kern_lwp.c revision 1.115 1 /* $NetBSD: kern_lwp.c,v 1.115 2008/05/31 21:26:01 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 * then the LWP is not on a run queue, but may be soon.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is: a) about to switch away into oblivion b) has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > STOPPED > SLEEP
125 * > SUSPENDED > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > SUSPENDED
136 *
137 * Other state transitions are possible with kernel threads (eg
138 * ONPROC -> IDL), but only happen under tightly controlled
139 * circumstances the side effects are understood.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * Note that an LWP is considered running or likely to run soon if in
200 * one of the following states. This affects the value of p_nrlwps:
201 *
202 * LSRUN, LSONPROC, LSSLEEP
203 *
204 * p_lock does not need to be held when transitioning among these
205 * three states.
206 */
207
208 #include <sys/cdefs.h>
209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.115 2008/05/31 21:26:01 ad Exp $");
210
211 #include "opt_ddb.h"
212 #include "opt_lockdebug.h"
213
214 #define _LWP_API_PRIVATE
215
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/syscallargs.h>
222 #include <sys/syscall_stats.h>
223 #include <sys/kauth.h>
224 #include <sys/sleepq.h>
225 #include <sys/user.h>
226 #include <sys/lockdebug.h>
227 #include <sys/kmem.h>
228 #include <sys/pset.h>
229 #include <sys/intr.h>
230 #include <sys/lwpctl.h>
231 #include <sys/atomic.h>
232
233 #include <uvm/uvm_extern.h>
234 #include <uvm/uvm_object.h>
235
236 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
237
238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
239 &pool_allocator_nointr, IPL_NONE);
240
241 static pool_cache_t lwp_cache;
242 static specificdata_domain_t lwp_specificdata_domain;
243
244 void
245 lwpinit(void)
246 {
247
248 lwp_specificdata_domain = specificdata_domain_create();
249 KASSERT(lwp_specificdata_domain != NULL);
250 lwp_sys_init();
251 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
252 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
253 }
254
255 /*
256 * Set an suspended.
257 *
258 * Must be called with p_lock held, and the LWP locked. Will unlock the
259 * LWP before return.
260 */
261 int
262 lwp_suspend(struct lwp *curl, struct lwp *t)
263 {
264 int error;
265
266 KASSERT(mutex_owned(t->l_proc->p_lock));
267 KASSERT(lwp_locked(t, NULL));
268
269 KASSERT(curl != t || curl->l_stat == LSONPROC);
270
271 /*
272 * If the current LWP has been told to exit, we must not suspend anyone
273 * else or deadlock could occur. We won't return to userspace.
274 */
275 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
276 lwp_unlock(t);
277 return (EDEADLK);
278 }
279
280 error = 0;
281
282 switch (t->l_stat) {
283 case LSRUN:
284 case LSONPROC:
285 t->l_flag |= LW_WSUSPEND;
286 lwp_need_userret(t);
287 lwp_unlock(t);
288 break;
289
290 case LSSLEEP:
291 t->l_flag |= LW_WSUSPEND;
292
293 /*
294 * Kick the LWP and try to get it to the kernel boundary
295 * so that it will release any locks that it holds.
296 * setrunnable() will release the lock.
297 */
298 if ((t->l_flag & LW_SINTR) != 0)
299 setrunnable(t);
300 else
301 lwp_unlock(t);
302 break;
303
304 case LSSUSPENDED:
305 lwp_unlock(t);
306 break;
307
308 case LSSTOP:
309 t->l_flag |= LW_WSUSPEND;
310 setrunnable(t);
311 break;
312
313 case LSIDL:
314 case LSZOMB:
315 error = EINTR; /* It's what Solaris does..... */
316 lwp_unlock(t);
317 break;
318 }
319
320 return (error);
321 }
322
323 /*
324 * Restart a suspended LWP.
325 *
326 * Must be called with p_lock held, and the LWP locked. Will unlock the
327 * LWP before return.
328 */
329 void
330 lwp_continue(struct lwp *l)
331 {
332
333 KASSERT(mutex_owned(l->l_proc->p_lock));
334 KASSERT(lwp_locked(l, NULL));
335
336 /* If rebooting or not suspended, then just bail out. */
337 if ((l->l_flag & LW_WREBOOT) != 0) {
338 lwp_unlock(l);
339 return;
340 }
341
342 l->l_flag &= ~LW_WSUSPEND;
343
344 if (l->l_stat != LSSUSPENDED) {
345 lwp_unlock(l);
346 return;
347 }
348
349 /* setrunnable() will release the lock. */
350 setrunnable(l);
351 }
352
353 /*
354 * Wait for an LWP within the current process to exit. If 'lid' is
355 * non-zero, we are waiting for a specific LWP.
356 *
357 * Must be called with p->p_lock held.
358 */
359 int
360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
361 {
362 struct proc *p = l->l_proc;
363 struct lwp *l2;
364 int nfound, error;
365 lwpid_t curlid;
366 bool exiting;
367
368 KASSERT(mutex_owned(p->p_lock));
369
370 p->p_nlwpwait++;
371 l->l_waitingfor = lid;
372 curlid = l->l_lid;
373 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
374
375 for (;;) {
376 /*
377 * Avoid a race between exit1() and sigexit(): if the
378 * process is dumping core, then we need to bail out: call
379 * into lwp_userret() where we will be suspended until the
380 * deed is done.
381 */
382 if ((p->p_sflag & PS_WCORE) != 0) {
383 mutex_exit(p->p_lock);
384 lwp_userret(l);
385 #ifdef DIAGNOSTIC
386 panic("lwp_wait1");
387 #endif
388 /* NOTREACHED */
389 }
390
391 /*
392 * First off, drain any detached LWP that is waiting to be
393 * reaped.
