. If the waiter doesn't
433 * grab it we'll get another chance
434 * later.
435 */
436 nfound++;
437 continue;
438 }
439 nfound++;
440
441 /* No need to lock the LWP in order to see LSZOMB. */
442 if (l2->l_stat != LSZOMB)
443 continue;
444
445 /*
446 * We're no longer waiting. Reset the "first waiter"
447 * pointer on the target, in case it was us.
448 */
449 l->l_waitingfor = 0;
450 l2->l_waiter = 0;
451 p->p_nlwpwait--;
452 if (departed)
453 *departed = l2->l_lid;
454 sched_lwp_collect(l2);
455
456 /* lwp_free() releases the proc lock. */
457 lwp_free(l2, false, false);
458 mutex_enter(p->p_lock);
459 return 0;
460 }
461
462 if (error != 0)
463 break;
464 if (nfound == 0) {
465 error = ESRCH;
466 break;
467 }
468
469 /*
470 * The kernel is careful to ensure that it can not deadlock
471 * when exiting - just keep waiting.
472 */
473 if (exiting) {
474 KASSERT(p->p_nlwps > 1);
475 cv_wait(&p->p_lwpcv, p->p_lock);
476 continue;
477 }
478
479 /*
480 * If all other LWPs are waiting for exits or suspends
481 * and the supply of zombies and potential zombies is
482 * exhausted, then we are about to deadlock.
483 *
484 * If the process is exiting (and this LWP is not the one
485 * that is coordinating the exit) then bail out now.
486 */
487 if ((p->p_sflag & PS_WEXIT) != 0 ||
488 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
489 error = EDEADLK;
490 break;
491 }
492
493 /*
494 * Sit around and wait for something to happen. We'll be
495 * awoken if any of the conditions examined change: if an
496 * LWP exits, is collected, or is detached.
497 */
498 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
499 break;
500 }
501
502 /*
503 * We didn't find any LWPs to collect, we may have received a
504 * signal, or some other condition has caused us to bail out.
505 *
506 * If waiting on a specific LWP, clear the waiters marker: some
507 * other LWP may want it. Then, kick all the remaining waiters
508 * so that they can re-check for zombies and for deadlock.
509 */
510 if (lid != 0) {
511 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
512 if (l2->l_lid == lid) {
513 if (l2->l_waiter == curlid)
514 l2->l_waiter = 0;
515 break;
516 }
517 }
518 }
519 p->p_nlwpwait--;
520 l->l_waitingfor = 0;
521 cv_broadcast(&p->p_lwpcv);
522
523 return error;
524 }
525
526 /*
527 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
528 * The new LWP is created in state LSIDL and must be set running,
529 * suspended, or stopped by the caller.
530 */
531 int
532 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
533 void *stack, size_t stacksize, void (*func)(void *), void *arg,
534 lwp_t **rnewlwpp, int sclass)
535 {
536 struct lwp *l2, *isfree;
537 turnstile_t *ts;
538
539 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
540
541 /*
542 * First off, reap any detached LWP waiting to be collected.
543 * We can re-use its LWP structure and turnstile.
544 */
545 isfree = NULL;
546 if (p2->p_zomblwp != NULL) {
547 mutex_enter(p2->p_lock);
548 if ((isfree = p2->p_zomblwp) != NULL) {
549 p2->p_zomblwp = NULL;
550 lwp_free(isfree, true, false);/* releases proc mutex */
551 } else
552 mutex_exit(p2->p_lock);
553 }
554 if (isfree == NULL) {
555 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
556 memset(l2, 0, sizeof(*l2));
557 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
558 SLIST_INIT(&l2->l_pi_lenders);
559 } else {
560 l2 = isfree;
561 ts = l2->l_ts;
562 KASSERT(l2->l_inheritedprio == -1);
563 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
564 memset(l2, 0, sizeof(*l2));
565 l2->l_ts = ts;
566 }
567
568 l2->l_stat = LSIDL;
569 l2->l_proc = p2;
570 l2->l_refcnt = 1;
571 l2->l_class = sclass;
572 l2->l_kpriority = l1->l_kpriority;
573 l2->l_kpribase = PRI_KERNEL;
574 l2->l_priority = l1->l_priority;
575 l2->l_inheritedprio = -1;
576 l2->l_flag = inmem ? LW_INMEM : 0;
577 l2->l_pflag = LP_MPSAFE;
578 l2->l_fd = p2->p_fd;
579 TAILQ_INIT(&l2->l_ld_locks);
580
581 if (p2->p_flag & PK_SYSTEM) {
582 /* Mark it as a system LWP and not a candidate for swapping */
583 l2->l_flag |= LW_SYSTEM;
584 }
585
586 kpreempt_disable();
