kern_lwp.c revision 1.134 1 /* $NetBSD: kern_lwp.c,v 1.134 2009/10/21 21:12:06 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock and matches lwp::l_cpu.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock and matches lwp::l_cpu.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * (But not always for kernel threads. There are some special cases
200 * as mentioned above. See kern_softint.c.)
201 *
202 * Note that an LWP is considered running or likely to run soon if in
203 * one of the following states. This affects the value of p_nrlwps:
204 *
205 * LSRUN, LSONPROC, LSSLEEP
206 *
207 * p_lock does not need to be held when transitioning among these
208 * three states, hence p_lock is rarely taken for state transitions.
209 */
210
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.134 2009/10/21 21:12:06 rmind Exp $");
213
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_sa.h"
217
218 #define _LWP_API_PRIVATE
219
220 #include <sys/param.h>
221 #include <sys/systm.h>
222 #include <sys/cpu.h>
223 #include <sys/pool.h>
224 #include <sys/proc.h>
225 #include <sys/sa.h>
226 #include <sys/savar.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/sleepq.h>
231 #include <sys/user.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239
240 #include <uvm/uvm_extern.h>
241 #include <uvm/uvm_object.h>
242
243 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
244
245 struct pool lwp_uc_pool;
246
247 static pool_cache_t lwp_cache;
248 static specificdata_domain_t lwp_specificdata_domain;
249
250 void
251 lwpinit(void)
252 {
253
254 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
255 &pool_allocator_nointr, IPL_NONE);
256 lwp_specificdata_domain = specificdata_domain_create();
257 KASSERT(lwp_specificdata_domain != NULL);
258 lwp_sys_init();
259 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
260 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
261 }
262
263 /*
264 * Set an suspended.
265 *
266 * Must be called with p_lock held, and the LWP locked. Will unlock the
267 * LWP before return.
268 */
269 int
270 lwp_suspend(struct lwp *curl, struct lwp *t)
271 {
272 int error;
273
274 KASSERT(mutex_owned(t->l_proc->p_lock));
275 KASSERT(lwp_locked(t, NULL));
276
277 KASSERT(curl != t || curl->l_stat == LSONPROC);
278
279 /*
280 * If the current LWP has been told to exit, we must not suspend anyone
281 * else or deadlock could occur. We won't return to userspace.
282 */
283 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
284 lwp_unlock(t);
285 return (EDEADLK);
286 }
287
288 error = 0;
289
290 switch (t->l_stat) {
291 case LSRUN:
292 case LSONPROC:
293 t->l_flag |= LW_WSUSPEND;
294 lwp_need_userret(t);
295 lwp_unlock(t);
296 break;
297
298 case LSSLEEP:
299 t->l_flag |= LW_WSUSPEND;
300
301 /*
302 * Kick the LWP and try to get it to the kernel boundary
303 * so that it will release any locks that it holds.
304 * setrunnable() will release the lock.
305 */
306 if ((t->l_flag & LW_SINTR) != 0)
307 setrunnable(t);
308 else
309 lwp_unlock(t);
310 break;
311
312 case LSSUSPENDED:
313 lwp_unlock(t);
314 break;
315
316 case LSSTOP:
317 t->l_flag |= LW_WSUSPEND;
318 setrunnable(t);
319 break;
320
321 case LSIDL:
322 case LSZOMB:
323 error = EINTR; /* It's what Solaris does..... */
324 lwp_unlock(t);
325 break;
326 }
327
328 return (error);
329 }
330
331 /*
332 * Restart a suspended LWP.
333 *
334 * Must be called with p_lock held, and the LWP locked. Will unlock the
335 * LWP before return.
336 */
337 void
338 lwp_continue(struct lwp *l)
339 {
340
341 KASSERT(mutex_owned(l->l_proc->p_lock));
342 KASSERT(lwp_locked(l, NULL));
343
344 /* If rebooting or not suspended, then just bail out. */
345 if ((l->l_flag & LW_WREBOOT) != 0) {
346 lwp_unlock(l);
347 return;
348 }
349
350 l->l_flag &= ~LW_WSUSPEND;
351
352 if (l->l_stat != LSSUSPENDED) {
353 lwp_unlock(l);
354 return;
355 }
356
357 /* setrunnable() will release the lock. */
358 setrunnable(l);
359 }
360
361 /*
362 * Wait for an LWP within the current process to exit. If 'lid' is
363 * non-zero, we are waiting for a specific LWP.
364 *
365 * Must be called with p->p_lock held.
366 */
367 int
368 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
369 {
370 struct proc *p = l->l_proc;
371 struct lwp *l2;
372 int nfound, error;
373 lwpid_t curlid;
374 bool exiting;
375
376 KASSERT(mutex_owned(p->p_lock));
377
378 p->p_nlwpwait++;
379 l->l_waitingfor = lid;
380 curlid = l->l_lid;
381 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
382
383 for (;;) {
384 /*
385 * Avoid a race between exit1() and sigexit(): if the
386 * process is dumping core, then we need to bail out: call
387 * into lwp_userret() where we will be suspended until the
388 * deed is done.
389 */
390 if ((p->p_sflag & PS_WCORE) != 0) {
391 mutex_exit(p->p_lock);
392 lwp_userret(l);
393 #ifdef DIAGNOSTIC
394 panic("lwp_wait1");
395 #endif
396 /* NOTREACHED */
397 }
398
399 /*
400 * First off, drain any detached LWP that is waiting to be
401 * reaped.
402 */
403 while ((l2 = p->p_zomblwp) != NULL) {
404 p->p_zomblwp = NULL;
405 lwp_free(l2, false, false);/* releases proc mutex */
406 mutex_enter(p->p_lock);
407 }
408
409 /*
410 * Now look for an LWP to collect. If the whole process is
411 * exiting, count detached LWPs as eligible to be collected,
412 * but don't drain them here.
