Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.134
      1 /*	$NetBSD: kern_lwp.c,v 1.134 2009/10/21 21:12:06 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.
     64  *
     65  *	LSIDL
     66  *
     67  *		Idle: the LWP has been created but has not yet executed,
     68  *		or it has ceased executing a unit of work and is waiting
     69  *		to be started again.
     70  *
     71  *	LSSUSPENDED:
     72  *
     73  *		Suspended: the LWP has had its execution suspended by
     74  *		another LWP in the same process using the _lwp_suspend()
     75  *		system call.  User-level LWPs also enter the suspended
     76  *		state when the system is shutting down.
     77  *
     78  *	The second set represent a "statement of intent" on behalf of the
     79  *	LWP.  The LWP may in fact be executing on a processor, may be
     80  *	sleeping or idle. It is expected to take the necessary action to
     81  *	stop executing or become "running" again within a short timeframe.
     82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83  *	Importantly, it indicates that its state is tied to a CPU.
     84  *
     85  *	LSZOMB:
     86  *
     87  *		Dead or dying: the LWP has released most of its resources
     88  *		and is about to switch away into oblivion, or has already
     89  *		switched away.  When it switches away, its few remaining
     90  *		resources can be collected.
     91  *
     92  *	LSSLEEP:
     93  *
     94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95  *		has switched away or will switch away shortly to allow other
     96  *		LWPs to run on the CPU.
     97  *
     98  *	LSSTOP:
     99  *
    100  *		Stopped: the LWP has been stopped as a result of a job
    101  *		control signal, or as a result of the ptrace() interface.
    102  *
    103  *		Stopped LWPs may run briefly within the kernel to handle
    104  *		signals that they receive, but will not return to user space
    105  *		until their process' state is changed away from stopped.
    106  *
    107  *		Single LWPs within a process can not be set stopped
    108  *		selectively: all actions that can stop or continue LWPs
    109  *		occur at the process level.
    110  *
    111  * State transitions
    112  *
    113  *	Note that the LSSTOP state may only be set when returning to
    114  *	user space in userret(), or when sleeping interruptably.  The
    115  *	LSSUSPENDED state may only be set in userret().  Before setting
    116  *	those states, we try to ensure that the LWPs will release all
    117  *	locks that they hold, and at a minimum try to ensure that the
    118  *	LWP can be set runnable again by a signal.
    119  *
    120  *	LWPs may transition states in the following ways:
    121  *
    122  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123  *		    				    > SLEEP
    124  *		    				    > STOPPED
    125  *						    > SUSPENDED
    126  *						    > ZOMB
    127  *						    > IDL (special cases)
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *						    > ONPROC (special cases)
    136  *
    137  *	Some state transitions are only possible with kernel threads (eg
    138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139  *	free of unwanted side effects.
    140  *
    141  * Migration
    142  *
    143  *	Migration of threads from one CPU to another could be performed
    144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  *	functions.  The universal lwp_migrate() function should be used for
    146  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  *	of LWP may change, while it is not locked.
    148  *
    149  * Locking
    150  *
    151  *	The majority of fields in 'struct lwp' are covered by a single,
    152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153  *	each field are documented in sys/lwp.h.
    154  *
    155  *	State transitions must be made with the LWP's general lock held,
    156  *	and may cause the LWP's lock pointer to change. Manipulation of
    157  *	the general lock is not performed directly, but through calls to
    158  *	lwp_lock(), lwp_relock() and similar.
    159  *
    160  *	States and their associated locks:
    161  *
    162  *	LSONPROC, LSZOMB:
    163  *
    164  *		Always covered by spc_lwplock, which protects running LWPs.
    165  *		This is a per-CPU lock and matches lwp::l_cpu.
    166  *
    167  *	LSIDL, LSRUN:
    168  *
    169  *		Always covered by spc_mutex, which protects the run queues.
    170  *		This is a per-CPU lock and matches lwp::l_cpu.
    171  *
    172  *	LSSLEEP:
    173  *
    174  *		Covered by a lock associated with the sleep queue that the
    175  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    176  *
    177  *	LSSTOP, LSSUSPENDED:
    178  *
    179  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180  *		l_mutex references the sleep queue lock.  If the LWP was
    181  *		runnable or on the CPU when halted, or has been removed from
    182  *		the sleep queue since halted, then the lock is spc_lwplock.
    183  *
    184  *	The lock order is as follows:
    185  *
    186  *		spc::spc_lwplock ->
    187  *		    sleeptab::st_mutex ->
    188  *			tschain_t::tc_mutex ->
    189  *			    spc::spc_mutex
    190  *
    191  *	Each process has an scheduler state lock (proc::p_lock), and a
    192  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    193  *	so on.  When an LWP is to be entered into or removed from one of the
    194  *	following states, p_lock must be held and the process wide counters
    195  *	adjusted:
    196  *
    197  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    198  *
    199  *	(But not always for kernel threads.  There are some special cases
    200  *	as mentioned above.  See kern_softint.c.)
    201  *
    202  *	Note that an LWP is considered running or likely to run soon if in
    203  *	one of the following states.  This affects the value of p_nrlwps:
    204  *
    205  *		LSRUN, LSONPROC, LSSLEEP
    206  *
    207  *	p_lock does not need to be held when transitioning among these
    208  *	three states, hence p_lock is rarely taken for state transitions.
    209  */
    210 
    211 #include <sys/cdefs.h>
    212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.134 2009/10/21 21:12:06 rmind Exp $");
    213 
    214 #include "opt_ddb.h"
    215 #include "opt_lockdebug.h"
    216 #include "opt_sa.h"
    217 
    218 #define _LWP_API_PRIVATE
    219 
    220 #include <sys/param.h>
    221 #include <sys/systm.h>
    222 #include <sys/cpu.h>
    223 #include <sys/pool.h>
    224 #include <sys/proc.h>
    225 #include <sys/sa.h>
    226 #include <sys/savar.h>
    227 #include <sys/syscallargs.h>
    228 #include <sys/syscall_stats.h>
    229 #include <sys/kauth.h>
    230 #include <sys/sleepq.h>
    231 #include <sys/user.h>
    232 #include <sys/lockdebug.h>
    233 #include <sys/kmem.h>
    234 #include <sys/pset.h>
    235 #include <sys/intr.h>
    236 #include <sys/lwpctl.h>
    237 #include <sys/atomic.h>
    238 #include <sys/filedesc.h>
    239 
    240 #include <uvm/uvm_extern.h>
    241 #include <uvm/uvm_object.h>
    242 
    243 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    244 
    245 struct pool lwp_uc_pool;
    246 
    247 static pool_cache_t lwp_cache;
    248 static specificdata_domain_t lwp_specificdata_domain;
    249 
    250 void
    251 lwpinit(void)
    252 {
    253 
    254 	pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    255 	    &pool_allocator_nointr, IPL_NONE);
    256 	lwp_specificdata_domain = specificdata_domain_create();
    257 	KASSERT(lwp_specificdata_domain != NULL);
    258 	lwp_sys_init();
    259 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    260 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    261 }
    262 
    263 /*
    264  * Set an suspended.