394 */
395 while ((l2 = p->p_zomblwp) != NULL) {
396 p->p_zomblwp = NULL;
397 lwp_free(l2, false, false);/* releases proc mutex */
398 mutex_enter(p->p_lock);
399 }
400
401 /*
402 * Now look for an LWP to collect. If the whole process is
403 * exiting, count detached LWPs as eligible to be collected,
404 * but don't drain them here.
405 */
406 nfound = 0;
407 error = 0;
408 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
409 /*
410 * If a specific wait and the target is waiting on
411 * us, then avoid deadlock. This also traps LWPs
412 * that try to wait on themselves.
413 *
414 * Note that this does not handle more complicated
415 * cycles, like: t1 -> t2 -> t3 -> t1. The process
416 * can still be killed so it is not a major problem.
417 */
418 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
419 error = EDEADLK;
420 break;
421 }
422 if (l2 == l)
423 continue;
424 if ((l2->l_prflag & LPR_DETACHED) != 0) {
425 nfound += exiting;
426 continue;
427 }
428 if (lid != 0) {
429 if (l2->l_lid != lid)
430 continue;
431 /*
432 * Mark this LWP as the first waiter, if there
433 * is no other.
434 */
435 if (l2->l_waiter == 0)
436 l2->l_waiter = curlid;
437 } else if (l2->l_waiter != 0) {
438 /*
439 * It already has a waiter - so don't
440 * collect it. If the waiter doesn't
441 * grab it we'll get another chance
442 * later.
443 */
444 nfound++;
445 continue;
446 }
447 nfound++;
448
449 /* No need to lock the LWP in order to see LSZOMB. */
450 if (l2->l_stat != LSZOMB)
451 continue;
452
453 /*
454 * We're no longer waiting. Reset the "first waiter"
455 * pointer on the target, in case it was us.
456 */
457 l->l_waitingfor = 0;
458 l2->l_waiter = 0;
459 p->p_nlwpwait--;
460 if (departed)
461 *departed = l2->l_lid;
462 sched_lwp_collect(l2);
463
464 /* lwp_free() releases the proc lock. */
465 lwp_free(l2, false, false);
466 mutex_enter(p->p_lock);
467 return 0;
468 }
469
470 if (error != 0)
471 break;
472 if (nfound == 0) {
473 error = ESRCH;
474 break;
475 }
476
477 /*
478 * The kernel is careful to ensure that it can not deadlock
479 * when exiting - just keep waiting.
480 */
481 if (exiting) {
482 KASSERT(p->p_nlwps > 1);
483 cv_wait(&p->p_lwpcv, p->p_lock);
484 continue;
485 }
486
487 /*
488 * If all other LWPs are waiting for exits or suspends
489 * and the supply of zombies and potential zombies is
490 * exhausted, then we are about to deadlock.
491 *
492 * If the process is exiting (and this LWP is not the one
493 * that is coordinating the exit) then bail out now.
494 */
495 if ((p->p_sflag & PS_WEXIT) != 0 ||
496 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
497 error = EDEADLK;
498 break;
499 }
500
501 /*
502 * Sit around and wait for something to happen. We'll be
503 * awoken if any of the conditions examined change: if an
504 * LWP exits, is collected, or is detached.
505 */
506 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
507 break;
508 }
509
510 /*
511 * We didn't find any LWPs to collect, we may have received a
512 * signal, or some other condition has caused us to bail out.
513 *
514 * If waiting on a specific LWP, clear the waiters marker: some
515 * other LWP may want it. Then, kick all the remaining waiters
516 * so that they can re-check for zombies and for deadlock.
517 */
518 if (lid != 0) {
519 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
520 if (l2->l_lid == lid) {
521 if (l2->l_waiter == curlid)
522 l2->l_waiter = 0;
523 break;
524 }
525 }
526 }
527 p->p_nlwpwait--;
528 l->l_waitingfor = 0;
529 cv_broadcast(&p->p_lwpcv);
530
531 return error;
532 }
533
534 /*
535 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
536 * The new LWP is created in state LSIDL and must be set running,
537 * suspended, or stopped by the caller.
538 */
539 int
540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
541 void *stack, size_t stacksize, void (*func)(void *), void *arg,
542 lwp_t **rnewlwpp, int sclass)
543 {
544 struct lwp *l2, *isfree;
545 turnstile_t *ts;
546
547 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
548
549 /*
550 * First off, reap any detached LWP waiting to be collected.
551 * We can re-use its LWP structure and turnstile.
