kern_lwp.c revision 1.127.2.2 1 /* $NetBSD: kern_lwp.c,v 1.127.2.2 2009/07/23 23:32:34 jym Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0)
64 * then the LWP is not on a run queue, but may be soon.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is about to switch away into oblivion, or has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > SLEEP
125 * > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 * > IDL (special cases)
129 *
130 * STOPPED ---> RUN SUSPENDED --> RUN
131 * > SLEEP
132 *
133 * SLEEP -----> ONPROC IDL --------> RUN
134 * > RUN > SUSPENDED
135 * > STOPPED > STOPPED
136 * > ONPROC (special cases)
137 *
138 * Some state transitions are only possible with kernel threads (eg
139 * ONPROC -> IDL) and happen under tightly controlled circumstances
140 * free of unwanted side effects.
141 *
142 * Migration
143 *
144 * Migration of threads from one CPU to another could be performed
145 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
146 * functions. The universal lwp_migrate() function should be used for
147 * any other cases. Subsystems in the kernel must be aware that CPU
148 * of LWP may change, while it is not locked.
149 *
150 * Locking
151 *
152 * The majority of fields in 'struct lwp' are covered by a single,
153 * general spin lock pointed to by lwp::l_mutex. The locks covering
154 * each field are documented in sys/lwp.h.
155 *
156 * State transitions must be made with the LWP's general lock held,
157 * and may cause the LWP's lock pointer to change. Manipulation of
158 * the general lock is not performed directly, but through calls to
159 * lwp_lock(), lwp_relock() and similar.
160 *
161 * States and their associated locks:
162 *
163 * LSONPROC, LSZOMB:
164 *
165 * Always covered by spc_lwplock, which protects running LWPs.
166 * This is a per-CPU lock and matches lwp::l_cpu.
167 *
168 * LSIDL, LSRUN:
169 *
170 * Always covered by spc_mutex, which protects the run queues.
171 * This is a per-CPU lock and matches lwp::l_cpu.
172 *
173 * LSSLEEP:
174 *
175 * Covered by a lock associated with the sleep queue that the
176 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
177 *
178 * LSSTOP, LSSUSPENDED:
179 *
180 * If the LWP was previously sleeping (l_wchan != NULL), then
181 * l_mutex references the sleep queue lock. If the LWP was
182 * runnable or on the CPU when halted, or has been removed from
183 * the sleep queue since halted, then the lock is spc_lwplock.
184 *
185 * The lock order is as follows:
186 *
187 * spc::spc_lwplock ->
188 * sleeptab::st_mutex ->
189 * tschain_t::tc_mutex ->
190 * spc::spc_mutex
191 *
192 * Each process has an scheduler state lock (proc::p_lock), and a
193 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
194 * so on. When an LWP is to be entered into or removed from one of the
195 * following states, p_lock must be held and the process wide counters
196 * adjusted:
197 *
198 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
199 *
200 * (But not always for kernel threads. There are some special cases
201 * as mentioned above. See kern_softint.c.)
202 *
203 * Note that an LWP is considered running or likely to run soon if in
204 * one of the following states. This affects the value of p_nrlwps:
205 *
206 * LSRUN, LSONPROC, LSSLEEP
207 *
208 * p_lock does not need to be held when transitioning among these
209 * three states, hence p_lock is rarely taken for state transitions.
210 */
211
212 #include <sys/cdefs.h>
213 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.127.2.2 2009/07/23 23:32:34 jym Exp $");
214
215 #include "opt_ddb.h"
216 #include "opt_lockdebug.h"
217 #include "opt_sa.h"
218
219 #define _LWP_API_PRIVATE
220
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/sa.h>
227 #include <sys/savar.h>
228 #include <sys/syscallargs.h>
229 #include <sys/syscall_stats.h>
230 #include <sys/kauth.h>
231 #include <sys/sleepq.h>
232 #include <sys/user.h>
233 #include <sys/lockdebug.h>
234 #include <sys/kmem.h>
235 #include <sys/pset.h>
236 #include <sys/intr.h>
237 #include <sys/lwpctl.h>
238 #include <sys/atomic.h>
239 #include <sys/filedesc.h>
240
241 #include <uvm/uvm_extern.h>
242 #include <uvm/uvm_object.h>
243
244 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
245
246 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
247 &pool_allocator_nointr, IPL_NONE);
248
249 static pool_cache_t lwp_cache;
250 static specificdata_domain_t lwp_specificdata_domain;
251
252 void
253 lwpinit(void)
254 {
255
256 lwp_specificdata_domain = specificdata_domain_create();
257 KASSERT(lwp_specificdata_domain != NULL);
258 lwp_sys_init();
259 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
260 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
261 }
262
263 /*
264 * Set an suspended.
265 *
266 * Must be called with p_lock held, and the LWP locked. Will unlock the
267 * LWP before return.
268 */
269 int
270 lwp_suspend(struct lwp *curl, struct lwp *t)
271 {
272 int error;
273
274 KASSERT(mutex_owned(t->l_proc->p_lock));
275 KASSERT(lwp_locked(t, NULL));
276
277 KASSERT(curl != t || curl->l_stat == LSONPROC);
278
279 /*
280 * If the current LWP has been told to exit, we must not suspend anyone
281 * else or deadlock could occur. We won't return to userspace.
282 */
283 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
284 lwp_unlock(t);
285 return (EDEADLK);
286 }
287
288 error = 0;
289
290 switch (t->l_stat) {
291 case LSRUN:
292 case LSONPROC:
293 t->l_flag |= LW_WSUSPEND;
294 lwp_need_userret(t);
295 lwp_unlock(t);
296 break;
297
298 case LSSLEEP:
299 t->l_flag |= LW_WSUSPEND;
300
301 /*
302 * Kick the LWP and try to get it to the kernel boundary
303 * so that it will release any locks that it holds.
304 * setrunnable() will release the lock.
