Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.116.2.3
      1 /*	$NetBSD: kern_lwp.c,v 1.116.2.3 2008/07/18 16:37:49 simonb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.  If the LWP is not swapped in (LW_INMEM == 0)
     64  *		then the LWP is not on a run queue, but may be soon.
     65  *
     66  *	LSIDL
     67  *
     68  *		Idle: the LWP has been created but has not yet executed,
     69  *		or it has ceased executing a unit of work and is waiting
     70  *		to be started again.
     71  *
     72  *	LSSUSPENDED:
     73  *
     74  *		Suspended: the LWP has had its execution suspended by
     75  *		another LWP in the same process using the _lwp_suspend()
     76  *		system call.  User-level LWPs also enter the suspended
     77  *		state when the system is shutting down.
     78  *
     79  *	The second set represent a "statement of intent" on behalf of the
     80  *	LWP.  The LWP may in fact be executing on a processor, may be
     81  *	sleeping or idle. It is expected to take the necessary action to
     82  *	stop executing or become "running" again within a short timeframe.
     83  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     84  *	Importantly, it indicates that its state is tied to a CPU.
     85  *
     86  *	LSZOMB:
     87  *
     88  *		Dead or dying: the LWP has released most of its resources
     89  *		and is: a) about to switch away into oblivion b) has already
     90  *		switched away.  When it switches away, its few remaining
     91  *		resources can be collected.
     92  *
     93  *	LSSLEEP:
     94  *
     95  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     96  *		has switched away or will switch away shortly to allow other
     97  *		LWPs to run on the CPU.
     98  *
     99  *	LSSTOP:
    100  *
    101  *		Stopped: the LWP has been stopped as a result of a job
    102  *		control signal, or as a result of the ptrace() interface.
    103  *
    104  *		Stopped LWPs may run briefly within the kernel to handle
    105  *		signals that they receive, but will not return to user space
    106  *		until their process' state is changed away from stopped.
    107  *
    108  *		Single LWPs within a process can not be set stopped
    109  *		selectively: all actions that can stop or continue LWPs
    110  *		occur at the process level.
    111  *
    112  * State transitions
    113  *
    114  *	Note that the LSSTOP state may only be set when returning to
    115  *	user space in userret(), or when sleeping interruptably.  The
    116  *	LSSUSPENDED state may only be set in userret().  Before setting
    117  *	those states, we try to ensure that the LWPs will release all
    118  *	locks that they hold, and at a minimum try to ensure that the
    119  *	LWP can be set runnable again by a signal.
    120  *
    121  *	LWPs may transition states in the following ways:
    122  *
    123  *	 RUN -------> ONPROC		ONPROC -----> RUN
    124  *		    > STOPPED			    > SLEEP
    125  *		    > SUSPENDED			    > STOPPED
    126  *						    > SUSPENDED
    127  *						    > ZOMB
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP			    > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *		    > SUSPENDED
    136  *
    137  *	Other state transitions are possible with kernel threads (eg
    138  *	ONPROC -> IDL), but only happen under tightly controlled
    139  *	circumstances the side effects are understood.
    140  *
    141  * Migration
    142  *
    143  *	Migration of threads from one CPU to another could be performed
    144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  *	functions.  The universal lwp_migrate() function should be used for
    146  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  *	of LWP may change, while it is not locked.
    148  *
    149  * Locking
    150  *
    151  *	The majority of fields in 'struct lwp' are covered by a single,
    152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153  *	each field are documented in sys/lwp.h.
    154  *
    155  *	State transitions must be made with the LWP's general lock held,
    156  *	and may cause the LWP's lock pointer to change. Manipulation of
    157  *	the general lock is not performed directly, but through calls to
    158  *	lwp_lock(), lwp_relock() and similar.
    159  *
    160  *	States and their associated locks:
    161  *
    162  *	LSONPROC, LSZOMB:
    163  *
    164  *		Always covered by spc_lwplock, which protects running LWPs.
    165  *		This is a per-CPU lock.
    166  *
    167  *	LSIDL, LSRUN:
    168  *
    169  *		Always covered by spc_mutex, which protects the run queues.
    170  *		This is a per-CPU lock.
    171  *
    172  *	LSSLEEP:
    173  *
    174  *		Covered by a lock associated with the sleep queue that the
    175  *		LWP resides on.
    176  *
    177  *	LSSTOP, LSSUSPENDED:
    178  *
    179  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180  *		l_mutex references the sleep queue lock.  If the LWP was
    181  *		runnable or on the CPU when halted, or has been removed from
    182  *		the sleep queue since halted, then the lock is spc_lwplock.
    183  *
    184  *	The lock order is as follows:
    185  *
    186  *		spc::spc_lwplock ->
    187  *		    sleeptab::st_mutex ->
    188  *			tschain_t::tc_mutex ->
    189  *			    spc::spc_mutex
    190  *
    191  *	Each process has an scheduler state lock (proc::p_lock), and a
    192  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    193  *	so on.  When an LWP is to be entered into or removed from one of the
    194  *	following states, p_lock must be held and the process wide counters
    195  *	adjusted:
    196  *
    197  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    198  *
    199  *	Note that an LWP is considered running or likely to run soon if in
    200  *	one of the following states.  This affects the value of p_nrlwps:
    201  *
    202  *		LSRUN, LSONPROC, LSSLEEP
    203  *
    204  *	p_lock does not need to be held when transitioning among these
    205  *	three states.
    206  */
    207 
    208 #include <sys/cdefs.h>
    209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.116.2.3 2008/07/18 16:37:49 simonb Exp $");
    210 
    211 #include "opt_ddb.h"
    212 #include "opt_lockdebug.h"
    213 
    214 #define _LWP_API_PRIVATE
    215 
    216 #include <sys/param.h>
    217 #include <sys/systm.h>
    218 #include <sys/cpu.h>
    219 #include <sys/pool.h>
    220 #include <sys/proc.h>
    221 #include <sys/syscallargs.h>
    222 #include <sys/syscall_stats.h>
    223 #include <sys/kauth.h>
    224 #include <sys/sleepq.h>
    225 #include <sys/user.h>
    226 #include <sys/lockdebug.h>
    227 #include <sys/kmem.h>
    228 #include <sys/pset.h>
    229 #include <sys/intr.h>
    230 #include <sys/lwpctl.h>
    231 #include <sys/atomic.h>
    232 
    233 #include <uvm/uvm_extern.h>
    234 #include <uvm/uvm_object.h>
    235 
    236 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    237 
    238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    239     &pool_allocator_nointr, IPL_NONE);
    240 
    241 static pool_cache_t lwp_cache;
    242 static specificdata_domain_t lwp_specificdata_domain;
    243 
    244 void
    245 lwpinit(void)
    246 {
    247 
    248 	lwp_specificdata_domain = specificdata_domain_create();
    249 	KASSERT(lwp_specificdata_domain != NULL);
    250 	lwp_sys_init();
    251 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    252 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    253 }
    254 
    255 /*
    256  * Set an suspended.