552 */
553 isfree = NULL;
554 if (p2->p_zomblwp != NULL) {
555 mutex_enter(p2->p_lock);
556 if ((isfree = p2->p_zomblwp) != NULL) {
557 p2->p_zomblwp = NULL;
558 lwp_free(isfree, true, false);/* releases proc mutex */
559 } else
560 mutex_exit(p2->p_lock);
561 }
562 if (isfree == NULL) {
563 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
564 memset(l2, 0, sizeof(*l2));
565 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
566 SLIST_INIT(&l2->l_pi_lenders);
567 } else {
568 l2 = isfree;
569 ts = l2->l_ts;
570 KASSERT(l2->l_inheritedprio == -1);
571 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
572 memset(l2, 0, sizeof(*l2));
573 l2->l_ts = ts;
574 }
575
576 l2->l_stat = LSIDL;
577 l2->l_proc = p2;
578 l2->l_refcnt = 1;
579 l2->l_class = sclass;
580 l2->l_kpriority = l1->l_kpriority;
581 l2->l_kpribase = PRI_KERNEL;
582 l2->l_priority = l1->l_priority;
583 l2->l_inheritedprio = -1;
584 l2->l_flag = inmem ? LW_INMEM : 0;
585 l2->l_pflag = LP_MPSAFE;
586 l2->l_fd = p2->p_fd;
587 TAILQ_INIT(&l2->l_ld_locks);
588
589 if (p2->p_flag & PK_SYSTEM) {
590 /* Mark it as a system LWP and not a candidate for swapping */
591 l2->l_flag |= LW_SYSTEM;
592 }
593
594 kpreempt_disable();
595 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
596 l2->l_cpu = l1->l_cpu;
597 kpreempt_enable();
598
599 lwp_initspecific(l2);
600 sched_lwp_fork(l1, l2);
601 lwp_update_creds(l2);
602 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
603 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
604 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
605 cv_init(&l2->l_sigcv, "sigwait");
606 l2->l_syncobj = &sched_syncobj;
607
608 if (rnewlwpp != NULL)
609 *rnewlwpp = l2;
610
611 l2->l_addr = UAREA_TO_USER(uaddr);
612 uvm_lwp_fork(l1, l2, stack, stacksize, func,
613 (arg != NULL) ? arg : l2);
614
615 mutex_enter(p2->p_lock);
616
617 if ((flags & LWP_DETACHED) != 0) {
618 l2->l_prflag = LPR_DETACHED;
619 p2->p_ndlwps++;
620 } else
621 l2->l_prflag = 0;
622
623 l2->l_sigmask = l1->l_sigmask;
624 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
625 sigemptyset(&l2->l_sigpend.sp_set);
626
627 p2->p_nlwpid++;
628 if (p2->p_nlwpid == 0)
629 p2->p_nlwpid++;
630 l2->l_lid = p2->p_nlwpid;
631 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
632 p2->p_nlwps++;
633
634 mutex_exit(p2->p_lock);
635
636 mutex_enter(proc_lock);
637 LIST_INSERT_HEAD(&alllwp, l2, l_list);
638 mutex_exit(proc_lock);
639
640 if ((p2->p_flag & PK_SYSTEM) == 0) {
641 /* Locking is needed, since LWP is in the list of all LWPs */
642 lwp_lock(l2);
643 /* Inherit a processor-set */
644 l2->l_psid = l1->l_psid;
645 /* Inherit an affinity */
646 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
647 /* Look for a CPU to start */
648 l2->l_cpu = sched_takecpu(l2);
649 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
650 }
651
652 SYSCALL_TIME_LWP_INIT(l2);
653
654 if (p2->p_emul->e_lwp_fork)
655 (*p2->p_emul->e_lwp_fork)(l1, l2);
656
657 return (0);
658 }
659
660 /*
661 * Called by MD code when a new LWP begins execution. Must be called
662 * with the previous LWP locked (so at splsched), or if there is no
663 * previous LWP, at splsched.
664 */
665 void
666 lwp_startup(struct lwp *prev, struct lwp *new)
667 {
668
669 KASSERT(kpreempt_disabled());
670 if (prev != NULL) {
671 /*
672 * Normalize the count of the spin-mutexes, it was
673 * increased in mi_switch(). Unmark the state of
674 * context switch - it is finished for previous LWP.
675 */
676 curcpu()->ci_mtx_count++;
677 membar_exit();
678 prev->l_ctxswtch = 0;
679 }
680 KPREEMPT_DISABLE(new);
681 spl0();
682 pmap_activate(new);
683 LOCKDEBUG_BARRIER(NULL, 0);
684 KPREEMPT_ENABLE(new);
685 if ((new->l_pflag & LP_MPSAFE) == 0) {
686 KERNEL_LOCK(1, new);
687 }
688 }
689
690 /*
691 * Exit an LWP.
692 */
693 void
694 lwp_exit(struct lwp *l)
695 {
696 struct proc *p = l->l_proc;
697 struct lwp *l2;
698 bool current;
699
700 current = (l == curlwp);
701
702 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
703
704 /*
705 * Verify that we hold no locks other than the kernel lock.
706 */
707 LOCKDEBUG_BARRIER(&kernel_lock, 0);
708
709 /*
710 * If we are the last live LWP in a process, we need to exit the
711 * entire process. We do so with an exit status of zero, because
712 * it's a "controlled" exit, and because that's what Solaris does.
713 *
714 * We are not quite a zombie yet, but for accounting purposes we
715 * must increment the count of zombies here.
716 *
717 * Note: the last LWP's specificdata will be deleted here.
718 */
719 mutex_enter(p->p_lock);
720 if (p->p_nlwps - p->p_nzlwps == 1) {
721 KASSERT(current == true);
722 /* XXXSMP kernel_lock not held */
723 exit1(l, 0);
724 /* NOTREACHED */
725 }
726 p->p_nzlwps++;
727 mutex_exit(p->p_lock);
728
729 if (p->p_emul->e_lwp_exit)
730 (*p->p_emul->e_lwp_exit)(l);
731
732 /* Delete the specificdata while it's still safe to sleep. */
733 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
734
735 /*
736 * Release our cached credentials.
737 */
738 kauth_cred_free(l->l_cred);
739 callout_destroy(&l->l_timeout_ch);
740
741 /*
742 * While we can still block, mark the LWP as unswappable to
743 * prevent conflicts with the with the swapper.
744 */
745 if (current)
746 uvm_lwp_hold(l);
747
748 /*
749 * Remove the LWP from the global list.
750 */
751 mutex_enter(proc_lock);
752 LIST_REMOVE(l, l_list);
753 mutex_exit(proc_lock);
754
755 /*
756 * Get rid of all references to the LWP that others (e.g. procfs)
757 * may have, and mark the LWP as a zombie. If the LWP is detached,
758 * mark it waiting for collection in the proc structure. Note that
759 * before we can do that, we need to free any other dead, deatched
760 * LWP waiting to meet its maker.
