kern_lwp.c revision 1.136 1 /* $NetBSD: kern_lwp.c,v 1.136 2009/10/27 02:58:28 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock and matches lwp::l_cpu.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock and matches lwp::l_cpu.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * (But not always for kernel threads. There are some special cases
200 * as mentioned above. See kern_softint.c.)
201 *
202 * Note that an LWP is considered running or likely to run soon if in
203 * one of the following states. This affects the value of p_nrlwps:
204 *
205 * LSRUN, LSONPROC, LSSLEEP
206 *
207 * p_lock does not need to be held when transitioning among these
208 * three states, hence p_lock is rarely taken for state transitions.
209 */
210
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.136 2009/10/27 02:58:28 rmind Exp $");
213
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_sa.h"
217
218 #define _LWP_API_PRIVATE
219
220 #include <sys/param.h>
221 #include <sys/systm.h>
222 #include <sys/cpu.h>
223 #include <sys/pool.h>
224 #include <sys/proc.h>
225 #include <sys/sa.h>
226 #include <sys/savar.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/sleepq.h>
231 #include <sys/user.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239
240 #include <uvm/uvm_extern.h>
241 #include <uvm/uvm_object.h>
242
243 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
244
245 struct pool lwp_uc_pool;
246
247 static pool_cache_t lwp_cache;
248 static specificdata_domain_t lwp_specificdata_domain;
249
250 void
251 lwpinit(void)
252 {
253
254 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
255 &pool_allocator_nointr, IPL_NONE);
256 lwp_specificdata_domain = specificdata_domain_create();
257 KASSERT(lwp_specificdata_domain != NULL);
258 lwp_sys_init();
259 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
260 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
261 }
262
263 /*
264 * Set an suspended.
265 *
266 * Must be called with p_lock held, and the LWP locked. Will unlock the
267 * LWP before return.
268 */
269 int
270 lwp_suspend(struct lwp *curl, struct lwp *t)
271 {
272 int error;
273
274 KASSERT(mutex_owned(t->l_proc->p_lock));
275 KASSERT(lwp_locked(t, NULL));
276
277 KASSERT(curl != t || curl->l_stat == LSONPROC);
278
279 /*
280 * If the current LWP has been told to exit, we must not suspend anyone
281 * else or deadlock could occur. We won't return to userspace.
282 */
283 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
284 lwp_unlock(t);
285 return (EDEADLK);
286 }
287
288 error = 0;
289
290 switch (t->l_stat) {
291 case LSRUN:
292 case LSONPROC:
293 t->l_flag |= LW_WSUSPEND;
294 lwp_need_userret(t);
295 lwp_unlock(t);
296 break;
297
298 case LSSLEEP:
299 t->l_flag |= LW_WSUSPEND;
300
301 /*
302 * Kick the LWP and try to get it to the kernel boundary
303 * so that it will release any locks that it holds.
304 * setrunnable() will release the lock.
305 */
306 if ((t->l_flag & LW_SINTR) != 0)
307 setrunnable(t);
308 else
309 lwp_unlock(t);
310 break;
311
312 case LSSUSPENDED:
313 lwp_unlock(t);
314 break;
315
316 case LSSTOP:
317 t->l_flag |= LW_WSUSPEND;
318 setrunnable(t);
319 break;
320
321 case LSIDL:
322 case LSZOMB:
323 error = EINTR; /* It's what Solaris does..... */
324 lwp_unlock(t);
325 break;
326 }
327
328 return (error);
329 }
330
331 /*
332 * Restart a suspended LWP.
333 *
334 * Must be called with p_lock held, and the LWP locked. Will unlock the
335 * LWP before return.
336 */
337 void
338 lwp_continue(struct lwp *l)
339 {
340
341 KASSERT(mutex_owned(l->l_proc->p_lock));
342 KASSERT(lwp_locked(l, NULL));
343
344 /* If rebooting or not suspended, then just bail out. */
345 if ((l->l_flag & LW_WREBOOT) != 0) {
346 lwp_unlock(l);
347 return;
348 }
349
350 l->l_flag &= ~LW_WSUSPEND;
351
352 if (l->l_stat != LSSUSPENDED) {
353 lwp_unlock(l);
354 return;
355 }
356
357 /* setrunnable() will release the lock. */
358 setrunnable(l);
359 }
360
361 /*
362 * Wait for an LWP within the current process to exit. If 'lid' is
363 * non-zero, we are waiting for a specific LWP.