413 */
414 nfound = 0;
415 error = 0;
416 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
417 /*
418 * If a specific wait and the target is waiting on
419 * us, then avoid deadlock. This also traps LWPs
420 * that try to wait on themselves.
421 *
422 * Note that this does not handle more complicated
423 * cycles, like: t1 -> t2 -> t3 -> t1. The process
424 * can still be killed so it is not a major problem.
425 */
426 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
427 error = EDEADLK;
428 break;
429 }
430 if (l2 == l)
431 continue;
432 if ((l2->l_prflag & LPR_DETACHED) != 0) {
433 nfound += exiting;
434 continue;
435 }
436 if (lid != 0) {
437 if (l2->l_lid != lid)
438 continue;
439 /*
440 * Mark this LWP as the first waiter, if there
441 * is no other.
442 */
443 if (l2->l_waiter == 0)
444 l2->l_waiter = curlid;
445 } else if (l2->l_waiter != 0) {
446 /*
447 * It already has a waiter - so don't
448 * collect it. If the waiter doesn't
449 * grab it we'll get another chance
450 * later.
451 */
452 nfound++;
453 continue;
454 }
455 nfound++;
456
457 /* No need to lock the LWP in order to see LSZOMB. */
458 if (l2->l_stat != LSZOMB)
459 continue;
460
461 /*
462 * We're no longer waiting. Reset the "first waiter"
463 * pointer on the target, in case it was us.
464 */
465 l->l_waitingfor = 0;
466 l2->l_waiter = 0;
467 p->p_nlwpwait--;
468 if (departed)
469 *departed = l2->l_lid;
470 sched_lwp_collect(l2);
471
472 /* lwp_free() releases the proc lock. */
473 lwp_free(l2, false, false);
474 mutex_enter(p->p_lock);
475 return 0;
476 }
477
478 if (error != 0)
479 break;
480 if (nfound == 0) {
481 error = ESRCH;
482 break;
483 }
484
485 /*
486 * The kernel is careful to ensure that it can not deadlock
487 * when exiting - just keep waiting.
488 */
489 if (exiting) {
490 KASSERT(p->p_nlwps > 1);
491 cv_wait(&p->p_lwpcv, p->p_lock);
492 continue;
493 }
494
495 /*
496 * If all other LWPs are waiting for exits or suspends
497 * and the supply of zombies and potential zombies is
498 * exhausted, then we are about to deadlock.
499 *
500 * If the process is exiting (and this LWP is not the one
501 * that is coordinating the exit) then bail out now.
502 */
503 if ((p->p_sflag & PS_WEXIT) != 0 ||
504 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
505 error = EDEADLK;
506 break;
507 }
508
509 /*
510 * Sit around and wait for something to happen. We'll be
511 * awoken if any of the conditions examined change: if an
512 * LWP exits, is collected, or is detached.
513 */
514 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
515 break;
516 }
517
518 /*
519 * We didn't find any LWPs to collect, we may have received a
520 * signal, or some other condition has caused us to bail out.
521 *
522 * If waiting on a specific LWP, clear the waiters marker: some
523 * other LWP may want it. Then, kick all the remaining waiters
524 * so that they can re-check for zombies and for deadlock.
525 */
526 if (lid != 0) {
527 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
528 if (l2->l_lid == lid) {
529 if (l2->l_waiter == curlid)
530 l2->l_waiter = 0;
531 break;
532 }
533 }
534 }
535 p->p_nlwpwait--;
536 l->l_waitingfor = 0;
537 cv_broadcast(&p->p_lwpcv);
538
539 return error;
540 }
541
542 /*
543 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
544 * The new LWP is created in state LSIDL and must be set running,
545 * suspended, or stopped by the caller.
546 */
547 int
548 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
549 void *stack, size_t stacksize, void (*func)(void *), void *arg,
550 lwp_t **rnewlwpp, int sclass)
551 {
552 struct lwp *l2, *isfree;
553 turnstile_t *ts;
554
555 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
556
557 /*
558 * First off, reap any detached LWP waiting to be collected.
559 * We can re-use its LWP structure and turnstile.
560 */
561 isfree = NULL;
562 if (p2->p_zomblwp != NULL) {
563 mutex_enter(p2->p_lock);
564 if ((isfree = p2->p_zomblwp) != NULL) {
565 p2->p_zomblwp = NULL;
566 lwp_free(isfree, true, false);/* releases proc mutex */
567 } else
568 mutex_exit(p2->p_lock);
569 }
570 if (isfree == NULL) {
571 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
572 memset(l2, 0, sizeof(*l2));
573 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
574 SLIST_INIT(&l2->l_pi_lenders);
575 } else {
576 l2 = isfree;
577 ts = l2->l_ts;
578 KASSERT(l2->l_inheritedprio == -1);
579 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
580 memset(l2, 0, sizeof(*l2));
581 l2->l_ts = ts;
582 }
583
584 l2->l_stat = LSIDL;
585 l2->l_proc = p2;
586 l2->l_refcnt = 1;
587 l2->l_class = sclass;
588
589 /*
590 * If vfork(), we want the LWP to run fast and on the same CPU
591 * as its parent, so that it can reuse the VM context and cache
592 * footprint on the local CPU.
593 */
594 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
595 l2->l_kpribase = PRI_KERNEL;
596 l2->l_priority = l1->l_priority;
597 l2->l_inheritedprio = -1;
598 l2->l_flag = 0;
599 l2->l_pflag = LP_MPSAFE;
600 TAILQ_INIT(&l2->l_ld_locks);
601
602 /*
603 * If not the first LWP in the process, grab a reference to the
604 * descriptor table.