761 */
762 mutex_enter(p->p_lock);
763 lwp_drainrefs(l);
764
765 if ((l->l_prflag & LPR_DETACHED) != 0) {
766 while ((l2 = p->p_zomblwp) != NULL) {
767 p->p_zomblwp = NULL;
768 lwp_free(l2, false, false);/* releases proc mutex */
769 mutex_enter(p->p_lock);
770 l->l_refcnt++;
771 lwp_drainrefs(l);
772 }
773 p->p_zomblwp = l;
774 }
775
776 /*
777 * If we find a pending signal for the process and we have been
778 * asked to check for signals, then we loose: arrange to have
779 * all other LWPs in the process check for signals.
780 */
781 if ((l->l_flag & LW_PENDSIG) != 0 &&
782 firstsig(&p->p_sigpend.sp_set) != 0) {
783 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
784 lwp_lock(l2);
785 l2->l_flag |= LW_PENDSIG;
786 lwp_unlock(l2);
787 }
788 }
789
790 lwp_lock(l);
791 l->l_stat = LSZOMB;
792 if (l->l_name != NULL)
793 strcpy(l->l_name, "(zombie)");
794 lwp_unlock(l);
795 p->p_nrlwps--;
796 cv_broadcast(&p->p_lwpcv);
797 if (l->l_lwpctl != NULL)
798 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
799 mutex_exit(p->p_lock);
800
801 /*
802 * We can no longer block. At this point, lwp_free() may already
803 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
804 *
805 * Free MD LWP resources.
806 */
807 #ifndef __NO_CPU_LWP_FREE
808 cpu_lwp_free(l, 0);
809 #endif
810
811 if (current) {
812 pmap_deactivate(l);
813
814 /*
815 * Release the kernel lock, and switch away into
816 * oblivion.
817 */
818 #ifdef notyet
819 /* XXXSMP hold in lwp_userret() */
820 KERNEL_UNLOCK_LAST(l);
821 #else
822 KERNEL_UNLOCK_ALL(l, NULL);
823 #endif
824 lwp_exit_switchaway(l);
825 }
826 }
827
828 /*
829 * Free a dead LWP's remaining resources.
830 *
831 * XXXLWP limits.
832 */
833 void
834 lwp_free(struct lwp *l, bool recycle, bool last)
835 {
836 struct proc *p = l->l_proc;
837 struct rusage *ru;
838 ksiginfoq_t kq;
839
840 KASSERT(l != curlwp);
841
842 /*
843 * If this was not the last LWP in the process, then adjust
844 * counters and unlock.
845 */
846 if (!last) {
847 /*
848 * Add the LWP's run time to the process' base value.
849 * This needs to co-incide with coming off p_lwps.
850 */
851 bintime_add(&p->p_rtime, &l->l_rtime);
852 p->p_pctcpu += l->l_pctcpu;
853 ru = &p->p_stats->p_ru;
854 ruadd(ru, &l->l_ru);
855 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
856 ru->ru_nivcsw += l->l_nivcsw;
857 LIST_REMOVE(l, l_sibling);
858 p->p_nlwps--;
859 p->p_nzlwps--;
860 if ((l->l_prflag & LPR_DETACHED) != 0)
861 p->p_ndlwps--;
862
863 /*
864 * Have any LWPs sleeping in lwp_wait() recheck for
865 * deadlock.
866 */
867 cv_broadcast(&p->p_lwpcv);
868 mutex_exit(p->p_lock);
869 }
870
871 #ifdef MULTIPROCESSOR
872 /*
873 * In the unlikely event that the LWP is still on the CPU,
874 * then spin until it has switched away. We need to release
875 * all locks to avoid deadlock against interrupt handlers on
876 * the target CPU.
877 */
878 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
879 int count;
880 (void)count; /* XXXgcc */
881 KERNEL_UNLOCK_ALL(curlwp, &count);
882 while ((l->l_pflag & LP_RUNNING) != 0 ||
883 l->l_cpu->ci_curlwp == l)
884 SPINLOCK_BACKOFF_HOOK;
885 KERNEL_LOCK(count, curlwp);
886 }
887 #endif
888
889 /*
890 * Destroy the LWP's remaining signal information.
891 */
892 ksiginfo_queue_init(&kq);
893 sigclear(&l->l_sigpend, NULL, &kq);
894 ksiginfo_queue_drain(&kq);
895 cv_destroy(&l->l_sigcv);
896 mutex_destroy(&l->l_swaplock);
897
898 /*
899 * Free the LWP's turnstile and the LWP structure itself unless the
900 * caller wants to recycle them. Also, free the scheduler specific
901 * data.
902 *
903 * We can't return turnstile0 to the pool (it didn't come from it),
904 * so if it comes up just drop it quietly and move on.
905 *
906 * We don't recycle the VM resources at this time.
907 */
908 if (l->l_lwpctl != NULL)
909 lwp_ctl_free(l);
910 sched_lwp_exit(l);
911
912 if (!recycle && l->l_ts != &turnstile0)
913 pool_cache_put(turnstile_cache, l->l_ts);
914 if (l->l_name != NULL)
915 kmem_free(l->l_name, MAXCOMLEN);
916 #ifndef __NO_CPU_LWP_FREE
917 cpu_lwp_free2(l);
918 #endif
919 KASSERT((l->l_flag & LW_INMEM) != 0);
920 uvm_lwp_exit(l);
921 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
922 KASSERT(l->l_inheritedprio == -1);
923 if (!recycle)
924 pool_cache_put(lwp_cache, l);
925 }
926
927 /*
928 * Pick a LWP to represent the process for those operations which
929 * want information about a "process" that is actually associated
930 * with a LWP.
931 *
932 * If 'locking' is false, no locking or lock checks are performed.
933 * This is intended for use by DDB.