    265  *
    266  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    267  * LWP before return.
    268  */
    269 int
    270 lwp_suspend(struct lwp *curl, struct lwp *t)
    271 {
    272 	int error;
    273 
    274 	KASSERT(mutex_owned(t->l_proc->p_lock));
    275 	KASSERT(lwp_locked(t, NULL));
    276 
    277 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    278 
    279 	/*
    280 	 * If the current LWP has been told to exit, we must not suspend anyone
    281 	 * else or deadlock could occur.  We won't return to userspace.
    282 	 */
    283 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    284 		lwp_unlock(t);
    285 		return (EDEADLK);
    286 	}
    287 
    288 	error = 0;
    289 
    290 	switch (t->l_stat) {
    291 	case LSRUN:
    292 	case LSONPROC:
    293 		t->l_flag |= LW_WSUSPEND;
    294 		lwp_need_userret(t);
    295 		lwp_unlock(t);
    296 		break;
    297 
    298 	case LSSLEEP:
    299 		t->l_flag |= LW_WSUSPEND;
    300 
    301 		/*
    302 		 * Kick the LWP and try to get it to the kernel boundary
    303 		 * so that it will release any locks that it holds.
    304 		 * setrunnable() will release the lock.
    305 		 */
    306 		if ((t->l_flag & LW_SINTR) != 0)
    307 			setrunnable(t);
    308 		else
    309 			lwp_unlock(t);
    310 		break;
    311 
    312 	case LSSUSPENDED:
    313 		lwp_unlock(t);
    314 		break;
    315 
    316 	case LSSTOP:
    317 		t->l_flag |= LW_WSUSPEND;
    318 		setrunnable(t);
    319 		break;
    320 
    321 	case LSIDL:
    322 	case LSZOMB:
    323 		error = EINTR; /* It's what Solaris does..... */
    324 		lwp_unlock(t);
    325 		break;
    326 	}
    327 
    328 	return (error);
    329 }
    330 
    331 /*
    332  * Restart a suspended LWP.
    333  *
    334  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    335  * LWP before return.
    336  */
    337 void
    338 lwp_continue(struct lwp *l)
    339 {
    340 
    341 	KASSERT(mutex_owned(l->l_proc->p_lock));
    342 	KASSERT(lwp_locked(l, NULL));
    343 
    344 	/* If rebooting or not suspended, then just bail out. */
    345 	if ((l->l_flag & LW_WREBOOT) != 0) {
    346 		lwp_unlock(l);
    347 		return;
    348 	}
    349 
    350 	l->l_flag &= ~LW_WSUSPEND;
    351 
    352 	if (l->l_stat != LSSUSPENDED) {
    353 		lwp_unlock(l);
    354 		return;
    355 	}
    356 
    357 	/* setrunnable() will release the lock. */
    358 	setrunnable(l);
    359 }
    360 
    361 /*
    362  * Wait for an LWP within the current process to exit.  If 'lid' is
    363  * non-zero, we are waiting for a specific LWP.
    364  *
    365  * Must be called with p->p_lock held.
    366  */
    367 int
    368 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    369 {
    370 	struct proc *p = l->l_proc;
    371 	struct lwp *l2;
    372 	int nfound, error;
    373 	lwpid_t curlid;
    374 	bool exiting;
    375 
    376 	KASSERT(mutex_owned(p->p_lock));
    377 
    378 	p->p_nlwpwait++;
    379 	l->l_waitingfor = lid;
    380 	curlid = l->l_lid;
    381 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    382 
    383 	for (;;) {
    384 		/*
    385 		 * Avoid a race between exit1() and sigexit(): if the
    386 		 * process is dumping core, then we need to bail out: call
    387 		 * into lwp_userret() where we will be suspended until the
    388 		 * deed is done.
    389 		 */
    390 		if ((p->p_sflag & PS_WCORE) != 0) {
    391 			mutex_exit(p->p_lock);
    392 			lwp_userret(l);
    393 #ifdef DIAGNOSTIC
    394 			panic("lwp_wait1");
    395 #endif
    396 			/* NOTREACHED */
    397 		}
    398 
    399 		/*
    400 		 * First off, drain any detached LWP that is waiting to be
    401 		 * reaped.
    402 		 */
    403 		while ((l2 = p->p_zomblwp) != NULL) {
    404 			p->p_zomblwp = NULL;
    405 			lwp_free(l2, false, false);/* releases proc mutex */
    406 			mutex_enter(p->p_lock);
    407 		}
    408 
    409 		/*
    410 		 * Now look for an LWP to collect.  If the whole process is
    411 		 * exiting, count detached LWPs as eligible to be collected,
    412 		 * but don't drain them here.
    413 		 */
    414 		nfound = 0;
    415 		error = 0;
    416 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    417 			/*
    418 			 * If a specific wait and the target is waiting on
    419 			 * us, then avoid deadlock.  This also traps LWPs
    420 			 * that try to wait on themselves.
    421 			 *
    422 			 * Note that this does not handle more complicated
    423 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    424 			 * can still be killed so it is not a major problem.
    425 			 */
    426 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    427 				error = EDEADLK;
    428 				break;
    429 			}
    430 			if (l2 == l)
    431 				continue;
    432 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    433 				nfound += exiting;
    434 				continue;
    435 			}
    436 			if (lid != 0) {
    437 				if (l2->l_lid != lid)
    438 					continue;
    439 				/*
    440 				 * Mark this LWP as the first waiter, if there
    441 				 * is no other.
    442 				 */
    443 				if (l2->l_waiter == 0)
    444 					l2->l_waiter = curlid;
    445 			} else if (l2->l_waiter != 0) {
    446 				/*
    447 				 * It already has a waiter - so don't
    448 				 * collect it.  If the waiter doesn't
    449 				 * grab it we'll get another chance
    450 				 * later.
    451 				 */
    452 				nfound++;
    453 				continue;
    454 			}
    455 			nfound++;
    456 
    457 			/* No need to lock the LWP in order to see LSZOMB. */
    458 			if (l2->l_stat != LSZOMB)
    459 				continue;
    460 
    461 			/*
    462 			 * We're no longer waiting.  Reset the "first waiter"
    463 			 * pointer on the target, in case it was us.
    464 			 */
    465 			l->l_waitingfor = 0;
    466 			l2->l_waiter = 0;
    467 			p->p_nlwpwait--;
    468 			if (departed)
    469 				*departed = l2->l_lid;
    470 			sched_lwp_collect(l2);
    471 
    472 			/* lwp_free() releases the proc lock. */
    473 			lwp_free(l2, false, false);
    474 			mutex_enter(p->p_lock);
    475 			return 0;
    476 		}
    477 
    478 		if (error != 0)
    479 			break;
    480 		if (nfound == 0) {
    481 			error = ESRCH;
    482 			break;
    483 		}
    484 
    485 		/*
    486 		 * The kernel is careful to ensure that it can not deadlock
    487 		 * when exiting - just keep waiting.