605 */
606 l2->l_fd = p2->p_fd;
607 if (p2->p_nlwps != 0) {
608 KASSERT(l1->l_proc == p2);
609 atomic_inc_uint(&l2->l_fd->fd_refcnt);
610 } else {
611 KASSERT(l1->l_proc != p2);
612 }
613
614 if (p2->p_flag & PK_SYSTEM) {
615 /* Mark it as a system LWP. */
616 l2->l_flag |= LW_SYSTEM;
617 }
618
619 kpreempt_disable();
620 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
621 l2->l_cpu = l1->l_cpu;
622 kpreempt_enable();
623
624 lwp_initspecific(l2);
625 sched_lwp_fork(l1, l2);
626 lwp_update_creds(l2);
627 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
628 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
629 cv_init(&l2->l_sigcv, "sigwait");
630 l2->l_syncobj = &sched_syncobj;
631
632 if (rnewlwpp != NULL)
633 *rnewlwpp = l2;
634
635 l2->l_addr = UAREA_TO_USER(uaddr);
636 uvm_lwp_fork(l1, l2, stack, stacksize, func,
637 (arg != NULL) ? arg : l2);
638
639 mutex_enter(p2->p_lock);
640
641 if ((flags & LWP_DETACHED) != 0) {
642 l2->l_prflag = LPR_DETACHED;
643 p2->p_ndlwps++;
644 } else
645 l2->l_prflag = 0;
646
647 l2->l_sigmask = l1->l_sigmask;
648 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
649 sigemptyset(&l2->l_sigpend.sp_set);
650
651 p2->p_nlwpid++;
652 if (p2->p_nlwpid == 0)
653 p2->p_nlwpid++;
654 l2->l_lid = p2->p_nlwpid;
655 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
656 p2->p_nlwps++;
657
658 if ((p2->p_flag & PK_SYSTEM) == 0) {
659 /* Inherit an affinity */
660 if (l1->l_flag & LW_AFFINITY) {
661 /*
662 * Note that we hold the state lock while inheriting
663 * the affinity to avoid race with sched_setaffinity().
664 */
665 lwp_lock(l1);
666 if (l1->l_flag & LW_AFFINITY) {
667 kcpuset_use(l1->l_affinity);
668 l2->l_affinity = l1->l_affinity;
669 l2->l_flag |= LW_AFFINITY;
670 }
671 lwp_unlock(l1);
672 }
673 lwp_lock(l2);
674 /* Inherit a processor-set */
675 l2->l_psid = l1->l_psid;
676 /* Look for a CPU to start */
677 l2->l_cpu = sched_takecpu(l2);
678 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
679 }
680 mutex_exit(p2->p_lock);
681
682 mutex_enter(proc_lock);
683 LIST_INSERT_HEAD(&alllwp, l2, l_list);
684 mutex_exit(proc_lock);
685
686 SYSCALL_TIME_LWP_INIT(l2);
687
688 if (p2->p_emul->e_lwp_fork)
689 (*p2->p_emul->e_lwp_fork)(l1, l2);
690
691 return (0);
692 }
693
694 /*
695 * Called by MD code when a new LWP begins execution. Must be called
696 * with the previous LWP locked (so at splsched), or if there is no
697 * previous LWP, at splsched.
698 */
699 void
700 lwp_startup(struct lwp *prev, struct lwp *new)
701 {
702
703 KASSERT(kpreempt_disabled());
704 if (prev != NULL) {
705 /*
706 * Normalize the count of the spin-mutexes, it was
707 * increased in mi_switch(). Unmark the state of
708 * context switch - it is finished for previous LWP.
709 */
710 curcpu()->ci_mtx_count++;
711 membar_exit();
712 prev->l_ctxswtch = 0;
713 }
714 KPREEMPT_DISABLE(new);
715 spl0();
716 pmap_activate(new);
717 LOCKDEBUG_BARRIER(NULL, 0);
718 KPREEMPT_ENABLE(new);
719 if ((new->l_pflag & LP_MPSAFE) == 0) {
720 KERNEL_LOCK(1, new);
721 }
722 }
723
724 /*
725 * Exit an LWP.
726 */
727 void
728 lwp_exit(struct lwp *l)
729 {
730 struct proc *p = l->l_proc;
731 struct lwp *l2;
732 bool current;
733
734 current = (l == curlwp);
735
736 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
737 KASSERT(p == curproc);
738
739 /*
740 * Verify that we hold no locks other than the kernel lock.
741 */
742 LOCKDEBUG_BARRIER(&kernel_lock, 0);
743
744 /*
745 * If we are the last live LWP in a process, we need to exit the
746 * entire process. We do so with an exit status of zero, because
747 * it's a "controlled" exit, and because that's what Solaris does.
748 *
749 * We are not quite a zombie yet, but for accounting purposes we
750 * must increment the count of zombies here.
751 *
752 * Note: the last LWP's specificdata will be deleted here.
753 */
754 mutex_enter(p->p_lock);
755 if (p->p_nlwps - p->p_nzlwps == 1) {
756 KASSERT(current == true);
757 /* XXXSMP kernel_lock not held */
758 exit1(l, 0);
759 /* NOTREACHED */
760 }
761 p->p_nzlwps++;
762 mutex_exit(p->p_lock);
763
764 if (p->p_emul->e_lwp_exit)
765 (*p->p_emul->e_lwp_exit)(l);
766
767 /* Drop filedesc reference. */
768 fd_free();
769
770 /* Delete the specificdata while it's still safe to sleep. */
771 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
772
773 /*
774 * Release our cached credentials.
775 */
776 kauth_cred_free(l->l_cred);
777 callout_destroy(&l->l_timeout_ch);
778
779 /*
780 * Remove the LWP from the global list.
