Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.120
      1 /*	$NetBSD: kern_lwp.c,v 1.120 2008/07/02 19:49:58 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.  If the LWP is not swapped in (LW_INMEM == 0)
     64  *		then the LWP is not on a run queue, but may be soon.
     65  *
     66  *	LSIDL
     67  *
     68  *		Idle: the LWP has been created but has not yet executed,
     69  *		or it has ceased executing a unit of work and is waiting
     70  *		to be started again.
     71  *
     72  *	LSSUSPENDED:
     73  *
     74  *		Suspended: the LWP has had its execution suspended by
     75  *		another LWP in the same process using the _lwp_suspend()
     76  *		system call.  User-level LWPs also enter the suspended
     77  *		state when the system is shutting down.
     78  *
     79  *	The second set represent a "statement of intent" on behalf of the
     80  *	LWP.  The LWP may in fact be executing on a processor, may be
     81  *	sleeping or idle. It is expected to take the necessary action to
     82  *	stop executing or become "running" again within a short timeframe.
     83  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     84  *	Importantly, it indicates that its state is tied to a CPU.
     85  *
     86  *	LSZOMB:
     87  *
     88  *		Dead or dying: the LWP has released most of its resources
     89  *		and is: a) about to switch away into oblivion b) has already
     90  *		switched away.  When it switches away, its few remaining
     91  *		resources can be collected.
     92  *
     93  *	LSSLEEP:
     94  *
     95  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     96  *		has switched away or will switch away shortly to allow other
     97  *		LWPs to run on the CPU.
     98  *
     99  *	LSSTOP:
    100  *
    101  *		Stopped: the LWP has been stopped as a result of a job
    102  *		control signal, or as a result of the ptrace() interface.
    103  *
    104  *		Stopped LWPs may run briefly within the kernel to handle
    105  *		signals that they receive, but will not return to user space
    106  *		until their process' state is changed away from stopped.
    107  *
    108  *		Single LWPs within a process can not be set stopped
    109  *		selectively: all actions that can stop or continue LWPs
    110  *		occur at the process level.
    111  *
    112  * State transitions
    113  *
    114  *	Note that the LSSTOP state may only be set when returning to
    115  *	user space in userret(), or when sleeping interruptably.  The
    116  *	LSSUSPENDED state may only be set in userret().  Before setting
    117  *	those states, we try to ensure that the LWPs will release all
    118  *	locks that they hold, and at a minimum try to ensure that the
    119  *	LWP can be set runnable again by a signal.
    120  *
    121  *	LWPs may transition states in the following ways:
    122  *
    123  *	 RUN -------> ONPROC		ONPROC -----> RUN
    124  *		    > STOPPED			    > SLEEP
    125  *		    > SUSPENDED			    > STOPPED
    126  *						    > SUSPENDED
    127  *						    > ZOMB
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP			    > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *		    > SUSPENDED
    136  *
    137  *	Other state transitions are possible with kernel threads (eg
    138  *	ONPROC -> IDL), but only happen under tightly controlled
    139  *	circumstances the side effects are understood.
    140  *
    141  * Migration
    142  *
    143  *	Migration of threads from one CPU to another could be performed
    144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  *	functions.  The universal lwp_migrate() function should be used for
    146  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  *	of LWP may change, while it is not locked.
    148  *
    149  * Locking
    150  *
    151  *	The majority of fields in 'struct lwp' are covered by a single,
    152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153  *	each field are documented in sys/lwp.h.
    154  *
    155  *	State transitions must be made with the LWP's general lock held,
    156  *	and may cause the LWP's lock pointer to change. Manipulation of
    157  *	the general lock is not performed directly, but through calls to
    158  *	lwp_lock(), lwp_relock() and similar.
    159  *
    160  *	States and their associated locks:
    161  *
    162  *	LSONPROC, LSZOMB:
    163  *
    164  *		Always covered by spc_lwplock, which protects running LWPs.
    165  *		This is a per-CPU lock.
    166  *
    167  *	LSIDL, LSRUN:
    168  *
    169  *		Always covered by spc_mutex, which protects the run queues.
    170  *		This is a per-CPU lock.
    171  *
    172  *	LSSLEEP:
    173  *
    174  *		Covered by a lock associated with the sleep queue that the
    175  *		LWP resides on.
    176  *
    177  *	LSSTOP, LSSUSPENDED:
    178  *
    179  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180  *		l_mutex references the sleep queue lock.  If the LWP was
    181  *		runnable or on the CPU when halted, or has been removed from
    182  *		the sleep queue since halted, then the lock is spc_lwplock.
    183  *
    184  *	The lock order is as follows:
    185  *
    186  *		spc::spc_lwplock ->
    187  *		    sleeptab::st_mutex ->
    188  *			tschain_t::tc_mutex ->
    189  *			    spc::spc_mutex
    190  *
    191  *	Each process has an scheduler state lock (proc::p_lock), and a
    192  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    193  *	so on.  When an LWP is to be entered into or removed from one of the
    194  *	following states, p_lock must be held and the process wide counters
    195  *	adjusted:
    196  *
    197  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    198  *
    199  *	Note that an LWP is considered running or likely to run soon if in
    200  *	one of the following states.  This affects the value of p_nrlwps:
    201  *
    202  *		LSRUN, LSONPROC, LSSLEEP
    203  *
    204  *	p_lock does not need to be held when transitioning among these
    205  *	three states.
    206  */
    207 
    208 #include <sys/cdefs.h>
    209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.120 2008/07/02 19:49:58 rmind Exp $");
    210 
    211 #include "opt_ddb.h"
    212 #include "opt_lockdebug.h"
    213 
    214 #define _LWP_API_PRIVATE
    215 
    216 #include <sys/param.h>
    217 #include <sys/systm.h>
    218 #include <sys/cpu.h>
    219 #include <sys/pool.h>
    220 #include <sys/proc.h>
    221 #include <sys/syscallargs.h>
    222 #include <sys/syscall_stats.h>
    223 #include <sys/kauth.h>
    224 #include <sys/sleepq.h>
    225 #include <sys/user.h>
    226 #include <sys/lockdebug.h>
    227 #include <sys/kmem.h>
    228 #include <sys/pset.h>
    229 #include <sys/intr.h>
    230 #include <sys/lwpctl.h>
    231 #include <sys/atomic.h>
    232 
    233 #include <uvm/uvm_extern.h>
    234 #include <uvm/uvm_object.h>
    235 
    236 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    237 
    238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    239     &pool_allocator_nointr, IPL_NONE);
    240 
    241 static pool_cache_t lwp_cache;
    242 static specificdata_domain_t lwp_specificdata_domain;
    243 
    244 void
    245 lwpinit(void)
    246 {
    247 
    248 	lwp_specificdata_domain = specificdata_domain_create();
    249 	KASSERT(lwp_specificdata_domain != NULL);
    250 	lwp_sys_init();
    251 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    252 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    253 }
    254 
    255 /*
    256  * Set an suspended.