    488 		 */
    489 		if (exiting) {
    490 			KASSERT(p->p_nlwps > 1);
    491 			cv_wait(&p->p_lwpcv, p->p_lock);
    492 			continue;
    493 		}
    494 
    495 		/*
    496 		 * If all other LWPs are waiting for exits or suspends
    497 		 * and the supply of zombies and potential zombies is
    498 		 * exhausted, then we are about to deadlock.
    499 		 *
    500 		 * If the process is exiting (and this LWP is not the one
    501 		 * that is coordinating the exit) then bail out now.
    502 		 */
    503 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    504 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    505 			error = EDEADLK;
    506 			break;
    507 		}
    508 
    509 		/*
    510 		 * Sit around and wait for something to happen.  We'll be
    511 		 * awoken if any of the conditions examined change: if an
    512 		 * LWP exits, is collected, or is detached.
    513 		 */
    514 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    515 			break;
    516 	}
    517 
    518 	/*
    519 	 * We didn't find any LWPs to collect, we may have received a
    520 	 * signal, or some other condition has caused us to bail out.
    521 	 *
    522 	 * If waiting on a specific LWP, clear the waiters marker: some
    523 	 * other LWP may want it.  Then, kick all the remaining waiters
    524 	 * so that they can re-check for zombies and for deadlock.
    525 	 */
    526 	if (lid != 0) {
    527 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    528 			if (l2->l_lid == lid) {
    529 				if (l2->l_waiter == curlid)
    530 					l2->l_waiter = 0;
    531 				break;
    532 			}
    533 		}
    534 	}
    535 	p->p_nlwpwait--;
    536 	l->l_waitingfor = 0;
    537 	cv_broadcast(&p->p_lwpcv);
    538 
    539 	return error;
    540 }
    541 
    542 /*
    543  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    544  * The new LWP is created in state LSIDL and must be set running,
    545  * suspended, or stopped by the caller.
    546  */
    547 int
    548 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    549 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    550 	   lwp_t **rnewlwpp, int sclass)
    551 {
    552 	struct lwp *l2, *isfree;
    553 	turnstile_t *ts;
    554 
    555 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    556 
    557 	/*
    558 	 * First off, reap any detached LWP waiting to be collected.
    559 	 * We can re-use its LWP structure and turnstile.
    560 	 */
    561 	isfree = NULL;
    562 	if (p2->p_zomblwp != NULL) {
    563 		mutex_enter(p2->p_lock);
    564 		if ((isfree = p2->p_zomblwp) != NULL) {
    565 			p2->p_zomblwp = NULL;
    566 			lwp_free(isfree, true, false);/* releases proc mutex */
    567 		} else
    568 			mutex_exit(p2->p_lock);
    569 	}
    570 	if (isfree == NULL) {
    571 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    572 		memset(l2, 0, sizeof(*l2));
    573 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    574 		SLIST_INIT(&l2->l_pi_lenders);
    575 	} else {
    576 		l2 = isfree;
    577 		ts = l2->l_ts;
    578 		KASSERT(l2->l_inheritedprio == -1);
    579 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    580 		memset(l2, 0, sizeof(*l2));
    581 		l2->l_ts = ts;
    582 	}
    583 
    584 	l2->l_stat = LSIDL;
    585 	l2->l_proc = p2;
    586 	l2->l_refcnt = 1;
    587 	l2->l_class = sclass;
    588 
    589 	/*
    590 	 * If vfork(), we want the LWP to run fast and on the same CPU
    591 	 * as its parent, so that it can reuse the VM context and cache
    592 	 * footprint on the local CPU.
    593 	 */
    594 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    595 	l2->l_kpribase = PRI_KERNEL;
    596 	l2->l_priority = l1->l_priority;
    597 	l2->l_inheritedprio = -1;
    598 	l2->l_flag = 0;
    599 	l2->l_pflag = LP_MPSAFE;
    600 	TAILQ_INIT(&l2->l_ld_locks);
    601 
    602 	/*
    603 	 * If not the first LWP in the process, grab a reference to the
    604 	 * descriptor table.
    605 	 */
    606 	l2->l_fd = p2->p_fd;
    607 	if (p2->p_nlwps != 0) {
    608 		KASSERT(l1->l_proc == p2);
    609 		atomic_inc_uint(&l2->l_fd->fd_refcnt);
    610 	} else {
    611 		KASSERT(l1->l_proc != p2);
    612 	}
    613 
    614 	if (p2->p_flag & PK_SYSTEM) {
    615 		/* Mark it as a system LWP. */
    616 		l2->l_flag |= LW_SYSTEM;
    617 	}
    618 
    619 	kpreempt_disable();
    620 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    621 	l2->l_cpu = l1->l_cpu;
    622 	kpreempt_enable();
    623 
    624 	lwp_initspecific(l2);
    625 	sched_lwp_fork(l1, l2);
    626 	lwp_update_creds(l2);
    627 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    628 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    629 	cv_init(&l2->l_sigcv, "sigwait");
    630 	l2->l_syncobj = &sched_syncobj;
    631 
    632 	if (rnewlwpp != NULL)
    633 		*rnewlwpp = l2;
    634 
    635 	l2->l_addr = UAREA_TO_USER(uaddr);
    636 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    637 	    (arg != NULL) ? arg : l2);
    638 
    639 	mutex_enter(p2->p_lock);
    640 
    641 	if ((flags & LWP_DETACHED) != 0) {
    642 		l2->l_prflag = LPR_DETACHED;
    643 		p2->p_ndlwps++;
    644 	} else
    645 		l2->l_prflag = 0;
    646 
    647 	l2->l_sigmask = l1->l_sigmask;
    648 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    649 	sigemptyset(&l2->l_sigpend.sp_set);
    650 
    651 	p2->p_nlwpid++;
    652 	if (p2->p_nlwpid == 0)
    653 		p2->p_nlwpid++;
    654 	l2->l_lid = p2->p_nlwpid;
    655 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    656 	p2->p_nlwps++;
    657 
    658 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    659 		/* Inherit an affinity */
    660 		if (l1->l_flag & LW_AFFINITY) {
    661 			/*
    662 			 * Note that we hold the state lock while inheriting
    663 			 * the affinity to avoid race with sched_setaffinity().
    664 			 */
    665 			lwp_lock(l1);
    666 			if (l1->l_flag & LW_AFFINITY) {
    667 				kcpuset_use(l1->l_affinity);
    668 				l2->l_affinity = l1->l_affinity;
    669 				l2->l_flag |= LW_AFFINITY;
    670 			}
    671 			lwp_unlock(l1);
    672 		}
    673 		lwp_lock(l2);
    674 		/* Inherit a processor-set */
    675 		l2->l_psid = l1->l_psid;
    676 		/* Look for a CPU to start */
    677 		l2->l_cpu = sched_takecpu(l2);
    678 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    679 	}
    680 	mutex_exit(p2->p_lock);
    681 
    682 	mutex_enter(proc_lock);
    683 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    684 	mutex_exit(proc_lock);
    685 
    686 	SYSCALL_TIME_LWP_INIT(l2);
    687 
    688 	if (p2->p_emul->e_lwp_fork)
    689 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    690 
    691 	return (0);
    692 }
    693 
    694 /*
    695  * Called by MD code when a new LWP begins execution.  Must be called
    696  * with the previous LWP locked (so at splsched), or if there is no
    697  * previous LWP, at splsched.