781 */
782 mutex_enter(proc_lock);
783 LIST_REMOVE(l, l_list);
784 mutex_exit(proc_lock);
785
786 /*
787 * Get rid of all references to the LWP that others (e.g. procfs)
788 * may have, and mark the LWP as a zombie. If the LWP is detached,
789 * mark it waiting for collection in the proc structure. Note that
790 * before we can do that, we need to free any other dead, deatched
791 * LWP waiting to meet its maker.
792 */
793 mutex_enter(p->p_lock);
794 lwp_drainrefs(l);
795
796 if ((l->l_prflag & LPR_DETACHED) != 0) {
797 while ((l2 = p->p_zomblwp) != NULL) {
798 p->p_zomblwp = NULL;
799 lwp_free(l2, false, false);/* releases proc mutex */
800 mutex_enter(p->p_lock);
801 l->l_refcnt++;
802 lwp_drainrefs(l);
803 }
804 p->p_zomblwp = l;
805 }
806
807 /*
808 * If we find a pending signal for the process and we have been
809 * asked to check for signals, then we loose: arrange to have
810 * all other LWPs in the process check for signals.
811 */
812 if ((l->l_flag & LW_PENDSIG) != 0 &&
813 firstsig(&p->p_sigpend.sp_set) != 0) {
814 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
815 lwp_lock(l2);
816 l2->l_flag |= LW_PENDSIG;
817 lwp_unlock(l2);
818 }
819 }
820
821 lwp_lock(l);
822 l->l_stat = LSZOMB;
823 if (l->l_name != NULL)
824 strcpy(l->l_name, "(zombie)");
825 if (l->l_flag & LW_AFFINITY) {
826 l->l_flag &= ~LW_AFFINITY;
827 } else {
828 KASSERT(l->l_affinity == NULL);
829 }
830 lwp_unlock(l);
831 p->p_nrlwps--;
832 cv_broadcast(&p->p_lwpcv);
833 if (l->l_lwpctl != NULL)
834 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
835 mutex_exit(p->p_lock);
836
837 /* Safe without lock since LWP is in zombie state */
838 if (l->l_affinity) {
839 kcpuset_unuse(l->l_affinity, NULL);
840 l->l_affinity = NULL;
841 }
842
843 /*
844 * We can no longer block. At this point, lwp_free() may already
845 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
846 *
847 * Free MD LWP resources.
848 */
849 #ifndef __NO_CPU_LWP_FREE
850 cpu_lwp_free(l, 0);
851 #endif
852
853 if (current) {
854 pmap_deactivate(l);
855
856 /*
857 * Release the kernel lock, and switch away into
858 * oblivion.
859 */
860 #ifdef notyet
861 /* XXXSMP hold in lwp_userret() */
862 KERNEL_UNLOCK_LAST(l);
863 #else
864 KERNEL_UNLOCK_ALL(l, NULL);
865 #endif
866 lwp_exit_switchaway(l);
867 }
868 }
869
870 /*
871 * Free a dead LWP's remaining resources.
872 *
873 * XXXLWP limits.
874 */
875 void
876 lwp_free(struct lwp *l, bool recycle, bool last)
877 {
878 struct proc *p = l->l_proc;
879 struct rusage *ru;
880 ksiginfoq_t kq;
881
882 KASSERT(l != curlwp);
883
884 /*
885 * If this was not the last LWP in the process, then adjust
886 * counters and unlock.
887 */
888 if (!last) {
889 /*
890 * Add the LWP's run time to the process' base value.
891 * This needs to co-incide with coming off p_lwps.
892 */
893 bintime_add(&p->p_rtime, &l->l_rtime);
894 p->p_pctcpu += l->l_pctcpu;
895 ru = &p->p_stats->p_ru;
896 ruadd(ru, &l->l_ru);
897 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
898 ru->ru_nivcsw += l->l_nivcsw;
899 LIST_REMOVE(l, l_sibling);
900 p->p_nlwps--;
901 p->p_nzlwps--;
902 if ((l->l_prflag & LPR_DETACHED) != 0)
903 p->p_ndlwps--;
904
905 /*
906 * Have any LWPs sleeping in lwp_wait() recheck for
907 * deadlock.
908 */
909 cv_broadcast(&p->p_lwpcv);
910 mutex_exit(p->p_lock);
911 }
912
913 #ifdef MULTIPROCESSOR
914 /*
915 * In the unlikely event that the LWP is still on the CPU,
916 * then spin until it has switched away. We need to release
917 * all locks to avoid deadlock against interrupt handlers on
918 * the target CPU.
919 */
920 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
921 int count;
922 (void)count; /* XXXgcc */
923 KERNEL_UNLOCK_ALL(curlwp, &count);
924 while ((l->l_pflag & LP_RUNNING) != 0 ||
925 l->l_cpu->ci_curlwp == l)
926 SPINLOCK_BACKOFF_HOOK;
927 KERNEL_LOCK(count, curlwp);
928 }
929 #endif
930
931 /*
932 * Destroy the LWP's remaining signal information.
933 */
934 ksiginfo_queue_init(&kq);
935 sigclear(&l->l_sigpend, NULL, &kq);
936 ksiginfo_queue_drain(&kq);
937 cv_destroy(&l->l_sigcv);
938
939 /*
940 * Free the LWP's turnstile and the LWP structure itself unless the
941 * caller wants to recycle them. Also, free the scheduler specific
942 * data.
943 *
944 * We can't return turnstile0 to the pool (it didn't come from it),
945 * so if it comes up just drop it quietly and move on.
946 *
947 * We don't recycle the VM resources at this time.