    257  *
    258  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    259  * LWP before return.
    260  */
    261 int
    262 lwp_suspend(struct lwp *curl, struct lwp *t)
    263 {
    264 	int error;
    265 
    266 	KASSERT(mutex_owned(t->l_proc->p_lock));
    267 	KASSERT(lwp_locked(t, NULL));
    268 
    269 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    270 
    271 	/*
    272 	 * If the current LWP has been told to exit, we must not suspend anyone
    273 	 * else or deadlock could occur.  We won't return to userspace.
    274 	 */
    275 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    276 		lwp_unlock(t);
    277 		return (EDEADLK);
    278 	}
    279 
    280 	error = 0;
    281 
    282 	switch (t->l_stat) {
    283 	case LSRUN:
    284 	case LSONPROC:
    285 		t->l_flag |= LW_WSUSPEND;
    286 		lwp_need_userret(t);
    287 		lwp_unlock(t);
    288 		break;
    289 
    290 	case LSSLEEP:
    291 		t->l_flag |= LW_WSUSPEND;
    292 
    293 		/*
    294 		 * Kick the LWP and try to get it to the kernel boundary
    295 		 * so that it will release any locks that it holds.
    296 		 * setrunnable() will release the lock.
    297 		 */
    298 		if ((t->l_flag & LW_SINTR) != 0)
    299 			setrunnable(t);
    300 		else
    301 			lwp_unlock(t);
    302 		break;
    303 
    304 	case LSSUSPENDED:
    305 		lwp_unlock(t);
    306 		break;
    307 
    308 	case LSSTOP:
    309 		t->l_flag |= LW_WSUSPEND;
    310 		setrunnable(t);
    311 		break;
    312 
    313 	case LSIDL:
    314 	case LSZOMB:
    315 		error = EINTR; /* It's what Solaris does..... */
    316 		lwp_unlock(t);
    317 		break;
    318 	}
    319 
    320 	return (error);
    321 }
    322 
    323 /*
    324  * Restart a suspended LWP.
    325  *
    326  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    327  * LWP before return.
    328  */
    329 void
    330 lwp_continue(struct lwp *l)
    331 {
    332 
    333 	KASSERT(mutex_owned(l->l_proc->p_lock));
    334 	KASSERT(lwp_locked(l, NULL));
    335 
    336 	/* If rebooting or not suspended, then just bail out. */
    337 	if ((l->l_flag & LW_WREBOOT) != 0) {
    338 		lwp_unlock(l);
    339 		return;
    340 	}
    341 
    342 	l->l_flag &= ~LW_WSUSPEND;
    343 
    344 	if (l->l_stat != LSSUSPENDED) {
    345 		lwp_unlock(l);
    346 		return;
    347 	}
    348 
    349 	/* setrunnable() will release the lock. */
    350 	setrunnable(l);
    351 }
    352 
    353 /*
    354  * Wait for an LWP within the current process to exit.  If 'lid' is
    355  * non-zero, we are waiting for a specific LWP.
    356  *
    357  * Must be called with p->p_lock held.
    358  */
    359 int
    360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    361 {
    362 	struct proc *p = l->l_proc;
    363 	struct lwp *l2;
    364 	int nfound, error;
    365 	lwpid_t curlid;
    366 	bool exiting;
    367 
    368 	KASSERT(mutex_owned(p->p_lock));
    369 
    370 	p->p_nlwpwait++;
    371 	l->l_waitingfor = lid;
    372 	curlid = l->l_lid;
    373 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    374 
    375 	for (;;) {
    376 		/*
    377 		 * Avoid a race between exit1() and sigexit(): if the
    378 		 * process is dumping core, then we need to bail out: call
    379 		 * into lwp_userret() where we will be suspended until the
    380 		 * deed is done.
    381 		 */
    382 		if ((p->p_sflag & PS_WCORE) != 0) {
    383 			mutex_exit(p->p_lock);
    384 			lwp_userret(l);
    385 #ifdef DIAGNOSTIC
    386 			panic("lwp_wait1");
    387 #endif
    388 			/* NOTREACHED */
    389 		}
    390 
    391 		/*
    392 		 * First off, drain any detached LWP that is waiting to be
    393 		 * reaped.
    394 		 */
    395 		while ((l2 = p->p_zomblwp) != NULL) {
    396 			p->p_zomblwp = NULL;
    397 			lwp_free(l2, false, false);/* releases proc mutex */
    398 			mutex_enter(p->p_lock);
    399 		}
    400 
    401 		/*
    402 		 * Now look for an LWP to collect.  If the whole process is
    403 		 * exiting, count detached LWPs as eligible to be collected,
    404 		 * but don't drain them here.
    405 		 */
    406 		nfound = 0;
    407 		error = 0;
    408 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    409 			/*
    410 			 * If a specific wait and the target is waiting on
    411 			 * us, then avoid deadlock.  This also traps LWPs
    412 			 * that try to wait on themselves.
    413 			 *
    414 			 * Note that this does not handle more complicated
    415 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    416 			 * can still be killed so it is not a major problem.
    417 			 */
    418 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    419 				error = EDEADLK;
    420 				break;
    421 			}
    422 			if (l2 == l)
    423 				continue;
    424 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    425 				nfound += exiting;
    426 				continue;
    427 			}
    428 			if (lid != 0) {
    429 				if (l2->l_lid != lid)
    430 					continue;
    431 				/*
    432 				 * Mark this LWP as the first waiter, if there
    433 				 * is no other.
    434 				 */
    435 				if (l2->l_waiter == 0)
    436 					l2->l_waiter = curlid;
    437 			} else if (l2->l_waiter != 0) {
    438 				/*
    439 				 * It already has a waiter - so don't
    440 				 * collect it.  If the waiter doesn't
    441 				 * grab it we'll get another chance
    442 				 * later.
    443 				 */
    444 				nfound++;
    445 				continue;
    446 			}
    447 			nfound++;
    448 
    449 			/* No need to lock the LWP in order to see LSZOMB. */
    450 			if (l2->l_stat != LSZOMB)
    451 				continue;
    452 
    453 			/*
    454 			 * We're no longer waiting.  Reset the "first waiter"
    455 			 * pointer on the target, in case it was us.