    698  */
    699 void
    700 lwp_startup(struct lwp *prev, struct lwp *new)
    701 {
    702 
    703 	KASSERT(kpreempt_disabled());
    704 	if (prev != NULL) {
    705 		/*
    706 		 * Normalize the count of the spin-mutexes, it was
    707 		 * increased in mi_switch().  Unmark the state of
    708 		 * context switch - it is finished for previous LWP.
    709 		 */
    710 		curcpu()->ci_mtx_count++;
    711 		membar_exit();
    712 		prev->l_ctxswtch = 0;
    713 	}
    714 	KPREEMPT_DISABLE(new);
    715 	spl0();
    716 	pmap_activate(new);
    717 	LOCKDEBUG_BARRIER(NULL, 0);
    718 	KPREEMPT_ENABLE(new);
    719 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    720 		KERNEL_LOCK(1, new);
    721 	}
    722 }
    723 
    724 /*
    725  * Exit an LWP.
    726  */
    727 void
    728 lwp_exit(struct lwp *l)
    729 {
    730 	struct proc *p = l->l_proc;
    731 	struct lwp *l2;
    732 	bool current;
    733 
    734 	current = (l == curlwp);
    735 
    736 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    737 	KASSERT(p == curproc);
    738 
    739 	/*
    740 	 * Verify that we hold no locks other than the kernel lock.
    741 	 */
    742 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    743 
    744 	/*
    745 	 * If we are the last live LWP in a process, we need to exit the
    746 	 * entire process.  We do so with an exit status of zero, because
    747 	 * it's a "controlled" exit, and because that's what Solaris does.
    748 	 *
    749 	 * We are not quite a zombie yet, but for accounting purposes we
    750 	 * must increment the count of zombies here.
    751 	 *
    752 	 * Note: the last LWP's specificdata will be deleted here.
    753 	 */
    754 	mutex_enter(p->p_lock);
    755 	if (p->p_nlwps - p->p_nzlwps == 1) {
    756 		KASSERT(current == true);
    757 		/* XXXSMP kernel_lock not held */
    758 		exit1(l, 0);
    759 		/* NOTREACHED */
    760 	}
    761 	p->p_nzlwps++;
    762 	mutex_exit(p->p_lock);
    763 
    764 	if (p->p_emul->e_lwp_exit)
    765 		(*p->p_emul->e_lwp_exit)(l);
    766 
    767 	/* Drop filedesc reference. */
    768 	fd_free();
    769 
    770 	/* Delete the specificdata while it's still safe to sleep. */
    771 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    772 
    773 	/*
    774 	 * Release our cached credentials.
    775 	 */
    776 	kauth_cred_free(l->l_cred);
    777 	callout_destroy(&l->l_timeout_ch);
    778 
    779 	/*
    780 	 * Remove the LWP from the global list.
    781 	 */
    782 	mutex_enter(proc_lock);
    783 	LIST_REMOVE(l, l_list);
    784 	mutex_exit(proc_lock);
    785 
    786 	/*
    787 	 * Get rid of all references to the LWP that others (e.g. procfs)
    788 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    789 	 * mark it waiting for collection in the proc structure.  Note that
    790 	 * before we can do that, we need to free any other dead, deatched
    791 	 * LWP waiting to meet its maker.
    792 	 */
    793 	mutex_enter(p->p_lock);
    794 	lwp_drainrefs(l);
    795 
    796 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    797 		while ((l2 = p->p_zomblwp) != NULL) {
    798 			p->p_zomblwp = NULL;
    799 			lwp_free(l2, false, false);/* releases proc mutex */
    800 			mutex_enter(p->p_lock);
    801 			l->l_refcnt++;
    802 			lwp_drainrefs(l);
    803 		}
    804 		p->p_zomblwp = l;
    805 	}
    806 
    807 	/*
    808 	 * If we find a pending signal for the process and we have been
    809 	 * asked to check for signals, then we loose: arrange to have
    810 	 * all other LWPs in the process check for signals.
    811 	 */
    812 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    813 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    814 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    815 			lwp_lock(l2);
    816 			l2->l_flag |= LW_PENDSIG;
    817 			lwp_unlock(l2);
    818 		}
    819 	}
    820 
    821 	lwp_lock(l);
    822 	l->l_stat = LSZOMB;
    823 	if (l->l_name != NULL)
    824 		strcpy(l->l_name, "(zombie)");
    825 	if (l->l_flag & LW_AFFINITY) {
    826 		l->l_flag &= ~LW_AFFINITY;
    827 	} else {
    828 		KASSERT(l->l_affinity == NULL);
    829 	}
    830 	lwp_unlock(l);
    831 	p->p_nrlwps--;
    832 	cv_broadcast(&p->p_lwpcv);
    833 	if (l->l_lwpctl != NULL)
    834 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    835 	mutex_exit(p->p_lock);
    836 
    837 	/* Safe without lock since LWP is in zombie state */
    838 	if (l->l_affinity) {
    839 		kcpuset_unuse(l->l_affinity, NULL);
    840 		l->l_affinity = NULL;
    841 	}
    842 
    843 	/*
    844 	 * We can no longer block.  At this point, lwp_free() may already
    845 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    846 	 *
    847 	 * Free MD LWP resources.
    848 	 */
    849 #ifndef __NO_CPU_LWP_FREE
    850 	cpu_lwp_free(l, 0);
    851 #endif
    852 
    853 	if (current) {
    854 		pmap_deactivate(l);
    855 
    856 		/*
    857 		 * Release the kernel lock, and switch away into
    858 		 * oblivion.
    859 		 */
    860 #ifdef notyet
    861 		/* XXXSMP hold in lwp_userret() */
    862 		KERNEL_UNLOCK_LAST(l);
    863 #else
    864 		KERNEL_UNLOCK_ALL(l, NULL);
    865 #endif
    866 		lwp_exit_switchaway(l);
    867 	}
    868 }
    869 
    870 /*
    871  * Free a dead LWP's remaining resources.
    872  *
    873  * XXXLWP limits.
    874  */
    875 void
    876 lwp_free(struct lwp *l, bool recycle, bool last)
    877 {
    878 	struct proc *p = l->l_proc;
    879 	struct rusage *ru;
    880 	ksiginfoq_t kq;
    881 
    882 	KASSERT(l != curlwp);
    883 
    884 	/*
    885 	 * If this was not the last LWP in the process, then adjust
    886 	 * counters and unlock.
