kern_lwp.c revision 1.113 1 /* $NetBSD: kern_lwp.c,v 1.113 2008/05/27 17:51:17 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 * then the LWP is not on a run queue, but may be soon.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is: a) about to switch away into oblivion b) has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > STOPPED > SLEEP
125 * > SUSPENDED > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > SUSPENDED
136 *
137 * Other state transitions are possible with kernel threads (eg
138 * ONPROC -> IDL), but only happen under tightly controlled
139 * circumstances the side effects are understood.
140 *
141 * Locking
142 *
143 * The majority of fields in 'struct lwp' are covered by a single,
144 * general spin lock pointed to by lwp::l_mutex. The locks covering
145 * each field are documented in sys/lwp.h.
146 *
147 * State transitions must be made with the LWP's general lock held,
148 * and may cause the LWP's lock pointer to change. Manipulation of
149 * the general lock is not performed directly, but through calls to
150 * lwp_lock(), lwp_relock() and similar.
151 *
152 * States and their associated locks:
153 *
154 * LSONPROC, LSZOMB:
155 *
156 * Always covered by spc_lwplock, which protects running LWPs.
157 * This is a per-CPU lock.
158 *
159 * LSIDL, LSRUN:
160 *
161 * Always covered by spc_mutex, which protects the run queues.
162 * This is a per-CPU lock.
163 *
164 * LSSLEEP:
165 *
166 * Covered by a lock associated with the sleep queue that the
167 * LWP resides on.
168 *
169 * LSSTOP, LSSUSPENDED:
170 *
171 * If the LWP was previously sleeping (l_wchan != NULL), then
172 * l_mutex references the sleep queue lock. If the LWP was
173 * runnable or on the CPU when halted, or has been removed from
174 * the sleep queue since halted, then the lock is spc_lwplock.
175 *
176 * The lock order is as follows:
177 *
178 * spc::spc_lwplock ->
179 * sleeptab::st_mutex ->
180 * tschain_t::tc_mutex ->
181 * spc::spc_mutex
182 *
183 * Each process has an scheduler state lock (proc::p_lock), and a
184 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
185 * so on. When an LWP is to be entered into or removed from one of the
186 * following states, p_lock must be held and the process wide counters
187 * adjusted:
188 *
189 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
190 *
191 * Note that an LWP is considered running or likely to run soon if in
192 * one of the following states. This affects the value of p_nrlwps:
193 *
194 * LSRUN, LSONPROC, LSSLEEP
195 *
196 * p_lock does not need to be held when transitioning among these
197 * three states.
198 */
199
200 #include <sys/cdefs.h>
201 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.113 2008/05/27 17:51:17 ad Exp $");
202
203 #include "opt_ddb.h"
204 #include "opt_lockdebug.h"
205
206 #define _LWP_API_PRIVATE
207
208 #include <sys/param.h>
209 #include <sys/systm.h>
210 #include <sys/cpu.h>
211 #include <sys/pool.h>
212 #include <sys/proc.h>
213 #include <sys/syscallargs.h>
214 #include <sys/syscall_stats.h>
215 #include <sys/kauth.h>
216 #include <sys/sleepq.h>
217 #include <sys/user.h>
218 #include <sys/lockdebug.h>
219 #include <sys/kmem.h>
220 #include <sys/pset.h>
221 #include <sys/intr.h>
222 #include <sys/lwpctl.h>
223 #include <sys/atomic.h>
224
225 #include <uvm/uvm_extern.h>
226 #include <uvm/uvm_object.h>
227
228 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
229
230 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
231 &pool_allocator_nointr, IPL_NONE);
232
233 static pool_cache_t lwp_cache;
234 static specificdata_domain_t lwp_specificdata_domain;
235
236 void
237 lwpinit(void)
238 {
239
240 lwp_specificdata_domain = specificdata_domain_create();
241 KASSERT(lwp_specificdata_domain != NULL);
242 lwp_sys_init();
243 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
244 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
245 }
246
247 /*
248 * Set an suspended.
249 *
250 * Must be called with p_lock held, and the LWP locked. Will unlock the
251 * LWP before return.
252 */
253 int
254 lwp_suspend(struct lwp *curl, struct lwp *t)
255 {
256 int error;
257
258 KASSERT(mutex_owned(t->l_proc->p_lock));
259 KASSERT(lwp_locked(t, NULL));
260
261 KASSERT(curl != t || curl->l_stat == LSONPROC);
262
263 /*
264 * If the current LWP has been told to exit, we must not suspend anyone
265 * else or deadlock could occur. We won't return to userspace.
266 */
267 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
268 lwp_unlock(t);
269 return (EDEADLK);
270 }
271
272 error = 0;
273
274 switch (t->l_stat) {
275 case LSRUN:
276 case LSONPROC:
277 t->l_flag |= LW_WSUSPEND;
278 lwp_need_userret(t);
279 lwp_unlock(t);
280 break;
281
282 case LSSLEEP:
283 t->l_flag |= LW_WSUSPEND;
284
285 /*
286 * Kick the LWP and try to get it to the kernel boundary
287 * so that it will release any locks that it holds.
288 * setrunnable() will release the lock.
289 */
290 if ((t->l_flag & LW_SINTR) != 0)
291 setrunnable(t);
292 else
293 lwp_unlock(t);
294 break;
295
296 case LSSUSPENDED:
297 lwp_unlock(t);
298 break;
299
300 case LSSTOP:
301 t->l_flag |= LW_WSUSPEND;
302 setrunnable(t);
303 break;
304
305 case LSIDL:
306 case LSZOMB:
307 error = EINTR; /* It's what Solaris does..... */
308 lwp_unlock(t);
309 break;
310 }
311
312 return (error);
313 }
314
315 /*
316 * Restart a suspended LWP.
317 *
318 * Must be called with p_lock held, and the LWP locked. Will unlock the
319 * LWP before return.