    456 			 */
    457 			l->l_waitingfor = 0;
    458 			l2->l_waiter = 0;
    459 			p->p_nlwpwait--;
    460 			if (departed)
    461 				*departed = l2->l_lid;
    462 			sched_lwp_collect(l2);
    463 
    464 			/* lwp_free() releases the proc lock. */
    465 			lwp_free(l2, false, false);
    466 			mutex_enter(p->p_lock);
    467 			return 0;
    468 		}
    469 
    470 		if (error != 0)
    471 			break;
    472 		if (nfound == 0) {
    473 			error = ESRCH;
    474 			break;
    475 		}
    476 
    477 		/*
    478 		 * The kernel is careful to ensure that it can not deadlock
    479 		 * when exiting - just keep waiting.
    480 		 */
    481 		if (exiting) {
    482 			KASSERT(p->p_nlwps > 1);
    483 			cv_wait(&p->p_lwpcv, p->p_lock);
    484 			continue;
    485 		}
    486 
    487 		/*
    488 		 * If all other LWPs are waiting for exits or suspends
    489 		 * and the supply of zombies and potential zombies is
    490 		 * exhausted, then we are about to deadlock.
    491 		 *
    492 		 * If the process is exiting (and this LWP is not the one
    493 		 * that is coordinating the exit) then bail out now.
    494 		 */
    495 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    496 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    497 			error = EDEADLK;
    498 			break;
    499 		}
    500 
    501 		/*
    502 		 * Sit around and wait for something to happen.  We'll be
    503 		 * awoken if any of the conditions examined change: if an
    504 		 * LWP exits, is collected, or is detached.
    505 		 */
    506 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    507 			break;
    508 	}
    509 
    510 	/*
    511 	 * We didn't find any LWPs to collect, we may have received a
    512 	 * signal, or some other condition has caused us to bail out.
    513 	 *
    514 	 * If waiting on a specific LWP, clear the waiters marker: some
    515 	 * other LWP may want it.  Then, kick all the remaining waiters
    516 	 * so that they can re-check for zombies and for deadlock.
    517 	 */
    518 	if (lid != 0) {
    519 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    520 			if (l2->l_lid == lid) {
    521 				if (l2->l_waiter == curlid)
    522 					l2->l_waiter = 0;
    523 				break;
    524 			}
    525 		}
    526 	}
    527 	p->p_nlwpwait--;
    528 	l->l_waitingfor = 0;
    529 	cv_broadcast(&p->p_lwpcv);
    530 
    531 	return error;
    532 }
    533 
    534 /*
    535  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    536  * The new LWP is created in state LSIDL and must be set running,
    537  * suspended, or stopped by the caller.
    538  */
    539 int
    540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
    541 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    542 	   lwp_t **rnewlwpp, int sclass)
    543 {
    544 	struct lwp *l2, *isfree;
    545 	turnstile_t *ts;
    546 
    547 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    548 
    549 	/*
    550 	 * First off, reap any detached LWP waiting to be collected.
    551 	 * We can re-use its LWP structure and turnstile.
    552 	 */
    553 	isfree = NULL;
    554 	if (p2->p_zomblwp != NULL) {
    555 		mutex_enter(p2->p_lock);
    556 		if ((isfree = p2->p_zomblwp) != NULL) {
    557 			p2->p_zomblwp = NULL;
    558 			lwp_free(isfree, true, false);/* releases proc mutex */
    559 		} else
    560 			mutex_exit(p2->p_lock);
    561 	}
    562 	if (isfree == NULL) {
    563 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    564 		memset(l2, 0, sizeof(*l2));
    565 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    566 		SLIST_INIT(&l2->l_pi_lenders);
    567 	} else {
    568 		l2 = isfree;
    569 		ts = l2->l_ts;
    570 		KASSERT(l2->l_inheritedprio == -1);
    571 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    572 		memset(l2, 0, sizeof(*l2));
    573 		l2->l_ts = ts;
    574 	}
    575 
    576 	l2->l_stat = LSIDL;
    577 	l2->l_proc = p2;
    578 	l2->l_refcnt = 1;
    579 	l2->l_class = sclass;
    580 
    581 	/*
    582 	 * If vfork(), we want the LWP to run fast and on the same CPU
    583 	 * as its parent, so that it can reuse the VM context and cache
    584 	 * footprint on the local CPU.
    585 	 */
    586 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    587 	l2->l_kpribase = PRI_KERNEL;
    588 	l2->l_priority = l1->l_priority;
    589 	l2->l_inheritedprio = -1;
    590 	l2->l_flag = inmem ? LW_INMEM : 0;
    591 	l2->l_pflag = LP_MPSAFE;
    592 	l2->l_fd = p2->p_fd;
    593 	TAILQ_INIT(&l2->l_ld_locks);
    594 
    595 	if (p2->p_flag & PK_SYSTEM) {
    596 		/* Mark it as a system LWP and not a candidate for swapping */
    597 		l2->l_flag |= LW_SYSTEM;
    598 	}
    599 
    600 	kpreempt_disable();
    601 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    602 	l2->l_cpu = l1->l_cpu;
    603 	kpreempt_enable();
    604 
    605 	lwp_initspecific(l2);
    606 	sched_lwp_fork(l1, l2);
    607 	lwp_update_creds(l2);
    608 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    609 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    610 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    611 	cv_init(&l2->l_sigcv, "sigwait");
    612 	l2->l_syncobj = &sched_syncobj;
    613 
    614 	if (rnewlwpp != NULL)
    615 		*rnewlwpp = l2;
    616 
    617 	l2->l_addr = UAREA_TO_USER(uaddr);
    618 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    619 	    (arg != NULL) ? arg : l2);
    620 
    621 	mutex_enter(p2->p_lock);
    622 
    623 	if ((flags & LWP_DETACHED) != 0) {
    624 		l2->l_prflag = LPR_DETACHED;
    625 		p2->p_ndlwps++;
    626 	} else
    627 		l2->l_prflag = 0;
    628 
    629 	l2->l_sigmask = l1->l_sigmask;
    630 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    631 	sigemptyset(&l2->l_sigpend.sp_set);
    632 
    633 	p2->p_nlwpid++;
    634 	if (p2->p_nlwpid == 0)
    635 		p2->p_nlwpid++;
    636 	l2->l_lid = p2->p_nlwpid;
    637 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    638 	p2->p_nlwps++;
    639 
    640 	mutex_exit(p2->p_lock);
    641 
    642 	mutex_enter(proc_lock);
    643 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    644 	mutex_exit(proc_lock);
    645 
    646 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    647 		/* Locking is needed, since LWP is in the list of all LWPs */
    648 		lwp_lock(l2);
    649 		/* Inherit a processor-set */
    650 		l2->l_psid = l1->l_psid;
    651 		/* Inherit an affinity */
    652 		if (l1->l_affinity) {
    653 			kcpuset_use(l1->l_affinity);
    654 			l2->l_affinity = l1->l_affinity;
    655 		}
    656 		/* Look for a CPU to start */
    657 		l2->l_cpu = sched_takecpu(l2);
    658 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    659 	}
    660 
    661 	SYSCALL_TIME_LWP_INIT(l2);
    662 
    663 	if (p2->p_emul->e_lwp_fork)
    664 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    665 
    666 	return (0);
    667 }
    668 
    669 /*
    670  * Called by MD code when a new LWP begins execution.  Must be called
    671  * with the previous LWP locked (so at splsched), or if there is no
    672  * previous LWP, at splsched.