    887 	 */
    888 	if (!last) {
    889 		/*
    890 		 * Add the LWP's run time to the process' base value.
    891 		 * This needs to co-incide with coming off p_lwps.
    892 		 */
    893 		bintime_add(&p->p_rtime, &l->l_rtime);
    894 		p->p_pctcpu += l->l_pctcpu;
    895 		ru = &p->p_stats->p_ru;
    896 		ruadd(ru, &l->l_ru);
    897 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    898 		ru->ru_nivcsw += l->l_nivcsw;
    899 		LIST_REMOVE(l, l_sibling);
    900 		p->p_nlwps--;
    901 		p->p_nzlwps--;
    902 		if ((l->l_prflag & LPR_DETACHED) != 0)
    903 			p->p_ndlwps--;
    904 
    905 		/*
    906 		 * Have any LWPs sleeping in lwp_wait() recheck for
    907 		 * deadlock.
    908 		 */
    909 		cv_broadcast(&p->p_lwpcv);
    910 		mutex_exit(p->p_lock);
    911 	}
    912 
    913 #ifdef MULTIPROCESSOR
    914 	/*
    915 	 * In the unlikely event that the LWP is still on the CPU,
    916 	 * then spin until it has switched away.  We need to release
    917 	 * all locks to avoid deadlock against interrupt handlers on
    918 	 * the target CPU.
    919 	 */
    920 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    921 		int count;
    922 		(void)count; /* XXXgcc */
    923 		KERNEL_UNLOCK_ALL(curlwp, &count);
    924 		while ((l->l_pflag & LP_RUNNING) != 0 ||
    925 		    l->l_cpu->ci_curlwp == l)
    926 			SPINLOCK_BACKOFF_HOOK;
    927 		KERNEL_LOCK(count, curlwp);
    928 	}
    929 #endif
    930 
    931 	/*
    932 	 * Destroy the LWP's remaining signal information.
    933 	 */
    934 	ksiginfo_queue_init(&kq);
    935 	sigclear(&l->l_sigpend, NULL, &kq);
    936 	ksiginfo_queue_drain(&kq);
    937 	cv_destroy(&l->l_sigcv);
    938 
    939 	/*
    940 	 * Free the LWP's turnstile and the LWP structure itself unless the
    941 	 * caller wants to recycle them.  Also, free the scheduler specific
    942 	 * data.
    943 	 *
    944 	 * We can't return turnstile0 to the pool (it didn't come from it),
    945 	 * so if it comes up just drop it quietly and move on.
    946 	 *
    947 	 * We don't recycle the VM resources at this time.
    948 	 */
    949 	if (l->l_lwpctl != NULL)
    950 		lwp_ctl_free(l);
    951 
    952 	if (!recycle && l->l_ts != &turnstile0)
    953 		pool_cache_put(turnstile_cache, l->l_ts);
    954 	if (l->l_name != NULL)
    955 		kmem_free(l->l_name, MAXCOMLEN);
    956 #ifndef __NO_CPU_LWP_FREE
    957 	cpu_lwp_free2(l);
    958 #endif
    959 	uvm_lwp_exit(l);
    960 
    961 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    962 	KASSERT(l->l_inheritedprio == -1);
    963 	if (!recycle)
    964 		pool_cache_put(lwp_cache, l);
    965 }
    966 
    967 /*
    968  * Migrate the LWP to the another CPU.  Unlocks the LWP.
    969  */
    970 void
    971 lwp_migrate(lwp_t *l, struct cpu_info *tci)
    972 {
    973 	struct schedstate_percpu *tspc;
    974 	int lstat = l->l_stat;
    975 
    976 	KASSERT(lwp_locked(l, NULL));
    977 	KASSERT(tci != NULL);
    978 
    979 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
    980 	if ((l->l_pflag & LP_RUNNING) != 0) {
    981 		lstat = LSONPROC;
    982 	}
    983 
    984 	/*
    985 	 * The destination CPU could be changed while previous migration
    986 	 * was not finished.
    987 	 */
    988 	if (l->l_target_cpu != NULL) {
    989 		l->l_target_cpu = tci;
    990 		lwp_unlock(l);
    991 		return;
    992 	}
    993 
    994 	/* Nothing to do if trying to migrate to the same CPU */
    995 	if (l->l_cpu == tci) {
    996 		lwp_unlock(l);
    997 		return;
    998 	}
    999 
   1000 	KASSERT(l->l_target_cpu == NULL);
   1001 	tspc = &tci->ci_schedstate;
   1002 	switch (lstat) {
   1003 	case LSRUN:
   1004 		l->l_target_cpu = tci;
   1005 		break;
   1006 	case LSIDL:
   1007 		l->l_cpu = tci;
   1008 		lwp_unlock_to(l, tspc->spc_mutex);
   1009 		return;
   1010 	case LSSLEEP:
   1011 		l->l_cpu = tci;
   1012 		break;
   1013 	case LSSTOP:
   1014 	case LSSUSPENDED:
   1015 		l->l_cpu = tci;
   1016 		if (l->l_wchan == NULL) {
   1017 			lwp_unlock_to(l, tspc->spc_lwplock);
   1018 			return;
   1019 		}
   1020 		break;
   1021 	case LSONPROC:
   1022 		l->l_target_cpu = tci;
   1023 		spc_lock(l->l_cpu);
   1024 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1025 		spc_unlock(l->l_cpu);
   1026 		break;
   1027 	}
   1028 	lwp_unlock(l);
   1029 }
   1030 
   1031 /*
   1032  * Find the LWP in the process.  Arguments may be zero, in such case,
   1033  * the calling process and first LWP in the list will be used.
   1034  * On success - returns proc locked.
   1035  */
   1036 struct lwp *
   1037 lwp_find2(pid_t pid, lwpid_t lid)
   1038 {
   1039 	proc_t *p;
   1040 	lwp_t *l;
   1041 
   1042 	/* Find the process */
   1043 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
   1044 	if (p == NULL)
   1045 		return NULL;
   1046 	mutex_enter(p->p_lock);
   1047 	if (pid != 0) {
   1048 		/* Case of p_find */
   1049 		mutex_exit(proc_lock);
   1050 	}
   1051 
   1052 	/* Find the thread */
   1053 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
   1054 	if (l == NULL) {
   1055 		mutex_exit(p->p_lock);
   1056 	}
   1057 
   1058 	return l;
   1059 }
   1060 
   1061 /*
   1062  * Look up a live LWP within the speicifed process, and return it locked.
   1063  *
   1064  * Must be called with p->p_lock held.
   1065  */
   1066 struct lwp *
   1067 lwp_find(struct proc *p, int id)
   1068 {
   1069 	struct lwp *l;
   1070 
   1071 	KASSERT(mutex_owned(p->p_lock));
   1072 
   1073 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1074 		if (l->l_lid == id)
   1075 			break;
   1076 	}
   1077 
   1078 	/*
   1079 	 * No need to lock - all of these conditions will
   1080 	 * be visible with the process level mutex held.