305 */
306 if ((t->l_flag & LW_SINTR) != 0)
307 setrunnable(t);
308 else
309 lwp_unlock(t);
310 break;
311
312 case LSSUSPENDED:
313 lwp_unlock(t);
314 break;
315
316 case LSSTOP:
317 t->l_flag |= LW_WSUSPEND;
318 setrunnable(t);
319 break;
320
321 case LSIDL:
322 case LSZOMB:
323 error = EINTR; /* It's what Solaris does..... */
324 lwp_unlock(t);
325 break;
326 }
327
328 return (error);
329 }
330
331 /*
332 * Restart a suspended LWP.
333 *
334 * Must be called with p_lock held, and the LWP locked. Will unlock the
335 * LWP before return.
336 */
337 void
338 lwp_continue(struct lwp *l)
339 {
340
341 KASSERT(mutex_owned(l->l_proc->p_lock));
342 KASSERT(lwp_locked(l, NULL));
343
344 /* If rebooting or not suspended, then just bail out. */
345 if ((l->l_flag & LW_WREBOOT) != 0) {
346 lwp_unlock(l);
347 return;
348 }
349
350 l->l_flag &= ~LW_WSUSPEND;
351
352 if (l->l_stat != LSSUSPENDED) {
353 lwp_unlock(l);
354 return;
355 }
356
357 /* setrunnable() will release the lock. */
358 setrunnable(l);
359 }
360
361 /*
362 * Wait for an LWP within the current process to exit. If 'lid' is
363 * non-zero, we are waiting for a specific LWP.
364 *
365 * Must be called with p->p_lock held.
366 */
367 int
368 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
369 {
370 struct proc *p = l->l_proc;
371 struct lwp *l2;
372 int nfound, error;
373 lwpid_t curlid;
374 bool exiting;
375
376 KASSERT(mutex_owned(p->p_lock));
377
378 p->p_nlwpwait++;
379 l->l_waitingfor = lid;
380 curlid = l->l_lid;
381 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
382
383 for (;;) {
384 /*
385 * Avoid a race between exit1() and sigexit(): if the
386 * process is dumping core, then we need to bail out: call
387 * into lwp_userret() where we will be suspended until the
388 * deed is done.
389 */
390 if ((p->p_sflag & PS_WCORE) != 0) {
391 mutex_exit(p->p_lock);
392 lwp_userret(l);
393 #ifdef DIAGNOSTIC
394 panic("lwp_wait1");
395 #endif
396 /* NOTREACHED */
397 }
398
399 /*
400 * First off, drain any detached LWP that is waiting to be
401 * reaped.
402 */
403 while ((l2 = p->p_zomblwp) != NULL) {
404 p->p_zomblwp = NULL;
405 lwp_free(l2, false, false);/* releases proc mutex */
406 mutex_enter(p->p_lock);
407 }
408
409 /*
410 * Now look for an LWP to collect. If the whole process is
411 * exiting, count detached LWPs as eligible to be collected,
412 * but don't drain them here.
413 */
414 nfound = 0;
415 error = 0;
416 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
417 /*
418 * If a specific wait and the target is waiting on
419 * us, then avoid deadlock. This also traps LWPs
420 * that try to wait on themselves.
421 *
422 * Note that this does not handle more complicated
423 * cycles, like: t1 -> t2 -> t3 -> t1. The process
424 * can still be killed so it is not a major problem.
425 */
426 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
427 error = EDEADLK;
428 break;
429 }
430 if (l2 == l)
431 continue;
432 if ((l2->l_prflag & LPR_DETACHED) != 0) {
433 nfound += exiting;
434 continue;
435 }
436 if (lid != 0) {
437 if (l2->l_lid != lid)
438 continue;
439 /*
440 * Mark this LWP as the first waiter, if there
441 * is no other.
442 */
443 if (l2->l_waiter == 0)
444 l2->l_waiter = curlid;
445 } else if (l2->l_waiter != 0) {
446 /*
447 * It already has a waiter - so don't
448 * collect it. If the waiter doesn't
449 * grab it we'll get another chance
450 * later.
451 */
452 nfound++;
453 continue;
454 }
455 nfound++;
456
457 /* No need to lock the LWP in order to see LSZOMB. */
458 if (l2->l_stat != LSZOMB)
459 continue;
460
461 /*
462 * We're no longer waiting. Reset the "first waiter"
463 * pointer on the target, in case it was us.
464 */
465 l->l_waitingfor = 0;
466 l2->l_waiter = 0;
467 p->p_nlwpwait--;
468 if (departed)
469 *departed = l2->l_lid;
470 sched_lwp_collect(l2);
471
472 /* lwp_free() releases the proc lock. */
473 lwp_free(l2, false, false);
474 mutex_enter(p->p_lock);
475 return 0;
476 }
477
478 if (error != 0)
479 break;
480 if (nfound == 0) {
481 error = ESRCH;
482 break;
483 }
484
485 /*
486 * The kernel is careful to ensure that it can not deadlock
487 * when exiting - just keep waiting.
488 */
489 if (exiting) {
490 KASSERT(p->p_nlwps > 1);
491 cv_wait(&p->p_lwpcv, p->p_lock);
492 continue;
493 }
494
495 /*
496 * If all other LWPs are waiting for exits or suspends
497 * and the supply of zombies and potential zombies is
498 * exhausted, then we are about to deadlock.
499 *
500 * If the process is exiting (and this LWP is not the one
501 * that is coordinating the exit) then bail out now.
502 */
503 if ((p->p_sflag & PS_WEXIT) != 0 ||
504 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
505 error = EDEADLK;
506 break;
507 }
508
509 /*
510 * Sit around and wait for something to happen. We'll be
511 * awoken if any of the conditions examined change: if an
512 * LWP exits, is collected, or is detached.
513 */
514 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
515 break;
516 }
517
518 /*
519 * We didn't find any LWPs to collect, we may have received a
520 * signal, or some other condition has caused us to bail out.
521 *
522 * If waiting on a specific LWP, clear the waiters marker: some
523 * other LWP may want it. Then, kick all the remaining waiters
524 * so that they can re-check for zombies and for deadlock.
525 */
526 if (lid != 0) {
527 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
528 if (l2->l_lid == lid) {
529 if (l2->l_waiter == curlid)
530 l2->l_waiter = 0;
531 break;
532 }
533 }
534 }
535 p->p_nlwpwait--;
536 l->l_waitingfor = 0;
537 cv_broadcast(&p->p_lwpcv);
538
539 return error;
540 }
541
542 /*
543 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
544 * The new LWP is created in state LSIDL and must be set running,
545 * suspended, or stopped by the caller.