    673  */
    674 void
    675 lwp_startup(struct lwp *prev, struct lwp *new)
    676 {
    677 
    678 	KASSERT(kpreempt_disabled());
    679 	if (prev != NULL) {
    680 		/*
    681 		 * Normalize the count of the spin-mutexes, it was
    682 		 * increased in mi_switch().  Unmark the state of
    683 		 * context switch - it is finished for previous LWP.
    684 		 */
    685 		curcpu()->ci_mtx_count++;
    686 		membar_exit();
    687 		prev->l_ctxswtch = 0;
    688 	}
    689 	KPREEMPT_DISABLE(new);
    690 	spl0();
    691 	pmap_activate(new);
    692 	LOCKDEBUG_BARRIER(NULL, 0);
    693 	KPREEMPT_ENABLE(new);
    694 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    695 		KERNEL_LOCK(1, new);
    696 	}
    697 }
    698 
    699 /*
    700  * Exit an LWP.
    701  */
    702 void
    703 lwp_exit(struct lwp *l)
    704 {
    705 	struct proc *p = l->l_proc;
    706 	struct lwp *l2;
    707 	bool current;
    708 
    709 	current = (l == curlwp);
    710 
    711 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    712 
    713 	/*
    714 	 * Verify that we hold no locks other than the kernel lock.
    715 	 */
    716 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    717 
    718 	/*
    719 	 * If we are the last live LWP in a process, we need to exit the
    720 	 * entire process.  We do so with an exit status of zero, because
    721 	 * it's a "controlled" exit, and because that's what Solaris does.
    722 	 *
    723 	 * We are not quite a zombie yet, but for accounting purposes we
    724 	 * must increment the count of zombies here.
    725 	 *
    726 	 * Note: the last LWP's specificdata will be deleted here.
    727 	 */
    728 	mutex_enter(p->p_lock);
    729 	if (p->p_nlwps - p->p_nzlwps == 1) {
    730 		KASSERT(current == true);
    731 		/* XXXSMP kernel_lock not held */
    732 		exit1(l, 0);
    733 		/* NOTREACHED */
    734 	}
    735 	p->p_nzlwps++;
    736 	mutex_exit(p->p_lock);
    737 
    738 	if (p->p_emul->e_lwp_exit)
    739 		(*p->p_emul->e_lwp_exit)(l);
    740 
    741 	/* Delete the specificdata while it's still safe to sleep. */
    742 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    743 
    744 	/*
    745 	 * Release our cached credentials.
    746 	 */
    747 	kauth_cred_free(l->l_cred);
    748 	callout_destroy(&l->l_timeout_ch);
    749 
    750 	if (l->l_affinity) {
    751 		kcpuset_unuse(l->l_affinity, NULL);
    752 		l->l_affinity = NULL;
    753 	}
    754 
    755 	/*
    756 	 * While we can still block, mark the LWP as unswappable to
    757 	 * prevent conflicts with the with the swapper.
    758 	 */
    759 	if (current)
    760 		uvm_lwp_hold(l);
    761 
    762 	/*
    763 	 * Remove the LWP from the global list.
    764 	 */
    765 	mutex_enter(proc_lock);
    766 	LIST_REMOVE(l, l_list);
    767 	mutex_exit(proc_lock);
    768 
    769 	/*
    770 	 * Get rid of all references to the LWP that others (e.g. procfs)
    771 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    772 	 * mark it waiting for collection in the proc structure.  Note that
    773 	 * before we can do that, we need to free any other dead, deatched
    774 	 * LWP waiting to meet its maker.
    775 	 */
    776 	mutex_enter(p->p_lock);
    777 	lwp_drainrefs(l);
    778 
    779 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    780 		while ((l2 = p->p_zomblwp) != NULL) {
    781 			p->p_zomblwp = NULL;
    782 			lwp_free(l2, false, false);/* releases proc mutex */
    783 			mutex_enter(p->p_lock);
    784 			l->l_refcnt++;
    785 			lwp_drainrefs(l);
    786 		}
    787 		p->p_zomblwp = l;
    788 	}
    789 
    790 	/*
    791 	 * If we find a pending signal for the process and we have been
    792 	 * asked to check for signals, then we loose: arrange to have
    793 	 * all other LWPs in the process check for signals.
    794 	 */
    795 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    796 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    797 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    798 			lwp_lock(l2);
    799 			l2->l_flag |= LW_PENDSIG;
    800 			lwp_unlock(l2);
    801 		}
    802 	}
    803 
    804 	lwp_lock(l);
    805 	l->l_stat = LSZOMB;
    806 	if (l->l_name != NULL)
    807 		strcpy(l->l_name, "(zombie)");
    808 	lwp_unlock(l);
    809 	p->p_nrlwps--;
    810 	cv_broadcast(&p->p_lwpcv);
    811 	if (l->l_lwpctl != NULL)
    812 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    813 	mutex_exit(p->p_lock);
    814 
    815 	/*
    816 	 * We can no longer block.  At this point, lwp_free() may already
    817 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    818 	 *
    819 	 * Free MD LWP resources.
    820 	 */
    821 #ifndef __NO_CPU_LWP_FREE
    822 	cpu_lwp_free(l, 0);
    823 #endif
    824 
    825 	if (current) {
    826 		pmap_deactivate(l);
    827 
    828 		/*
    829 		 * Release the kernel lock, and switch away into
    830 		 * oblivion.
    831 		 */
    832 #ifdef notyet
    833 		/* XXXSMP hold in lwp_userret() */
    834 		KERNEL_UNLOCK_LAST(l);
    835 #else
    836 		KERNEL_UNLOCK_ALL(l, NULL);
    837 #endif
    838 		lwp_exit_switchaway(l);
    839 	}
    840 }
    841 
    842 /*
    843  * Free a dead LWP's remaining resources.