948 */
949 if (l->l_lwpctl != NULL)
950 lwp_ctl_free(l);
951
952 if (!recycle && l->l_ts != &turnstile0)
953 pool_cache_put(turnstile_cache, l->l_ts);
954 if (l->l_name != NULL)
955 kmem_free(l->l_name, MAXCOMLEN);
956 #ifndef __NO_CPU_LWP_FREE
957 cpu_lwp_free2(l);
958 #endif
959 uvm_lwp_exit(l);
960
961 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
962 KASSERT(l->l_inheritedprio == -1);
963 if (!recycle)
964 pool_cache_put(lwp_cache, l);
965 }
966
967 /*
968 * Migrate the LWP to the another CPU. Unlocks the LWP.
969 */
970 void
971 lwp_migrate(lwp_t *l, struct cpu_info *tci)
972 {
973 struct schedstate_percpu *tspc;
974 int lstat = l->l_stat;
975
976 KASSERT(lwp_locked(l, NULL));
977 KASSERT(tci != NULL);
978
979 /* If LWP is still on the CPU, it must be handled like LSONPROC */
980 if ((l->l_pflag & LP_RUNNING) != 0) {
981 lstat = LSONPROC;
982 }
983
984 /*
985 * The destination CPU could be changed while previous migration
986 * was not finished.
987 */
988 if (l->l_target_cpu != NULL) {
989 l->l_target_cpu = tci;
990 lwp_unlock(l);
991 return;
992 }
993
994 /* Nothing to do if trying to migrate to the same CPU */
995 if (l->l_cpu == tci) {
996 lwp_unlock(l);
997 return;
998 }
999
1000 KASSERT(l->l_target_cpu == NULL);
1001 tspc = &tci->ci_schedstate;
1002 switch (lstat) {
1003 case LSRUN:
1004 l->l_target_cpu = tci;
1005 break;
1006 case LSIDL:
1007 l->l_cpu = tci;
1008 lwp_unlock_to(l, tspc->spc_mutex);
1009 return;
1010 case LSSLEEP:
1011 l->l_cpu = tci;
1012 break;
1013 case LSSTOP:
1014 case LSSUSPENDED:
1015 l->l_cpu = tci;
1016 if (l->l_wchan == NULL) {
1017 lwp_unlock_to(l, tspc->spc_lwplock);
1018 return;
1019 }
1020 break;
1021 case LSONPROC:
1022 l->l_target_cpu = tci;
1023 spc_lock(l->l_cpu);
1024 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1025 spc_unlock(l->l_cpu);
1026 break;
1027 }
1028 lwp_unlock(l);
1029 }
1030
1031 /*
1032 * Find the LWP in the process. Arguments may be zero, in such case,
1033 * the calling process and first LWP in the list will be used.
1034 * On success - returns proc locked.
1035 */
1036 struct lwp *
1037 lwp_find2(pid_t pid, lwpid_t lid)
1038 {
1039 proc_t *p;
1040 lwp_t *l;
1041
1042 /* Find the process */
1043 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1044 if (p == NULL)
1045 return NULL;
1046 mutex_enter(p->p_lock);
1047 if (pid != 0) {
1048 /* Case of p_find */
1049 mutex_exit(proc_lock);
1050 }
1051
1052 /* Find the thread */
1053 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1054 if (l == NULL) {
1055 mutex_exit(p->p_lock);
1056 }
1057
1058 return l;
1059 }
1060
1061 /*
1062 * Look up a live LWP within the speicifed process, and return it locked.
1063 *
1064 * Must be called with p->p_lock held.
1065 */
1066 struct lwp *
1067 lwp_find(struct proc *p, int id)
1068 {
1069 struct lwp *l;
1070
1071 KASSERT(mutex_owned(p->p_lock));
1072
1073 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1074 if (l->l_lid == id)
1075 break;
1076 }
1077
1078 /*
1079 * No need to lock - all of these conditions will
1080 * be visible with the process level mutex held.
1081 */
1082 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1083 l = NULL;
1084
1085 return l;
1086 }
1087
1088 /*
1089 * Update an LWP's cached credentials to mirror the process' master copy.
1090 *
1091 * This happens early in the syscall path, on user trap, and on LWP
1092 * creation. A long-running LWP can also voluntarily choose to update
1093 * it's credentials by calling this routine. This may be called from
1094 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1095 */
1096 void
1097 lwp_update_creds(struct lwp *l)
1098 {
1099 kauth_cred_t oc;
1100 struct proc *p;
1101
1102 p = l->l_proc;
1103 oc = l->l_cred;
1104
1105 mutex_enter(p->p_lock);
1106 kauth_cred_hold(p->p_cred);
1107 l->l_cred = p->p_cred;
1108 l->l_prflag &= ~LPR_CRMOD;
1109 mutex_exit(p->p_lock);
1110 if (oc != NULL)
1111 kauth_cred_free(oc);
1112 }
1113
1114 /*
1115 * Verify that an LWP is locked, and optionally verify that the lock matches
1116 * one we specify.
1117 */
1118 int
1119 lwp_locked(struct lwp *l, kmutex_t *mtx)
1120 {
1121 kmutex_t *cur = l->l_mutex;
1122
1123 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1124 }
1125
1126 /*
1127 * Lock an LWP.
1128 */
1129 kmutex_t *
1130 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1131 {
1132
1133 /*
1134 * XXXgcc ignoring kmutex_t * volatile on i386
1135 *
1136 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1137 */
1138 #if 1
1139 while (l->l_mutex != old) {
1140 #else
1141 for (;;) {
1142 #endif
1143 mutex_spin_exit(old);
1144 old = l->l_mutex;
1145 mutex_spin_enter(old);
1146
1147 /*
1148 * mutex_enter() will have posted a read barrier. Re-test
1149 * l->l_mutex. If it has changed, we need to try again.