546 */
547 int
548 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
549 void *stack, size_t stacksize, void (*func)(void *), void *arg,
550 lwp_t **rnewlwpp, int sclass)
551 {
552 struct lwp *l2, *isfree;
553 turnstile_t *ts;
554
555 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
556
557 /*
558 * First off, reap any detached LWP waiting to be collected.
559 * We can re-use its LWP structure and turnstile.
560 */
561 isfree = NULL;
562 if (p2->p_zomblwp != NULL) {
563 mutex_enter(p2->p_lock);
564 if ((isfree = p2->p_zomblwp) != NULL) {
565 p2->p_zomblwp = NULL;
566 lwp_free(isfree, true, false);/* releases proc mutex */
567 } else
568 mutex_exit(p2->p_lock);
569 }
570 if (isfree == NULL) {
571 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
572 memset(l2, 0, sizeof(*l2));
573 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
574 SLIST_INIT(&l2->l_pi_lenders);
575 } else {
576 l2 = isfree;
577 ts = l2->l_ts;
578 KASSERT(l2->l_inheritedprio == -1);
579 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
580 memset(l2, 0, sizeof(*l2));
581 l2->l_ts = ts;
582 }
583
584 l2->l_stat = LSIDL;
585 l2->l_proc = p2;
586 l2->l_refcnt = 1;
587 l2->l_class = sclass;
588
589 /*
590 * If vfork(), we want the LWP to run fast and on the same CPU
591 * as its parent, so that it can reuse the VM context and cache
592 * footprint on the local CPU.
593 */
594 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
595 l2->l_kpribase = PRI_KERNEL;
596 l2->l_priority = l1->l_priority;
597 l2->l_inheritedprio = -1;
598 l2->l_flag = inmem ? LW_INMEM : 0;
599 l2->l_pflag = LP_MPSAFE;
600 TAILQ_INIT(&l2->l_ld_locks);
601
602 /*
603 * If not the first LWP in the process, grab a reference to the
604 * descriptor table.
605 */
606 l2->l_fd = p2->p_fd;
607 if (p2->p_nlwps != 0) {
608 KASSERT(l1->l_proc == p2);
609 atomic_inc_uint(&l2->l_fd->fd_refcnt);
610 } else {
611 KASSERT(l1->l_proc != p2);
612 }
613
614 if (p2->p_flag & PK_SYSTEM) {
615 /* Mark it as a system LWP and not a candidate for swapping */
616 l2->l_flag |= LW_SYSTEM;
617 }
618
619 kpreempt_disable();
620 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
621 l2->l_cpu = l1->l_cpu;
622 kpreempt_enable();
623
624 lwp_initspecific(l2);
625 sched_lwp_fork(l1, l2);
626 lwp_update_creds(l2);
627 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
628 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
629 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
630 cv_init(&l2->l_sigcv, "sigwait");
631 l2->l_syncobj = &sched_syncobj;
632
633 if (rnewlwpp != NULL)
634 *rnewlwpp = l2;
635
636 l2->l_addr = UAREA_TO_USER(uaddr);
637 uvm_lwp_fork(l1, l2, stack, stacksize, func,
638 (arg != NULL) ? arg : l2);
639
640 mutex_enter(p2->p_lock);
641
642 if ((flags & LWP_DETACHED) != 0) {
643 l2->l_prflag = LPR_DETACHED;
644 p2->p_ndlwps++;
645 } else
646 l2->l_prflag = 0;
647
648 l2->l_sigmask = l1->l_sigmask;
649 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
650 sigemptyset(&l2->l_sigpend.sp_set);
651
652 p2->p_nlwpid++;
653 if (p2->p_nlwpid == 0)
654 p2->p_nlwpid++;
655 l2->l_lid = p2->p_nlwpid;
656 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
657 p2->p_nlwps++;
658
659 if ((p2->p_flag & PK_SYSTEM) == 0) {
660 /* Inherit an affinity */
661 if (l1->l_flag & LW_AFFINITY) {
662 /*
663 * Note that we hold the state lock while inheriting
664 * the affinity to avoid race with sched_setaffinity().
665 */
666 lwp_lock(l1);
667 if (l1->l_flag & LW_AFFINITY) {
668 kcpuset_use(l1->l_affinity);
669 l2->l_affinity = l1->l_affinity;
670 l2->l_flag |= LW_AFFINITY;
671 }
672 lwp_unlock(l1);
673 }
674 lwp_lock(l2);
675 /* Inherit a processor-set */
676 l2->l_psid = l1->l_psid;
677 /* Look for a CPU to start */
678 l2->l_cpu = sched_takecpu(l2);
679 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
680 }
681 mutex_exit(p2->p_lock);
682
683 mutex_enter(proc_lock);
684 LIST_INSERT_HEAD(&alllwp, l2, l_list);
685 mutex_exit(proc_lock);
686
687 SYSCALL_TIME_LWP_INIT(l2);
688
689 if (p2->p_emul->e_lwp_fork)
690 (*p2->p_emul->e_lwp_fork)(l1, l2);
691
692 return (0);
693 }
694
695 /*
696 * Called by MD code when a new LWP begins execution. Must be called
697 * with the previous LWP locked (so at splsched), or if there is no
698 * previous LWP, at splsched.
699 */
700 void
701 lwp_startup(struct lwp *prev, struct lwp *new)
702 {
703
704 KASSERT(kpreempt_disabled());
705 if (prev != NULL) {
706 /*
707 * Normalize the count of the spin-mutexes, it was
708 * increased in mi_switch(). Unmark the state of
709 * context switch - it is finished for previous LWP.
710 */
711 curcpu()->ci_mtx_count++;
712 membar_exit();
713 prev->l_ctxswtch = 0;
714 }
715 KPREEMPT_DISABLE(new);
716 spl0();
717 pmap_activate(new);
718 LOCKDEBUG_BARRIER(NULL, 0);
719 KPREEMPT_ENABLE(new);
720 if ((new->l_pflag & LP_MPSAFE) == 0) {
721 KERNEL_LOCK(1, new);
722 }
723 }
724
725 /*
726 * Exit an LWP.