    844  *
    845  * XXXLWP limits.
    846  */
    847 void
    848 lwp_free(struct lwp *l, bool recycle, bool last)
    849 {
    850 	struct proc *p = l->l_proc;
    851 	struct rusage *ru;
    852 	ksiginfoq_t kq;
    853 
    854 	KASSERT(l != curlwp);
    855 
    856 	/*
    857 	 * If this was not the last LWP in the process, then adjust
    858 	 * counters and unlock.
    859 	 */
    860 	if (!last) {
    861 		/*
    862 		 * Add the LWP's run time to the process' base value.
    863 		 * This needs to co-incide with coming off p_lwps.
    864 		 */
    865 		bintime_add(&p->p_rtime, &l->l_rtime);
    866 		p->p_pctcpu += l->l_pctcpu;
    867 		ru = &p->p_stats->p_ru;
    868 		ruadd(ru, &l->l_ru);
    869 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    870 		ru->ru_nivcsw += l->l_nivcsw;
    871 		LIST_REMOVE(l, l_sibling);
    872 		p->p_nlwps--;
    873 		p->p_nzlwps--;
    874 		if ((l->l_prflag & LPR_DETACHED) != 0)
    875 			p->p_ndlwps--;
    876 
    877 		/*
    878 		 * Have any LWPs sleeping in lwp_wait() recheck for
    879 		 * deadlock.
    880 		 */
    881 		cv_broadcast(&p->p_lwpcv);
    882 		mutex_exit(p->p_lock);
    883 	}
    884 
    885 #ifdef MULTIPROCESSOR
    886 	/*
    887 	 * In the unlikely event that the LWP is still on the CPU,
    888 	 * then spin until it has switched away.  We need to release
    889 	 * all locks to avoid deadlock against interrupt handlers on
    890 	 * the target CPU.
    891 	 */
    892 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    893 		int count;
    894 		(void)count; /* XXXgcc */
    895 		KERNEL_UNLOCK_ALL(curlwp, &count);
    896 		while ((l->l_pflag & LP_RUNNING) != 0 ||
    897 		    l->l_cpu->ci_curlwp == l)
    898 			SPINLOCK_BACKOFF_HOOK;
    899 		KERNEL_LOCK(count, curlwp);
    900 	}
    901 #endif
    902 
    903 	/*
    904 	 * Destroy the LWP's remaining signal information.
    905 	 */
    906 	ksiginfo_queue_init(&kq);
    907 	sigclear(&l->l_sigpend, NULL, &kq);
    908 	ksiginfo_queue_drain(&kq);
    909 	cv_destroy(&l->l_sigcv);
    910 	mutex_destroy(&l->l_swaplock);
    911 
    912 	/*
    913 	 * Free the LWP's turnstile and the LWP structure itself unless the
    914 	 * caller wants to recycle them.  Also, free the scheduler specific
    915 	 * data.
    916 	 *
    917 	 * We can't return turnstile0 to the pool (it didn't come from it),
    918 	 * so if it comes up just drop it quietly and move on.
    919 	 *
    920 	 * We don't recycle the VM resources at this time.
    921 	 */
    922 	if (l->l_lwpctl != NULL)
    923 		lwp_ctl_free(l);
    924 	sched_lwp_exit(l);
    925 
    926 	if (!recycle && l->l_ts != &turnstile0)
    927 		pool_cache_put(turnstile_cache, l->l_ts);
    928 	if (l->l_name != NULL)
    929 		kmem_free(l->l_name, MAXCOMLEN);
    930 #ifndef __NO_CPU_LWP_FREE
    931 	cpu_lwp_free2(l);
    932 #endif
    933 	KASSERT((l->l_flag & LW_INMEM) != 0);
    934 	uvm_lwp_exit(l);
    935 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    936 	KASSERT(l->l_inheritedprio == -1);
    937 	if (!recycle)
    938 		pool_cache_put(lwp_cache, l);
    939 }
    940 
    941 /*
    942  * Migrate the LWP to the another CPU.  Unlocks the LWP.
    943  */
    944 void
    945 lwp_migrate(lwp_t *l, struct cpu_info *tci)
    946 {
    947 	struct schedstate_percpu *tspc;
    948 	KASSERT(lwp_locked(l, NULL));
    949 	KASSERT(tci != NULL);
    950 
    951 	/*
    952 	 * If LWP is still on the CPU, it must be handled like on LSONPROC.
    953 	 * The destination CPU could be changed while previous migration
    954 	 * was not finished.
    955 	 */
    956 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_target_cpu != NULL) {
    957 		l->l_target_cpu = tci;
    958 		lwp_unlock(l);
    959 		return;
    960 	}
    961 
    962 	/* Nothing to do if trying to migrate to the same CPU */
    963 	if (l->l_cpu == tci) {
    964 		lwp_unlock(l);
    965 		return;
    966 	}
    967 
    968 	KASSERT(l->l_target_cpu == NULL);
    969 	tspc = &tci->ci_schedstate;
    970 	switch (l->l_stat) {
    971 	case LSRUN:
    972 		if (l->l_flag & LW_INMEM) {
    973 			l->l_target_cpu = tci;
    974 			lwp_unlock(l);
    975 			return;
    976 		}
    977 	case LSIDL:
    978 		l->l_cpu = tci;
    979 		lwp_unlock_to(l, tspc->spc_mutex);
    980 		return;
    981 	case LSSLEEP:
    982 		l->l_cpu = tci;
    983 		break;
    984 	case LSSTOP:
    985 	case LSSUSPENDED:
    986 		l->l_cpu = tci;
    987 		if (l->l_wchan == NULL) {
    988 			lwp_unlock_to(l, tspc->spc_lwplock);
    989 			return;
    990 		}
    991 		break;
    992 	case LSONPROC:
    993 		l->l_target_cpu = tci;
    994 		spc_lock(l->l_cpu);
    995 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
    996 		spc_unlock(l->l_cpu);
    997 		break;
    998 	}
    999 	lwp_unlock(l);
   1000 }
   1001 
   1002 /*
   1003  * Find the LWP in the process.  Arguments may be zero, in such case,
   1004  * the calling process and first LWP in the list will be used.
   1005  * On success - returns proc locked.