320 */
321 void
322 lwp_continue(struct lwp *l)
323 {
324
325 KASSERT(mutex_owned(l->l_proc->p_lock));
326 KASSERT(lwp_locked(l, NULL));
327
328 /* If rebooting or not suspended, then just bail out. */
329 if ((l->l_flag & LW_WREBOOT) != 0) {
330 lwp_unlock(l);
331 return;
332 }
333
334 l->l_flag &= ~LW_WSUSPEND;
335
336 if (l->l_stat != LSSUSPENDED) {
337 lwp_unlock(l);
338 return;
339 }
340
341 /* setrunnable() will release the lock. */
342 setrunnable(l);
343 }
344
345 /*
346 * Wait for an LWP within the current process to exit. If 'lid' is
347 * non-zero, we are waiting for a specific LWP.
348 *
349 * Must be called with p->p_lock held.
350 */
351 int
352 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
353 {
354 struct proc *p = l->l_proc;
355 struct lwp *l2;
356 int nfound, error;
357 lwpid_t curlid;
358 bool exiting;
359
360 KASSERT(mutex_owned(p->p_lock));
361
362 p->p_nlwpwait++;
363 l->l_waitingfor = lid;
364 curlid = l->l_lid;
365 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
366
367 for (;;) {
368 /*
369 * Avoid a race between exit1() and sigexit(): if the
370 * process is dumping core, then we need to bail out: call
371 * into lwp_userret() where we will be suspended until the
372 * deed is done.
373 */
374 if ((p->p_sflag & PS_WCORE) != 0) {
375 mutex_exit(p->p_lock);
376 lwp_userret(l);
377 #ifdef DIAGNOSTIC
378 panic("lwp_wait1");
379 #endif
380 /* NOTREACHED */
381 }
382
383 /*
384 * First off, drain any detached LWP that is waiting to be
385 * reaped.
386 */
387 while ((l2 = p->p_zomblwp) != NULL) {
388 p->p_zomblwp = NULL;
389 lwp_free(l2, false, false);/* releases proc mutex */
390 mutex_enter(p->p_lock);
391 }
392
393 /*
394 * Now look for an LWP to collect. If the whole process is
395 * exiting, count detached LWPs as eligible to be collected,
396 * but don't drain them here.
397 */
398 nfound = 0;
399 error = 0;
400 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
401 /*
402 * If a specific wait and the target is waiting on
403 * us, then avoid deadlock. This also traps LWPs
404 * that try to wait on themselves.
405 *
406 * Note that this does not handle more complicated
407 * cycles, like: t1 -> t2 -> t3 -> t1. The process
408 * can still be killed so it is not a major problem.
409 */
410 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
411 error = EDEADLK;
412 break;
413 }
414 if (l2 == l)
415 continue;
416 if ((l2->l_prflag & LPR_DETACHED) != 0) {
417 nfound += exiting;
418 continue;
419 }
420 if (lid != 0) {
421 if (l2->l_lid != lid)
422 continue;
423 /*
424 * Mark this LWP as the first waiter, if there
425 * is no other.
426 */
427 if (l2->l_waiter == 0)
428 l2->l_waiter = curlid;
429 } else if (l2->l_waiter != 0) {
430 /*
431 * It already has a waiter - so don't
432 * collect it. If the waiter doesn't
433 * grab it we'll get another chance
434 * later.
435 */
436 nfound++;
437 continue;
438 }
439 nfound++;
440
441 /* No need to lock the LWP in order to see LSZOMB. */
442 if (l2->l_stat != LSZOMB)
443 continue;
444
445 /*
446 * We're no longer waiting. Reset the "first waiter"
447 * pointer on the target, in case it was us.
448 */
449 l->l_waitingfor = 0;
450 l2->l_waiter = 0;
451 p->p_nlwpwait--;
452 if (departed)
453 *departed = l2->l_lid;
454 sched_lwp_collect(l2);
455
456 /* lwp_free() releases the proc lock. */
457 lwp_free(l2, false, false);
458 mutex_enter(p->p_lock);
459 return 0;
460 }
461
462 if (error != 0)
463 break;
464 if (nfound == 0) {
465 error = ESRCH;
466 break;
467 }
468
469 /*
470 * The kernel is careful to ensure that it can not deadlock
471 * when exiting - just keep waiting.
472 */
473 if (exiting) {
474 KASSERT(p->p_nlwps > 1);
475 cv_wait(&p->p_lwpcv, p->p_lock);
476 continue;
477 }
478
479 /*
480 * If all other LWPs are waiting for exits or suspends
481 * and the supply of zombies and potential zombies is
482 * exhausted, then we are about to deadlock.
483 *
484 * If the process is exiting (and this LWP is not the one
485 * that is coordinating the exit) then bail out now.
486 */
487 if ((p->p_sflag & PS_WEXIT) != 0 ||
488 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
489 error = EDEADLK;
490 break;
491 }
492
493 /*
494 * Sit around and wait for something to happen. We'll be
495 * awoken if any of the conditions examined change: if an
496 * LWP exits, is collected, or is detached.
497 */
498 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
499 break;
500 }
501
502 /*
503 * We didn't find any LWPs to collect, we may have received a
504 * signal, or some other condition has caused us to bail out.
505 *
506 * If waiting on a specific LWP, clear the waiters marker: some
507 * other LWP may want it. Then, kick all the remaining waiters
508 * so that they can re-check for zombies and for deadlock.
509 */
510 if (lid != 0) {
511 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
512 if (l2->l_lid == lid) {
513 if (l2->l_waiter == curlid)
514 l2->l_waiter = 0;
515 break;
516 }
517 }
518 }
519 p->p_nlwpwait--;
520 l->l_waitingfor = 0;
521 cv_broadcast(&p->p_lwpcv);
522
523 return error;
524 }
525
526 /*
527 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
528 * The new LWP is created in state LSIDL and must be set running,
529 * suspended, or stopped by the caller.