727 */
728 void
729 lwp_exit(struct lwp *l)
730 {
731 struct proc *p = l->l_proc;
732 struct lwp *l2;
733 bool current;
734
735 current = (l == curlwp);
736
737 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
738 KASSERT(p == curproc);
739
740 /*
741 * Verify that we hold no locks other than the kernel lock.
742 */
743 LOCKDEBUG_BARRIER(&kernel_lock, 0);
744
745 /*
746 * If we are the last live LWP in a process, we need to exit the
747 * entire process. We do so with an exit status of zero, because
748 * it's a "controlled" exit, and because that's what Solaris does.
749 *
750 * We are not quite a zombie yet, but for accounting purposes we
751 * must increment the count of zombies here.
752 *
753 * Note: the last LWP's specificdata will be deleted here.
754 */
755 mutex_enter(p->p_lock);
756 if (p->p_nlwps - p->p_nzlwps == 1) {
757 KASSERT(current == true);
758 /* XXXSMP kernel_lock not held */
759 exit1(l, 0);
760 /* NOTREACHED */
761 }
762 p->p_nzlwps++;
763 mutex_exit(p->p_lock);
764
765 if (p->p_emul->e_lwp_exit)
766 (*p->p_emul->e_lwp_exit)(l);
767
768 /* Drop filedesc reference. */
769 fd_free();
770
771 /* Delete the specificdata while it's still safe to sleep. */
772 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
773
774 /*
775 * Release our cached credentials.
776 */
777 kauth_cred_free(l->l_cred);
778 callout_destroy(&l->l_timeout_ch);
779
780 /*
781 * While we can still block, mark the LWP as unswappable to
782 * prevent conflicts with the with the swapper.
783 */
784 if (current)
785 uvm_lwp_hold(l);
786
787 /*
788 * Remove the LWP from the global list.
789 */
790 mutex_enter(proc_lock);
791 LIST_REMOVE(l, l_list);
792 mutex_exit(proc_lock);
793
794 /*
795 * Get rid of all references to the LWP that others (e.g. procfs)
796 * may have, and mark the LWP as a zombie. If the LWP is detached,
797 * mark it waiting for collection in the proc structure. Note that
798 * before we can do that, we need to free any other dead, deatched
799 * LWP waiting to meet its maker.
800 */
801 mutex_enter(p->p_lock);
802 lwp_drainrefs(l);
803
804 if ((l->l_prflag & LPR_DETACHED) != 0) {
805 while ((l2 = p->p_zomblwp) != NULL) {
806 p->p_zomblwp = NULL;
807 lwp_free(l2, false, false);/* releases proc mutex */
808 mutex_enter(p->p_lock);
809 l->l_refcnt++;
810 lwp_drainrefs(l);
811 }
812 p->p_zomblwp = l;
813 }
814
815 /*
816 * If we find a pending signal for the process and we have been
817 * asked to check for signals, then we loose: arrange to have
818 * all other LWPs in the process check for signals.
819 */
820 if ((l->l_flag & LW_PENDSIG) != 0 &&
821 firstsig(&p->p_sigpend.sp_set) != 0) {
822 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
823 lwp_lock(l2);
824 l2->l_flag |= LW_PENDSIG;
825 lwp_unlock(l2);
826 }
827 }
828
829 lwp_lock(l);
830 l->l_stat = LSZOMB;
831 if (l->l_name != NULL)
832 strcpy(l->l_name, "(zombie)");
833 if (l->l_flag & LW_AFFINITY) {
834 l->l_flag &= ~LW_AFFINITY;
835 } else {
836 KASSERT(l->l_affinity == NULL);
837 }
838 lwp_unlock(l);
839 p->p_nrlwps--;
840 cv_broadcast(&p->p_lwpcv);
841 if (l->l_lwpctl != NULL)
842 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
843 mutex_exit(p->p_lock);
844
845 /* Safe without lock since LWP is in zombie state */
846 if (l->l_affinity) {
847 kcpuset_unuse(l->l_affinity, NULL);
848 l->l_affinity = NULL;
849 }
850
851 /*
852 * We can no longer block. At this point, lwp_free() may already
853 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
854 *
855 * Free MD LWP resources.
856 */
857 #ifndef __NO_CPU_LWP_FREE
858 cpu_lwp_free(l, 0);
859 #endif
860
861 if (current) {
862 pmap_deactivate(l);
863
864 /*
865 * Release the kernel lock, and switch away into
866 * oblivion.
867 */
868 #ifdef notyet
869 /* XXXSMP hold in lwp_userret() */
870 KERNEL_UNLOCK_LAST(l);
871 #else
872 KERNEL_UNLOCK_ALL(l, NULL);
873 #endif
874 lwp_exit_switchaway(l);
875 }
876 }
877
878 /*
879 * Free a dead LWP's remaining resources.
880 *
881 * XXXLWP limits.
882 */
883 void
884 lwp_free(struct lwp *l, bool recycle, bool last)
885 {
886 struct proc *p = l->l_proc;
887 struct rusage *ru;
888 ksiginfoq_t kq;
889
890 KASSERT(l != curlwp);
891
892 /*
893 * If this was not the last LWP in the process, then adjust
894 * counters and unlock.
895 */
896 if (!last) {
897 /*
898 * Add the LWP's run time to the process' base value.
899 * This needs to co-incide with coming off p_lwps.
900 */
901 bintime_add(&p->p_rtime, &l->l_rtime);
902 p->p_pctcpu += l->l_pctcpu;
903 ru = &p->p_stats->p_ru;
904 ruadd(ru, &l->l_ru);
905 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
906 ru->ru_nivcsw += l->l_nivcsw;
907 LIST_REMOVE(l, l_sibling);
908 p->p_nlwps--;
909 p->p_nzlwps--;
910 if ((l->l_prflag & LPR_DETACHED) != 0)
911 p->p_ndlwps--;
912
913 /*
914 * Have any LWPs sleeping in lwp_wait() recheck for
915 * deadlock.