934 *
935 * We don't bother locking the LWP here, since code that uses this
936 * interface is broken by design and an exact match is not required.
937 */
938 struct lwp *
939 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
940 {
941 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
942 struct lwp *signalled;
943 int cnt;
944
945 if (locking) {
946 KASSERT(mutex_owned(p->p_lock));
947 }
948
949 /* Trivial case: only one LWP */
950 if (p->p_nlwps == 1) {
951 l = LIST_FIRST(&p->p_lwps);
952 if (nrlwps)
953 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
954 return l;
955 }
956
957 cnt = 0;
958 switch (p->p_stat) {
959 case SSTOP:
960 case SACTIVE:
961 /* Pick the most live LWP */
962 onproc = running = sleeping = stopped = suspended = NULL;
963 signalled = NULL;
964 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
965 if ((l->l_flag & LW_IDLE) != 0) {
966 continue;
967 }
968 if (l->l_lid == p->p_sigctx.ps_lwp)
969 signalled = l;
970 switch (l->l_stat) {
971 case LSONPROC:
972 onproc = l;
973 cnt++;
974 break;
975 case LSRUN:
976 running = l;
977 cnt++;
978 break;
979 case LSSLEEP:
980 sleeping = l;
981 break;
982 case LSSTOP:
983 stopped = l;
984 break;
985 case LSSUSPENDED:
986 suspended = l;
987 break;
988 }
989 }
990 if (nrlwps)
991 *nrlwps = cnt;
992 if (signalled)
993 l = signalled;
994 else if (onproc)
995 l = onproc;
996 else if (running)
997 l = running;
998 else if (sleeping)
999 l = sleeping;
1000 else if (stopped)
1001 l = stopped;
1002 else if (suspended)
1003 l = suspended;
1004 else
1005 break;
1006 return l;
1007 #ifdef DIAGNOSTIC
1008 case SIDL:
1009 case SZOMB:
1010 case SDYING:
1011 case SDEAD:
1012 if (locking)
1013 mutex_exit(p->p_lock);
1014 /* We have more than one LWP and we're in SIDL?
1015 * How'd that happen?
1016 */
1017 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1018 p->p_pid, p->p_comm, p->p_stat);
1019 break;
1020 default:
1021 if (locking)
1022 mutex_exit(p->p_lock);
1023 panic("Process %d (%s) in unknown state %d",
1024 p->p_pid, p->p_comm, p->p_stat);
1025 #endif
1026 }
1027
1028 if (locking)
1029 mutex_exit(p->p_lock);
1030 panic("proc_representative_lwp: couldn't find a lwp for process"
1031 " %d (%s)", p->p_pid, p->p_comm);
1032 /* NOTREACHED */
1033 return NULL;
1034 }
1035
1036 /*
1037 * Migrate the LWP to the another CPU. Unlocks the LWP.
1038 */
1039 void
1040 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1041 {
1042 struct schedstate_percpu *tspc;
1043 KASSERT(lwp_locked(l, NULL));
1044 KASSERT(tci != NULL);
1045
1046 /*
1047 * If LWP is still on the CPU, it must be handled like on LSONPROC.
1048 * The destination CPU could be changed while previous migration
1049 * was not finished.
1050 */
1051 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_target_cpu != NULL) {
1052 l->l_target_cpu = tci;
1053 lwp_unlock(l);
1054 return;
1055 }
1056
1057 /* Nothing to do if trying to migrate to the same CPU */
1058 if (l->l_cpu == tci) {
1059 lwp_unlock(l);
1060 return;
1061 }
1062
1063 KASSERT(l->l_target_cpu == NULL);
1064 tspc = &tci->ci_schedstate;
1065 switch (l->l_stat) {
1066 case LSRUN:
1067 if (l->l_flag & LW_INMEM) {
1068 l->l_target_cpu = tci;
1069 lwp_unlock(l);
1070 return;
1071 }
1072 case LSIDL:
1073 l->l_cpu = tci;
1074 lwp_unlock_to(l, tspc->spc_mutex);
1075 return;
1076 case LSSLEEP:
1077 l->l_cpu = tci;
1078 break;
1079 case LSSTOP:
1080 case LSSUSPENDED:
1081 l->l_cpu = tci;
1082 if (l->l_wchan == NULL) {
1083 lwp_unlock_to(l, tspc->spc_lwplock);
1084 return;
1085 }
1086 break;
1087 case LSONPROC:
1088 l->l_target_cpu = tci;
1089 spc_lock(l->l_cpu);
1090 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1091 spc_unlock(l->l_cpu);
1092 break;
1093 }
1094 lwp_unlock(l);
1095 }
1096
1097 /*
1098 * Find the LWP in the process. Arguments may be zero, in such case,
1099 * the calling process and first LWP in the list will be used.
1100 * On success - returns proc locked.
1101 */
1102 struct lwp *
1103 lwp_find2(pid_t pid, lwpid_t lid)
1104 {
1105 proc_t *p;
1106 lwp_t *l;
1107
1108 /* Find the process */
1109 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1110 if (p == NULL)
1111 return NULL;
1112 mutex_enter(p->p_lock);
1113 if (pid != 0) {
1114 /* Case of p_find */
1115 mutex_exit(proc_lock);
1116 }
1117
1118 /* Find the thread */
1119 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1120 if (l == NULL) {
1121 mutex_exit(p->p_lock);
1122 }
1123
1124 return l;
1125 }
1126
1127 /*
1128 * Look up a live LWP within the speicifed process, and return it locked.
1129 *
1130 * Must be called with p->p_lock held.
1131 */
1132 struct lwp *
1133 lwp_find(struct proc *p, int id)
1134 {
1135 struct lwp *l;
1136
1137 KASSERT(mutex_owned(p->p_lock));
1138
1139 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1140 if (l->l_lid == id)
1141 break;
1142 }
1143
1144 /*
1145 * No need to lock - all of these conditions will
1146 * be visible with the process level mutex held.