587 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
588 l2->l_cpu = l1->l_cpu;
589 kpreempt_enable();
590
591 lwp_initspecific(l2);
592 sched_lwp_fork(l1, l2);
593 lwp_update_creds(l2);
594 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
595 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
596 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
597 cv_init(&l2->l_sigcv, "sigwait");
598 l2->l_syncobj = &sched_syncobj;
599
600 if (rnewlwpp != NULL)
601 *rnewlwpp = l2;
602
603 l2->l_addr = UAREA_TO_USER(uaddr);
604 uvm_lwp_fork(l1, l2, stack, stacksize, func,
605 (arg != NULL) ? arg : l2);
606
607 mutex_enter(p2->p_lock);
608
609 if ((flags & LWP_DETACHED) != 0) {
610 l2->l_prflag = LPR_DETACHED;
611 p2->p_ndlwps++;
612 } else
613 l2->l_prflag = 0;
614
615 l2->l_sigmask = l1->l_sigmask;
616 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
617 sigemptyset(&l2->l_sigpend.sp_set);
618
619 p2->p_nlwpid++;
620 if (p2->p_nlwpid == 0)
621 p2->p_nlwpid++;
622 l2->l_lid = p2->p_nlwpid;
623 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
624 p2->p_nlwps++;
625
626 mutex_exit(p2->p_lock);
627
628 mutex_enter(proc_lock);
629 LIST_INSERT_HEAD(&alllwp, l2, l_list);
630 mutex_exit(proc_lock);
631
632 if ((p2->p_flag & PK_SYSTEM) == 0) {
633 /* Locking is needed, since LWP is in the list of all LWPs */
634 lwp_lock(l2);
635 /* Inherit a processor-set */
636 l2->l_psid = l1->l_psid;
637 /* Inherit an affinity */
638 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
639 /* Look for a CPU to start */
640 l2->l_cpu = sched_takecpu(l2);
641 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
642 }
643
644 SYSCALL_TIME_LWP_INIT(l2);
645
646 if (p2->p_emul->e_lwp_fork)
647 (*p2->p_emul->e_lwp_fork)(l1, l2);
648
649 return (0);
650 }
651
652 /*
653 * Called by MD code when a new LWP begins execution. Must be called
654 * with the previous LWP locked (so at splsched), or if there is no
655 * previous LWP, at splsched.
656 */
657 void
658 lwp_startup(struct lwp *prev, struct lwp *new)
659 {
660
661 KASSERT(kpreempt_disabled());
662 if (prev != NULL) {
663 /*
664 * Normalize the count of the spin-mutexes, it was
665 * increased in mi_switch(). Unmark the state of
666 * context switch - it is finished for previous LWP.
667 */
668 curcpu()->ci_mtx_count++;
669 membar_exit();
670 prev->l_ctxswtch = 0;
671 }
672 KPREEMPT_DISABLE(new);
673 spl0();
674 pmap_activate(new);
675 LOCKDEBUG_BARRIER(NULL, 0);
676 KPREEMPT_ENABLE(new);
677 if ((new->l_pflag & LP_MPSAFE) == 0) {
678 KERNEL_LOCK(1, new);
679 }
680 }
681
682 /*
683 * Exit an LWP.
684 */
685 void
686 lwp_exit(struct lwp *l)
687 {
688 struct proc *p = l->l_proc;
689 struct lwp *l2;
690 bool current;
691
692 current = (l == curlwp);
693
694 KASSERT(current || l->l_stat == LSIDL);
695
696 /*
697 * Verify that we hold no locks other than the kernel lock.
698 */
699 LOCKDEBUG_BARRIER(&kernel_lock, 0);
700
701 /*
702 * If we are the last live LWP in a process, we need to exit the
703 * entire process. We do so with an exit status of zero, because
704 * it's a "controlled" exit, and because that's what Solaris does.
705 *
706 * We are not quite a zombie yet, but for accounting purposes we
707 * must increment the count of zombies here.
708 *
709 * Note: the last LWP's specificdata will be deleted here.
710 */
711 mutex_enter(p->p_lock);
712 if (p->p_nlwps - p->p_nzlwps == 1) {
713 KASSERT(current == true);
714 /* XXXSMP kernel_lock not held */
715 exit1(l, 0);
716 /* NOTREACHED */
717 }
718 p->p_nzlwps++;
719 mutex_exit(p->p_lock);
720
721 if (p->p_emul->e_lwp_exit)
722 (*p->p_emul->e_lwp_exit)(l);
723
724 /* Delete the specificdata while it's still safe to sleep. */
725 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
726
727 /*
728 * Release our cached credentials.
729 */
730 kauth_cred_free(l->l_cred);
731 callout_destroy(&l->l_timeout_ch);
732
733 /*
734 * While we can still block, mark the LWP as unswappable to
735 * prevent conflicts with the with the swapper.
736 */
737 if (current)
738 uvm_lwp_hold(l);
739
740 /*
741 * Remove the LWP from the global list.