530 */
531 int
532 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
533 void *stack, size_t stacksize, void (*func)(void *), void *arg,
534 lwp_t **rnewlwpp, int sclass)
535 {
536 struct lwp *l2, *isfree;
537 turnstile_t *ts;
538
539 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
540
541 /*
542 * First off, reap any detached LWP waiting to be collected.
543 * We can re-use its LWP structure and turnstile.
544 */
545 isfree = NULL;
546 if (p2->p_zomblwp != NULL) {
547 mutex_enter(p2->p_lock);
548 if ((isfree = p2->p_zomblwp) != NULL) {
549 p2->p_zomblwp = NULL;
550 lwp_free(isfree, true, false);/* releases proc mutex */
551 } else
552 mutex_exit(p2->p_lock);
553 }
554 if (isfree == NULL) {
555 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
556 memset(l2, 0, sizeof(*l2));
557 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
558 SLIST_INIT(&l2->l_pi_lenders);
559 } else {
560 l2 = isfree;
561 ts = l2->l_ts;
562 KASSERT(l2->l_inheritedprio == -1);
563 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
564 memset(l2, 0, sizeof(*l2));
565 l2->l_ts = ts;
566 }
567
568 l2->l_stat = LSIDL;
569 l2->l_proc = p2;
570 l2->l_refcnt = 1;
571 l2->l_class = sclass;
572 l2->l_kpriority = l1->l_kpriority;
573 l2->l_kpribase = PRI_KERNEL;
574 l2->l_priority = l1->l_priority;
575 l2->l_inheritedprio = -1;
576 l2->l_flag = inmem ? LW_INMEM : 0;
577 l2->l_pflag = LP_MPSAFE;
578 l2->l_fd = p2->p_fd;
579 TAILQ_INIT(&l2->l_ld_locks);
580
581 if (p2->p_flag & PK_SYSTEM) {
582 /* Mark it as a system LWP and not a candidate for swapping */
583 l2->l_flag |= LW_SYSTEM;
584 }
585
586 kpreempt_disable();
587 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
588 l2->l_cpu = l1->l_cpu;
589 kpreempt_enable();
590
591 lwp_initspecific(l2);
592 sched_lwp_fork(l1, l2);
593 lwp_update_creds(l2);
594 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
595 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
596 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
597 cv_init(&l2->l_sigcv, "sigwait");
598 l2->l_syncobj = &sched_syncobj;
599
600 if (rnewlwpp != NULL)
601 *rnewlwpp = l2;
602
603 l2->l_addr = UAREA_TO_USER(uaddr);
604 uvm_lwp_fork(l1, l2, stack, stacksize, func,
605 (arg != NULL) ? arg : l2);
606
607 mutex_enter(p2->p_lock);
608
609 if ((flags & LWP_DETACHED) != 0) {
610 l2->l_prflag = LPR_DETACHED;
611 p2->p_ndlwps++;
612 } else
613 l2->l_prflag = 0;
614
615 l2->l_sigmask = l1->l_sigmask;
616 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
617 sigemptyset(&l2->l_sigpend.sp_set);
618
619 p2->p_nlwpid++;
620 if (p2->p_nlwpid == 0)
621 p2->p_nlwpid++;
622 l2->l_lid = p2->p_nlwpid;
623 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
624 p2->p_nlwps++;
625
626 mutex_exit(p2->p_lock);
627
628 mutex_enter(proc_lock);
629 LIST_INSERT_HEAD(&alllwp, l2, l_list);
630 mutex_exit(proc_lock);
631
632 if ((p2->p_flag & PK_SYSTEM) == 0) {
633 /* Locking is needed, since LWP is in the list of all LWPs */
634 lwp_lock(l2);
635 /* Inherit a processor-set */
636 l2->l_psid = l1->l_psid;
637 /* Inherit an affinity */
638 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
639 /* Look for a CPU to start */
640 l2->l_cpu = sched_takecpu(l2);
641 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
642 }
643
644 SYSCALL_TIME_LWP_INIT(l2);
645
646 if (p2->p_emul->e_lwp_fork)
647 (*p2->p_emul->e_lwp_fork)(l1, l2);
648
649 return (0);
650 }
651
652 /*
653 * Called by MD code when a new LWP begins execution. Must be called
654 * with the previous LWP locked (so at splsched), or if there is no
655 * previous LWP, at splsched.
656 */
657 void
658 lwp_startup(struct lwp *prev, struct lwp *new)
659 {
660
661 KASSERT(kpreempt_disabled());
662 if (prev != NULL) {
663 /*
664 * Normalize the count of the spin-mutexes, it was
665 * increased in mi_switch(). Unmark the state of
666 * context switch - it is finished for previous LWP.
667 */
668 curcpu()->ci_mtx_count++;
669 membar_exit();
670 prev->l_ctxswtch = 0;
671 }
672 KPREEMPT_DISABLE(new);
673 spl0();
674 pmap_activate(new);
675 LOCKDEBUG_BARRIER(NULL, 0);
676 KPREEMPT_ENABLE(new);
677 if ((new->l_pflag & LP_MPSAFE) == 0) {
678 KERNEL_LOCK(1, new);
679 }
680 }
681
682 /*
683 * Exit an LWP.
684 */
685 void
686 lwp_exit(struct lwp *l)
687 {
688 struct proc *p = l->l_proc;
689 struct lwp *l2;
690 bool current;
691
692 current = (l == curlwp);
693
694 KASSERT(current || l->l_stat == LSIDL);
695
696 /*
697 * Verify that we hold no locks other than the kernel lock.
698 */
699 LOCKDEBUG_BARRIER(&kernel_lock, 0);
700
701 /*
702 * If we are the last live LWP in a process, we need to exit the
703 * entire process. We do so with an exit status of zero, because
704 * it's a "controlled" exit, and because that's what Solaris does.
705 *
706 * We are not quite a zombie yet, but for accounting purposes we
707 * must increment the count of zombies here.