    257  *
    258  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    259  * LWP before return.
    260  */
    261 int
    262 lwp_suspend(struct lwp *curl, struct lwp *t)
    263 {
    264 	int error;
    265 
    266 	KASSERT(mutex_owned(t->l_proc->p_lock));
    267 	KASSERT(lwp_locked(t, NULL));
    268 
    269 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    270 
    271 	/*
    272 	 * If the current LWP has been told to exit, we must not suspend anyone
    273 	 * else or deadlock could occur.  We won't return to userspace.
    274 	 */
    275 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    276 		lwp_unlock(t);
    277 		return (EDEADLK);
    278 	}
    279 
    280 	error = 0;
    281 
    282 	switch (t->l_stat) {
    283 	case LSRUN:
    284 	case LSONPROC:
    285 		t->l_flag |= LW_WSUSPEND;
    286 		lwp_need_userret(t);
    287 		lwp_unlock(t);
    288 		break;
    289 
    290 	case LSSLEEP:
    291 		t->l_flag |= LW_WSUSPEND;
    292 
    293 		/*
    294 		 * Kick the LWP and try to get it to the kernel boundary
    295 		 * so that it will release any locks that it holds.
    296 		 * setrunnable() will release the lock.
    297 		 */
    298 		if ((t->l_flag & LW_SINTR) != 0)
    299 			setrunnable(t);
    300 		else
    301 			lwp_unlock(t);
    302 		break;
    303 
    304 	case LSSUSPENDED:
    305 		lwp_unlock(t);
    306 		break;
    307 
    308 	case LSSTOP:
    309 		t->l_flag |= LW_WSUSPEND;
    310 		setrunnable(t);
    311 		break;
    312 
    313 	case LSIDL:
    314 	case LSZOMB:
    315 		error = EINTR; /* It's what Solaris does..... */
    316 		lwp_unlock(t);
    317 		break;
    318 	}
    319 
    320 	return (error);
    321 }
    322 
    323 /*
    324  * Restart a suspended LWP.
    325  *
    326  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    327  * LWP before return.
    328  */
    329 void
    330 lwp_continue(struct lwp *l)
    331 {
    332 
    333 	KASSERT(mutex_owned(l->l_proc->p_lock));
    334 	KASSERT(lwp_locked(l, NULL));
    335 
    336 	/* If rebooting or not suspended, then just bail out. */
    337 	if ((l->l_flag & LW_WREBOOT) != 0) {
    338 		lwp_unlock(l);
    339 		return;
    340 	}
    341 
    342 	l->l_flag &= ~LW_WSUSPEND;
    343 
    344 	if (l->l_stat != LSSUSPENDED) {
    345 		lwp_unlock(l);
    346 		return;
    347 	}
    348 
    349 	/* setrunnable() will release the lock. */
    350 	setrunnable(l);
    351 }
    352 
    353 /*
    354  * Wait for an LWP within the current process to exit.  If 'lid' is
    355  * non-zero, we are waiting for a specific LWP.
    356  *
    357  * Must be called with p->p_lock held.
    358  */
    359 int
    360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    361 {
    362 	struct proc *p = l->l_proc;
    363 	struct lwp *l2;
    364 	int nfound, error;
    365 	lwpid_t curlid;
    366 	bool exiting;
    367 
    368 	KASSERT(mutex_owned(p->p_lock));
    369 
    370 	p->p_nlwpwait++;
    371 	l->l_waitingfor = lid;
    372 	curlid = l->l_lid;
    373 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    374 
    375 	for (;;) {
    376 		/*
    377 		 * Avoid a race between exit1() and sigexit(): if the
    378 		 * process is dumping core, then we need to bail out: call
    379 		 * into lwp_userret() where we will be suspended until the
    380 		 * deed is done.
    381 		 */
    382 		if ((p->p_sflag & PS_WCORE) != 0) {
    383 			mutex_exit(p->p_lock);
    384 			lwp_userret(l);
    385 #ifdef DIAGNOSTIC
    386 			panic("lwp_wait1");
    387 #endif
    388 			/* NOTREACHED */
    389 		}
    390 
    391 		/*
    392 		 * First off, drain any detached LWP that is waiting to be
    393 		 * reaped.
    394 		 */
    395 		while ((l2 = p->p_zomblwp) != NULL) {
    396 			p->p_zomblwp = NULL;
    397 			lwp_free(l2, false, false);/* releases proc mutex */
    398 			mutex_enter(p->p_lock);
    399 		}
    400 
    401 		/*
    402 		 * Now look for an LWP to collect.  If the whole process is
    403 		 * exiting, count detached LWPs as eligible to be collected,
    404 		 * but don't drain them here.
    405 		 */
    406 		nfound = 0;
    407 		error = 0;
    408 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    409 			/*
    410 			 * If a specific wait and the target is waiting on
    411 			 * us, then avoid deadlock.  This also traps LWPs
    412 			 * that try to wait on themselves.
    413 			 *
    414 			 * Note that this does not handle more complicated
    415 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    416 			 * can still be killed so it is not a major problem.
    417 			 */
    418 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    419 				error = EDEADLK;
    420 				break;
    421 			}
    422 			if (l2 == l)
    423 				continue;
    424 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    425 				nfound += exiting;
    426 				continue;
    427 			}
    428 			if (lid != 0) {
    429 				if (l2->l_lid != lid)
    430 					continue;
    431 				/*
    432 				 * Mark this LWP as the first waiter, if there
    433 				 * is no other.
    434 				 */
    435 				if (l2->l_waiter == 0)
    436 					l2->l_waiter = curlid;
    437 			} else if (l2->l_waiter != 0) {
    438 				/*
    439 				 * It already has a waiter - so don't
    440 				 * collect it.  If the waiter doesn't
    441 				 * grab it we'll get another chance
    442 				 * later.
    443 				 */
    444 				nfound++;
    445 				continue;
    446 			}
    447 			nfound++;
    448 
    449 			/* No need to lock the LWP in order to see LSZOMB. */
    450 			if (l2->l_stat != LSZOMB)
    451 				continue;
    452 
    453 			/*
    454 			 * We're no longer waiting.  Reset the "first waiter"
    455 			 * pointer on the target, in case it was us.