   1006  */
   1007 struct lwp *
   1008 lwp_find2(pid_t pid, lwpid_t lid)
   1009 {
   1010 	proc_t *p;
   1011 	lwp_t *l;
   1012 
   1013 	/* Find the process */
   1014 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
   1015 	if (p == NULL)
   1016 		return NULL;
   1017 	mutex_enter(p->p_lock);
   1018 	if (pid != 0) {
   1019 		/* Case of p_find */
   1020 		mutex_exit(proc_lock);
   1021 	}
   1022 
   1023 	/* Find the thread */
   1024 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
   1025 	if (l == NULL) {
   1026 		mutex_exit(p->p_lock);
   1027 	}
   1028 
   1029 	return l;
   1030 }
   1031 
   1032 /*
   1033  * Look up a live LWP within the speicifed process, and return it locked.
   1034  *
   1035  * Must be called with p->p_lock held.
   1036  */
   1037 struct lwp *
   1038 lwp_find(struct proc *p, int id)
   1039 {
   1040 	struct lwp *l;
   1041 
   1042 	KASSERT(mutex_owned(p->p_lock));
   1043 
   1044 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1045 		if (l->l_lid == id)
   1046 			break;
   1047 	}
   1048 
   1049 	/*
   1050 	 * No need to lock - all of these conditions will
   1051 	 * be visible with the process level mutex held.
   1052 	 */
   1053 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1054 		l = NULL;
   1055 
   1056 	return l;
   1057 }
   1058 
   1059 /*
   1060  * Update an LWP's cached credentials to mirror the process' master copy.
   1061  *
   1062  * This happens early in the syscall path, on user trap, and on LWP
   1063  * creation.  A long-running LWP can also voluntarily choose to update
   1064  * it's credentials by calling this routine.  This may be called from
   1065  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1066  */
   1067 void
   1068 lwp_update_creds(struct lwp *l)
   1069 {
   1070 	kauth_cred_t oc;
   1071 	struct proc *p;
   1072 
   1073 	p = l->l_proc;
   1074 	oc = l->l_cred;
   1075 
   1076 	mutex_enter(p->p_lock);
   1077 	kauth_cred_hold(p->p_cred);
   1078 	l->l_cred = p->p_cred;
   1079 	l->l_prflag &= ~LPR_CRMOD;
   1080 	mutex_exit(p->p_lock);
   1081 	if (oc != NULL)
   1082 		kauth_cred_free(oc);
   1083 }
   1084 
   1085 /*
   1086  * Verify that an LWP is locked, and optionally verify that the lock matches
   1087  * one we specify.
   1088  */
   1089 int
   1090 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1091 {
   1092 	kmutex_t *cur = l->l_mutex;
   1093 
   1094 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1095 }
   1096 
   1097 /*
   1098  * Lock an LWP.
   1099  */
   1100 kmutex_t *
   1101 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1102 {
   1103 
   1104 	/*
   1105 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1106 	 *
   1107 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1108 	 */
   1109 #if 1
   1110 	while (l->l_mutex != old) {
   1111 #else
   1112 	for (;;) {
   1113 #endif
   1114 		mutex_spin_exit(old);
   1115 		old = l->l_mutex;
   1116 		mutex_spin_enter(old);
   1117 
   1118 		/*
   1119 		 * mutex_enter() will have posted a read barrier.  Re-test
   1120 		 * l->l_mutex.  If it has changed, we need to try again.
   1121 		 */
   1122 #if 1
   1123 	}
   1124 #else
   1125 	} while (__predict_false(l->l_mutex != old));
   1126 #endif
   1127 
   1128 	return old;
   1129 }
   1130 
   1131 /*
   1132  * Lend a new mutex to an LWP.  The old mutex must be held.
   1133  */
   1134 void
   1135 lwp_setlock(struct lwp *l, kmutex_t *new)
   1136 {
   1137 
   1138 	KASSERT(mutex_owned(l->l_mutex));
   1139 
   1140 	membar_exit();
   1141 	l->l_mutex = new;
   1142 }
   1143 
   1144 /*
   1145  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1146  * must be held.
   1147  */
   1148 void
   1149 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1150 {
   1151 	kmutex_t *old;
   1152 
   1153 	KASSERT(mutex_owned(l->l_mutex));
   1154 
   1155 	old = l->l_mutex;
   1156 	membar_exit();
   1157 	l->l_mutex = new;
   1158 	mutex_spin_exit(old);
   1159 }
   1160 
   1161 /*
   1162  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1163  * locked.
   1164  */
   1165 void
   1166 lwp_relock(struct lwp *l, kmutex_t *new)
   1167 {
   1168 	kmutex_t *old;
   1169 
   1170 	KASSERT(mutex_owned(l->l_mutex));
   1171 
   1172 	old = l->l_mutex;
   1173 	if (old != new) {
   1174 		mutex_spin_enter(new);
   1175 		l->l_mutex = new;
   1176 		mutex_spin_exit(old);
   1177 	}
   1178 }
   1179 
   1180 int
   1181 lwp_trylock(struct lwp *l)
   1182 {
   1183 	kmutex_t *old;
   1184 
   1185 	for (;;) {
   1186 		if (!mutex_tryenter(old = l->l_mutex))
   1187 			return 0;
   1188 		if (__predict_true(l->l_mutex == old))
   1189 			return 1;
   1190 		mutex_spin_exit(old);
   1191 	}
   1192 }
   1193 
   1194 u_int
   1195 lwp_unsleep(lwp_t *l, bool cleanup)
   1196 {
   1197 
   1198 	KASSERT(mutex_owned(l->l_mutex));
   1199 
   1200 	return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1201 }
   1202 
   1203 
   1204 /*
   1205  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1206  * set.
   1207  */
   1208 void
   1209 lwp_userret(struct lwp *l)
   1210 {
   1211 	struct proc *p;
   1212 	void (*hook)(void);
   1213 	int sig;
   1214 
   1215 	KASSERT(l == curlwp);
   1216 	KASSERT(l->l_stat == LSONPROC);
   1217 	p = l->l_proc;
   1218 
   1219 #ifndef __HAVE_FAST_SOFTINTS
   1220 	/* Run pending soft interrupts. */
   1221 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1222 		softint_overlay();
   1223 #endif
   1224 
   1225 	/*
   1226 	 * It should be safe to do this read unlocked on a multiprocessor
   1227 	 * system..
   1228 	 */
   1229 	while ((l->l_flag & LW_USERRET) != 0) {
   1230 		/*
   1231 		 * Process pending signals first, unless the process
   1232 		 * is dumping core or exiting, where we will instead
   1233 		 * enter the LW_WSUSPEND case below.