916 */
917 cv_broadcast(&p->p_lwpcv);
918 mutex_exit(p->p_lock);
919 }
920
921 #ifdef MULTIPROCESSOR
922 /*
923 * In the unlikely event that the LWP is still on the CPU,
924 * then spin until it has switched away. We need to release
925 * all locks to avoid deadlock against interrupt handlers on
926 * the target CPU.
927 */
928 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
929 int count;
930 (void)count; /* XXXgcc */
931 KERNEL_UNLOCK_ALL(curlwp, &count);
932 while ((l->l_pflag & LP_RUNNING) != 0 ||
933 l->l_cpu->ci_curlwp == l)
934 SPINLOCK_BACKOFF_HOOK;
935 KERNEL_LOCK(count, curlwp);
936 }
937 #endif
938
939 /*
940 * Destroy the LWP's remaining signal information.
941 */
942 ksiginfo_queue_init(&kq);
943 sigclear(&l->l_sigpend, NULL, &kq);
944 ksiginfo_queue_drain(&kq);
945 cv_destroy(&l->l_sigcv);
946 mutex_destroy(&l->l_swaplock);
947
948 /*
949 * Free the LWP's turnstile and the LWP structure itself unless the
950 * caller wants to recycle them. Also, free the scheduler specific
951 * data.
952 *
953 * We can't return turnstile0 to the pool (it didn't come from it),
954 * so if it comes up just drop it quietly and move on.
955 *
956 * We don't recycle the VM resources at this time.
957 */
958 if (l->l_lwpctl != NULL)
959 lwp_ctl_free(l);
960
961 if (!recycle && l->l_ts != &turnstile0)
962 pool_cache_put(turnstile_cache, l->l_ts);
963 if (l->l_name != NULL)
964 kmem_free(l->l_name, MAXCOMLEN);
965 #ifndef __NO_CPU_LWP_FREE
966 cpu_lwp_free2(l);
967 #endif
968 KASSERT((l->l_flag & LW_INMEM) != 0);
969 uvm_lwp_exit(l);
970 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
971 KASSERT(l->l_inheritedprio == -1);
972 if (!recycle)
973 pool_cache_put(lwp_cache, l);
974 }
975
976 /*
977 * Migrate the LWP to the another CPU. Unlocks the LWP.
978 */
979 void
980 lwp_migrate(lwp_t *l, struct cpu_info *tci)
981 {
982 struct schedstate_percpu *tspc;
983 int lstat = l->l_stat;
984
985 KASSERT(lwp_locked(l, NULL));
986 KASSERT(tci != NULL);
987
988 /* If LWP is still on the CPU, it must be handled like LSONPROC */
989 if ((l->l_pflag & LP_RUNNING) != 0) {
990 lstat = LSONPROC;
991 }
992
993 /*
994 * The destination CPU could be changed while previous migration
995 * was not finished.
996 */
997 if (l->l_target_cpu != NULL) {
998 l->l_target_cpu = tci;
999 lwp_unlock(l);
1000 return;
1001 }
1002
1003 /* Nothing to do if trying to migrate to the same CPU */
1004 if (l->l_cpu == tci) {
1005 lwp_unlock(l);
1006 return;
1007 }
1008
1009 KASSERT(l->l_target_cpu == NULL);
1010 tspc = &tci->ci_schedstate;
1011 switch (lstat) {
1012 case LSRUN:
1013 if (l->l_flag & LW_INMEM) {
1014 l->l_target_cpu = tci;
1015 lwp_unlock(l);
1016 return;
1017 }
1018 case LSIDL:
1019 l->l_cpu = tci;
1020 lwp_unlock_to(l, tspc->spc_mutex);
1021 return;
1022 case LSSLEEP:
1023 l->l_cpu = tci;
1024 break;
1025 case LSSTOP:
1026 case LSSUSPENDED:
1027 l->l_cpu = tci;
1028 if (l->l_wchan == NULL) {
1029 lwp_unlock_to(l, tspc->spc_lwplock);
1030 return;
1031 }
1032 break;
1033 case LSONPROC:
1034 l->l_target_cpu = tci;
1035 spc_lock(l->l_cpu);
1036 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1037 spc_unlock(l->l_cpu);
1038 break;
1039 }
1040 lwp_unlock(l);
1041 }
1042
1043 /*
1044 * Find the LWP in the process. Arguments may be zero, in such case,
1045 * the calling process and first LWP in the list will be used.
1046 * On success - returns proc locked.
1047 */
1048 struct lwp *
1049 lwp_find2(pid_t pid, lwpid_t lid)
1050 {
1051 proc_t *p;
1052 lwp_t *l;
1053
1054 /* Find the process */
1055 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1056 if (p == NULL)
1057 return NULL;
1058 mutex_enter(p->p_lock);
1059 if (pid != 0) {
1060 /* Case of p_find */
1061 mutex_exit(proc_lock);
1062 }
1063
1064 /* Find the thread */
1065 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1066 if (l == NULL) {
1067 mutex_exit(p->p_lock);
1068 }
1069
1070 return l;
1071 }
1072
1073 /*
1074 * Look up a live LWP within the speicifed process, and return it locked.
1075 *
1076 * Must be called with p->p_lock held.
1077 */
1078 struct lwp *
1079 lwp_find(struct proc *p, int id)
1080 {
1081 struct lwp *l;
1082
1083 KASSERT(mutex_owned(p->p_lock));
1084
1085 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1086 if (l->l_lid == id)
1087 break;
1088 }
1089
1090 /*
1091 * No need to lock - all of these conditions will
1092 * be visible with the process level mutex held.
1093 */
1094 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1095 l = NULL;
1096
1097 return l;
1098 }
1099
1100 /*
1101 * Update an LWP's cached credentials to mirror the process' master copy.
1102 *
1103 * This happens early in the syscall path, on user trap, and on LWP
1104 * creation. A long-running LWP can also voluntarily choose to update
1105 * it's credentials by calling this routine. This may be called from
1106 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1107 */
1108 void
1109 lwp_update_creds(struct lwp *l)
1110 {
1111 kauth_cred_t oc;
1112 struct proc *p;
1113
1114 p = l->l_proc;
1115 oc = l->l_cred;
1116
1117 mutex_enter(p->p_lock);
1118 kauth_cred_hold(p->p_cred);
1119 l->l_cred = p->p_cred;
1120 l->l_prflag &= ~LPR_CRMOD;
1121 mutex_exit(p->p_lock);
1122 if (oc != NULL)
1123 kauth_cred_free(oc);
1124 }
1125
1126 /*
1127 * Verify that an LWP is locked, and optionally verify that the lock matches
1128 * one we specify.