742 */
743 mutex_enter(proc_lock);
744 LIST_REMOVE(l, l_list);
745 mutex_exit(proc_lock);
746
747 /*
748 * Get rid of all references to the LWP that others (e.g. procfs)
749 * may have, and mark the LWP as a zombie. If the LWP is detached,
750 * mark it waiting for collection in the proc structure. Note that
751 * before we can do that, we need to free any other dead, deatched
752 * LWP waiting to meet its maker.
753 */
754 mutex_enter(p->p_lock);
755 lwp_drainrefs(l);
756
757 if ((l->l_prflag & LPR_DETACHED) != 0) {
758 while ((l2 = p->p_zomblwp) != NULL) {
759 p->p_zomblwp = NULL;
760 lwp_free(l2, false, false);/* releases proc mutex */
761 mutex_enter(p->p_lock);
762 l->l_refcnt++;
763 lwp_drainrefs(l);
764 }
765 p->p_zomblwp = l;
766 }
767
768 /*
769 * If we find a pending signal for the process and we have been
770 * asked to check for signals, then we loose: arrange to have
771 * all other LWPs in the process check for signals.
772 */
773 if ((l->l_flag & LW_PENDSIG) != 0 &&
774 firstsig(&p->p_sigpend.sp_set) != 0) {
775 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
776 lwp_lock(l2);
777 l2->l_flag |= LW_PENDSIG;
778 lwp_unlock(l2);
779 }
780 }
781
782 lwp_lock(l);
783 l->l_stat = LSZOMB;
784 if (l->l_name != NULL)
785 strcpy(l->l_name, "(zombie)");
786 lwp_unlock(l);
787 p->p_nrlwps--;
788 cv_broadcast(&p->p_lwpcv);
789 if (l->l_lwpctl != NULL)
790 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
791 mutex_exit(p->p_lock);
792
793 /*
794 * We can no longer block. At this point, lwp_free() may already
795 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
796 *
797 * Free MD LWP resources.
798 */
799 #ifndef __NO_CPU_LWP_FREE
800 cpu_lwp_free(l, 0);
801 #endif
802
803 if (current) {
804 pmap_deactivate(l);
805
806 /*
807 * Release the kernel lock, and switch away into
808 * oblivion.
809 */
810 #ifdef notyet
811 /* XXXSMP hold in lwp_userret() */
812 KERNEL_UNLOCK_LAST(l);
813 #else
814 KERNEL_UNLOCK_ALL(l, NULL);
815 #endif
816 lwp_exit_switchaway(l);
817 }
818 }
819
820 void
821 lwp_exit_switchaway(struct lwp *l)
822 {
823 struct cpu_info *ci;
824 struct lwp *idlelwp;
825
826 (void)splsched();
827 l->l_flag &= ~LW_RUNNING;
828 ci = curcpu();
829 ci->ci_data.cpu_nswtch++;
830 idlelwp = ci->ci_data.cpu_idlelwp;
831 idlelwp->l_stat = LSONPROC;
832
833 /*
834 * cpu_onproc must be updated with the CPU locked, as
835 * aston() may try to set a AST pending on the LWP (and
836 * it does so with the CPU locked). Otherwise, the LWP
837 * may be destroyed before the AST can be set, leading
838 * to a user-after-free.
839 */
840 spc_lock(ci);
841 ci->ci_data.cpu_onproc = idlelwp;
842 spc_unlock(ci);
843 cpu_switchto(NULL, idlelwp, false);
844 }
845
846 /*
847 * Free a dead LWP's remaining resources.
848 *
849 * XXXLWP limits.
850 */
851 void
852 lwp_free(struct lwp *l, bool recycle, bool last)
853 {
854 struct proc *p = l->l_proc;
855 struct rusage *ru;
856 ksiginfoq_t kq;
857
858 KASSERT(l != curlwp);
859
860 /*
861 * If this was not the last LWP in the process, then adjust
862 * counters and unlock.
863 */
864 if (!last) {
865 /*
866 * Add the LWP's run time to the process' base value.
867 * This needs to co-incide with coming off p_lwps.
868 */
869 bintime_add(&p->p_rtime, &l->l_rtime);
870 p->p_pctcpu += l->l_pctcpu;
871 ru = &p->p_stats->p_ru;
872 ruadd(ru, &l->l_ru);
873 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
874 ru->ru_nivcsw += l->l_nivcsw;
875 LIST_REMOVE(l, l_sibling);
876 p->p_nlwps--;
877 p->p_nzlwps--;
878 if ((l->l_prflag & LPR_DETACHED) != 0)
879 p->p_ndlwps--;
880
881 /*
882 * Have any LWPs sleeping in lwp_wait() recheck for
883 * deadlock.
884 */
885 cv_broadcast(&p->p_lwpcv);
886 mutex_exit(p->p_lock);
887 }
888
889 #ifdef MULTIPROCESSOR
890 /*
891 * In the unlikely event that the LWP is still on the CPU,
892 * then spin until it has switched away. We need to release
893 * all locks to avoid deadlock against interrupt handlers on
894 * the target CPU.