708 *
709 * Note: the last LWP's specificdata will be deleted here.
710 */
711 mutex_enter(p->p_lock);
712 if (p->p_nlwps - p->p_nzlwps == 1) {
713 KASSERT(current == true);
714 /* XXXSMP kernel_lock not held */
715 exit1(l, 0);
716 /* NOTREACHED */
717 }
718 p->p_nzlwps++;
719 mutex_exit(p->p_lock);
720
721 if (p->p_emul->e_lwp_exit)
722 (*p->p_emul->e_lwp_exit)(l);
723
724 /* Delete the specificdata while it's still safe to sleep. */
725 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
726
727 /*
728 * Release our cached credentials.
729 */
730 kauth_cred_free(l->l_cred);
731 callout_destroy(&l->l_timeout_ch);
732
733 /*
734 * While we can still block, mark the LWP as unswappable to
735 * prevent conflicts with the with the swapper.
736 */
737 if (current)
738 uvm_lwp_hold(l);
739
740 /*
741 * Remove the LWP from the global list.
742 */
743 mutex_enter(proc_lock);
744 LIST_REMOVE(l, l_list);
745 mutex_exit(proc_lock);
746
747 /*
748 * Get rid of all references to the LWP that others (e.g. procfs)
749 * may have, and mark the LWP as a zombie. If the LWP is detached,
750 * mark it waiting for collection in the proc structure. Note that
751 * before we can do that, we need to free any other dead, deatched
752 * LWP waiting to meet its maker.
753 */
754 mutex_enter(p->p_lock);
755 lwp_drainrefs(l);
756
757 if ((l->l_prflag & LPR_DETACHED) != 0) {
758 while ((l2 = p->p_zomblwp) != NULL) {
759 p->p_zomblwp = NULL;
760 lwp_free(l2, false, false);/* releases proc mutex */
761 mutex_enter(p->p_lock);
762 l->l_refcnt++;
763 lwp_drainrefs(l);
764 }
765 p->p_zomblwp = l;
766 }
767
768 /*
769 * If we find a pending signal for the process and we have been
770 * asked to check for signals, then we loose: arrange to have
771 * all other LWPs in the process check for signals.
772 */
773 if ((l->l_flag & LW_PENDSIG) != 0 &&
774 firstsig(&p->p_sigpend.sp_set) != 0) {
775 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
776 lwp_lock(l2);
777 l2->l_flag |= LW_PENDSIG;
778 lwp_unlock(l2);
779 }
780 }
781
782 lwp_lock(l);
783 l->l_stat = LSZOMB;
784 if (l->l_name != NULL)
785 strcpy(l->l_name, "(zombie)");
786 lwp_unlock(l);
787 p->p_nrlwps--;
788 cv_broadcast(&p->p_lwpcv);
789 if (l->l_lwpctl != NULL)
790 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
791 mutex_exit(p->p_lock);
792
793 /*
794 * We can no longer block. At this point, lwp_free() may already
795 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
796 *
797 * Free MD LWP resources.
798 */
799 #ifndef __NO_CPU_LWP_FREE
800 cpu_lwp_free(l, 0);
801 #endif
802
803 if (current) {
804 pmap_deactivate(l);
805
806 /*
807 * Release the kernel lock, and switch away into
808 * oblivion.
809 */
810 #ifdef notyet
811 /* XXXSMP hold in lwp_userret() */
812 KERNEL_UNLOCK_LAST(l);
813 #else
814 KERNEL_UNLOCK_ALL(l, NULL);
815 #endif
816 lwp_exit_switchaway(l);
817 }
818 }
819
820 /*
821 * Free a dead LWP's remaining resources.
822 *
823 * XXXLWP limits.
824 */
825 void
826 lwp_free(struct lwp *l, bool recycle, bool last)
827 {
828 struct proc *p = l->l_proc;
829 struct rusage *ru;
830 ksiginfoq_t kq;
831
832 KASSERT(l != curlwp);
833
834 /*
835 * If this was not the last LWP in the process, then adjust
836 * counters and unlock.
837 */
838 if (!last) {
839 /*
840 * Add the LWP's run time to the process' base value.
841 * This needs to co-incide with coming off p_lwps.
842 */
843 bintime_add(&p->p_rtime, &l->l_rtime);
844 p->p_pctcpu += l->l_pctcpu;
845 ru = &p->p_stats->p_ru;
846 ruadd(ru, &l->l_ru);
847 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
848 ru->ru_nivcsw += l->l_nivcsw;
849 LIST_REMOVE(l, l_sibling);
850 p->p_nlwps--;
851 p->p_nzlwps--;
852 if ((l->l_prflag & LPR_DETACHED) != 0)
853 p->p_ndlwps--;
854
855 /*
856 * Have any LWPs sleeping in lwp_wait() recheck for
857 * deadlock.
858 */
859 cv_broadcast(&p->p_lwpcv);
860 mutex_exit(p->p_lock);
861 }
862
863 #ifdef MULTIPROCESSOR
864 /*
865 * In the unlikely event that the LWP is still on the CPU,
866 * then spin until it has switched away. We need to release
867 * all locks to avoid deadlock against interrupt handlers on
868 * the target CPU.
869 */
870 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
871 int count;
872 (void)count; /* XXXgcc */
873 KERNEL_UNLOCK_ALL(curlwp, &count);
874 while ((l->l_flag & LW_RUNNING) != 0 ||
875 l->l_cpu->ci_curlwp == l)
876 SPINLOCK_BACKOFF_HOOK;
877 KERNEL_LOCK(count, curlwp);
878 }
879 #endif
880
881 /*
882 * Destroy the LWP's remaining signal information.
883 */
884 ksiginfo_queue_init(&kq);
885 sigclear(&l->l_sigpend, NULL, &kq);
886 ksiginfo_queue_drain(&kq);
887 cv_destroy(&l->l_sigcv);
888 mutex_destroy(&l->l_swaplock);
889
890 /*
891 * Free the LWP's turnstile and the LWP structure itself unless the
892 * caller wants to recycle them. Also, free the scheduler specific
893 * data.