   1234 		 */
   1235 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1236 		    LW_PENDSIG) {
   1237 			mutex_enter(p->p_lock);
   1238 			while ((sig = issignal(l)) != 0)
   1239 				postsig(sig);
   1240 			mutex_exit(p->p_lock);
   1241 		}
   1242 
   1243 		/*
   1244 		 * Core-dump or suspend pending.
   1245 		 *
   1246 		 * In case of core dump, suspend ourselves, so that the
   1247 		 * kernel stack and therefore the userland registers saved
   1248 		 * in the trapframe are around for coredump() to write them
   1249 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1250 		 * will write the core file out once all other LWPs are
   1251 		 * suspended.
   1252 		 */
   1253 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1254 			mutex_enter(p->p_lock);
   1255 			p->p_nrlwps--;
   1256 			cv_broadcast(&p->p_lwpcv);
   1257 			lwp_lock(l);
   1258 			l->l_stat = LSSUSPENDED;
   1259 			lwp_unlock(l);
   1260 			mutex_exit(p->p_lock);
   1261 			lwp_lock(l);
   1262 			mi_switch(l);
   1263 		}
   1264 
   1265 		/* Process is exiting. */
   1266 		if ((l->l_flag & LW_WEXIT) != 0) {
   1267 			lwp_exit(l);
   1268 			KASSERT(0);
   1269 			/* NOTREACHED */
   1270 		}
   1271 
   1272 		/* Call userret hook; used by Linux emulation. */
   1273 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1274 			lwp_lock(l);
   1275 			l->l_flag &= ~LW_WUSERRET;
   1276 			lwp_unlock(l);
   1277 			hook = p->p_userret;
   1278 			p->p_userret = NULL;
   1279 			(*hook)();
   1280 		}
   1281 	}
   1282 }
   1283 
   1284 /*
   1285  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1286  */
   1287 void
   1288 lwp_need_userret(struct lwp *l)
   1289 {
   1290 	KASSERT(lwp_locked(l, NULL));
   1291 
   1292 	/*
   1293 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1294 	 * that the condition will be seen before forcing the LWP to enter
   1295 	 * kernel mode.
   1296 	 */
   1297 	membar_producer();
   1298 	cpu_signotify(l);
   1299 }
   1300 
   1301 /*
   1302  * Add one reference to an LWP.  This will prevent the LWP from
   1303  * exiting, thus keep the lwp structure and PCB around to inspect.
   1304  */
   1305 void
   1306 lwp_addref(struct lwp *l)
   1307 {
   1308 
   1309 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1310 	KASSERT(l->l_stat != LSZOMB);
   1311 	KASSERT(l->l_refcnt != 0);
   1312 
   1313 	l->l_refcnt++;
   1314 }
   1315 
   1316 /*
   1317  * Remove one reference to an LWP.  If this is the last reference,
   1318  * then we must finalize the LWP's death.
   1319  */
   1320 void
   1321 lwp_delref(struct lwp *l)
   1322 {
   1323 	struct proc *p = l->l_proc;
   1324 
   1325 	mutex_enter(p->p_lock);
   1326 	KASSERT(l->l_stat != LSZOMB);
   1327 	KASSERT(l->l_refcnt > 0);
   1328 	if (--l->l_refcnt == 0)
   1329 		cv_broadcast(&p->p_lwpcv);
   1330 	mutex_exit(p->p_lock);
   1331 }
   1332 
   1333 /*
   1334  * Drain all references to the current LWP.
   1335  */
   1336 void
   1337 lwp_drainrefs(struct lwp *l)
   1338 {
   1339 	struct proc *p = l->l_proc;
   1340 
   1341 	KASSERT(mutex_owned(p->p_lock));
   1342 	KASSERT(l->l_refcnt != 0);
   1343 
   1344 	l->l_refcnt--;
   1345 	while (l->l_refcnt != 0)
   1346 		cv_wait(&p->p_lwpcv, p->p_lock);
   1347 }
   1348 
   1349 /*
   1350  * lwp_specific_key_create --
   1351  *	Create a key for subsystem lwp-specific data.
   1352  */
   1353 int
   1354 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1355 {
   1356 
   1357 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1358 }
   1359 
   1360 /*
   1361  * lwp_specific_key_delete --
   1362  *	Delete a key for subsystem lwp-specific data.
   1363  */
   1364 void
   1365 lwp_specific_key_delete(specificdata_key_t key)
   1366 {
   1367 
   1368 	specificdata_key_delete(lwp_specificdata_domain, key);
   1369 }
   1370 
   1371 /*
   1372  * lwp_initspecific --
   1373  *	Initialize an LWP's specificdata container.
   1374  */
   1375 void
   1376 lwp_initspecific(struct lwp *l)
   1377 {
   1378 	int error;
   1379 
   1380 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1381 	KASSERT(error == 0);
   1382 }
   1383 
   1384 /*
   1385  * lwp_finispecific --
   1386  *	Finalize an LWP's specificdata container.
   1387  */
   1388 void
   1389 lwp_finispecific(struct lwp *l)
   1390 {
   1391 
   1392 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1393 }
   1394 
   1395 /*
   1396  * lwp_getspecific --
   1397  *	Return lwp-specific data corresponding to the specified key.
   1398  *
   1399  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1400  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1401  *	LWP's specifc data, care must be taken to ensure that doing so
   1402  *	would not cause internal data structure inconsistency (i.e. caller
   1403  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1404  *	or lwp_setspecific() call).
   1405  */
   1406 void *
   1407 lwp_getspecific(specificdata_key_t key)
   1408 {
   1409 
   1410 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1411 						  &curlwp->l_specdataref, key));
   1412 }
   1413 
   1414 void *
   1415 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1416 {
   1417 
   1418 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1419 						  &l->l_specdataref, key));
   1420 }
   1421 
   1422 /*
   1423  * lwp_setspecific --
   1424  *	Set lwp-specific data corresponding to the specified key.
   1425  */
   1426 void
   1427 lwp_setspecific(specificdata_key_t key, void *data)
   1428 {
   1429 
   1430 	specificdata_setspecific(lwp_specificdata_domain,
   1431 				 &curlwp->l_specdataref, key, data);
   1432 }
   1433 
   1434 /*
   1435  * Allocate a new lwpctl structure for a user LWP.