895 */
896 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
897 int count;
898 (void)count; /* XXXgcc */
899 KERNEL_UNLOCK_ALL(curlwp, &count);
900 while ((l->l_flag & LW_RUNNING) != 0 ||
901 l->l_cpu->ci_curlwp == l)
902 SPINLOCK_BACKOFF_HOOK;
903 KERNEL_LOCK(count, curlwp);
904 }
905 #endif
906
907 /*
908 * Destroy the LWP's remaining signal information.
909 */
910 ksiginfo_queue_init(&kq);
911 sigclear(&l->l_sigpend, NULL, &kq);
912 ksiginfo_queue_drain(&kq);
913 cv_destroy(&l->l_sigcv);
914 mutex_destroy(&l->l_swaplock);
915
916 /*
917 * Free the LWP's turnstile and the LWP structure itself unless the
918 * caller wants to recycle them. Also, free the scheduler specific
919 * data.
920 *
921 * We can't return turnstile0 to the pool (it didn't come from it),
922 * so if it comes up just drop it quietly and move on.
923 *
924 * We don't recycle the VM resources at this time.
925 */
926 if (l->l_lwpctl != NULL)
927 lwp_ctl_free(l);
928 sched_lwp_exit(l);
929
930 if (!recycle && l->l_ts != &turnstile0)
931 pool_cache_put(turnstile_cache, l->l_ts);
932 if (l->l_name != NULL)
933 kmem_free(l->l_name, MAXCOMLEN);
934 #ifndef __NO_CPU_LWP_FREE
935 cpu_lwp_free2(l);
936 #endif
937 KASSERT((l->l_flag & LW_INMEM) != 0);
938 uvm_lwp_exit(l);
939 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
940 KASSERT(l->l_inheritedprio == -1);
941 if (!recycle)
942 pool_cache_put(lwp_cache, l);
943 }
944
945 /*
946 * Pick a LWP to represent the process for those operations which
947 * want information about a "process" that is actually associated
948 * with a LWP.
949 *
950 * If 'locking' is false, no locking or lock checks are performed.
951 * This is intended for use by DDB.
952 *
953 * We don't bother locking the LWP here, since code that uses this
954 * interface is broken by design and an exact match is not required.
955 */
956 struct lwp *
957 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
958 {
959 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
960 struct lwp *signalled;
961 int cnt;
962
963 if (locking) {
964 KASSERT(mutex_owned(p->p_lock));
965 }
966
967 /* Trivial case: only one LWP */
968 if (p->p_nlwps == 1) {
969 l = LIST_FIRST(&p->p_lwps);
970 if (nrlwps)
971 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
972 return l;
973 }
974
975 cnt = 0;
976 switch (p->p_stat) {
977 case SSTOP:
978 case SACTIVE:
979 /* Pick the most live LWP */
980 onproc = running = sleeping = stopped = suspended = NULL;
981 signalled = NULL;
982 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
983 if ((l->l_flag & LW_IDLE) != 0) {
984 continue;
985 }
986 if (l->l_lid == p->p_sigctx.ps_lwp)
987 signalled = l;
988 switch (l->l_stat) {
989 case LSONPROC:
990 onproc = l;
991 cnt++;
992 break;
993 case LSRUN:
994 running = l;
995 cnt++;
996 break;
997 case LSSLEEP:
998 sleeping = l;
999 break;
1000 case LSSTOP:
1001 stopped = l;
1002 break;
1003 case LSSUSPENDED:
1004 suspended = l;
1005 break;
1006 }
1007 }
1008 if (nrlwps)
1009 *nrlwps = cnt;
1010 if (signalled)
1011 l = signalled;
1012 else if (onproc)
1013 l = onproc;
1014 else if (running)
1015 l = running;
1016 else if (sleeping)
1017 l = sleeping;
1018 else if (stopped)
1019 l = stopped;
1020 else if (suspended)
1021 l = suspended;
1022 else
1023 break;
1024 return l;
1025 #ifdef DIAGNOSTIC
1026 case SIDL:
1027 case SZOMB:
1028 case SDYING:
1029 case SDEAD:
1030 if (locking)
1031 mutex_exit(p->p_lock);
1032 /* We have more than one LWP and we're in SIDL?
1033 * How'd that happen?
1034 */
1035 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1036 p->p_pid, p->p_comm, p->p_stat);
1037 break;
1038 default:
1039 if (locking)
1040 mutex_exit(p->p_lock);
1041 panic("Process %d (%s) in unknown state %d",
1042 p->p_pid, p->p_comm, p->p_stat);
1043 #endif
1044 }
1045
1046 if (locking)
1047 mutex_exit(p->p_lock);
1048 panic("proc_representative_lwp: couldn't find a lwp for process"
1049 " %d (%s)", p->p_pid, p->p_comm);
1050 /* NOTREACHED */
1051 return NULL;
1052 }
1053
1054 /*
1055 * Migrate the LWP to the another CPU. Unlocks the LWP.