1150 */
1151 #if 1
1152 }
1153 #else
1154 } while (__predict_false(l->l_mutex != old));
1155 #endif
1156
1157 return old;
1158 }
1159
1160 /*
1161 * Lend a new mutex to an LWP. The old mutex must be held.
1162 */
1163 void
1164 lwp_setlock(struct lwp *l, kmutex_t *new)
1165 {
1166
1167 KASSERT(mutex_owned(l->l_mutex));
1168
1169 membar_exit();
1170 l->l_mutex = new;
1171 }
1172
1173 /*
1174 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1175 * must be held.
1176 */
1177 void
1178 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1179 {
1180 kmutex_t *old;
1181
1182 KASSERT(mutex_owned(l->l_mutex));
1183
1184 old = l->l_mutex;
1185 membar_exit();
1186 l->l_mutex = new;
1187 mutex_spin_exit(old);
1188 }
1189
1190 /*
1191 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1192 * locked.
1193 */
1194 void
1195 lwp_relock(struct lwp *l, kmutex_t *new)
1196 {
1197 kmutex_t *old;
1198
1199 KASSERT(mutex_owned(l->l_mutex));
1200
1201 old = l->l_mutex;
1202 if (old != new) {
1203 mutex_spin_enter(new);
1204 l->l_mutex = new;
1205 mutex_spin_exit(old);
1206 }
1207 }
1208
1209 int
1210 lwp_trylock(struct lwp *l)
1211 {
1212 kmutex_t *old;
1213
1214 for (;;) {
1215 if (!mutex_tryenter(old = l->l_mutex))
1216 return 0;
1217 if (__predict_true(l->l_mutex == old))
1218 return 1;
1219 mutex_spin_exit(old);
1220 }
1221 }
1222
1223 void
1224 lwp_unsleep(lwp_t *l, bool cleanup)
1225 {
1226
1227 KASSERT(mutex_owned(l->l_mutex));
1228 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1229 }
1230
1231
1232 /*
1233 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1234 * set.
1235 */
1236 void
1237 lwp_userret(struct lwp *l)
1238 {
1239 struct proc *p;
1240 void (*hook)(void);
1241 int sig;
1242
1243 KASSERT(l == curlwp);
1244 KASSERT(l->l_stat == LSONPROC);
1245 p = l->l_proc;
1246
1247 #ifndef __HAVE_FAST_SOFTINTS
1248 /* Run pending soft interrupts. */
1249 if (l->l_cpu->ci_data.cpu_softints != 0)
1250 softint_overlay();
1251 #endif
1252
1253 #ifdef KERN_SA
1254 /* Generate UNBLOCKED upcall if needed */
1255 if (l->l_flag & LW_SA_BLOCKING) {
1256 sa_unblock_userret(l);
1257 /* NOTREACHED */
1258 }
1259 #endif
1260
1261 /*
1262 * It should be safe to do this read unlocked on a multiprocessor
1263 * system..
1264 *
1265 * LW_SA_UPCALL will be handled after the while() loop, so don't
1266 * consider it now.
1267 */
1268 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1269 /*
1270 * Process pending signals first, unless the process
1271 * is dumping core or exiting, where we will instead
1272 * enter the LW_WSUSPEND case below.
1273 */
1274 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1275 LW_PENDSIG) {
1276 mutex_enter(p->p_lock);
1277 while ((sig = issignal(l)) != 0)
1278 postsig(sig);
1279 mutex_exit(p->p_lock);
1280 }
1281
1282 /*
1283 * Core-dump or suspend pending.
1284 *
1285 * In case of core dump, suspend ourselves, so that the
1286 * kernel stack and therefore the userland registers saved
1287 * in the trapframe are around for coredump() to write them
1288 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1289 * will write the core file out once all other LWPs are
1290 * suspended.
1291 */
1292 if ((l->l_flag & LW_WSUSPEND) != 0) {
1293 mutex_enter(p->p_lock);
1294 p->p_nrlwps--;
1295 cv_broadcast(&p->p_lwpcv);
1296 lwp_lock(l);
1297 l->l_stat = LSSUSPENDED;
1298 lwp_unlock(l);
1299 mutex_exit(p->p_lock);
1300 lwp_lock(l);
1301 mi_switch(l);
1302 }
1303
1304 /* Process is exiting. */
1305 if ((l->l_flag & LW_WEXIT) != 0) {
1306 lwp_exit(l);
1307 KASSERT(0);
1308 /* NOTREACHED */
1309 }
1310
1311 /* Call userret hook; used by Linux emulation. */
1312 if ((l->l_flag & LW_WUSERRET) != 0) {
1313 lwp_lock(l);
1314 l->l_flag &= ~LW_WUSERRET;
1315 lwp_unlock(l);
1316 hook = p->p_userret;
1317 p->p_userret = NULL;
1318 (*hook)();
1319 }
1320 }
1321
1322 #ifdef KERN_SA
1323 /*
1324 * Timer events are handled specially. We only try once to deliver
1325 * pending timer upcalls; if if fails, we can try again on the next
1326 * loop around. If we need to re-enter lwp_userret(), MD code will
1327 * bounce us back here through the trap path after we return.
1328 */
1329 if (p->p_timerpend)
1330 timerupcall(l);
1331 if (l->l_flag & LW_SA_UPCALL)
1332 sa_upcall_userret(l);
1333 #endif /* KERN_SA */
1334 }
1335
1336 /*
1337 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1338 */
1339 void
1340 lwp_need_userret(struct lwp *l)
1341 {
1342 KASSERT(lwp_locked(l, NULL));
1343
1344 /*
1345 * Since the tests in lwp_userret() are done unlocked, make sure
1346 * that the condition will be seen before forcing the LWP to enter
1347 * kernel mode.