    456 			 */
    457 			l->l_waitingfor = 0;
    458 			l2->l_waiter = 0;
    459 			p->p_nlwpwait--;
    460 			if (departed)
    461 				*departed = l2->l_lid;
    462 			sched_lwp_collect(l2);
    463 
    464 			/* lwp_free() releases the proc lock. */
    465 			lwp_free(l2, false, false);
    466 			mutex_enter(p->p_lock);
    467 			return 0;
    468 		}
    469 
    470 		if (error != 0)
    471 			break;
    472 		if (nfound == 0) {
    473 			error = ESRCH;
    474 			break;
    475 		}
    476 
    477 		/*
    478 		 * The kernel is careful to ensure that it can not deadlock
    479 		 * when exiting - just keep waiting.
    480 		 */
    481 		if (exiting) {
    482 			KASSERT(p->p_nlwps > 1);
    483 			cv_wait(&p->p_lwpcv, p->p_lock);
    484 			continue;
    485 		}
    486 
    487 		/*
    488 		 * If all other LWPs are waiting for exits or suspends
    489 		 * and the supply of zombies and potential zombies is
    490 		 * exhausted, then we are about to deadlock.
    491 		 *
    492 		 * If the process is exiting (and this LWP is not the one
    493 		 * that is coordinating the exit) then bail out now.
    494 		 */
    495 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    496 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    497 			error = EDEADLK;
    498 			break;
    499 		}
    500 
    501 		/*
    502 		 * Sit around and wait for something to happen.  We'll be
    503 		 * awoken if any of the conditions examined change: if an
    504 		 * LWP exits, is collected, or is detached.
    505 		 */
    506 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    507 			break;
    508 	}
    509 
    510 	/*
    511 	 * We didn't find any LWPs to collect, we may have received a
    512 	 * signal, or some other condition has caused us to bail out.
    513 	 *
    514 	 * If waiting on a specific LWP, clear the waiters marker: some
    515 	 * other LWP may want it.  Then, kick all the remaining waiters
    516 	 * so that they can re-check for zombies and for deadlock.
    517 	 */
    518 	if (lid != 0) {
    519 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    520 			if (l2->l_lid == lid) {
    521 				if (l2->l_waiter == curlid)
    522 					l2->l_waiter = 0;
    523 				break;
    524 			}
    525 		}
    526 	}
    527 	p->p_nlwpwait--;
    528 	l->l_waitingfor = 0;
    529 	cv_broadcast(&p->p_lwpcv);
    530 
    531 	return error;
    532 }
    533 
    534 /*
    535  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    536  * The new LWP is created in state LSIDL and must be set running,
    537  * suspended, or stopped by the caller.
    538  */
    539 int
    540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
    541 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    542 	   lwp_t **rnewlwpp, int sclass)
    543 {
    544 	struct lwp *l2, *isfree;
    545 	turnstile_t *ts;
    546 
    547 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    548 
    549 	/*
    550 	 * First off, reap any detached LWP waiting to be collected.
    551 	 * We can re-use its LWP structure and turnstile.
    552 	 */
    553 	isfree = NULL;
    554 	if (p2->p_zomblwp != NULL) {
    555 		mutex_enter(p2->p_lock);
    556 		if ((isfree = p2->p_zomblwp) != NULL) {
    557 			p2->p_zomblwp = NULL;
    558 			lwp_free(isfree, true, false);/* releases proc mutex */
    559 		} else
    560 			mutex_exit(p2->p_lock);
    561 	}
    562 	if (isfree == NULL) {
    563 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    564 		memset(l2, 0, sizeof(*l2));
    565 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    566 		SLIST_INIT(&l2->l_pi_lenders);
    567 	} else {
    568 		l2 = isfree;
    569 		ts = l2->l_ts;
    570 		KASSERT(l2->l_inheritedprio == -1);
    571 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    572 		memset(l2, 0, sizeof(*l2));
    573 		l2->l_ts = ts;
    574 	}
    575 
    576 	l2->l_stat = LSIDL;
    577 	l2->l_proc = p2;
    578 	l2->l_refcnt = 1;
    579 	l2->l_class = sclass;
    580 
    581 	/*
    582 	 * If vfork(), we want the LWP to run fast and on the same CPU
    583 	 * as its parent, so that it can reuse the VM context and cache
    584 	 * footprint on the local CPU.
    585 	 */
    586 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    587 	l2->l_kpribase = PRI_KERNEL;
    588 	l2->l_priority = l1->l_priority;
    589 	l2->l_inheritedprio = -1;
    590 	l2->l_flag = inmem ? LW_INMEM : 0;
    591 	l2->l_pflag = LP_MPSAFE;
    592 	l2->l_fd = p2->p_fd;
    593 	TAILQ_INIT(&l2->l_ld_locks);
    594 
    595 	if (p2->p_flag & PK_SYSTEM) {
    596 		/* Mark it as a system LWP and not a candidate for swapping */
    597 		l2->l_flag |= LW_SYSTEM;
    598 	}
    599 
    600 	kpreempt_disable();
    601 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    602 	l2->l_cpu = l1->l_cpu;
    603 	kpreempt_enable();
    604 
    605 	lwp_initspecific(l2);
    606 	sched_lwp_fork(l1, l2);
    607 	lwp_update_creds(l2);
    608 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    609 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    610 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    611 	cv_init(&l2->l_sigcv, "sigwait");
    612 	l2->l_syncobj = &sched_syncobj;
    613 
    614 	if (rnewlwpp != NULL)
    615 		*rnewlwpp = l2;
    616 
    617 	l2->l_addr = UAREA_TO_USER(uaddr);
    618 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    619 	    (arg != NULL) ? arg : l2);
    620 
    621 	mutex_enter(p2->p_lock);
    622 
    623 	if ((flags & LWP_DETACHED) != 0) {
    624 		l2->l_prflag = LPR_DETACHED;
    625 		p2->p_ndlwps++;
    626 	} else
    627 		l2->l_prflag = 0;
    628 
    629 	l2->l_sigmask = l1->l_sigmask;
    630 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    631 	sigemptyset(&l2->l_sigpend.sp_set);
    632 
    633 	p2->p_nlwpid++;
    634 	if (p2->p_nlwpid == 0)
    635 		p2->p_nlwpid++;
    636 	l2->l_lid = p2->p_nlwpid;
    637 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    638 	p2->p_nlwps++;
    639 
    640 	mutex_exit(p2->p_lock);
    641 
    642 	mutex_enter(proc_lock);
    643 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    644 	mutex_exit(proc_lock);
    645 
    646 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    647 		/* Locking is needed, since LWP is in the list of all LWPs */
    648 		lwp_lock(l2);
    649 		/* Inherit a processor-set */
    650 		l2->l_psid = l1->l_psid;
    651 		/* Inherit an affinity */
    652 		if (l1->l_flag & LW_AFFINITY) {
    653 			proc_t *p = l1->l_proc;
    654 
    655 			mutex_enter(p->p_lock);
    656 			if (l1->l_flag & LW_AFFINITY) {
    657 				kcpuset_use(l1->l_affinity);
    658 				l2->l_affinity = l1->l_affinity;
    659 				l2->l_flag |= LW_AFFINITY;
    660 			}
    661 			mutex_exit(p->p_lock);
    662 		}
    663 		/* Look for a CPU to start */
    664 		l2->l_cpu = sched_takecpu(l2);
    665 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    666 	}
    667 
    668 	SYSCALL_TIME_LWP_INIT(l2);
    669 
    670 	if (p2->p_emul->e_lwp_fork)
    671 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    672 
    673 	return (0);
    674 }
    675 
    676 /*
    677  * Called by MD code when a new LWP begins execution.  Must be called
    678  * with the previous LWP locked (so at splsched), or if there is no
    679  * previous LWP, at splsched.