1147 */
1148 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1149 l = NULL;
1150
1151 return l;
1152 }
1153
1154 /*
1155 * Update an LWP's cached credentials to mirror the process' master copy.
1156 *
1157 * This happens early in the syscall path, on user trap, and on LWP
1158 * creation. A long-running LWP can also voluntarily choose to update
1159 * it's credentials by calling this routine. This may be called from
1160 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1161 */
1162 void
1163 lwp_update_creds(struct lwp *l)
1164 {
1165 kauth_cred_t oc;
1166 struct proc *p;
1167
1168 p = l->l_proc;
1169 oc = l->l_cred;
1170
1171 mutex_enter(p->p_lock);
1172 kauth_cred_hold(p->p_cred);
1173 l->l_cred = p->p_cred;
1174 l->l_prflag &= ~LPR_CRMOD;
1175 mutex_exit(p->p_lock);
1176 if (oc != NULL)
1177 kauth_cred_free(oc);
1178 }
1179
1180 /*
1181 * Verify that an LWP is locked, and optionally verify that the lock matches
1182 * one we specify.
1183 */
1184 int
1185 lwp_locked(struct lwp *l, kmutex_t *mtx)
1186 {
1187 kmutex_t *cur = l->l_mutex;
1188
1189 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1190 }
1191
1192 /*
1193 * Lock an LWP.
1194 */
1195 void
1196 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1197 {
1198
1199 /*
1200 * XXXgcc ignoring kmutex_t * volatile on i386
1201 *
1202 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1203 */
1204 #if 1
1205 while (l->l_mutex != old) {
1206 #else
1207 for (;;) {
1208 #endif
1209 mutex_spin_exit(old);
1210 old = l->l_mutex;
1211 mutex_spin_enter(old);
1212
1213 /*
1214 * mutex_enter() will have posted a read barrier. Re-test
1215 * l->l_mutex. If it has changed, we need to try again.
1216 */
1217 #if 1
1218 }
1219 #else
1220 } while (__predict_false(l->l_mutex != old));
1221 #endif
1222 }
1223
1224 /*
1225 * Lend a new mutex to an LWP. The old mutex must be held.
1226 */
1227 void
1228 lwp_setlock(struct lwp *l, kmutex_t *new)
1229 {
1230
1231 KASSERT(mutex_owned(l->l_mutex));
1232
1233 membar_exit();
1234 l->l_mutex = new;
1235 }
1236
1237 /*
1238 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1239 * must be held.
1240 */
1241 void
1242 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1243 {
1244 kmutex_t *old;
1245
1246 KASSERT(mutex_owned(l->l_mutex));
1247
1248 old = l->l_mutex;
1249 membar_exit();
1250 l->l_mutex = new;
1251 mutex_spin_exit(old);
1252 }
1253
1254 /*
1255 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1256 * locked.
1257 */
1258 void
1259 lwp_relock(struct lwp *l, kmutex_t *new)
1260 {
1261 kmutex_t *old;
1262
1263 KASSERT(mutex_owned(l->l_mutex));
1264
1265 old = l->l_mutex;
1266 if (old != new) {
1267 mutex_spin_enter(new);
1268 l->l_mutex = new;
1269 mutex_spin_exit(old);
1270 }
1271 }
1272
1273 int
1274 lwp_trylock(struct lwp *l)
1275 {
1276 kmutex_t *old;
1277
1278 for (;;) {
1279 if (!mutex_tryenter(old = l->l_mutex))
1280 return 0;
1281 if (__predict_true(l->l_mutex == old))
1282 return 1;
1283 mutex_spin_exit(old);
1284 }
1285 }
1286
1287 u_int
1288 lwp_unsleep(lwp_t *l, bool cleanup)
1289 {
1290
1291 KASSERT(mutex_owned(l->l_mutex));
1292
1293 return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1294 }
1295
1296
1297 /*
1298 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1299 * set.
1300 */
1301 void
1302 lwp_userret(struct lwp *l)
1303 {
1304 struct proc *p;
1305 void (*hook)(void);
1306 int sig;
1307
1308 KASSERT(l == curlwp);
1309 KASSERT(l->l_stat == LSONPROC);
1310 p = l->l_proc;
1311
1312 #ifndef __HAVE_FAST_SOFTINTS
1313 /* Run pending soft interrupts. */
1314 if (l->l_cpu->ci_data.cpu_softints != 0)
1315 softint_overlay();
1316 #endif
1317
1318 /*
1319 * It should be safe to do this read unlocked on a multiprocessor
1320 * system..
1321 */
1322 while ((l->l_flag & LW_USERRET) != 0) {
1323 /*
1324 * Process pending signals first, unless the process
1325 * is dumping core or exiting, where we will instead
1326 * enter the LW_WSUSPEND case below.
1327 */
1328 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1329 LW_PENDSIG) {
1330 mutex_enter(p->p_lock);
1331 while ((sig = issignal(l)) != 0)
1332 postsig(sig);
1333 mutex_exit(p->p_lock);
1334 }
1335
1336 /*
1337 * Core-dump or suspend pending.
1338 *
1339 * In case of core dump, suspend ourselves, so that the
1340 * kernel stack and therefore the userland registers saved
1341 * in the trapframe are around for coredump() to write them
1342 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1343 * will write the core file out once all other LWPs are
1344 * suspended.