1348 */
1349 membar_producer();
1350 cpu_signotify(l);
1351 }
1352
1353 /*
1354 * Add one reference to an LWP. This will prevent the LWP from
1355 * exiting, thus keep the lwp structure and PCB around to inspect.
1356 */
1357 void
1358 lwp_addref(struct lwp *l)
1359 {
1360
1361 KASSERT(mutex_owned(l->l_proc->p_lock));
1362 KASSERT(l->l_stat != LSZOMB);
1363 KASSERT(l->l_refcnt != 0);
1364
1365 l->l_refcnt++;
1366 }
1367
1368 /*
1369 * Remove one reference to an LWP. If this is the last reference,
1370 * then we must finalize the LWP's death.
1371 */
1372 void
1373 lwp_delref(struct lwp *l)
1374 {
1375 struct proc *p = l->l_proc;
1376
1377 mutex_enter(p->p_lock);
1378 KASSERT(l->l_stat != LSZOMB);
1379 KASSERT(l->l_refcnt > 0);
1380 if (--l->l_refcnt == 0)
1381 cv_broadcast(&p->p_lwpcv);
1382 mutex_exit(p->p_lock);
1383 }
1384
1385 /*
1386 * Drain all references to the current LWP.
1387 */
1388 void
1389 lwp_drainrefs(struct lwp *l)
1390 {
1391 struct proc *p = l->l_proc;
1392
1393 KASSERT(mutex_owned(p->p_lock));
1394 KASSERT(l->l_refcnt != 0);
1395
1396 l->l_refcnt--;
1397 while (l->l_refcnt != 0)
1398 cv_wait(&p->p_lwpcv, p->p_lock);
1399 }
1400
1401 /*
1402 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1403 * be held.
1404 */
1405 bool
1406 lwp_alive(lwp_t *l)
1407 {
1408
1409 KASSERT(mutex_owned(l->l_proc->p_lock));
1410
1411 switch (l->l_stat) {
1412 case LSSLEEP:
1413 case LSRUN:
1414 case LSONPROC:
1415 case LSSTOP:
1416 case LSSUSPENDED:
1417 return true;
1418 default:
1419 return false;
1420 }
1421 }
1422
1423 /*
1424 * Return first live LWP in the process.
1425 */
1426 lwp_t *
1427 lwp_find_first(proc_t *p)
1428 {
1429 lwp_t *l;
1430
1431 KASSERT(mutex_owned(p->p_lock));
1432
1433 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1434 if (lwp_alive(l)) {
1435 return l;
1436 }
1437 }
1438
1439 return NULL;
1440 }
1441
1442 /*
1443 * lwp_specific_key_create --
1444 * Create a key for subsystem lwp-specific data.
1445 */
1446 int
1447 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1448 {
1449
1450 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1451 }
1452
1453 /*
1454 * lwp_specific_key_delete --
1455 * Delete a key for subsystem lwp-specific data.
1456 */
1457 void
1458 lwp_specific_key_delete(specificdata_key_t key)
1459 {
1460
1461 specificdata_key_delete(lwp_specificdata_domain, key);
1462 }
1463
1464 /*
1465 * lwp_initspecific --
1466 * Initialize an LWP's specificdata container.
1467 */
1468 void
1469 lwp_initspecific(struct lwp *l)
1470 {
1471 int error;
1472
1473 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1474 KASSERT(error == 0);
1475 }
1476
1477 /*
1478 * lwp_finispecific --
1479 * Finalize an LWP's specificdata container.
1480 */
1481 void
1482 lwp_finispecific(struct lwp *l)
1483 {
1484
1485 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1486 }
1487
1488 /*
1489 * lwp_getspecific --
1490 * Return lwp-specific data corresponding to the specified key.
1491 *
1492 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1493 * only its OWN SPECIFIC DATA. If it is necessary to access another
1494 * LWP's specifc data, care must be taken to ensure that doing so
1495 * would not cause internal data structure inconsistency (i.e. caller
1496 * can guarantee that the target LWP is not inside an lwp_getspecific()
1497 * or lwp_setspecific() call).
1498 */
1499 void *
1500 lwp_getspecific(specificdata_key_t key)
1501 {
1502
1503 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1504 &curlwp->l_specdataref, key));
1505 }
1506
1507 void *
1508 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1509 {
1510
1511 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1512 &l->l_specdataref, key));
1513 }
1514
1515 /*
1516 * lwp_setspecific --
1517 * Set lwp-specific data corresponding to the specified key.
1518 */
1519 void
1520 lwp_setspecific(specificdata_key_t key, void *data)
1521 {
1522
1523 specificdata_setspecific(lwp_specificdata_domain,
1524 &curlwp->l_specdataref, key, data);
1525 }
1526
1527 /*
1528 * Allocate a new lwpctl structure for a user LWP.
1529 */
1530 int
1531 lwp_ctl_alloc(vaddr_t *uaddr)
1532 {
1533 lcproc_t *lp;
1534 u_int bit, i, offset;
1535 struct uvm_object *uao;
1536 int error;
1537 lcpage_t *lcp;
1538 proc_t *p;
1539 lwp_t *l;
1540
1541 l = curlwp;
1542 p = l->l_proc;
1543
1544 if (l->l_lcpage != NULL) {
1545 lcp = l->l_lcpage;
1546 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1547 return (EINVAL);
1548 }
1549
1550 /* First time around, allocate header structure for the process. */
1551 if ((lp = p->p_lwpctl) == NULL) {
1552 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1553 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1554 lp->lp_uao = NULL;
1555 TAILQ_INIT(&lp->lp_pages);
1556 mutex_enter(p->p_lock);
1557 if (p->p_lwpctl == NULL) {
1558 p->p_lwpctl = lp;
1559 mutex_exit(p->p_lock);
1560 } else {
1561 mutex_exit(p->p_lock);
1562 mutex_destroy(&lp->lp_lock);
1563 kmem_free(lp, sizeof(*lp));
1564 lp = p->p_lwpctl;
1565 }
1566 }
1567
1568 /*
1569 * Set up an anonymous memory region to hold the shared pages.