    680  */
    681 void
    682 lwp_startup(struct lwp *prev, struct lwp *new)
    683 {
    684 
    685 	KASSERT(kpreempt_disabled());
    686 	if (prev != NULL) {
    687 		/*
    688 		 * Normalize the count of the spin-mutexes, it was
    689 		 * increased in mi_switch().  Unmark the state of
    690 		 * context switch - it is finished for previous LWP.
    691 		 */
    692 		curcpu()->ci_mtx_count++;
    693 		membar_exit();
    694 		prev->l_ctxswtch = 0;
    695 	}
    696 	KPREEMPT_DISABLE(new);
    697 	spl0();
    698 	pmap_activate(new);
    699 	LOCKDEBUG_BARRIER(NULL, 0);
    700 	KPREEMPT_ENABLE(new);
    701 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    702 		KERNEL_LOCK(1, new);
    703 	}
    704 }
    705 
    706 /*
    707  * Exit an LWP.
    708  */
    709 void
    710 lwp_exit(struct lwp *l)
    711 {
    712 	struct proc *p = l->l_proc;
    713 	struct lwp *l2;
    714 	bool current;
    715 
    716 	current = (l == curlwp);
    717 
    718 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    719 
    720 	/*
    721 	 * Verify that we hold no locks other than the kernel lock.
    722 	 */
    723 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    724 
    725 	/*
    726 	 * If we are the last live LWP in a process, we need to exit the
    727 	 * entire process.  We do so with an exit status of zero, because
    728 	 * it's a "controlled" exit, and because that's what Solaris does.
    729 	 *
    730 	 * We are not quite a zombie yet, but for accounting purposes we
    731 	 * must increment the count of zombies here.
    732 	 *
    733 	 * Note: the last LWP's specificdata will be deleted here.
    734 	 */
    735 	mutex_enter(p->p_lock);
    736 	if (p->p_nlwps - p->p_nzlwps == 1) {
    737 		KASSERT(current == true);
    738 		/* XXXSMP kernel_lock not held */
    739 		exit1(l, 0);
    740 		/* NOTREACHED */
    741 	}
    742 	p->p_nzlwps++;
    743 	mutex_exit(p->p_lock);
    744 
    745 	if (p->p_emul->e_lwp_exit)
    746 		(*p->p_emul->e_lwp_exit)(l);
    747 
    748 	/* Delete the specificdata while it's still safe to sleep. */
    749 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    750 
    751 	/*
    752 	 * Release our cached credentials.
    753 	 */
    754 	kauth_cred_free(l->l_cred);
    755 	callout_destroy(&l->l_timeout_ch);
    756 
    757 	/*
    758 	 * While we can still block, mark the LWP as unswappable to
    759 	 * prevent conflicts with the with the swapper.
    760 	 */
    761 	if (current)
    762 		uvm_lwp_hold(l);
    763 
    764 	/*
    765 	 * Remove the LWP from the global list.
    766 	 */
    767 	mutex_enter(proc_lock);
    768 	LIST_REMOVE(l, l_list);
    769 	mutex_exit(proc_lock);
    770 
    771 	/*
    772 	 * Get rid of all references to the LWP that others (e.g. procfs)
    773 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    774 	 * mark it waiting for collection in the proc structure.  Note that
    775 	 * before we can do that, we need to free any other dead, deatched
    776 	 * LWP waiting to meet its maker.
    777 	 */
    778 	mutex_enter(p->p_lock);
    779 	lwp_drainrefs(l);
    780 
    781 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    782 		while ((l2 = p->p_zomblwp) != NULL) {
    783 			p->p_zomblwp = NULL;
    784 			lwp_free(l2, false, false);/* releases proc mutex */
    785 			mutex_enter(p->p_lock);
    786 			l->l_refcnt++;
    787 			lwp_drainrefs(l);
    788 		}
    789 		p->p_zomblwp = l;
    790 	}
    791 
    792 	/*
    793 	 * If we find a pending signal for the process and we have been
    794 	 * asked to check for signals, then we loose: arrange to have
    795 	 * all other LWPs in the process check for signals.
    796 	 */
    797 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    798 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    799 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    800 			lwp_lock(l2);
    801 			l2->l_flag |= LW_PENDSIG;
    802 			lwp_unlock(l2);
    803 		}
    804 	}
    805 
    806 	lwp_lock(l);
    807 	l->l_stat = LSZOMB;
    808 	if (l->l_name != NULL)
    809 		strcpy(l->l_name, "(zombie)");
    810 	if (l->l_flag & LW_AFFINITY)
    811 		l->l_flag &= ~LW_AFFINITY;
    812 	lwp_unlock(l);
    813 	p->p_nrlwps--;
    814 	cv_broadcast(&p->p_lwpcv);
    815 	if (l->l_lwpctl != NULL)
    816 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    817 	mutex_exit(p->p_lock);
    818 
    819 	/* Safe without lock since LWP is in zombie state */
    820 	if (l->l_affinity) {
    821 		kcpuset_unuse(l->l_affinity, NULL);
    822 		l->l_affinity = NULL;
    823 	}
    824 
    825 	/*
    826 	 * We can no longer block.  At this point, lwp_free() may already
    827 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    828 	 *
    829 	 * Free MD LWP resources.
    830 	 */
    831 #ifndef __NO_CPU_LWP_FREE
    832 	cpu_lwp_free(l, 0);
    833 #endif
    834 
    835 	if (current) {
    836 		pmap_deactivate(l);
    837 
    838 		/*
    839 		 * Release the kernel lock, and switch away into
    840 		 * oblivion.