1056 */
1057 void
1058 lwp_migrate(lwp_t *l, struct cpu_info *ci)
1059 {
1060 struct schedstate_percpu *spc;
1061 KASSERT(lwp_locked(l, NULL));
1062
1063 if (l->l_cpu == ci) {
1064 lwp_unlock(l);
1065 return;
1066 }
1067
1068 spc = &ci->ci_schedstate;
1069 switch (l->l_stat) {
1070 case LSRUN:
1071 if (l->l_flag & LW_INMEM) {
1072 l->l_target_cpu = ci;
1073 break;
1074 }
1075 case LSIDL:
1076 l->l_cpu = ci;
1077 lwp_unlock_to(l, spc->spc_mutex);
1078 KASSERT(!mutex_owned(spc->spc_mutex));
1079 return;
1080 case LSSLEEP:
1081 l->l_cpu = ci;
1082 break;
1083 case LSSTOP:
1084 case LSSUSPENDED:
1085 if (l->l_wchan != NULL) {
1086 l->l_cpu = ci;
1087 break;
1088 }
1089 case LSONPROC:
1090 l->l_target_cpu = ci;
1091 break;
1092 }
1093 lwp_unlock(l);
1094 }
1095
1096 /*
1097 * Find the LWP in the process. Arguments may be zero, in such case,
1098 * the calling process and first LWP in the list will be used.
1099 * On success - returns proc locked.
1100 */
1101 struct lwp *
1102 lwp_find2(pid_t pid, lwpid_t lid)
1103 {
1104 proc_t *p;
1105 lwp_t *l;
1106
1107 /* Find the process */
1108 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1109 if (p == NULL)
1110 return NULL;
1111 mutex_enter(p->p_lock);
1112 if (pid != 0) {
1113 /* Case of p_find */
1114 mutex_exit(proc_lock);
1115 }
1116
1117 /* Find the thread */
1118 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1119 if (l == NULL) {
1120 mutex_exit(p->p_lock);
1121 }
1122
1123 return l;
1124 }
1125
1126 /*
1127 * Look up a live LWP within the speicifed process, and return it locked.
1128 *
1129 * Must be called with p->p_lock held.
1130 */
1131 struct lwp *
1132 lwp_find(struct proc *p, int id)
1133 {
1134 struct lwp *l;
1135
1136 KASSERT(mutex_owned(p->p_lock));
1137
1138 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1139 if (l->l_lid == id)
1140 break;
1141 }
1142
1143 /*
1144 * No need to lock - all of these conditions will
1145 * be visible with the process level mutex held.
1146 */
1147 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1148 l = NULL;
1149
1150 return l;
1151 }
1152
1153 /*
1154 * Update an LWP's cached credentials to mirror the process' master copy.
1155 *
1156 * This happens early in the syscall path, on user trap, and on LWP
1157 * creation. A long-running LWP can also voluntarily choose to update
1158 * it's credentials by calling this routine. This may be called from
1159 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1160 */
1161 void
1162 lwp_update_creds(struct lwp *l)
1163 {
1164 kauth_cred_t oc;
1165 struct proc *p;
1166
1167 p = l->l_proc;
1168 oc = l->l_cred;
1169
1170 mutex_enter(p->p_lock);
1171 kauth_cred_hold(p->p_cred);
1172 l->l_cred = p->p_cred;
1173 l->l_prflag &= ~LPR_CRMOD;
1174 mutex_exit(p->p_lock);
1175 if (oc != NULL)
1176 kauth_cred_free(oc);
1177 }
1178
1179 /*
1180 * Verify that an LWP is locked, and optionally verify that the lock matches
1181 * one we specify.
1182 */
1183 int
1184 lwp_locked(struct lwp *l, kmutex_t *mtx)
1185 {
1186 kmutex_t *cur = l->l_mutex;
1187
1188 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1189 }
1190
1191 /*
1192 * Lock an LWP.
1193 */
1194 void
1195 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1196 {
1197
1198 /*
1199 * XXXgcc ignoring kmutex_t * volatile on i386
1200 *
1201 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1202 */
1203 #if 1
1204 while (l->l_mutex != old) {
1205 #else
1206 for (;;) {
1207 #endif
1208 mutex_spin_exit(old);
1209 old = l->l_mutex;
1210 mutex_spin_enter(old);
1211
1212 /*
1213 * mutex_enter() will have posted a read barrier. Re-test
1214 * l->l_mutex. If it has changed, we need to try again.
1215 */
1216 #if 1
1217 }
1218 #else
1219 } while (__predict_false(l->l_mutex != old));
1220 #endif
1221 }
1222
1223 /*
1224 * Lend a new mutex to an LWP. The old mutex must be held.
1225 */
1226 void
1227 lwp_setlock(struct lwp *l, kmutex_t *new)
1228 {
1229
1230 KASSERT(mutex_owned(l->l_mutex));
1231
1232 membar_exit();
1233 l->l_mutex = new;
1234 }
1235
1236 /*
1237 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1238 * must be held.