   1081 	 */
   1082 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1083 		l = NULL;
   1084 
   1085 	return l;
   1086 }
   1087 
   1088 /*
   1089  * Update an LWP's cached credentials to mirror the process' master copy.
   1090  *
   1091  * This happens early in the syscall path, on user trap, and on LWP
   1092  * creation.  A long-running LWP can also voluntarily choose to update
   1093  * it's credentials by calling this routine.  This may be called from
   1094  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1095  */
   1096 void
   1097 lwp_update_creds(struct lwp *l)
   1098 {
   1099 	kauth_cred_t oc;
   1100 	struct proc *p;
   1101 
   1102 	p = l->l_proc;
   1103 	oc = l->l_cred;
   1104 
   1105 	mutex_enter(p->p_lock);
   1106 	kauth_cred_hold(p->p_cred);
   1107 	l->l_cred = p->p_cred;
   1108 	l->l_prflag &= ~LPR_CRMOD;
   1109 	mutex_exit(p->p_lock);
   1110 	if (oc != NULL)
   1111 		kauth_cred_free(oc);
   1112 }
   1113 
   1114 /*
   1115  * Verify that an LWP is locked, and optionally verify that the lock matches
   1116  * one we specify.
   1117  */
   1118 int
   1119 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1120 {
   1121 	kmutex_t *cur = l->l_mutex;
   1122 
   1123 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1124 }
   1125 
   1126 /*
   1127  * Lock an LWP.
   1128  */
   1129 kmutex_t *
   1130 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1131 {
   1132 
   1133 	/*
   1134 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1135 	 *
   1136 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1137 	 */
   1138 #if 1
   1139 	while (l->l_mutex != old) {
   1140 #else
   1141 	for (;;) {
   1142 #endif
   1143 		mutex_spin_exit(old);
   1144 		old = l->l_mutex;
   1145 		mutex_spin_enter(old);
   1146 
   1147 		/*
   1148 		 * mutex_enter() will have posted a read barrier.  Re-test
   1149 		 * l->l_mutex.  If it has changed, we need to try again.
   1150 		 */
   1151 #if 1
   1152 	}
   1153 #else
   1154 	} while (__predict_false(l->l_mutex != old));
   1155 #endif
   1156 
   1157 	return old;
   1158 }
   1159 
   1160 /*
   1161  * Lend a new mutex to an LWP.  The old mutex must be held.
   1162  */
   1163 void
   1164 lwp_setlock(struct lwp *l, kmutex_t *new)
   1165 {
   1166 
   1167 	KASSERT(mutex_owned(l->l_mutex));
   1168 
   1169 	membar_exit();
   1170 	l->l_mutex = new;
   1171 }
   1172 
   1173 /*
   1174  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1175  * must be held.
   1176  */
   1177 void
   1178 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1179 {
   1180 	kmutex_t *old;
   1181 
   1182 	KASSERT(mutex_owned(l->l_mutex));
   1183 
   1184 	old = l->l_mutex;
   1185 	membar_exit();
   1186 	l->l_mutex = new;
   1187 	mutex_spin_exit(old);
   1188 }
   1189 
   1190 /*
   1191  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1192  * locked.
   1193  */
   1194 void
   1195 lwp_relock(struct lwp *l, kmutex_t *new)
   1196 {
   1197 	kmutex_t *old;
   1198 
   1199 	KASSERT(mutex_owned(l->l_mutex));
   1200 
   1201 	old = l->l_mutex;
   1202 	if (old != new) {
   1203 		mutex_spin_enter(new);
   1204 		l->l_mutex = new;
   1205 		mutex_spin_exit(old);
   1206 	}
   1207 }
   1208 
   1209 int
   1210 lwp_trylock(struct lwp *l)
   1211 {
   1212 	kmutex_t *old;
   1213 
   1214 	for (;;) {
   1215 		if (!mutex_tryenter(old = l->l_mutex))
   1216 			return 0;
   1217 		if (__predict_true(l->l_mutex == old))
   1218 			return 1;
   1219 		mutex_spin_exit(old);
   1220 	}
   1221 }
   1222 
   1223 void
   1224 lwp_unsleep(lwp_t *l, bool cleanup)
   1225 {
   1226 
   1227 	KASSERT(mutex_owned(l->l_mutex));
   1228 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1229 }
   1230 
   1231 
   1232 /*
   1233  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1234  * set.
   1235  */
   1236 void
   1237 lwp_userret(struct lwp *l)
   1238 {
   1239 	struct proc *p;
   1240 	void (*hook)(void);
   1241 	int sig;
   1242 
   1243 	KASSERT(l == curlwp);
   1244 	KASSERT(l->l_stat == LSONPROC);
   1245 	p = l->l_proc;
   1246 
   1247 #ifndef __HAVE_FAST_SOFTINTS
   1248 	/* Run pending soft interrupts. */
   1249 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1250 		softint_overlay();
   1251 #endif
   1252 
   1253 #ifdef KERN_SA
   1254 	/* Generate UNBLOCKED upcall if needed */
   1255 	if (l->l_flag & LW_SA_BLOCKING) {
   1256 		sa_unblock_userret(l);
   1257 		/* NOTREACHED */
   1258 	}
   1259 #endif
   1260 
   1261 	/*
   1262 	 * It should be safe to do this read unlocked on a multiprocessor
   1263 	 * system..
   1264 	 *
   1265 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
   1266 	 * consider it now.
   1267 	 */
   1268 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
   1269 		/*
   1270 		 * Process pending signals first, unless the process
   1271 		 * is dumping core or exiting, where we will instead
   1272 		 * enter the LW_WSUSPEND case below.
   1273 		 */
   1274 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1275 		    LW_PENDSIG) {
   1276 			mutex_enter(p->p_lock);
   1277 			while ((sig = issignal(l)) != 0)
   1278 				postsig(sig);
   1279 			mutex_exit(p->p_lock);
   1280 		}
   1281 
   1282 		/*
   1283 		 * Core-dump or suspend pending.
   1284 		 *
   1285 		 * In case of core dump, suspend ourselves, so that the
   1286 		 * kernel stack and therefore the userland registers saved
   1287 		 * in the trapframe are around for coredump() to write them
   1288 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1289 		 * will write the core file out once all other LWPs are
   1290 		 * suspended.