    841 		 */
    842 #ifdef notyet
    843 		/* XXXSMP hold in lwp_userret() */
    844 		KERNEL_UNLOCK_LAST(l);
    845 #else
    846 		KERNEL_UNLOCK_ALL(l, NULL);
    847 #endif
    848 		lwp_exit_switchaway(l);
    849 	}
    850 }
    851 
    852 /*
    853  * Free a dead LWP's remaining resources.
    854  *
    855  * XXXLWP limits.
    856  */
    857 void
    858 lwp_free(struct lwp *l, bool recycle, bool last)
    859 {
    860 	struct proc *p = l->l_proc;
    861 	struct rusage *ru;
    862 	ksiginfoq_t kq;
    863 
    864 	KASSERT(l != curlwp);
    865 
    866 	/*
    867 	 * If this was not the last LWP in the process, then adjust
    868 	 * counters and unlock.
    869 	 */
    870 	if (!last) {
    871 		/*
    872 		 * Add the LWP's run time to the process' base value.
    873 		 * This needs to co-incide with coming off p_lwps.
    874 		 */
    875 		bintime_add(&p->p_rtime, &l->l_rtime);
    876 		p->p_pctcpu += l->l_pctcpu;
    877 		ru = &p->p_stats->p_ru;
    878 		ruadd(ru, &l->l_ru);
    879 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    880 		ru->ru_nivcsw += l->l_nivcsw;
    881 		LIST_REMOVE(l, l_sibling);
    882 		p->p_nlwps--;
    883 		p->p_nzlwps--;
    884 		if ((l->l_prflag & LPR_DETACHED) != 0)
    885 			p->p_ndlwps--;
    886 
    887 		/*
    888 		 * Have any LWPs sleeping in lwp_wait() recheck for
    889 		 * deadlock.
    890 		 */
    891 		cv_broadcast(&p->p_lwpcv);
    892 		mutex_exit(p->p_lock);
    893 	}
    894 
    895 #ifdef MULTIPROCESSOR
    896 	/*
    897 	 * In the unlikely event that the LWP is still on the CPU,
    898 	 * then spin until it has switched away.  We need to release
    899 	 * all locks to avoid deadlock against interrupt handlers on
    900 	 * the target CPU.
    901 	 */
    902 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    903 		int count;
    904 		(void)count; /* XXXgcc */
    905 		KERNEL_UNLOCK_ALL(curlwp, &count);
    906 		while ((l->l_pflag & LP_RUNNING) != 0 ||
    907 		    l->l_cpu->ci_curlwp == l)
    908 			SPINLOCK_BACKOFF_HOOK;
    909 		KERNEL_LOCK(count, curlwp);
    910 	}
    911 #endif
    912 
    913 	/*
    914 	 * Destroy the LWP's remaining signal information.
    915 	 */
    916 	ksiginfo_queue_init(&kq);
    917 	sigclear(&l->l_sigpend, NULL, &kq);
    918 	ksiginfo_queue_drain(&kq);
    919 	cv_destroy(&l->l_sigcv);
    920 	mutex_destroy(&l->l_swaplock);
    921 
    922 	/*
    923 	 * Free the LWP's turnstile and the LWP structure itself unless the
    924 	 * caller wants to recycle them.  Also, free the scheduler specific
    925 	 * data.
    926 	 *
    927 	 * We can't return turnstile0 to the pool (it didn't come from it),
    928 	 * so if it comes up just drop it quietly and move on.
    929 	 *
    930 	 * We don't recycle the VM resources at this time.
    931 	 */
    932 	if (l->l_lwpctl != NULL)
    933 		lwp_ctl_free(l);
    934 	sched_lwp_exit(l);
    935 
    936 	if (!recycle && l->l_ts != &turnstile0)
    937 		pool_cache_put(turnstile_cache, l->l_ts);
    938 	if (l->l_name != NULL)
    939 		kmem_free(l->l_name, MAXCOMLEN);
    940 #ifndef __NO_CPU_LWP_FREE
    941 	cpu_lwp_free2(l);
    942 #endif
    943 	KASSERT((l->l_flag & LW_INMEM) != 0);
    944 	uvm_lwp_exit(l);
    945 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    946 	KASSERT(l->l_inheritedprio == -1);
    947 	if (!recycle)
    948 		pool_cache_put(lwp_cache, l);
    949 }
    950 
    951 /*
    952  * Migrate the LWP to the another CPU.  Unlocks the LWP.
    953  */
    954 void
    955 lwp_migrate(lwp_t *l, struct cpu_info *tci)
    956 {
    957 	struct schedstate_percpu *tspc;
    958 	int lstat = l->l_stat;
    959 
    960 	KASSERT(lwp_locked(l, NULL));
    961 	KASSERT(tci != NULL);
    962 
    963 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
    964 	if ((l->l_pflag & LP_RUNNING) != 0) {
    965 		lstat = LSONPROC;
    966 	}
    967 
    968 	/*
    969 	 * The destination CPU could be changed while previous migration
    970 	 * was not finished.
    971 	 */
    972 	if (l->l_target_cpu != NULL) {
    973 		l->l_target_cpu = tci;
    974 		lwp_unlock(l);
    975 		return;
    976 	}
    977 
    978 	/* Nothing to do if trying to migrate to the same CPU */
    979 	if (l->l_cpu == tci) {
    980 		lwp_unlock(l);
    981 		return;
    982 	}
    983 
    984 	KASSERT(l->l_target_cpu == NULL);
    985 	tspc = &tci->ci_schedstate;
    986 	switch (lstat) {
    987 	case LSRUN:
    988 		if (l->l_flag & LW_INMEM) {
    989 			l->l_target_cpu = tci;
    990 			lwp_unlock(l);
    991 			return;
    992 		}
    993 	case LSIDL:
    994 		l->l_cpu = tci;
    995 		lwp_unlock_to(l, tspc->spc_mutex);
    996 		return;
    997 	case LSSLEEP:
    998 		l->l_cpu = tci;
    999 		break;
   1000 	case LSSTOP:
   1001 	case LSSUSPENDED:
   1002 		l->l_cpu = tci;
   1003 		if (l->l_wchan == NULL) {
   1004 			lwp_unlock_to(l, tspc->spc_lwplock);
   1005 			return;
   1006 		}
   1007 		break;
   1008 	case LSONPROC:
   1009 		l->l_target_cpu = tci;
   1010 		spc_lock(l->l_cpu);
   1011 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1012 		spc_unlock(l->l_cpu);
   1013 		break;
   1014 	}
   1015 	lwp_unlock(l);
   1016 }
   1017 
   1018 /*
   1019  * Find the LWP in the process.  Arguments may be zero, in such case,
   1020  * the calling process and first LWP in the list will be used.