1239 */
1240 void
1241 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1242 {
1243 kmutex_t *old;
1244
1245 KASSERT(mutex_owned(l->l_mutex));
1246
1247 old = l->l_mutex;
1248 membar_exit();
1249 l->l_mutex = new;
1250 mutex_spin_exit(old);
1251 }
1252
1253 /*
1254 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1255 * locked.
1256 */
1257 void
1258 lwp_relock(struct lwp *l, kmutex_t *new)
1259 {
1260 kmutex_t *old;
1261
1262 KASSERT(mutex_owned(l->l_mutex));
1263
1264 old = l->l_mutex;
1265 if (old != new) {
1266 mutex_spin_enter(new);
1267 l->l_mutex = new;
1268 mutex_spin_exit(old);
1269 }
1270 }
1271
1272 int
1273 lwp_trylock(struct lwp *l)
1274 {
1275 kmutex_t *old;
1276
1277 for (;;) {
1278 if (!mutex_tryenter(old = l->l_mutex))
1279 return 0;
1280 if (__predict_true(l->l_mutex == old))
1281 return 1;
1282 mutex_spin_exit(old);
1283 }
1284 }
1285
1286 u_int
1287 lwp_unsleep(lwp_t *l, bool cleanup)
1288 {
1289
1290 KASSERT(mutex_owned(l->l_mutex));
1291
1292 return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1293 }
1294
1295
1296 /*
1297 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1298 * set.
1299 */
1300 void
1301 lwp_userret(struct lwp *l)
1302 {
1303 struct proc *p;
1304 void (*hook)(void);
1305 int sig;
1306
1307 p = l->l_proc;
1308
1309 #ifndef __HAVE_FAST_SOFTINTS
1310 /* Run pending soft interrupts. */
1311 if (l->l_cpu->ci_data.cpu_softints != 0)
1312 softint_overlay();
1313 #endif
1314
1315 /*
1316 * It should be safe to do this read unlocked on a multiprocessor
1317 * system..
1318 */
1319 while ((l->l_flag & LW_USERRET) != 0) {
1320 /*
1321 * Process pending signals first, unless the process
1322 * is dumping core or exiting, where we will instead
1323 * enter the LW_WSUSPEND case below.
1324 */
1325 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1326 LW_PENDSIG) {
1327 mutex_enter(p->p_lock);
1328 while ((sig = issignal(l)) != 0)
1329 postsig(sig);
1330 mutex_exit(p->p_lock);
1331 }
1332
1333 /*
1334 * Core-dump or suspend pending.
1335 *
1336 * In case of core dump, suspend ourselves, so that the
1337 * kernel stack and therefore the userland registers saved
1338 * in the trapframe are around for coredump() to write them
1339 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1340 * will write the core file out once all other LWPs are
1341 * suspended.
1342 */
1343 if ((l->l_flag & LW_WSUSPEND) != 0) {
1344 mutex_enter(p->p_lock);
1345 p->p_nrlwps--;
1346 cv_broadcast(&p->p_lwpcv);
1347 lwp_lock(l);
1348 l->l_stat = LSSUSPENDED;
1349 lwp_unlock(l);
1350 mutex_exit(p->p_lock);
1351 lwp_lock(l);
1352 mi_switch(l);
1353 }
1354
1355 /* Process is exiting. */
1356 if ((l->l_flag & LW_WEXIT) != 0) {
1357 lwp_exit(l);
1358 KASSERT(0);
1359 /* NOTREACHED */
1360 }
1361
1362 /* Call userret hook; used by Linux emulation. */
1363 if ((l->l_flag & LW_WUSERRET) != 0) {
1364 lwp_lock(l);
1365 l->l_flag &= ~LW_WUSERRET;
1366 lwp_unlock(l);
1367 hook = p->p_userret;
1368 p->p_userret = NULL;
1369 (*hook)();
1370 }
1371 }
1372 }
1373
1374 /*
1375 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1376 */
1377 void
1378 lwp_need_userret(struct lwp *l)
1379 {
1380 KASSERT(lwp_locked(l, NULL));
1381
1382 /*
1383 * Since the tests in lwp_userret() are done unlocked, make sure
1384 * that the condition will be seen before forcing the LWP to enter
1385 * kernel mode.
1386 */
1387 membar_producer();
1388 cpu_signotify(l);
1389 }
1390
1391 /*
1392 * Add one reference to an LWP. This will prevent the LWP from
1393 * exiting, thus keep the lwp structure and PCB around to inspect.
1394 */
1395 void
1396 lwp_addref(struct lwp *l)
1397 {
1398
1399 KASSERT(mutex_owned(l->l_proc->p_lock));
1400 KASSERT(l->l_stat != LSZOMB);
1401 KASSERT(l->l_refcnt != 0);
1402
1403 l->l_refcnt++;
1404 }
1405
1406 /*
1407 * Remove one reference to an LWP. If this is the last reference,
1408 * then we must finalize the LWP's death.