   1291 		 */
   1292 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1293 			mutex_enter(p->p_lock);
   1294 			p->p_nrlwps--;
   1295 			cv_broadcast(&p->p_lwpcv);
   1296 			lwp_lock(l);
   1297 			l->l_stat = LSSUSPENDED;
   1298 			lwp_unlock(l);
   1299 			mutex_exit(p->p_lock);
   1300 			lwp_lock(l);
   1301 			mi_switch(l);
   1302 		}
   1303 
   1304 		/* Process is exiting. */
   1305 		if ((l->l_flag & LW_WEXIT) != 0) {
   1306 			lwp_exit(l);
   1307 			KASSERT(0);
   1308 			/* NOTREACHED */
   1309 		}
   1310 
   1311 		/* Call userret hook; used by Linux emulation. */
   1312 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1313 			lwp_lock(l);
   1314 			l->l_flag &= ~LW_WUSERRET;
   1315 			lwp_unlock(l);
   1316 			hook = p->p_userret;
   1317 			p->p_userret = NULL;
   1318 			(*hook)();
   1319 		}
   1320 	}
   1321 
   1322 #ifdef KERN_SA
   1323 	/*
   1324 	 * Timer events are handled specially.  We only try once to deliver
   1325 	 * pending timer upcalls; if if fails, we can try again on the next
   1326 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
   1327 	 * bounce us back here through the trap path after we return.
   1328 	 */
   1329 	if (p->p_timerpend)
   1330 		timerupcall(l);
   1331 	if (l->l_flag & LW_SA_UPCALL)
   1332 		sa_upcall_userret(l);
   1333 #endif /* KERN_SA */
   1334 }
   1335 
   1336 /*
   1337  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1338  */
   1339 void
   1340 lwp_need_userret(struct lwp *l)
   1341 {
   1342 	KASSERT(lwp_locked(l, NULL));
   1343 
   1344 	/*
   1345 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1346 	 * that the condition will be seen before forcing the LWP to enter
   1347 	 * kernel mode.
   1348 	 */
   1349 	membar_producer();
   1350 	cpu_signotify(l);
   1351 }
   1352 
   1353 /*
   1354  * Add one reference to an LWP.  This will prevent the LWP from
   1355  * exiting, thus keep the lwp structure and PCB around to inspect.
   1356  */
   1357 void
   1358 lwp_addref(struct lwp *l)
   1359 {
   1360 
   1361 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1362 	KASSERT(l->l_stat != LSZOMB);
   1363 	KASSERT(l->l_refcnt != 0);
   1364 
   1365 	l->l_refcnt++;
   1366 }
   1367 
   1368 /*
   1369  * Remove one reference to an LWP.  If this is the last reference,
   1370  * then we must finalize the LWP's death.
   1371  */
   1372 void
   1373 lwp_delref(struct lwp *l)
   1374 {
   1375 	struct proc *p = l->l_proc;
   1376 
   1377 	mutex_enter(p->p_lock);
   1378 	KASSERT(l->l_stat != LSZOMB);
   1379 	KASSERT(l->l_refcnt > 0);
   1380 	if (--l->l_refcnt == 0)
   1381 		cv_broadcast(&p->p_lwpcv);
   1382 	mutex_exit(p->p_lock);
   1383 }
   1384 
   1385 /*
   1386  * Drain all references to the current LWP.
   1387  */
   1388 void
   1389 lwp_drainrefs(struct lwp *l)
   1390 {
   1391 	struct proc *p = l->l_proc;
   1392 
   1393 	KASSERT(mutex_owned(p->p_lock));
   1394 	KASSERT(l->l_refcnt != 0);
   1395 
   1396 	l->l_refcnt--;
   1397 	while (l->l_refcnt != 0)
   1398 		cv_wait(&p->p_lwpcv, p->p_lock);
   1399 }
   1400 
   1401 /*
   1402  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1403  * be held.
   1404  */
   1405 bool
   1406 lwp_alive(lwp_t *l)
   1407 {
   1408 
   1409 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1410 
   1411 	switch (l->l_stat) {
   1412 	case LSSLEEP:
   1413 	case LSRUN:
   1414 	case LSONPROC:
   1415 	case LSSTOP:
   1416 	case LSSUSPENDED:
   1417 		return true;
   1418 	default:
   1419 		return false;
   1420 	}
   1421 }
   1422 
   1423 /*
   1424  * Return first live LWP in the process.
   1425  */
   1426 lwp_t *
   1427 lwp_find_first(proc_t *p)
   1428 {
   1429 	lwp_t *l;
   1430 
   1431 	KASSERT(mutex_owned(p->p_lock));
   1432 
   1433 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1434 		if (lwp_alive(l)) {
   1435 			return l;
   1436 		}
   1437 	}
   1438 
   1439 	return NULL;
   1440 }
   1441 
   1442 /*
   1443  * lwp_specific_key_create --
   1444  *	Create a key for subsystem lwp-specific data.
   1445  */
   1446 int
   1447 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1448 {
   1449 
   1450 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1451 }
   1452 
   1453 /*
   1454  * lwp_specific_key_delete --
   1455  *	Delete a key for subsystem lwp-specific data.
   1456  */
   1457 void
   1458 lwp_specific_key_delete(specificdata_key_t key)
   1459 {
   1460 
   1461 	specificdata_key_delete(lwp_specificdata_domain, key);
   1462 }
   1463 
   1464 /*
   1465  * lwp_initspecific --
   1466  *	Initialize an LWP's specificdata container.
   1467  */
   1468 void
   1469 lwp_initspecific(struct lwp *l)
   1470 {
   1471 	int error;
   1472 
   1473 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1474 	KASSERT(error == 0);
   1475 }
   1476 
   1477 /*
   1478  * lwp_finispecific --
   1479  *	Finalize an LWP's specificdata container.
   1480  */
   1481 void
   1482 lwp_finispecific(struct lwp *l)
   1483 {
   1484 
   1485 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1486 }
   1487 
   1488 /*
   1489  * lwp_getspecific --
   1490  *	Return lwp-specific data corresponding to the specified key.
   1491  *
   1492  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1493  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1494  *	LWP's specifc data, care must be taken to ensure that doing so
   1495  *	would not cause internal data structure inconsistency (i.e. caller
   1496  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1497  *	or lwp_setspecific() call).
   1498  */
   1499 void *
   1500 lwp_getspecific(specificdata_key_t key)
   1501 {
   1502 
   1503 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1504 						  &curlwp->l_specdataref, key));
   1505 }
   1506 
   1507 void *
   1508 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1509 {
   1510 
   1511 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1512 						  &l->l_specdataref, key));
   1513 }
   1514 
   1515 /*
   1516  * lwp_setspecific --
   1517  *	Set lwp-specific data corresponding to the specified key.
   1518  */
   1519 void
   1520 lwp_setspecific(specificdata_key_t key, void *data)
   1521 {
   1522 
   1523 	specificdata_setspecific(lwp_specificdata_domain,
   1524 				 &curlwp->l_specdataref, key, data);
   1525 }
   1526 
   1527 /*
   1528  * Allocate a new lwpctl structure for a user LWP.