894 *
895 * We can't return turnstile0 to the pool (it didn't come from it),
896 * so if it comes up just drop it quietly and move on.
897 *
898 * We don't recycle the VM resources at this time.
899 */
900 if (l->l_lwpctl != NULL)
901 lwp_ctl_free(l);
902 sched_lwp_exit(l);
903
904 if (!recycle && l->l_ts != &turnstile0)
905 pool_cache_put(turnstile_cache, l->l_ts);
906 if (l->l_name != NULL)
907 kmem_free(l->l_name, MAXCOMLEN);
908 #ifndef __NO_CPU_LWP_FREE
909 cpu_lwp_free2(l);
910 #endif
911 KASSERT((l->l_flag & LW_INMEM) != 0);
912 uvm_lwp_exit(l);
913 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
914 KASSERT(l->l_inheritedprio == -1);
915 if (!recycle)
916 pool_cache_put(lwp_cache, l);
917 }
918
919 /*
920 * Pick a LWP to represent the process for those operations which
921 * want information about a "process" that is actually associated
922 * with a LWP.
923 *
924 * If 'locking' is false, no locking or lock checks are performed.
925 * This is intended for use by DDB.
926 *
927 * We don't bother locking the LWP here, since code that uses this
928 * interface is broken by design and an exact match is not required.
929 */
930 struct lwp *
931 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
932 {
933 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
934 struct lwp *signalled;
935 int cnt;
936
937 if (locking) {
938 KASSERT(mutex_owned(p->p_lock));
939 }
940
941 /* Trivial case: only one LWP */
942 if (p->p_nlwps == 1) {
943 l = LIST_FIRST(&p->p_lwps);
944 if (nrlwps)
945 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
946 return l;
947 }
948
949 cnt = 0;
950 switch (p->p_stat) {
951 case SSTOP:
952 case SACTIVE:
953 /* Pick the most live LWP */
954 onproc = running = sleeping = stopped = suspended = NULL;
955 signalled = NULL;
956 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
957 if ((l->l_flag & LW_IDLE) != 0) {
958 continue;
959 }
960 if (l->l_lid == p->p_sigctx.ps_lwp)
961 signalled = l;
962 switch (l->l_stat) {
963 case LSONPROC:
964 onproc = l;
965 cnt++;
966 break;
967 case LSRUN:
968 running = l;
969 cnt++;
970 break;
971 case LSSLEEP:
972 sleeping = l;
973 break;
974 case LSSTOP:
975 stopped = l;
976 break;
977 case LSSUSPENDED:
978 suspended = l;
979 break;
980 }
981 }
982 if (nrlwps)
983 *nrlwps = cnt;
984 if (signalled)
985 l = signalled;
986 else if (onproc)
987 l = onproc;
988 else if (running)
989 l = running;
990 else if (sleeping)
991 l = sleeping;
992 else if (stopped)
993 l = stopped;
994 else if (suspended)
995 l = suspended;
996 else
997 break;
998 return l;
999 #ifdef DIAGNOSTIC
1000 case SIDL:
1001 case SZOMB:
1002 case SDYING:
1003 case SDEAD:
1004 if (locking)
1005 mutex_exit(p->p_lock);
1006 /* We have more than one LWP and we're in SIDL?
1007 * How'd that happen?
1008 */
1009 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1010 p->p_pid, p->p_comm, p->p_stat);
1011 break;
1012 default:
1013 if (locking)
1014 mutex_exit(p->p_lock);
1015 panic("Process %d (%s) in unknown state %d",
1016 p->p_pid, p->p_comm, p->p_stat);
1017 #endif
1018 }
1019
1020 if (locking)
1021 mutex_exit(p->p_lock);
1022 panic("proc_representative_lwp: couldn't find a lwp for process"
1023 " %d (%s)", p->p_pid, p->p_comm);
1024 /* NOTREACHED */
1025 return NULL;
1026 }
1027
1028 /*
1029 * Migrate the LWP to the another CPU. Unlocks the LWP.
1030 */
1031 void
1032 lwp_migrate(lwp_t *l, struct cpu_info *ci)
1033 {
1034 struct schedstate_percpu *spc;
1035 KASSERT(lwp_locked(l, NULL));
1036
1037 if (l->l_cpu == ci) {
1038 lwp_unlock(l);
1039 return;
1040 }
1041
1042 spc = &ci->ci_schedstate;
1043 switch (l->l_stat) {
1044 case LSRUN:
1045 if (l->l_flag & LW_INMEM) {
1046 l->l_target_cpu = ci;
1047 break;
1048 }
1049 case LSIDL:
1050 l->l_cpu = ci;
1051 lwp_unlock_to(l, spc->spc_mutex);
1052 KASSERT(!mutex_owned(spc->spc_mutex));
1053 return;
1054 case LSSLEEP:
1055 l->l_cpu = ci;
1056 break;
1057 case LSSTOP:
1058 case LSSUSPENDED:
1059 if (l->l_wchan != NULL) {
1060 l->l_cpu = ci;
1061 break;
1062 }
1063 case LSONPROC:
1064 l->l_target_cpu = ci;
1065 break;
1066 }
1067 lwp_unlock(l);
1068 }
1069
1070 /*
1071 * Find the LWP in the process. Arguments may be zero, in such case,
1072 * the calling process and first LWP in the list will be used.
1073 * On success - returns proc locked.
1074 */
1075 struct lwp *
1076 lwp_find2(pid_t pid, lwpid_t lid)
1077 {
1078 proc_t *p;
1079 lwp_t *l;
1080
1081 /* Find the process */
1082 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1083 if (p == NULL)
1084 return NULL;
1085 mutex_enter(p->p_lock);
1086 if (pid != 0) {
1087 /* Case of p_find */
1088 mutex_exit(proc_lock);
1089 }
1090
1091 /* Find the thread */
1092 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1093 if (l == NULL) {
1094 mutex_exit(p->p_lock);
1095 }
1096
1097 return l;
1098 }
1099
1100 /*
1101 * Look up a live LWP within the speicifed process, and return it locked.