1409 */
1410 void
1411 lwp_delref(struct lwp *l)
1412 {
1413 struct proc *p = l->l_proc;
1414
1415 mutex_enter(p->p_lock);
1416 KASSERT(l->l_stat != LSZOMB);
1417 KASSERT(l->l_refcnt > 0);
1418 if (--l->l_refcnt == 0)
1419 cv_broadcast(&p->p_lwpcv);
1420 mutex_exit(p->p_lock);
1421 }
1422
1423 /*
1424 * Drain all references to the current LWP.
1425 */
1426 void
1427 lwp_drainrefs(struct lwp *l)
1428 {
1429 struct proc *p = l->l_proc;
1430
1431 KASSERT(mutex_owned(p->p_lock));
1432 KASSERT(l->l_refcnt != 0);
1433
1434 l->l_refcnt--;
1435 while (l->l_refcnt != 0)
1436 cv_wait(&p->p_lwpcv, p->p_lock);
1437 }
1438
1439 /*
1440 * lwp_specific_key_create --
1441 * Create a key for subsystem lwp-specific data.
1442 */
1443 int
1444 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1445 {
1446
1447 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1448 }
1449
1450 /*
1451 * lwp_specific_key_delete --
1452 * Delete a key for subsystem lwp-specific data.
1453 */
1454 void
1455 lwp_specific_key_delete(specificdata_key_t key)
1456 {
1457
1458 specificdata_key_delete(lwp_specificdata_domain, key);
1459 }
1460
1461 /*
1462 * lwp_initspecific --
1463 * Initialize an LWP's specificdata container.
1464 */
1465 void
1466 lwp_initspecific(struct lwp *l)
1467 {
1468 int error;
1469
1470 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1471 KASSERT(error == 0);
1472 }
1473
1474 /*
1475 * lwp_finispecific --
1476 * Finalize an LWP's specificdata container.
1477 */
1478 void
1479 lwp_finispecific(struct lwp *l)
1480 {
1481
1482 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1483 }
1484
1485 /*
1486 * lwp_getspecific --
1487 * Return lwp-specific data corresponding to the specified key.
1488 *
1489 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1490 * only its OWN SPECIFIC DATA. If it is necessary to access another
1491 * LWP's specifc data, care must be taken to ensure that doing so
1492 * would not cause internal data structure inconsistency (i.e. caller
1493 * can guarantee that the target LWP is not inside an lwp_getspecific()
1494 * or lwp_setspecific() call).
1495 */
1496 void *
1497 lwp_getspecific(specificdata_key_t key)
1498 {
1499
1500 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1501 &curlwp->l_specdataref, key));
1502 }
1503
1504 void *
1505 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1506 {
1507
1508 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1509 &l->l_specdataref, key));
1510 }
1511
1512 /*
1513 * lwp_setspecific --
1514 * Set lwp-specific data corresponding to the specified key.
1515 */
1516 void
1517 lwp_setspecific(specificdata_key_t key, void *data)
1518 {
1519
1520 specificdata_setspecific(lwp_specificdata_domain,
1521 &curlwp->l_specdataref, key, data);
1522 }
1523
1524 /*
1525 * Allocate a new lwpctl structure for a user LWP.
1526 */
1527 int
1528 lwp_ctl_alloc(vaddr_t *uaddr)
1529 {
1530 lcproc_t *lp;
1531 u_int bit, i, offset;
1532 struct uvm_object *uao;
1533 int error;
1534 lcpage_t *lcp;
1535 proc_t *p;
1536 lwp_t *l;
1537
1538 l = curlwp;
1539 p = l->l_proc;
1540
1541 if (l->l_lcpage != NULL) {
1542 lcp = l->l_lcpage;
1543 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1544 return (EINVAL);
1545 }
1546
1547 /* First time around, allocate header structure for the process. */
1548 if ((lp = p->p_lwpctl) == NULL) {
1549 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1550 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1551 lp->lp_uao = NULL;
1552 TAILQ_INIT(&lp->lp_pages);
1553 mutex_enter(p->p_lock);
1554 if (p->p_lwpctl == NULL) {
1555 p->p_lwpctl = lp;
1556 mutex_exit(p->p_lock);
1557 } else {
1558 mutex_exit(p->p_lock);
1559 mutex_destroy(&lp->lp_lock);
1560 kmem_free(lp, sizeof(*lp));
1561 lp = p->p_lwpctl;
1562 }
1563 }
1564
1565 /*
1566 * Set up an anonymous memory region to hold the shared pages.
1567 * Map them into the process' address space. The user vmspace
1568 * gets the first reference on the UAO.