   1021  * On success - returns proc locked.
   1022  */
   1023 struct lwp *
   1024 lwp_find2(pid_t pid, lwpid_t lid)
   1025 {
   1026 	proc_t *p;
   1027 	lwp_t *l;
   1028 
   1029 	/* Find the process */
   1030 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
   1031 	if (p == NULL)
   1032 		return NULL;
   1033 	mutex_enter(p->p_lock);
   1034 	if (pid != 0) {
   1035 		/* Case of p_find */
   1036 		mutex_exit(proc_lock);
   1037 	}
   1038 
   1039 	/* Find the thread */
   1040 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
   1041 	if (l == NULL) {
   1042 		mutex_exit(p->p_lock);
   1043 	}
   1044 
   1045 	return l;
   1046 }
   1047 
   1048 /*
   1049  * Look up a live LWP within the speicifed process, and return it locked.
   1050  *
   1051  * Must be called with p->p_lock held.
   1052  */
   1053 struct lwp *
   1054 lwp_find(struct proc *p, int id)
   1055 {
   1056 	struct lwp *l;
   1057 
   1058 	KASSERT(mutex_owned(p->p_lock));
   1059 
   1060 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1061 		if (l->l_lid == id)
   1062 			break;
   1063 	}
   1064 
   1065 	/*
   1066 	 * No need to lock - all of these conditions will
   1067 	 * be visible with the process level mutex held.
   1068 	 */
   1069 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1070 		l = NULL;
   1071 
   1072 	return l;
   1073 }
   1074 
   1075 /*
   1076  * Update an LWP's cached credentials to mirror the process' master copy.
   1077  *
   1078  * This happens early in the syscall path, on user trap, and on LWP
   1079  * creation.  A long-running LWP can also voluntarily choose to update
   1080  * it's credentials by calling this routine.  This may be called from
   1081  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1082  */
   1083 void
   1084 lwp_update_creds(struct lwp *l)
   1085 {
   1086 	kauth_cred_t oc;
   1087 	struct proc *p;
   1088 
   1089 	p = l->l_proc;
   1090 	oc = l->l_cred;
   1091 
   1092 	mutex_enter(p->p_lock);
   1093 	kauth_cred_hold(p->p_cred);
   1094 	l->l_cred = p->p_cred;
   1095 	l->l_prflag &= ~LPR_CRMOD;
   1096 	mutex_exit(p->p_lock);
   1097 	if (oc != NULL)
   1098 		kauth_cred_free(oc);
   1099 }
   1100 
   1101 /*
   1102  * Verify that an LWP is locked, and optionally verify that the lock matches
   1103  * one we specify.
   1104  */
   1105 int
   1106 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1107 {
   1108 	kmutex_t *cur = l->l_mutex;
   1109 
   1110 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1111 }
   1112 
   1113 /*
   1114  * Lock an LWP.
   1115  */
   1116 kmutex_t *
   1117 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1118 {
   1119 
   1120 	/*
   1121 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1122 	 *
   1123 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1124 	 */
   1125 #if 1
   1126 	while (l->l_mutex != old) {
   1127 #else
   1128 	for (;;) {
   1129 #endif
   1130 		mutex_spin_exit(old);
   1131 		old = l->l_mutex;
   1132 		mutex_spin_enter(old);
   1133 
   1134 		/*
   1135 		 * mutex_enter() will have posted a read barrier.  Re-test
   1136 		 * l->l_mutex.  If it has changed, we need to try again.
   1137 		 */
   1138 #if 1
   1139 	}
   1140 #else
   1141 	} while (__predict_false(l->l_mutex != old));
   1142 #endif
   1143 
   1144 	return old;
   1145 }
   1146 
   1147 /*
   1148  * Lend a new mutex to an LWP.  The old mutex must be held.
   1149  */
   1150 void
   1151 lwp_setlock(struct lwp *l, kmutex_t *new)
   1152 {
   1153 
   1154 	KASSERT(mutex_owned(l->l_mutex));
   1155 
   1156 	membar_exit();
   1157 	l->l_mutex = new;
   1158 }
   1159 
   1160 /*
   1161  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1162  * must be held.
   1163  */
   1164 void
   1165 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1166 {
   1167 	kmutex_t *old;
   1168 
   1169 	KASSERT(mutex_owned(l->l_mutex));
   1170 
   1171 	old = l->l_mutex;
   1172 	membar_exit();
   1173 	l->l_mutex = new;
   1174 	mutex_spin_exit(old);
   1175 }
   1176 
   1177 /*
   1178  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1179  * locked.
   1180  */
   1181 void
   1182 lwp_relock(struct lwp *l, kmutex_t *new)
   1183 {
   1184 	kmutex_t *old;
   1185 
   1186 	KASSERT(mutex_owned(l->l_mutex));
   1187 
   1188 	old = l->l_mutex;
   1189 	if (old != new) {
   1190 		mutex_spin_enter(new);
   1191 		l->l_mutex = new;
   1192 		mutex_spin_exit(old);
   1193 	}
   1194 }
   1195 
   1196 int
   1197 lwp_trylock(struct lwp *l)
   1198 {
   1199 	kmutex_t *old;
   1200 
   1201 	for (;;) {
   1202 		if (!mutex_tryenter(old = l->l_mutex))
   1203 			return 0;
   1204 		if (__predict_true(l->l_mutex == old))
   1205 			return 1;
   1206 		mutex_spin_exit(old);
   1207 	}
   1208 }
   1209 
   1210 u_int
   1211 lwp_unsleep(lwp_t *l, bool cleanup)
   1212 {
   1213 
   1214 	KASSERT(mutex_owned(l->l_mutex));
   1215 
   1216 	return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1217 }
   1218 
   1219 
   1220 /*
   1221  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1222  * set.
   1223  */
   1224 void
   1225 lwp_userret(struct lwp *l)
   1226 {
   1227 	struct proc *p;
   1228 	void (*hook)(void);
   1229 	int sig;
   1230 
   1231 	KASSERT(l == curlwp);
   1232 	KASSERT(l->l_stat == LSONPROC);
   1233 	p = l->l_proc;
   1234 
   1235 #ifndef __HAVE_FAST_SOFTINTS
   1236 	/* Run pending soft interrupts. */
   1237 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1238 		softint_overlay();
   1239 #endif
   1240 
   1241 	/*
   1242 	 * It should be safe to do this read unlocked on a multiprocessor
   1243 	 * system..
   1244 	 */
   1245 	while ((l->l_flag & LW_USERRET) != 0) {
   1246 		/*
   1247 		 * Process pending signals first, unless the process
   1248 		 * is dumping core or exiting, where we will instead
   1249 		 * enter the LW_WSUSPEND case below.