1345 */
1346 if ((l->l_flag & LW_WSUSPEND) != 0) {
1347 mutex_enter(p->p_lock);
1348 p->p_nrlwps--;
1349 cv_broadcast(&p->p_lwpcv);
1350 lwp_lock(l);
1351 l->l_stat = LSSUSPENDED;
1352 lwp_unlock(l);
1353 mutex_exit(p->p_lock);
1354 lwp_lock(l);
1355 mi_switch(l);
1356 }
1357
1358 /* Process is exiting. */
1359 if ((l->l_flag & LW_WEXIT) != 0) {
1360 lwp_exit(l);
1361 KASSERT(0);
1362 /* NOTREACHED */
1363 }
1364
1365 /* Call userret hook; used by Linux emulation. */
1366 if ((l->l_flag & LW_WUSERRET) != 0) {
1367 lwp_lock(l);
1368 l->l_flag &= ~LW_WUSERRET;
1369 lwp_unlock(l);
1370 hook = p->p_userret;
1371 p->p_userret = NULL;
1372 (*hook)();
1373 }
1374 }
1375 }
1376
1377 /*
1378 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1379 */
1380 void
1381 lwp_need_userret(struct lwp *l)
1382 {
1383 KASSERT(lwp_locked(l, NULL));
1384
1385 /*
1386 * Since the tests in lwp_userret() are done unlocked, make sure
1387 * that the condition will be seen before forcing the LWP to enter
1388 * kernel mode.
1389 */
1390 membar_producer();
1391 cpu_signotify(l);
1392 }
1393
1394 /*
1395 * Add one reference to an LWP. This will prevent the LWP from
1396 * exiting, thus keep the lwp structure and PCB around to inspect.
1397 */
1398 void
1399 lwp_addref(struct lwp *l)
1400 {
1401
1402 KASSERT(mutex_owned(l->l_proc->p_lock));
1403 KASSERT(l->l_stat != LSZOMB);
1404 KASSERT(l->l_refcnt != 0);
1405
1406 l->l_refcnt++;
1407 }
1408
1409 /*
1410 * Remove one reference to an LWP. If this is the last reference,
1411 * then we must finalize the LWP's death.
1412 */
1413 void
1414 lwp_delref(struct lwp *l)
1415 {
1416 struct proc *p = l->l_proc;
1417
1418 mutex_enter(p->p_lock);
1419 KASSERT(l->l_stat != LSZOMB);
1420 KASSERT(l->l_refcnt > 0);
1421 if (--l->l_refcnt == 0)
1422 cv_broadcast(&p->p_lwpcv);
1423 mutex_exit(p->p_lock);
1424 }
1425
1426 /*
1427 * Drain all references to the current LWP.
1428 */
1429 void
1430 lwp_drainrefs(struct lwp *l)
1431 {
1432 struct proc *p = l->l_proc;
1433
1434 KASSERT(mutex_owned(p->p_lock));
1435 KASSERT(l->l_refcnt != 0);
1436
1437 l->l_refcnt--;
1438 while (l->l_refcnt != 0)
1439 cv_wait(&p->p_lwpcv, p->p_lock);
1440 }
1441
1442 /*
1443 * lwp_specific_key_create --
1444 * Create a key for subsystem lwp-specific data.
1445 */
1446 int
1447 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1448 {
1449
1450 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1451 }
1452
1453 /*
1454 * lwp_specific_key_delete --
1455 * Delete a key for subsystem lwp-specific data.
1456 */
1457 void
1458 lwp_specific_key_delete(specificdata_key_t key)
1459 {
1460
1461 specificdata_key_delete(lwp_specificdata_domain, key);
1462 }
1463
1464 /*
1465 * lwp_initspecific --
1466 * Initialize an LWP's specificdata container.
1467 */
1468 void
1469 lwp_initspecific(struct lwp *l)
1470 {
1471 int error;
1472
1473 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1474 KASSERT(error == 0);
1475 }
1476
1477 /*
1478 * lwp_finispecific --
1479 * Finalize an LWP's specificdata container.
1480 */
1481 void
1482 lwp_finispecific(struct lwp *l)
1483 {
1484
1485 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1486 }
1487
1488 /*
1489 * lwp_getspecific --
1490 * Return lwp-specific data corresponding to the specified key.
1491 *
1492 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1493 * only its OWN SPECIFIC DATA. If it is necessary to access another
1494 * LWP's specifc data, care must be taken to ensure that doing so
1495 * would not cause internal data structure inconsistency (i.e. caller
1496 * can guarantee that the target LWP is not inside an lwp_getspecific()
1497 * or lwp_setspecific() call).
1498 */
1499 void *
1500 lwp_getspecific(specificdata_key_t key)
1501 {
1502
1503 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1504 &curlwp->l_specdataref, key));
1505 }
1506
1507 void *
1508 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1509 {
1510
1511 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1512 &l->l_specdataref, key));
1513 }
1514
1515 /*
1516 * lwp_setspecific --
1517 * Set lwp-specific data corresponding to the specified key.
1518 */
1519 void
1520 lwp_setspecific(specificdata_key_t key, void *data)
1521 {
1522
1523 specificdata_setspecific(lwp_specificdata_domain,
1524 &curlwp->l_specdataref, key, data);
1525 }
1526
1527 /*
1528 * Allocate a new lwpctl structure for a user LWP.
1529 */
1530 int
1531 lwp_ctl_alloc(vaddr_t *uaddr)
1532 {
1533 lcproc_t *lp;
1534 u_int bit, i, offset;
1535 struct uvm_object *uao;
1536 int error;
1537 lcpage_t *lcp;
1538 proc_t *p;
1539 lwp_t *l;
1540
1541 l = curlwp;
1542 p = l->l_proc;
1543
1544 if (l->l_lcpage != NULL) {
1545 lcp = l->l_lcpage;
1546 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1547 return (EINVAL);
1548 }
1549
1550 /* First time around, allocate header structure for the process. */
1551 if ((lp = p->p_lwpctl) == NULL) {
1552 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1553 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1554 lp->lp_uao = NULL;
1555 TAILQ_INIT(&lp->lp_pages);
1556 mutex_enter(p->p_lock);
1557 if (p->p_lwpctl == NULL) {
1558 p->p_lwpctl = lp;
1559 mutex_exit(p->p_lock);
1560 } else {
1561 mutex_exit(p->p_lock);
1562 mutex_destroy(&lp->lp_lock);
1563 kmem_free(lp, sizeof(*lp));
1564 lp = p->p_lwpctl;
1565 }
1566 }
1567
1568 /*
1569 * Set up an anonymous memory region to hold the shared pages.