1570 * Map them into the process' address space. The user vmspace
1571 * gets the first reference on the UAO.
1572 */
1573 mutex_enter(&lp->lp_lock);
1574 if (lp->lp_uao == NULL) {
1575 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1576 lp->lp_cur = 0;
1577 lp->lp_max = LWPCTL_UAREA_SZ;
1578 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1579 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1580 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1581 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1582 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1583 if (error != 0) {
1584 uao_detach(lp->lp_uao);
1585 lp->lp_uao = NULL;
1586 mutex_exit(&lp->lp_lock);
1587 return error;
1588 }
1589 }
1590
1591 /* Get a free block and allocate for this LWP. */
1592 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1593 if (lcp->lcp_nfree != 0)
1594 break;
1595 }
1596 if (lcp == NULL) {
1597 /* Nothing available - try to set up a free page. */
1598 if (lp->lp_cur == lp->lp_max) {
1599 mutex_exit(&lp->lp_lock);
1600 return ENOMEM;
1601 }
1602 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1603 if (lcp == NULL) {
1604 mutex_exit(&lp->lp_lock);
1605 return ENOMEM;
1606 }
1607 /*
1608 * Wire the next page down in kernel space. Since this
1609 * is a new mapping, we must add a reference.
1610 */
1611 uao = lp->lp_uao;
1612 (*uao->pgops->pgo_reference)(uao);
1613 lcp->lcp_kaddr = vm_map_min(kernel_map);
1614 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1615 uao, lp->lp_cur, PAGE_SIZE,
1616 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1617 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1618 if (error != 0) {
1619 mutex_exit(&lp->lp_lock);
1620 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1621 (*uao->pgops->pgo_detach)(uao);
1622 return error;
1623 }
1624 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1625 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1626 if (error != 0) {
1627 mutex_exit(&lp->lp_lock);
1628 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1629 lcp->lcp_kaddr + PAGE_SIZE);
1630 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1631 return error;
1632 }
1633 /* Prepare the page descriptor and link into the list. */
1634 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1635 lp->lp_cur += PAGE_SIZE;
1636 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1637 lcp->lcp_rotor = 0;
1638 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1639 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1640 }
1641 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1642 if (++i >= LWPCTL_BITMAP_ENTRIES)
1643 i = 0;
1644 }
1645 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1646 lcp->lcp_bitmap[i] ^= (1 << bit);
1647 lcp->lcp_rotor = i;
1648 lcp->lcp_nfree--;
1649 l->l_lcpage = lcp;
1650 offset = (i << 5) + bit;
1651 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1652 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1653 mutex_exit(&lp->lp_lock);
1654
1655 KPREEMPT_DISABLE(l);
1656 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1657 KPREEMPT_ENABLE(l);
1658
1659 return 0;
1660 }
1661
1662 /*
1663 * Free an lwpctl structure back to the per-process list.
1664 */
1665 void
1666 lwp_ctl_free(lwp_t *l)
1667 {
1668 lcproc_t *lp;
1669 lcpage_t *lcp;
1670 u_int map, offset;
1671
1672 lp = l->l_proc->p_lwpctl;
1673 KASSERT(lp != NULL);
1674
1675 lcp = l->l_lcpage;
1676 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1677 KASSERT(offset < LWPCTL_PER_PAGE);
1678
1679 mutex_enter(&lp->lp_lock);
1680 lcp->lcp_nfree++;
1681 map = offset >> 5;
1682 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1683 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1684 lcp->lcp_rotor = map;
1685 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1686 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1687 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1688 }
1689 mutex_exit(&lp->lp_lock);
1690 }
1691
1692 /*
1693 * Process is exiting; tear down lwpctl state. This can only be safely
1694 * called by the last LWP in the process.
1695 */
1696 void
1697 lwp_ctl_exit(void)
1698 {
1699 lcpage_t *lcp, *next;
1700 lcproc_t *lp;
1701 proc_t *p;
1702 lwp_t *l;
1703
1704 l = curlwp;
1705 l->l_lwpctl = NULL;
1706 l->l_lcpage = NULL;
1707 p = l->l_proc;
1708 lp = p->p_lwpctl;
1709
1710 KASSERT(lp != NULL);
1711 KASSERT(p->p_nlwps == 1);
1712
1713 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1714 next = TAILQ_NEXT(lcp, lcp_chain);
1715 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1716 lcp->lcp_kaddr + PAGE_SIZE);
1717 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1718 }
1719
1720 if (lp->lp_uao != NULL) {
1721 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1722 lp->lp_uva + LWPCTL_UAREA_SZ);
1723 }
1724
1725 mutex_destroy(&lp->lp_lock);
1726 kmem_free(lp, sizeof(*lp));
1727 p->p_lwpctl = NULL;
1728 }
1729
1730 /*
1731 * Return the current LWP's "preemption counter". Used to detect
1732 * preemption across operations that can tolerate preemption without
1733 * crashing, but which may generate incorrect results if preempted.
1734 */
1735 uint64_t
1736 lwp_pctr(void)
1737 {
1738
1739 return curlwp->l_ncsw;
1740 }
1741
1742 #if defined(DDB)
1743 void
1744 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1745 {
1746 lwp_t *l;
1747
1748 LIST_FOREACH(l, &alllwp, l_list) {
1749 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1750
1751 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1752 continue;
1753 }
1754 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1755 (void *)addr, (void *)stack,
1756 (size_t)(addr - stack), l);
1757 }
1758 }
1759 #endif /* defined(DDB) */
1760