   1436  */
   1437 int
   1438 lwp_ctl_alloc(vaddr_t *uaddr)
   1439 {
   1440 	lcproc_t *lp;
   1441 	u_int bit, i, offset;
   1442 	struct uvm_object *uao;
   1443 	int error;
   1444 	lcpage_t *lcp;
   1445 	proc_t *p;
   1446 	lwp_t *l;
   1447 
   1448 	l = curlwp;
   1449 	p = l->l_proc;
   1450 
   1451 	if (l->l_lcpage != NULL) {
   1452 		lcp = l->l_lcpage;
   1453 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1454 		return (EINVAL);
   1455 	}
   1456 
   1457 	/* First time around, allocate header structure for the process. */
   1458 	if ((lp = p->p_lwpctl) == NULL) {
   1459 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1460 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1461 		lp->lp_uao = NULL;
   1462 		TAILQ_INIT(&lp->lp_pages);
   1463 		mutex_enter(p->p_lock);
   1464 		if (p->p_lwpctl == NULL) {
   1465 			p->p_lwpctl = lp;
   1466 			mutex_exit(p->p_lock);
   1467 		} else {
   1468 			mutex_exit(p->p_lock);
   1469 			mutex_destroy(&lp->lp_lock);
   1470 			kmem_free(lp, sizeof(*lp));
   1471 			lp = p->p_lwpctl;
   1472 		}
   1473 	}
   1474 
   1475  	/*
   1476  	 * Set up an anonymous memory region to hold the shared pages.
   1477  	 * Map them into the process' address space.  The user vmspace
   1478  	 * gets the first reference on the UAO.
   1479  	 */
   1480 	mutex_enter(&lp->lp_lock);
   1481 	if (lp->lp_uao == NULL) {
   1482 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1483 		lp->lp_cur = 0;
   1484 		lp->lp_max = LWPCTL_UAREA_SZ;
   1485 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1486 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1487 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1488 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1489 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1490 		if (error != 0) {
   1491 			uao_detach(lp->lp_uao);
   1492 			lp->lp_uao = NULL;
   1493 			mutex_exit(&lp->lp_lock);
   1494 			return error;
   1495 		}
   1496 	}
   1497 
   1498 	/* Get a free block and allocate for this LWP. */
   1499 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1500 		if (lcp->lcp_nfree != 0)
   1501 			break;
   1502 	}
   1503 	if (lcp == NULL) {
   1504 		/* Nothing available - try to set up a free page. */
   1505 		if (lp->lp_cur == lp->lp_max) {
   1506 			mutex_exit(&lp->lp_lock);
   1507 			return ENOMEM;
   1508 		}
   1509 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1510 		if (lcp == NULL) {
   1511 			mutex_exit(&lp->lp_lock);
   1512 			return ENOMEM;
   1513 		}
   1514 		/*
   1515 		 * Wire the next page down in kernel space.  Since this
   1516 		 * is a new mapping, we must add a reference.
   1517 		 */
   1518 		uao = lp->lp_uao;
   1519 		(*uao->pgops->pgo_reference)(uao);
   1520 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1521 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1522 		    uao, lp->lp_cur, PAGE_SIZE,
   1523 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1524 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1525 		if (error != 0) {
   1526 			mutex_exit(&lp->lp_lock);
   1527 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1528 			(*uao->pgops->pgo_detach)(uao);
   1529 			return error;
   1530 		}
   1531 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1532 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1533 		if (error != 0) {
   1534 			mutex_exit(&lp->lp_lock);
   1535 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1536 			    lcp->lcp_kaddr + PAGE_SIZE);
   1537 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1538 			return error;
   1539 		}
   1540 		/* Prepare the page descriptor and link into the list. */
   1541 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1542 		lp->lp_cur += PAGE_SIZE;
   1543 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1544 		lcp->lcp_rotor = 0;
   1545 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1546 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1547 	}
   1548 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1549 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1550 			i = 0;
   1551 	}
   1552 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1553 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1554 	lcp->lcp_rotor = i;
   1555 	lcp->lcp_nfree--;
   1556 	l->l_lcpage = lcp;
   1557 	offset = (i << 5) + bit;
   1558 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1559 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1560 	mutex_exit(&lp->lp_lock);
   1561 
   1562 	KPREEMPT_DISABLE(l);
   1563 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1564 	KPREEMPT_ENABLE(l);
   1565 
   1566 	return 0;
   1567 }
   1568 
   1569 /*
   1570  * Free an lwpctl structure back to the per-process list.
   1571  */
   1572 void
   1573 lwp_ctl_free(lwp_t *l)
   1574 {
   1575 	lcproc_t *lp;
   1576 	lcpage_t *lcp;
   1577 	u_int map, offset;
   1578 
   1579 	lp = l->l_proc->p_lwpctl;
   1580 	KASSERT(lp != NULL);
   1581 
   1582 	lcp = l->l_lcpage;
   1583 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1584 	KASSERT(offset < LWPCTL_PER_PAGE);
   1585 
   1586 	mutex_enter(&lp->lp_lock);
   1587 	lcp->lcp_nfree++;
   1588 	map = offset >> 5;
   1589 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1590 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1591 		lcp->lcp_rotor = map;
   1592 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1593 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1594 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1595 	}
   1596 	mutex_exit(&lp->lp_lock);
   1597 }
   1598 
   1599 /*
   1600  * Process is exiting; tear down lwpctl state.  This can only be safely
   1601  * called by the last LWP in the process.
   1602  */
   1603 void
   1604 lwp_ctl_exit(void)
   1605 {
   1606 	lcpage_t *lcp, *next;
   1607 	lcproc_t *lp;
   1608 	proc_t *p;
   1609 	lwp_t *l;
   1610 
   1611 	l = curlwp;
   1612 	l->l_lwpctl = NULL;
   1613 	l->l_lcpage = NULL;
   1614 	p = l->l_proc;
   1615 	lp = p->p_lwpctl;
   1616 
   1617 	KASSERT(lp != NULL);
   1618 	KASSERT(p->p_nlwps == 1);
   1619 
   1620 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1621 		next = TAILQ_NEXT(lcp, lcp_chain);
   1622 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1623 		    lcp->lcp_kaddr + PAGE_SIZE);
   1624 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1625 	}
   1626 
   1627 	if (lp->lp_uao != NULL) {
   1628 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1629 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1630 	}
   1631 
   1632 	mutex_destroy(&lp->lp_lock);
   1633 	kmem_free(lp, sizeof(*lp));
   1634 	p->p_lwpctl = NULL;
   1635 }
   1636 
   1637 #if defined(DDB)
   1638 void
   1639 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1640 {
   1641 	lwp_t *l;
   1642 
   1643 	LIST_FOREACH(l, &alllwp, l_list) {
   1644 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1645 
   1646 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1647 			continue;
   1648 		}
   1649 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1650 		    (void *)addr, (void *)stack,
   1651 		    (size_t)(addr - stack), l);
   1652 	}
   1653 }
   1654 #endif /* defined(DDB) */
   1655