1102 *
1103 * Must be called with p->p_lock held.
1104 */
1105 struct lwp *
1106 lwp_find(struct proc *p, int id)
1107 {
1108 struct lwp *l;
1109
1110 KASSERT(mutex_owned(p->p_lock));
1111
1112 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1113 if (l->l_lid == id)
1114 break;
1115 }
1116
1117 /*
1118 * No need to lock - all of these conditions will
1119 * be visible with the process level mutex held.
1120 */
1121 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1122 l = NULL;
1123
1124 return l;
1125 }
1126
1127 /*
1128 * Update an LWP's cached credentials to mirror the process' master copy.
1129 *
1130 * This happens early in the syscall path, on user trap, and on LWP
1131 * creation. A long-running LWP can also voluntarily choose to update
1132 * it's credentials by calling this routine. This may be called from
1133 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1134 */
1135 void
1136 lwp_update_creds(struct lwp *l)
1137 {
1138 kauth_cred_t oc;
1139 struct proc *p;
1140
1141 p = l->l_proc;
1142 oc = l->l_cred;
1143
1144 mutex_enter(p->p_lock);
1145 kauth_cred_hold(p->p_cred);
1146 l->l_cred = p->p_cred;
1147 l->l_prflag &= ~LPR_CRMOD;
1148 mutex_exit(p->p_lock);
1149 if (oc != NULL)
1150 kauth_cred_free(oc);
1151 }
1152
1153 /*
1154 * Verify that an LWP is locked, and optionally verify that the lock matches
1155 * one we specify.
1156 */
1157 int
1158 lwp_locked(struct lwp *l, kmutex_t *mtx)
1159 {
1160 kmutex_t *cur = l->l_mutex;
1161
1162 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1163 }
1164
1165 /*
1166 * Lock an LWP.
1167 */
1168 void
1169 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1170 {
1171
1172 /*
1173 * XXXgcc ignoring kmutex_t * volatile on i386
1174 *
1175 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1176 */
1177 #if 1
1178 while (l->l_mutex != old) {
1179 #else
1180 for (;;) {
1181 #endif
1182 mutex_spin_exit(old);
1183 old = l->l_mutex;
1184 mutex_spin_enter(old);
1185
1186 /*
1187 * mutex_enter() will have posted a read barrier. Re-test
1188 * l->l_mutex. If it has changed, we need to try again.
1189 */
1190 #if 1
1191 }
1192 #else
1193 } while (__predict_false(l->l_mutex != old));
1194 #endif
1195 }
1196
1197 /*
1198 * Lend a new mutex to an LWP. The old mutex must be held.
1199 */
1200 void
1201 lwp_setlock(struct lwp *l, kmutex_t *new)
1202 {
1203
1204 KASSERT(mutex_owned(l->l_mutex));
1205
1206 membar_exit();
1207 l->l_mutex = new;
1208 }
1209
1210 /*
1211 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1212 * must be held.
1213 */
1214 void
1215 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1216 {
1217 kmutex_t *old;
1218
1219 KASSERT(mutex_owned(l->l_mutex));
1220
1221 old = l->l_mutex;
1222 membar_exit();
1223 l->l_mutex = new;
1224 mutex_spin_exit(old);
1225 }
1226
1227 /*
1228 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1229 * locked.
1230 */
1231 void
1232 lwp_relock(struct lwp *l, kmutex_t *new)
1233 {
1234 kmutex_t *old;
1235
1236 KASSERT(mutex_owned(l->l_mutex));
1237
1238 old = l->l_mutex;
1239 if (old != new) {
1240 mutex_spin_enter(new);
1241 l->l_mutex = new;
1242 mutex_spin_exit(old);
1243 }
1244 }
1245
1246 int
1247 lwp_trylock(struct lwp *l)
1248 {
1249 kmutex_t *old;
1250
1251 for (;;) {
1252 if (!mutex_tryenter(old = l->l_mutex))
1253 return 0;
1254 if (__predict_true(l->l_mutex == old))
1255 return 1;
1256 mutex_spin_exit(old);
1257 }
1258 }
1259
1260 u_int
1261 lwp_unsleep(lwp_t *l, bool cleanup)
1262 {
1263
1264 KASSERT(mutex_owned(l->l_mutex));
1265
1266 return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1267 }
1268
1269
1270 /*
1271 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1272 * set.
1273 */
1274 void
1275 lwp_userret(struct lwp *l)
1276 {
1277 struct proc *p;
1278 void (*hook)(void);
1279 int sig;
1280
1281 p = l->l_proc;
1282
1283 #ifndef __HAVE_FAST_SOFTINTS
1284 /* Run pending soft interrupts. */
1285 if (l->l_cpu->ci_data.cpu_softints != 0)
1286 softint_overlay();
1287 #endif
1288
1289 /*
1290 * It should be safe to do this read unlocked on a multiprocessor
1291 * system..
1292 */
1293 while ((l->l_flag & LW_USERRET) != 0) {
1294 /*
1295 * Process pending signals first, unless the process
1296 * is dumping core or exiting, where we will instead
1297 * enter the LW_WSUSPEND case below.
1298 */
1299 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1300 LW_PENDSIG) {
1301 mutex_enter(p->p_lock);
1302 while ((sig = issignal(l)) != 0)
1303 postsig(sig);
1304 mutex_exit(p->p_lock);
1305 }
1306
1307 /*
1308 * Core-dump or suspend pending.
1309 *
1310 * In case of core dump, suspend ourselves, so that the
1311 * kernel stack and therefore the userland registers saved
1312 * in the trapframe are around for coredump() to write them
1313 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1314 * will write the core file out once all other LWPs are
1315 * suspended.