1129 */
1130 int
1131 lwp_locked(struct lwp *l, kmutex_t *mtx)
1132 {
1133 kmutex_t *cur = l->l_mutex;
1134
1135 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1136 }
1137
1138 /*
1139 * Lock an LWP.
1140 */
1141 kmutex_t *
1142 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1143 {
1144
1145 /*
1146 * XXXgcc ignoring kmutex_t * volatile on i386
1147 *
1148 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1149 */
1150 #if 1
1151 while (l->l_mutex != old) {
1152 #else
1153 for (;;) {
1154 #endif
1155 mutex_spin_exit(old);
1156 old = l->l_mutex;
1157 mutex_spin_enter(old);
1158
1159 /*
1160 * mutex_enter() will have posted a read barrier. Re-test
1161 * l->l_mutex. If it has changed, we need to try again.
1162 */
1163 #if 1
1164 }
1165 #else
1166 } while (__predict_false(l->l_mutex != old));
1167 #endif
1168
1169 return old;
1170 }
1171
1172 /*
1173 * Lend a new mutex to an LWP. The old mutex must be held.
1174 */
1175 void
1176 lwp_setlock(struct lwp *l, kmutex_t *new)
1177 {
1178
1179 KASSERT(mutex_owned(l->l_mutex));
1180
1181 membar_exit();
1182 l->l_mutex = new;
1183 }
1184
1185 /*
1186 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1187 * must be held.
1188 */
1189 void
1190 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1191 {
1192 kmutex_t *old;
1193
1194 KASSERT(mutex_owned(l->l_mutex));
1195
1196 old = l->l_mutex;
1197 membar_exit();
1198 l->l_mutex = new;
1199 mutex_spin_exit(old);
1200 }
1201
1202 /*
1203 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1204 * locked.
1205 */
1206 void
1207 lwp_relock(struct lwp *l, kmutex_t *new)
1208 {
1209 kmutex_t *old;
1210
1211 KASSERT(mutex_owned(l->l_mutex));
1212
1213 old = l->l_mutex;
1214 if (old != new) {
1215 mutex_spin_enter(new);
1216 l->l_mutex = new;
1217 mutex_spin_exit(old);
1218 }
1219 }
1220
1221 int
1222 lwp_trylock(struct lwp *l)
1223 {
1224 kmutex_t *old;
1225
1226 for (;;) {
1227 if (!mutex_tryenter(old = l->l_mutex))
1228 return 0;
1229 if (__predict_true(l->l_mutex == old))
1230 return 1;
1231 mutex_spin_exit(old);
1232 }
1233 }
1234
1235 u_int
1236 lwp_unsleep(lwp_t *l, bool cleanup)
1237 {
1238
1239 KASSERT(mutex_owned(l->l_mutex));
1240
1241 return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1242 }
1243
1244
1245 /*
1246 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1247 * set.
1248 */
1249 void
1250 lwp_userret(struct lwp *l)
1251 {
1252 struct proc *p;
1253 void (*hook)(void);
1254 int sig;
1255
1256 KASSERT(l == curlwp);
1257 KASSERT(l->l_stat == LSONPROC);
1258 p = l->l_proc;
1259
1260 #ifndef __HAVE_FAST_SOFTINTS
1261 /* Run pending soft interrupts. */
1262 if (l->l_cpu->ci_data.cpu_softints != 0)
1263 softint_overlay();
1264 #endif
1265
1266 #ifdef KERN_SA
1267 /* Generate UNBLOCKED upcall if needed */
1268 if (l->l_flag & LW_SA_BLOCKING) {
1269 sa_unblock_userret(l);
1270 /* NOTREACHED */
1271 }
1272 #endif
1273
1274 /*
1275 * It should be safe to do this read unlocked on a multiprocessor
1276 * system..
1277 *
1278 * LW_SA_UPCALL will be handled after the while() loop, so don't
1279 * consider it now.
1280 */
1281 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1282 /*
1283 * Process pending signals first, unless the process
1284 * is dumping core or exiting, where we will instead
1285 * enter the LW_WSUSPEND case below.
1286 */
1287 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1288 LW_PENDSIG) {
1289 mutex_enter(p->p_lock);
1290 while ((sig = issignal(l)) != 0)
1291 postsig(sig);
1292 mutex_exit(p->p_lock);
1293 }
1294
1295 /*
1296 * Core-dump or suspend pending.
1297 *
1298 * In case of core dump, suspend ourselves, so that the
1299 * kernel stack and therefore the userland registers saved
1300 * in the trapframe are around for coredump() to write them
1301 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1302 * will write the core file out once all other LWPs are
1303 * suspended.
1304 */
1305 if ((l->l_flag & LW_WSUSPEND) != 0) {
1306 mutex_enter(p->p_lock);
1307 p->p_nrlwps--;
1308 cv_broadcast(&p->p_lwpcv);
1309 lwp_lock(l);
1310 l->l_stat = LSSUSPENDED;
1311 lwp_unlock(l);
1312 mutex_exit(p->p_lock);
1313 lwp_lock(l);
1314 mi_switch(l);
1315 }
1316
1317 /* Process is exiting. */
1318 if ((l->l_flag & LW_WEXIT) != 0) {
1319 lwp_exit(l);
1320 KASSERT(0);
1321 /* NOTREACHED */
1322 }
1323
1324 /* Call userret hook; used by Linux emulation. */
1325 if ((l->l_flag & LW_WUSERRET) != 0) {
1326 lwp_lock(l);
1327 l->l_flag &= ~LW_WUSERRET;
1328 lwp_unlock(l);
1329 hook = p->p_userret;
1330 p->p_userret = NULL;
1331 (*hook)();
1332 }
1333 }
1334
1335 #ifdef KERN_SA
1336 /*
1337 * Timer events are handled specially. We only try once to deliver
1338 * pending timer upcalls; if if fails, we can try again on the next
1339 * loop around. If we need to re-enter lwp_userret(), MD code will
1340 * bounce us back here through the trap path after we return.