   1250 		 */
   1251 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1252 		    LW_PENDSIG) {
   1253 			mutex_enter(p->p_lock);
   1254 			while ((sig = issignal(l)) != 0)
   1255 				postsig(sig);
   1256 			mutex_exit(p->p_lock);
   1257 		}
   1258 
   1259 		/*
   1260 		 * Core-dump or suspend pending.
   1261 		 *
   1262 		 * In case of core dump, suspend ourselves, so that the
   1263 		 * kernel stack and therefore the userland registers saved
   1264 		 * in the trapframe are around for coredump() to write them
   1265 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1266 		 * will write the core file out once all other LWPs are
   1267 		 * suspended.
   1268 		 */
   1269 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1270 			mutex_enter(p->p_lock);
   1271 			p->p_nrlwps--;
   1272 			cv_broadcast(&p->p_lwpcv);
   1273 			lwp_lock(l);
   1274 			l->l_stat = LSSUSPENDED;
   1275 			lwp_unlock(l);
   1276 			mutex_exit(p->p_lock);
   1277 			lwp_lock(l);
   1278 			mi_switch(l);
   1279 		}
   1280 
   1281 		/* Process is exiting. */
   1282 		if ((l->l_flag & LW_WEXIT) != 0) {
   1283 			lwp_exit(l);
   1284 			KASSERT(0);
   1285 			/* NOTREACHED */
   1286 		}
   1287 
   1288 		/* Call userret hook; used by Linux emulation. */
   1289 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1290 			lwp_lock(l);
   1291 			l->l_flag &= ~LW_WUSERRET;
   1292 			lwp_unlock(l);
   1293 			hook = p->p_userret;
   1294 			p->p_userret = NULL;
   1295 			(*hook)();
   1296 		}
   1297 	}
   1298 }
   1299 
   1300 /*
   1301  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1302  */
   1303 void
   1304 lwp_need_userret(struct lwp *l)
   1305 {
   1306 	KASSERT(lwp_locked(l, NULL));
   1307 
   1308 	/*
   1309 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1310 	 * that the condition will be seen before forcing the LWP to enter
   1311 	 * kernel mode.
   1312 	 */
   1313 	membar_producer();
   1314 	cpu_signotify(l);
   1315 }
   1316 
   1317 /*
   1318  * Add one reference to an LWP.  This will prevent the LWP from
   1319  * exiting, thus keep the lwp structure and PCB around to inspect.
   1320  */
   1321 void
   1322 lwp_addref(struct lwp *l)
   1323 {
   1324 
   1325 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1326 	KASSERT(l->l_stat != LSZOMB);
   1327 	KASSERT(l->l_refcnt != 0);
   1328 
   1329 	l->l_refcnt++;
   1330 }
   1331 
   1332 /*
   1333  * Remove one reference to an LWP.  If this is the last reference,
   1334  * then we must finalize the LWP's death.
   1335  */
   1336 void
   1337 lwp_delref(struct lwp *l)
   1338 {
   1339 	struct proc *p = l->l_proc;
   1340 
   1341 	mutex_enter(p->p_lock);
   1342 	KASSERT(l->l_stat != LSZOMB);
   1343 	KASSERT(l->l_refcnt > 0);
   1344 	if (--l->l_refcnt == 0)
   1345 		cv_broadcast(&p->p_lwpcv);
   1346 	mutex_exit(p->p_lock);
   1347 }
   1348 
   1349 /*
   1350  * Drain all references to the current LWP.
   1351  */
   1352 void
   1353 lwp_drainrefs(struct lwp *l)
   1354 {
   1355 	struct proc *p = l->l_proc;
   1356 
   1357 	KASSERT(mutex_owned(p->p_lock));
   1358 	KASSERT(l->l_refcnt != 0);
   1359 
   1360 	l->l_refcnt--;
   1361 	while (l->l_refcnt != 0)
   1362 		cv_wait(&p->p_lwpcv, p->p_lock);
   1363 }
   1364 
   1365 /*
   1366  * lwp_specific_key_create --
   1367  *	Create a key for subsystem lwp-specific data.
   1368  */
   1369 int
   1370 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1371 {
   1372 
   1373 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1374 }
   1375 
   1376 /*
   1377  * lwp_specific_key_delete --
   1378  *	Delete a key for subsystem lwp-specific data.
   1379  */
   1380 void
   1381 lwp_specific_key_delete(specificdata_key_t key)
   1382 {
   1383 
   1384 	specificdata_key_delete(lwp_specificdata_domain, key);
   1385 }
   1386 
   1387 /*
   1388  * lwp_initspecific --
   1389  *	Initialize an LWP's specificdata container.
   1390  */
   1391 void
   1392 lwp_initspecific(struct lwp *l)
   1393 {
   1394 	int error;
   1395 
   1396 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1397 	KASSERT(error == 0);
   1398 }
   1399 
   1400 /*
   1401  * lwp_finispecific --
   1402  *	Finalize an LWP's specificdata container.
   1403  */
   1404 void
   1405 lwp_finispecific(struct lwp *l)
   1406 {
   1407 
   1408 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1409 }
   1410 
   1411 /*
   1412  * lwp_getspecific --
   1413  *	Return lwp-specific data corresponding to the specified key.
   1414  *
   1415  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1416  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1417  *	LWP's specifc data, care must be taken to ensure that doing so
   1418  *	would not cause internal data structure inconsistency (i.e. caller
   1419  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1420  *	or lwp_setspecific() call).
   1421  */
   1422 void *
   1423 lwp_getspecific(specificdata_key_t key)
   1424 {
   1425 
   1426 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1427 						  &curlwp->l_specdataref, key));
   1428 }
   1429 
   1430 void *
   1431 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1432 {
   1433 
   1434 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1435 						  &l->l_specdataref, key));
   1436 }
   1437 
   1438 /*
   1439  * lwp_setspecific --
   1440  *	Set lwp-specific data corresponding to the specified key.
   1441  */
   1442 void
   1443 lwp_setspecific(specificdata_key_t key, void *data)
   1444 {
   1445 
   1446 	specificdata_setspecific(lwp_specificdata_domain,
   1447 				 &curlwp->l_specdataref, key, data);
   1448 }
   1449 
   1450 /*
   1451  * Allocate a new lwpctl structure for a user LWP.