1316 */
1317 if ((l->l_flag & LW_WSUSPEND) != 0) {
1318 mutex_enter(p->p_lock);
1319 p->p_nrlwps--;
1320 cv_broadcast(&p->p_lwpcv);
1321 lwp_lock(l);
1322 l->l_stat = LSSUSPENDED;
1323 lwp_unlock(l);
1324 mutex_exit(p->p_lock);
1325 lwp_lock(l);
1326 mi_switch(l);
1327 }
1328
1329 /* Process is exiting. */
1330 if ((l->l_flag & LW_WEXIT) != 0) {
1331 lwp_exit(l);
1332 KASSERT(0);
1333 /* NOTREACHED */
1334 }
1335
1336 /* Call userret hook; used by Linux emulation. */
1337 if ((l->l_flag & LW_WUSERRET) != 0) {
1338 lwp_lock(l);
1339 l->l_flag &= ~LW_WUSERRET;
1340 lwp_unlock(l);
1341 hook = p->p_userret;
1342 p->p_userret = NULL;
1343 (*hook)();
1344 }
1345 }
1346 }
1347
1348 /*
1349 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1350 */
1351 void
1352 lwp_need_userret(struct lwp *l)
1353 {
1354 KASSERT(lwp_locked(l, NULL));
1355
1356 /*
1357 * Since the tests in lwp_userret() are done unlocked, make sure
1358 * that the condition will be seen before forcing the LWP to enter
1359 * kernel mode.
1360 */
1361 membar_producer();
1362 cpu_signotify(l);
1363 }
1364
1365 /*
1366 * Add one reference to an LWP. This will prevent the LWP from
1367 * exiting, thus keep the lwp structure and PCB around to inspect.
1368 */
1369 void
1370 lwp_addref(struct lwp *l)
1371 {
1372
1373 KASSERT(mutex_owned(l->l_proc->p_lock));
1374 KASSERT(l->l_stat != LSZOMB);
1375 KASSERT(l->l_refcnt != 0);
1376
1377 l->l_refcnt++;
1378 }
1379
1380 /*
1381 * Remove one reference to an LWP. If this is the last reference,
1382 * then we must finalize the LWP's death.
1383 */
1384 void
1385 lwp_delref(struct lwp *l)
1386 {
1387 struct proc *p = l->l_proc;
1388
1389 mutex_enter(p->p_lock);
1390 KASSERT(l->l_stat != LSZOMB);
1391 KASSERT(l->l_refcnt > 0);
1392 if (--l->l_refcnt == 0)
1393 cv_broadcast(&p->p_lwpcv);
1394 mutex_exit(p->p_lock);
1395 }
1396
1397 /*
1398 * Drain all references to the current LWP.
1399 */
1400 void
1401 lwp_drainrefs(struct lwp *l)
1402 {
1403 struct proc *p = l->l_proc;
1404
1405 KASSERT(mutex_owned(p->p_lock));
1406 KASSERT(l->l_refcnt != 0);
1407
1408 l->l_refcnt--;
1409 while (l->l_refcnt != 0)
1410 cv_wait(&p->p_lwpcv, p->p_lock);
1411 }
1412
1413 /*
1414 * lwp_specific_key_create --
1415 * Create a key for subsystem lwp-specific data.
1416 */
1417 int
1418 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1419 {
1420
1421 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1422 }
1423
1424 /*
1425 * lwp_specific_key_delete --
1426 * Delete a key for subsystem lwp-specific data.
1427 */
1428 void
1429 lwp_specific_key_delete(specificdata_key_t key)
1430 {
1431
1432 specificdata_key_delete(lwp_specificdata_domain, key);
1433 }
1434
1435 /*
1436 * lwp_initspecific --
1437 * Initialize an LWP's specificdata container.
1438 */
1439 void
1440 lwp_initspecific(struct lwp *l)
1441 {
1442 int error;
1443
1444 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1445 KASSERT(error == 0);
1446 }
1447
1448 /*
1449 * lwp_finispecific --
1450 * Finalize an LWP's specificdata container.
1451 */
1452 void
1453 lwp_finispecific(struct lwp *l)
1454 {
1455
1456 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1457 }
1458
1459 /*
1460 * lwp_getspecific --
1461 * Return lwp-specific data corresponding to the specified key.
1462 *
1463 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1464 * only its OWN SPECIFIC DATA. If it is necessary to access another
1465 * LWP's specifc data, care must be taken to ensure that doing so
1466 * would not cause internal data structure inconsistency (i.e. caller
1467 * can guarantee that the target LWP is not inside an lwp_getspecific()
1468 * or lwp_setspecific() call).
1469 */
1470 void *
1471 lwp_getspecific(specificdata_key_t key)
1472 {
1473
1474 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1475 &curlwp->l_specdataref, key));
1476 }
1477
1478 void *
1479 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1480 {
1481
1482 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1483 &l->l_specdataref, key));
1484 }
1485
1486 /*
1487 * lwp_setspecific --
1488 * Set lwp-specific data corresponding to the specified key.
1489 */
1490 void
1491 lwp_setspecific(specificdata_key_t key, void *data)
1492 {
1493
1494 specificdata_setspecific(lwp_specificdata_domain,
1495 &curlwp->l_specdataref, key, data);
1496 }
1497
1498 /*
1499 * Allocate a new lwpctl structure for a user LWP.