1570 * Map them into the process' address space. The user vmspace
1571 * gets the first reference on the UAO.
1572 */
1573 mutex_enter(&lp->lp_lock);
1574 if (lp->lp_uao == NULL) {
1575 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1576 lp->lp_cur = 0;
1577 lp->lp_max = LWPCTL_UAREA_SZ;
1578 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1579 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1580 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1581 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1582 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1583 if (error != 0) {
1584 uao_detach(lp->lp_uao);
1585 lp->lp_uao = NULL;
1586 mutex_exit(&lp->lp_lock);
1587 return error;
1588 }
1589 }
1590
1591 /* Get a free block and allocate for this LWP. */
1592 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1593 if (lcp->lcp_nfree != 0)
1594 break;
1595 }
1596 if (lcp == NULL) {
1597 /* Nothing available - try to set up a free page. */
1598 if (lp->lp_cur == lp->lp_max) {
1599 mutex_exit(&lp->lp_lock);
1600 return ENOMEM;
1601 }
1602 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1603 if (lcp == NULL) {
1604 mutex_exit(&lp->lp_lock);
1605 return ENOMEM;
1606 }
1607 /*
1608 * Wire the next page down in kernel space. Since this
1609 * is a new mapping, we must add a reference.
1610 */
1611 uao = lp->lp_uao;
1612 (*uao->pgops->pgo_reference)(uao);
1613 lcp->lcp_kaddr = vm_map_min(kernel_map);
1614 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1615 uao, lp->lp_cur, PAGE_SIZE,
1616 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1617 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1618 if (error != 0) {
1619 mutex_exit(&lp->lp_lock);
1620 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1621 (*uao->pgops->pgo_detach)(uao);
1622 return error;
1623 }
1624 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1625 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1626 if (error != 0) {
1627 mutex_exit(&lp->lp_lock);
1628 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1629 lcp->lcp_kaddr + PAGE_SIZE);
1630 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1631 return error;
1632 }
1633 /* Prepare the page descriptor and link into the list. */
1634 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1635 lp->lp_cur += PAGE_SIZE;
1636 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1637 lcp->lcp_rotor = 0;
1638 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1639 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1640 }
1641 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1642 if (++i >= LWPCTL_BITMAP_ENTRIES)
1643 i = 0;
1644 }
1645 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1646 lcp->lcp_bitmap[i] ^= (1 << bit);
1647 lcp->lcp_rotor = i;
1648 lcp->lcp_nfree--;
1649 l->l_lcpage = lcp;
1650 offset = (i << 5) + bit;
1651 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1652 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1653 mutex_exit(&lp->lp_lock);
1654
1655 KPREEMPT_DISABLE(l);
1656 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1657 KPREEMPT_ENABLE(l);
1658
1659 return 0;
1660 }
1661
1662 /*
1663 * Free an lwpctl structure back to the per-process list.
1664 */
1665 void
1666 lwp_ctl_free(lwp_t *l)
1667 {
1668 lcproc_t *lp;
1669 lcpage_t *lcp;
1670 u_int map, offset;
1671
1672 lp = l->l_proc->p_lwpctl;
1673 KASSERT(lp != NULL);
1674
1675 lcp = l->l_lcpage;
1676 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1677 KASSERT(offset < LWPCTL_PER_PAGE);
1678
1679 mutex_enter(&lp->lp_lock);
1680 lcp->lcp_nfree++;
1681 map = offset >> 5;
1682 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1683 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1684 lcp->lcp_rotor = map;
1685 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1686 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1687 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1688 }
1689 mutex_exit(&lp->lp_lock);
1690 }
1691
1692 /*
1693 * Process is exiting; tear down lwpctl state. This can only be safely
1694 * called by the last LWP in the process.
1695 */
1696 void
1697 lwp_ctl_exit(void)
1698 {
1699 lcpage_t *lcp, *next;
1700 lcproc_t *lp;
1701 proc_t *p;
1702 lwp_t *l;
1703
1704 l = curlwp;
1705 l->l_lwpctl = NULL;
1706 l->l_lcpage = NULL;
1707 p = l->l_proc;
1708 lp = p->p_lwpctl;
1709
1710 KASSERT(lp != NULL);
1711 KASSERT(p->p_nlwps == 1);
1712
1713 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1714 next = TAILQ_NEXT(lcp, lcp_chain);
1715 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1716 lcp->lcp_kaddr + PAGE_SIZE);
1717 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1718 }
1719
1720 if (lp->lp_uao != NULL) {
1721 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1722 lp->lp_uva + LWPCTL_UAREA_SZ);
1723 }
1724
1725 mutex_destroy(&lp->lp_lock);
1726 kmem_free(lp, sizeof(*lp));
1727 p->p_lwpctl = NULL;
1728 }
1729
1730 #if defined(DDB)
1731 void
1732 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1733 {
1734 lwp_t *l;
1735
1736 LIST_FOREACH(l, &alllwp, l_list) {
1737 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1738
1739 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1740 continue;
1741 }
1742 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1743 (void *)addr, (void *)stack,
1744 (size_t)(addr - stack), l);
1745 }
1746 }
1747 #endif /* defined(DDB) */
1748