1569 */
1570 mutex_enter(&lp->lp_lock);
1571 if (lp->lp_uao == NULL) {
1572 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1573 lp->lp_cur = 0;
1574 lp->lp_max = LWPCTL_UAREA_SZ;
1575 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1576 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1577 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1578 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1579 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1580 if (error != 0) {
1581 uao_detach(lp->lp_uao);
1582 lp->lp_uao = NULL;
1583 mutex_exit(&lp->lp_lock);
1584 return error;
1585 }
1586 }
1587
1588 /* Get a free block and allocate for this LWP. */
1589 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1590 if (lcp->lcp_nfree != 0)
1591 break;
1592 }
1593 if (lcp == NULL) {
1594 /* Nothing available - try to set up a free page. */
1595 if (lp->lp_cur == lp->lp_max) {
1596 mutex_exit(&lp->lp_lock);
1597 return ENOMEM;
1598 }
1599 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1600 if (lcp == NULL) {
1601 mutex_exit(&lp->lp_lock);
1602 return ENOMEM;
1603 }
1604 /*
1605 * Wire the next page down in kernel space. Since this
1606 * is a new mapping, we must add a reference.
1607 */
1608 uao = lp->lp_uao;
1609 (*uao->pgops->pgo_reference)(uao);
1610 lcp->lcp_kaddr = vm_map_min(kernel_map);
1611 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1612 uao, lp->lp_cur, PAGE_SIZE,
1613 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1614 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1615 if (error != 0) {
1616 mutex_exit(&lp->lp_lock);
1617 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1618 (*uao->pgops->pgo_detach)(uao);
1619 return error;
1620 }
1621 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1622 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1623 if (error != 0) {
1624 mutex_exit(&lp->lp_lock);
1625 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1626 lcp->lcp_kaddr + PAGE_SIZE);
1627 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1628 return error;
1629 }
1630 /* Prepare the page descriptor and link into the list. */
1631 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1632 lp->lp_cur += PAGE_SIZE;
1633 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1634 lcp->lcp_rotor = 0;
1635 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1636 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1637 }
1638 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1639 if (++i >= LWPCTL_BITMAP_ENTRIES)
1640 i = 0;
1641 }
1642 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1643 lcp->lcp_bitmap[i] ^= (1 << bit);
1644 lcp->lcp_rotor = i;
1645 lcp->lcp_nfree--;
1646 l->l_lcpage = lcp;
1647 offset = (i << 5) + bit;
1648 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1649 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1650 mutex_exit(&lp->lp_lock);
1651
1652 KPREEMPT_DISABLE(l);
1653 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1654 KPREEMPT_ENABLE(l);
1655
1656 return 0;
1657 }
1658
1659 /*
1660 * Free an lwpctl structure back to the per-process list.
1661 */
1662 void
1663 lwp_ctl_free(lwp_t *l)
1664 {
1665 lcproc_t *lp;
1666 lcpage_t *lcp;
1667 u_int map, offset;
1668
1669 lp = l->l_proc->p_lwpctl;
1670 KASSERT(lp != NULL);
1671
1672 lcp = l->l_lcpage;
1673 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1674 KASSERT(offset < LWPCTL_PER_PAGE);
1675
1676 mutex_enter(&lp->lp_lock);
1677 lcp->lcp_nfree++;
1678 map = offset >> 5;
1679 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1680 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1681 lcp->lcp_rotor = map;
1682 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1683 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1684 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1685 }
1686 mutex_exit(&lp->lp_lock);
1687 }
1688
1689 /*
1690 * Process is exiting; tear down lwpctl state. This can only be safely
1691 * called by the last LWP in the process.
1692 */
1693 void
1694 lwp_ctl_exit(void)
1695 {
1696 lcpage_t *lcp, *next;
1697 lcproc_t *lp;
1698 proc_t *p;
1699 lwp_t *l;
1700
1701 l = curlwp;
1702 l->l_lwpctl = NULL;
1703 l->l_lcpage = NULL;
1704 p = l->l_proc;
1705 lp = p->p_lwpctl;
1706
1707 KASSERT(lp != NULL);
1708 KASSERT(p->p_nlwps == 1);
1709
1710 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1711 next = TAILQ_NEXT(lcp, lcp_chain);
1712 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1713 lcp->lcp_kaddr + PAGE_SIZE);
1714 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1715 }
1716
1717 if (lp->lp_uao != NULL) {
1718 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1719 lp->lp_uva + LWPCTL_UAREA_SZ);
1720 }
1721
1722 mutex_destroy(&lp->lp_lock);
1723 kmem_free(lp, sizeof(*lp));
1724 p->p_lwpctl = NULL;
1725 }
1726
1727 #if defined(DDB)
1728 void
1729 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1730 {
1731 lwp_t *l;
1732
1733 LIST_FOREACH(l, &alllwp, l_list) {
1734 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1735
1736 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1737 continue;
1738 }
1739 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1740 (void *)addr, (void *)stack,
1741 (size_t)(addr - stack), l);
1742 }
1743 }
1744 #endif /* defined(DDB) */
1745