1341 */
1342 if (p->p_timerpend)
1343 timerupcall(l);
1344 if (l->l_flag & LW_SA_UPCALL)
1345 sa_upcall_userret(l);
1346 #endif /* KERN_SA */
1347 }
1348
1349 /*
1350 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1351 */
1352 void
1353 lwp_need_userret(struct lwp *l)
1354 {
1355 KASSERT(lwp_locked(l, NULL));
1356
1357 /*
1358 * Since the tests in lwp_userret() are done unlocked, make sure
1359 * that the condition will be seen before forcing the LWP to enter
1360 * kernel mode.
1361 */
1362 membar_producer();
1363 cpu_signotify(l);
1364 }
1365
1366 /*
1367 * Add one reference to an LWP. This will prevent the LWP from
1368 * exiting, thus keep the lwp structure and PCB around to inspect.
1369 */
1370 void
1371 lwp_addref(struct lwp *l)
1372 {
1373
1374 KASSERT(mutex_owned(l->l_proc->p_lock));
1375 KASSERT(l->l_stat != LSZOMB);
1376 KASSERT(l->l_refcnt != 0);
1377
1378 l->l_refcnt++;
1379 }
1380
1381 /*
1382 * Remove one reference to an LWP. If this is the last reference,
1383 * then we must finalize the LWP's death.
1384 */
1385 void
1386 lwp_delref(struct lwp *l)
1387 {
1388 struct proc *p = l->l_proc;
1389
1390 mutex_enter(p->p_lock);
1391 KASSERT(l->l_stat != LSZOMB);
1392 KASSERT(l->l_refcnt > 0);
1393 if (--l->l_refcnt == 0)
1394 cv_broadcast(&p->p_lwpcv);
1395 mutex_exit(p->p_lock);
1396 }
1397
1398 /*
1399 * Drain all references to the current LWP.
1400 */
1401 void
1402 lwp_drainrefs(struct lwp *l)
1403 {
1404 struct proc *p = l->l_proc;
1405
1406 KASSERT(mutex_owned(p->p_lock));
1407 KASSERT(l->l_refcnt != 0);
1408
1409 l->l_refcnt--;
1410 while (l->l_refcnt != 0)
1411 cv_wait(&p->p_lwpcv, p->p_lock);
1412 }
1413
1414 /*
1415 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1416 * be held.
1417 */
1418 bool
1419 lwp_alive(lwp_t *l)
1420 {
1421
1422 KASSERT(mutex_owned(l->l_proc->p_lock));
1423
1424 switch (l->l_stat) {
1425 case LSSLEEP:
1426 case LSRUN:
1427 case LSONPROC:
1428 case LSSTOP:
1429 case LSSUSPENDED:
1430 return true;
1431 default:
1432 return false;
1433 }
1434 }
1435
1436 /*
1437 * Return first live LWP in the process.
1438 */
1439 lwp_t *
1440 lwp_find_first(proc_t *p)
1441 {
1442 lwp_t *l;
1443
1444 KASSERT(mutex_owned(p->p_lock));
1445
1446 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1447 if (lwp_alive(l)) {
1448 return l;
1449 }
1450 }
1451
1452 return NULL;
1453 }
1454
1455 /*
1456 * lwp_specific_key_create --
1457 * Create a key for subsystem lwp-specific data.
1458 */
1459 int
1460 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1461 {
1462
1463 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1464 }
1465
1466 /*
1467 * lwp_specific_key_delete --
1468 * Delete a key for subsystem lwp-specific data.
1469 */
1470 void
1471 lwp_specific_key_delete(specificdata_key_t key)
1472 {
1473
1474 specificdata_key_delete(lwp_specificdata_domain, key);
1475 }
1476
1477 /*
1478 * lwp_initspecific --
1479 * Initialize an LWP's specificdata container.
1480 */
1481 void
1482 lwp_initspecific(struct lwp *l)
1483 {
1484 int error;
1485
1486 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1487 KASSERT(error == 0);
1488 }
1489
1490 /*
1491 * lwp_finispecific --
1492 * Finalize an LWP's specificdata container.
1493 */
1494 void
1495 lwp_finispecific(struct lwp *l)
1496 {
1497
1498 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1499 }
1500
1501 /*
1502 * lwp_getspecific --
1503 * Return lwp-specific data corresponding to the specified key.
1504 *
1505 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1506 * only its OWN SPECIFIC DATA. If it is necessary to access another
1507 * LWP's specifc data, care must be taken to ensure that doing so
1508 * would not cause internal data structure inconsistency (i.e. caller
1509 * can guarantee that the target LWP is not inside an lwp_getspecific()
1510 * or lwp_setspecific() call).
1511 */
1512 void *
1513 lwp_getspecific(specificdata_key_t key)
1514 {
1515
1516 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1517 &curlwp->l_specdataref, key));
1518 }
1519
1520 void *
1521 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1522 {
1523
1524 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1525 &l->l_specdataref, key));
1526 }
1527
1528 /*
1529 * lwp_setspecific --
1530 * Set lwp-specific data corresponding to the specified key.
1531 */
1532 void
1533 lwp_setspecific(specificdata_key_t key, void *data)
1534 {
1535
1536 specificdata_setspecific(lwp_specificdata_domain,
1537 &curlwp->l_specdataref, key, data);
1538 }
1539
1540 /*
1541 * Allocate a new lwpctl structure for a user LWP.