   1452  */
   1453 int
   1454 lwp_ctl_alloc(vaddr_t *uaddr)
   1455 {
   1456 	lcproc_t *lp;
   1457 	u_int bit, i, offset;
   1458 	struct uvm_object *uao;
   1459 	int error;
   1460 	lcpage_t *lcp;
   1461 	proc_t *p;
   1462 	lwp_t *l;
   1463 
   1464 	l = curlwp;
   1465 	p = l->l_proc;
   1466 
   1467 	if (l->l_lcpage != NULL) {
   1468 		lcp = l->l_lcpage;
   1469 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1470 		return (EINVAL);
   1471 	}
   1472 
   1473 	/* First time around, allocate header structure for the process. */
   1474 	if ((lp = p->p_lwpctl) == NULL) {
   1475 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1476 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1477 		lp->lp_uao = NULL;
   1478 		TAILQ_INIT(&lp->lp_pages);
   1479 		mutex_enter(p->p_lock);
   1480 		if (p->p_lwpctl == NULL) {
   1481 			p->p_lwpctl = lp;
   1482 			mutex_exit(p->p_lock);
   1483 		} else {
   1484 			mutex_exit(p->p_lock);
   1485 			mutex_destroy(&lp->lp_lock);
   1486 			kmem_free(lp, sizeof(*lp));
   1487 			lp = p->p_lwpctl;
   1488 		}
   1489 	}
   1490 
   1491  	/*
   1492  	 * Set up an anonymous memory region to hold the shared pages.
   1493  	 * Map them into the process' address space.  The user vmspace
   1494  	 * gets the first reference on the UAO.
   1495  	 */
   1496 	mutex_enter(&lp->lp_lock);
   1497 	if (lp->lp_uao == NULL) {
   1498 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1499 		lp->lp_cur = 0;
   1500 		lp->lp_max = LWPCTL_UAREA_SZ;
   1501 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1502 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1503 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1504 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1505 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1506 		if (error != 0) {
   1507 			uao_detach(lp->lp_uao);
   1508 			lp->lp_uao = NULL;
   1509 			mutex_exit(&lp->lp_lock);
   1510 			return error;
   1511 		}
   1512 	}
   1513 
   1514 	/* Get a free block and allocate for this LWP. */
   1515 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1516 		if (lcp->lcp_nfree != 0)
   1517 			break;
   1518 	}
   1519 	if (lcp == NULL) {
   1520 		/* Nothing available - try to set up a free page. */
   1521 		if (lp->lp_cur == lp->lp_max) {
   1522 			mutex_exit(&lp->lp_lock);
   1523 			return ENOMEM;
   1524 		}
   1525 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1526 		if (lcp == NULL) {
   1527 			mutex_exit(&lp->lp_lock);
   1528 			return ENOMEM;
   1529 		}
   1530 		/*
   1531 		 * Wire the next page down in kernel space.  Since this
   1532 		 * is a new mapping, we must add a reference.
   1533 		 */
   1534 		uao = lp->lp_uao;
   1535 		(*uao->pgops->pgo_reference)(uao);
   1536 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1537 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1538 		    uao, lp->lp_cur, PAGE_SIZE,
   1539 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1540 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1541 		if (error != 0) {
   1542 			mutex_exit(&lp->lp_lock);
   1543 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1544 			(*uao->pgops->pgo_detach)(uao);
   1545 			return error;
   1546 		}
   1547 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1548 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1549 		if (error != 0) {
   1550 			mutex_exit(&lp->lp_lock);
   1551 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1552 			    lcp->lcp_kaddr + PAGE_SIZE);
   1553 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1554 			return error;
   1555 		}
   1556 		/* Prepare the page descriptor and link into the list. */
   1557 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1558 		lp->lp_cur += PAGE_SIZE;
   1559 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1560 		lcp->lcp_rotor = 0;
   1561 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1562 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1563 	}
   1564 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1565 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1566 			i = 0;
   1567 	}
   1568 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1569 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1570 	lcp->lcp_rotor = i;
   1571 	lcp->lcp_nfree--;
   1572 	l->l_lcpage = lcp;
   1573 	offset = (i << 5) + bit;
   1574 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1575 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1576 	mutex_exit(&lp->lp_lock);
   1577 
   1578 	KPREEMPT_DISABLE(l);
   1579 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1580 	KPREEMPT_ENABLE(l);
   1581 
   1582 	return 0;
   1583 }
   1584 
   1585 /*
   1586  * Free an lwpctl structure back to the per-process list.
   1587  */
   1588 void
   1589 lwp_ctl_free(lwp_t *l)
   1590 {
   1591 	lcproc_t *lp;
   1592 	lcpage_t *lcp;
   1593 	u_int map, offset;
   1594 
   1595 	lp = l->l_proc->p_lwpctl;
   1596 	KASSERT(lp != NULL);
   1597 
   1598 	lcp = l->l_lcpage;
   1599 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1600 	KASSERT(offset < LWPCTL_PER_PAGE);
   1601 
   1602 	mutex_enter(&lp->lp_lock);
   1603 	lcp->lcp_nfree++;
   1604 	map = offset >> 5;
   1605 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1606 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1607 		lcp->lcp_rotor = map;
   1608 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1609 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1610 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1611 	}
   1612 	mutex_exit(&lp->lp_lock);
   1613 }
   1614 
   1615 /*
   1616  * Process is exiting; tear down lwpctl state.  This can only be safely
   1617  * called by the last LWP in the process.
   1618  */
   1619 void
   1620 lwp_ctl_exit(void)
   1621 {
   1622 	lcpage_t *lcp, *next;
   1623 	lcproc_t *lp;
   1624 	proc_t *p;
   1625 	lwp_t *l;
   1626 
   1627 	l = curlwp;
   1628 	l->l_lwpctl = NULL;
   1629 	l->l_lcpage = NULL;
   1630 	p = l->l_proc;
   1631 	lp = p->p_lwpctl;
   1632 
   1633 	KASSERT(lp != NULL);
   1634 	KASSERT(p->p_nlwps == 1);
   1635 
   1636 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1637 		next = TAILQ_NEXT(lcp, lcp_chain);
   1638 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1639 		    lcp->lcp_kaddr + PAGE_SIZE);
   1640 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1641 	}
   1642 
   1643 	if (lp->lp_uao != NULL) {
   1644 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1645 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1646 	}
   1647 
   1648 	mutex_destroy(&lp->lp_lock);
   1649 	kmem_free(lp, sizeof(*lp));
   1650 	p->p_lwpctl = NULL;
   1651 }
   1652 
   1653 #if defined(DDB)
   1654 void
   1655 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1656 {
   1657 	lwp_t *l;
   1658 
   1659 	LIST_FOREACH(l, &alllwp, l_list) {
   1660 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1661 
   1662 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1663 			continue;
   1664 		}
   1665 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1666 		    (void *)addr, (void *)stack,
   1667 		    (size_t)(addr - stack), l);
   1668 	}
   1669 }
   1670 #endif /* defined(DDB) */
   1671