1500 */
1501 int
1502 lwp_ctl_alloc(vaddr_t *uaddr)
1503 {
1504 lcproc_t *lp;
1505 u_int bit, i, offset;
1506 struct uvm_object *uao;
1507 int error;
1508 lcpage_t *lcp;
1509 proc_t *p;
1510 lwp_t *l;
1511
1512 l = curlwp;
1513 p = l->l_proc;
1514
1515 if (l->l_lcpage != NULL) {
1516 lcp = l->l_lcpage;
1517 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1518 return (EINVAL);
1519 }
1520
1521 /* First time around, allocate header structure for the process. */
1522 if ((lp = p->p_lwpctl) == NULL) {
1523 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1524 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1525 lp->lp_uao = NULL;
1526 TAILQ_INIT(&lp->lp_pages);
1527 mutex_enter(p->p_lock);
1528 if (p->p_lwpctl == NULL) {
1529 p->p_lwpctl = lp;
1530 mutex_exit(p->p_lock);
1531 } else {
1532 mutex_exit(p->p_lock);
1533 mutex_destroy(&lp->lp_lock);
1534 kmem_free(lp, sizeof(*lp));
1535 lp = p->p_lwpctl;
1536 }
1537 }
1538
1539 /*
1540 * Set up an anonymous memory region to hold the shared pages.
1541 * Map them into the process' address space. The user vmspace
1542 * gets the first reference on the UAO.
1543 */
1544 mutex_enter(&lp->lp_lock);
1545 if (lp->lp_uao == NULL) {
1546 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1547 lp->lp_cur = 0;
1548 lp->lp_max = LWPCTL_UAREA_SZ;
1549 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1550 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1551 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1552 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1553 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1554 if (error != 0) {
1555 uao_detach(lp->lp_uao);
1556 lp->lp_uao = NULL;
1557 mutex_exit(&lp->lp_lock);
1558 return error;
1559 }
1560 }
1561
1562 /* Get a free block and allocate for this LWP. */
1563 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1564 if (lcp->lcp_nfree != 0)
1565 break;
1566 }
1567 if (lcp == NULL) {
1568 /* Nothing available - try to set up a free page. */
1569 if (lp->lp_cur == lp->lp_max) {
1570 mutex_exit(&lp->lp_lock);
1571 return ENOMEM;
1572 }
1573 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1574 if (lcp == NULL) {
1575 mutex_exit(&lp->lp_lock);
1576 return ENOMEM;
1577 }
1578 /*
1579 * Wire the next page down in kernel space. Since this
1580 * is a new mapping, we must add a reference.
1581 */
1582 uao = lp->lp_uao;
1583 (*uao->pgops->pgo_reference)(uao);
1584 lcp->lcp_kaddr = vm_map_min(kernel_map);
1585 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1586 uao, lp->lp_cur, PAGE_SIZE,
1587 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1588 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1589 if (error != 0) {
1590 mutex_exit(&lp->lp_lock);
1591 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1592 (*uao->pgops->pgo_detach)(uao);
1593 return error;
1594 }
1595 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1596 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1597 if (error != 0) {
1598 mutex_exit(&lp->lp_lock);
1599 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1600 lcp->lcp_kaddr + PAGE_SIZE);
1601 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1602 return error;
1603 }
1604 /* Prepare the page descriptor and link into the list. */
1605 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1606 lp->lp_cur += PAGE_SIZE;
1607 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1608 lcp->lcp_rotor = 0;
1609 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1610 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1611 }
1612 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1613 if (++i >= LWPCTL_BITMAP_ENTRIES)
1614 i = 0;
1615 }
1616 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1617 lcp->lcp_bitmap[i] ^= (1 << bit);
1618 lcp->lcp_rotor = i;
1619 lcp->lcp_nfree--;
1620 l->l_lcpage = lcp;
1621 offset = (i << 5) + bit;
1622 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1623 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1624 mutex_exit(&lp->lp_lock);
1625
1626 KPREEMPT_DISABLE(l);
1627 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1628 KPREEMPT_ENABLE(l);
1629
1630 return 0;
1631 }
1632
1633 /*
1634 * Free an lwpctl structure back to the per-process list.
1635 */
1636 void
1637 lwp_ctl_free(lwp_t *l)
1638 {
1639 lcproc_t *lp;
1640 lcpage_t *lcp;
1641 u_int map, offset;
1642
1643 lp = l->l_proc->p_lwpctl;
1644 KASSERT(lp != NULL);
1645
1646 lcp = l->l_lcpage;
1647 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1648 KASSERT(offset < LWPCTL_PER_PAGE);
1649
1650 mutex_enter(&lp->lp_lock);
1651 lcp->lcp_nfree++;
1652 map = offset >> 5;
1653 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1654 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1655 lcp->lcp_rotor = map;
1656 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1657 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1658 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1659 }
1660 mutex_exit(&lp->lp_lock);
1661 }
1662
1663 /*
1664 * Process is exiting; tear down lwpctl state. This can only be safely
1665 * called by the last LWP in the process.
1666 */
1667 void
1668 lwp_ctl_exit(void)
1669 {
1670 lcpage_t *lcp, *next;
1671 lcproc_t *lp;
1672 proc_t *p;
1673 lwp_t *l;
1674
1675 l = curlwp;
1676 l->l_lwpctl = NULL;
1677 l->l_lcpage = NULL;
1678 p = l->l_proc;
1679 lp = p->p_lwpctl;
1680
1681 KASSERT(lp != NULL);
1682 KASSERT(p->p_nlwps == 1);
1683
1684 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1685 next = TAILQ_NEXT(lcp, lcp_chain);
1686 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1687 lcp->lcp_kaddr + PAGE_SIZE);
1688 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1689 }
1690
1691 if (lp->lp_uao != NULL) {
1692 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1693 lp->lp_uva + LWPCTL_UAREA_SZ);
1694 }
1695
1696 mutex_destroy(&lp->lp_lock);
1697 kmem_free(lp, sizeof(*lp));
1698 p->p_lwpctl = NULL;
1699 }
1700
1701 #if defined(DDB)
1702 void
1703 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1704 {
1705 lwp_t *l;
1706
1707 LIST_FOREACH(l, &alllwp, l_list) {
1708 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1709
1710 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1711 continue;
1712 }
1713 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1714 (void *)addr, (void *)stack,
1715 (size_t)(addr - stack), l);
1716 }
1717 }
1718 #endif /* defined(DDB) */
1719