1542 */
1543 int
1544 lwp_ctl_alloc(vaddr_t *uaddr)
1545 {
1546 lcproc_t *lp;
1547 u_int bit, i, offset;
1548 struct uvm_object *uao;
1549 int error;
1550 lcpage_t *lcp;
1551 proc_t *p;
1552 lwp_t *l;
1553
1554 l = curlwp;
1555 p = l->l_proc;
1556
1557 if (l->l_lcpage != NULL) {
1558 lcp = l->l_lcpage;
1559 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1560 return (EINVAL);
1561 }
1562
1563 /* First time around, allocate header structure for the process. */
1564 if ((lp = p->p_lwpctl) == NULL) {
1565 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1566 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1567 lp->lp_uao = NULL;
1568 TAILQ_INIT(&lp->lp_pages);
1569 mutex_enter(p->p_lock);
1570 if (p->p_lwpctl == NULL) {
1571 p->p_lwpctl = lp;
1572 mutex_exit(p->p_lock);
1573 } else {
1574 mutex_exit(p->p_lock);
1575 mutex_destroy(&lp->lp_lock);
1576 kmem_free(lp, sizeof(*lp));
1577 lp = p->p_lwpctl;
1578 }
1579 }
1580
1581 /*
1582 * Set up an anonymous memory region to hold the shared pages.
1583 * Map them into the process' address space. The user vmspace
1584 * gets the first reference on the UAO.
1585 */
1586 mutex_enter(&lp->lp_lock);
1587 if (lp->lp_uao == NULL) {
1588 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1589 lp->lp_cur = 0;
1590 lp->lp_max = LWPCTL_UAREA_SZ;
1591 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1592 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1593 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1594 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1595 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1596 if (error != 0) {
1597 uao_detach(lp->lp_uao);
1598 lp->lp_uao = NULL;
1599 mutex_exit(&lp->lp_lock);
1600 return error;
1601 }
1602 }
1603
1604 /* Get a free block and allocate for this LWP. */
1605 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1606 if (lcp->lcp_nfree != 0)
1607 break;
1608 }
1609 if (lcp == NULL) {
1610 /* Nothing available - try to set up a free page. */
1611 if (lp->lp_cur == lp->lp_max) {
1612 mutex_exit(&lp->lp_lock);
1613 return ENOMEM;
1614 }
1615 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1616 if (lcp == NULL) {
1617 mutex_exit(&lp->lp_lock);
1618 return ENOMEM;
1619 }
1620 /*
1621 * Wire the next page down in kernel space. Since this
1622 * is a new mapping, we must add a reference.
1623 */
1624 uao = lp->lp_uao;
1625 (*uao->pgops->pgo_reference)(uao);
1626 lcp->lcp_kaddr = vm_map_min(kernel_map);
1627 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1628 uao, lp->lp_cur, PAGE_SIZE,
1629 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1630 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1631 if (error != 0) {
1632 mutex_exit(&lp->lp_lock);
1633 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1634 (*uao->pgops->pgo_detach)(uao);
1635 return error;
1636 }
1637 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1638 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1639 if (error != 0) {
1640 mutex_exit(&lp->lp_lock);
1641 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1642 lcp->lcp_kaddr + PAGE_SIZE);
1643 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1644 return error;
1645 }
1646 /* Prepare the page descriptor and link into the list. */
1647 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1648 lp->lp_cur += PAGE_SIZE;
1649 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1650 lcp->lcp_rotor = 0;
1651 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1652 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1653 }
1654 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1655 if (++i >= LWPCTL_BITMAP_ENTRIES)
1656 i = 0;
1657 }
1658 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1659 lcp->lcp_bitmap[i] ^= (1 << bit);
1660 lcp->lcp_rotor = i;
1661 lcp->lcp_nfree--;
1662 l->l_lcpage = lcp;
1663 offset = (i << 5) + bit;
1664 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1665 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1666 mutex_exit(&lp->lp_lock);
1667
1668 KPREEMPT_DISABLE(l);
1669 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1670 KPREEMPT_ENABLE(l);
1671
1672 return 0;
1673 }
1674
1675 /*
1676 * Free an lwpctl structure back to the per-process list.
1677 */
1678 void
1679 lwp_ctl_free(lwp_t *l)
1680 {
1681 lcproc_t *lp;
1682 lcpage_t *lcp;
1683 u_int map, offset;
1684
1685 lp = l->l_proc->p_lwpctl;
1686 KASSERT(lp != NULL);
1687
1688 lcp = l->l_lcpage;
1689 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1690 KASSERT(offset < LWPCTL_PER_PAGE);
1691
1692 mutex_enter(&lp->lp_lock);
1693 lcp->lcp_nfree++;
1694 map = offset >> 5;
1695 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1696 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1697 lcp->lcp_rotor = map;
1698 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1699 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1700 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1701 }
1702 mutex_exit(&lp->lp_lock);
1703 }
1704
1705 /*
1706 * Process is exiting; tear down lwpctl state. This can only be safely
1707 * called by the last LWP in the process.
1708 */
1709 void
1710 lwp_ctl_exit(void)
1711 {
1712 lcpage_t *lcp, *next;
1713 lcproc_t *lp;
1714 proc_t *p;
1715 lwp_t *l;
1716
1717 l = curlwp;
1718 l->l_lwpctl = NULL;
1719 l->l_lcpage = NULL;
1720 p = l->l_proc;
1721 lp = p->p_lwpctl;
1722
1723 KASSERT(lp != NULL);
1724 KASSERT(p->p_nlwps == 1);
1725
1726 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1727 next = TAILQ_NEXT(lcp, lcp_chain);
1728 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1729 lcp->lcp_kaddr + PAGE_SIZE);
1730 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1731 }
1732
1733 if (lp->lp_uao != NULL) {
1734 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1735 lp->lp_uva + LWPCTL_UAREA_SZ);
1736 }
1737
1738 mutex_destroy(&lp->lp_lock);
1739 kmem_free(lp, sizeof(*lp));
1740 p->p_lwpctl = NULL;
1741 }
1742
1743 /*
1744 * Return the current LWP's "preemption counter". Used to detect
1745 * preemption across operations that can tolerate preemption without
1746 * crashing, but which may generate incorrect results if preempted.
1747 */
1748 uint64_t
1749 lwp_pctr(void)
1750 {
1751
1752 return curlwp->l_ncsw;
1753 }
1754
1755 #if defined(DDB)
1756 void
1757 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1758 {
1759 lwp_t *l;
1760
1761 LIST_FOREACH(l, &alllwp, l_list) {
1762 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1763
1764 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1765 continue;
1766 }
1767 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1768 (void *)addr, (void *)stack,
1769 (size_t)(addr - stack), l);
1770 }
1771 }
1772 #endif /* defined(DDB) */
1773