   1529  */
   1530 int
   1531 lwp_ctl_alloc(vaddr_t *uaddr)
   1532 {
   1533 	lcproc_t *lp;
   1534 	u_int bit, i, offset;
   1535 	struct uvm_object *uao;
   1536 	int error;
   1537 	lcpage_t *lcp;
   1538 	proc_t *p;
   1539 	lwp_t *l;
   1540 
   1541 	l = curlwp;
   1542 	p = l->l_proc;
   1543 
   1544 	if (l->l_lcpage != NULL) {
   1545 		lcp = l->l_lcpage;
   1546 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1547 		return (EINVAL);
   1548 	}
   1549 
   1550 	/* First time around, allocate header structure for the process. */
   1551 	if ((lp = p->p_lwpctl) == NULL) {
   1552 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1553 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1554 		lp->lp_uao = NULL;
   1555 		TAILQ_INIT(&lp->lp_pages);
   1556 		mutex_enter(p->p_lock);
   1557 		if (p->p_lwpctl == NULL) {
   1558 			p->p_lwpctl = lp;
   1559 			mutex_exit(p->p_lock);
   1560 		} else {
   1561 			mutex_exit(p->p_lock);
   1562 			mutex_destroy(&lp->lp_lock);
   1563 			kmem_free(lp, sizeof(*lp));
   1564 			lp = p->p_lwpctl;
   1565 		}
   1566 	}
   1567 
   1568  	/*
   1569  	 * Set up an anonymous memory region to hold the shared pages.
   1570  	 * Map them into the process' address space.  The user vmspace
   1571  	 * gets the first reference on the UAO.
   1572  	 */
   1573 	mutex_enter(&lp->lp_lock);
   1574 	if (lp->lp_uao == NULL) {
   1575 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1576 		lp->lp_cur = 0;
   1577 		lp->lp_max = LWPCTL_UAREA_SZ;
   1578 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1579 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1580 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1581 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1582 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1583 		if (error != 0) {
   1584 			uao_detach(lp->lp_uao);
   1585 			lp->lp_uao = NULL;
   1586 			mutex_exit(&lp->lp_lock);
   1587 			return error;
   1588 		}
   1589 	}
   1590 
   1591 	/* Get a free block and allocate for this LWP. */
   1592 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1593 		if (lcp->lcp_nfree != 0)
   1594 			break;
   1595 	}
   1596 	if (lcp == NULL) {
   1597 		/* Nothing available - try to set up a free page. */
   1598 		if (lp->lp_cur == lp->lp_max) {
   1599 			mutex_exit(&lp->lp_lock);
   1600 			return ENOMEM;
   1601 		}
   1602 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1603 		if (lcp == NULL) {
   1604 			mutex_exit(&lp->lp_lock);
   1605 			return ENOMEM;
   1606 		}
   1607 		/*
   1608 		 * Wire the next page down in kernel space.  Since this
   1609 		 * is a new mapping, we must add a reference.
   1610 		 */
   1611 		uao = lp->lp_uao;
   1612 		(*uao->pgops->pgo_reference)(uao);
   1613 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1614 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1615 		    uao, lp->lp_cur, PAGE_SIZE,
   1616 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1617 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1618 		if (error != 0) {
   1619 			mutex_exit(&lp->lp_lock);
   1620 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1621 			(*uao->pgops->pgo_detach)(uao);
   1622 			return error;
   1623 		}
   1624 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1625 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1626 		if (error != 0) {
   1627 			mutex_exit(&lp->lp_lock);
   1628 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1629 			    lcp->lcp_kaddr + PAGE_SIZE);
   1630 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1631 			return error;
   1632 		}
   1633 		/* Prepare the page descriptor and link into the list. */
   1634 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1635 		lp->lp_cur += PAGE_SIZE;
   1636 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1637 		lcp->lcp_rotor = 0;
   1638 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1639 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1640 	}
   1641 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1642 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1643 			i = 0;
   1644 	}
   1645 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1646 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1647 	lcp->lcp_rotor = i;
   1648 	lcp->lcp_nfree--;
   1649 	l->l_lcpage = lcp;
   1650 	offset = (i << 5) + bit;
   1651 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1652 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1653 	mutex_exit(&lp->lp_lock);
   1654 
   1655 	KPREEMPT_DISABLE(l);
   1656 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1657 	KPREEMPT_ENABLE(l);
   1658 
   1659 	return 0;
   1660 }
   1661 
   1662 /*
   1663  * Free an lwpctl structure back to the per-process list.
   1664  */
   1665 void
   1666 lwp_ctl_free(lwp_t *l)
   1667 {
   1668 	lcproc_t *lp;
   1669 	lcpage_t *lcp;
   1670 	u_int map, offset;
   1671 
   1672 	lp = l->l_proc->p_lwpctl;
   1673 	KASSERT(lp != NULL);
   1674 
   1675 	lcp = l->l_lcpage;
   1676 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1677 	KASSERT(offset < LWPCTL_PER_PAGE);
   1678 
   1679 	mutex_enter(&lp->lp_lock);
   1680 	lcp->lcp_nfree++;
   1681 	map = offset >> 5;
   1682 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1683 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1684 		lcp->lcp_rotor = map;
   1685 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1686 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1687 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1688 	}
   1689 	mutex_exit(&lp->lp_lock);
   1690 }
   1691 
   1692 /*
   1693  * Process is exiting; tear down lwpctl state.  This can only be safely
   1694  * called by the last LWP in the process.
   1695  */
   1696 void
   1697 lwp_ctl_exit(void)
   1698 {
   1699 	lcpage_t *lcp, *next;
   1700 	lcproc_t *lp;
   1701 	proc_t *p;
   1702 	lwp_t *l;
   1703 
   1704 	l = curlwp;
   1705 	l->l_lwpctl = NULL;
   1706 	l->l_lcpage = NULL;
   1707 	p = l->l_proc;
   1708 	lp = p->p_lwpctl;
   1709 
   1710 	KASSERT(lp != NULL);
   1711 	KASSERT(p->p_nlwps == 1);
   1712 
   1713 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1714 		next = TAILQ_NEXT(lcp, lcp_chain);
   1715 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1716 		    lcp->lcp_kaddr + PAGE_SIZE);
   1717 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1718 	}
   1719 
   1720 	if (lp->lp_uao != NULL) {
   1721 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1722 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1723 	}
   1724 
   1725 	mutex_destroy(&lp->lp_lock);
   1726 	kmem_free(lp, sizeof(*lp));
   1727 	p->p_lwpctl = NULL;
   1728 }
   1729 
   1730 /*
   1731  * Return the current LWP's "preemption counter".  Used to detect
   1732  * preemption across operations that can tolerate preemption without
   1733  * crashing, but which may generate incorrect results if preempted.
   1734  */
   1735 uint64_t
   1736 lwp_pctr(void)
   1737 {
   1738 
   1739 	return curlwp->l_ncsw;
   1740 }
   1741 
   1742 #if defined(DDB)
   1743 void
   1744 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1745 {
   1746 	lwp_t *l;
   1747 
   1748 	LIST_FOREACH(l, &alllwp, l_list) {
   1749 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1750 
   1751 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1752 			continue;
   1753 		}
   1754 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1755 		    (void *)addr, (void *)stack,
   1756 		    (size_t)(addr - stack), l);
   1757 	}
   1758 }
   1759 #endif /* defined(DDB) */
   1760