364 *
365 * Must be called with p->p_lock held.
366 */
367 int
368 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
369 {
370 struct proc *p = l->l_proc;
371 struct lwp *l2;
372 int nfound, error;
373 lwpid_t curlid;
374 bool exiting;
375
376 KASSERT(mutex_owned(p->p_lock));
377
378 p->p_nlwpwait++;
379 l->l_waitingfor = lid;
380 curlid = l->l_lid;
381 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
382
383 for (;;) {
384 /*
385 * Avoid a race between exit1() and sigexit(): if the
386 * process is dumping core, then we need to bail out: call
387 * into lwp_userret() where we will be suspended until the
388 * deed is done.
389 */
390 if ((p->p_sflag & PS_WCORE) != 0) {
391 mutex_exit(p->p_lock);
392 lwp_userret(l);
393 #ifdef DIAGNOSTIC
394 panic("lwp_wait1");
395 #endif
396 /* NOTREACHED */
397 }
398
399 /*
400 * First off, drain any detached LWP that is waiting to be
401 * reaped.
402 */
403 while ((l2 = p->p_zomblwp) != NULL) {
404 p->p_zomblwp = NULL;
405 lwp_free(l2, false, false);/* releases proc mutex */
406 mutex_enter(p->p_lock);
407 }
408
409 /*
410 * Now look for an LWP to collect. If the whole process is
411 * exiting, count detached LWPs as eligible to be collected,
412 * but don't drain them here.
413 */
414 nfound = 0;
415 error = 0;
416 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
417 /*
418 * If a specific wait and the target is waiting on
419 * us, then avoid deadlock. This also traps LWPs
420 * that try to wait on themselves.
421 *
422 * Note that this does not handle more complicated
423 * cycles, like: t1 -> t2 -> t3 -> t1. The process
424 * can still be killed so it is not a major problem.
425 */
426 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
427 error = EDEADLK;
428 break;
429 }
430 if (l2 == l)
431 continue;
432 if ((l2->l_prflag & LPR_DETACHED) != 0) {
433 nfound += exiting;
434 continue;
435 }
436 if (lid != 0) {
437 if (l2->l_lid != lid)
438 continue;
439 /*
440 * Mark this LWP as the first waiter, if there
441 * is no other.
442 */
443 if (l2->l_waiter == 0)
444 l2->l_waiter = curlid;
445 } else if (l2->l_waiter != 0) {
446 /*
447 * It already has a waiter - so don't
448 * collect it. If the waiter doesn't
449 * grab it we'll get another chance
450 * later.
451 */
452 nfound++;
453 continue;
454 }
455 nfound++;
456
457 /* No need to lock the LWP in order to see LSZOMB. */
458 if (l2->l_stat != LSZOMB)
459 continue;
460
461 /*
462 * We're no longer waiting. Reset the "first waiter"
463 * pointer on the target, in case it was us.
464 */
465 l->l_waitingfor = 0;
466 l2->l_waiter = 0;
467 p->p_nlwpwait--;
468 if (departed)
469 *departed = l2->l_lid;
470 sched_lwp_collect(l2);
471
472 /* lwp_free() releases the proc lock. */
473 lwp_free(l2, false, false);
474 mutex_enter(p->p_lock);
475 return 0;
476 }
477
478 if (error != 0)
479 break;
480 if (nfound == 0) {
481 error = ESRCH;
482 break;
483 }
484
485 /*
486 * The kernel is careful to ensure that it can not deadlock
487 * when exiting - just keep waiting.
488 */
489 if (exiting) {
490 KASSERT(p->p_nlwps > 1);
491 cv_wait(&p->p_lwpcv, p->p_lock);
492 continue;
493 }
494
495 /*
496 * If all other LWPs are waiting for exits or suspends
497 * and the supply of zombies and potential zombies is
498 * exhausted, then we are about to deadlock.
499 *
500 * If the process is exiting (and this LWP is not the one
501 * that is coordinating the exit) then bail out now.
502 */
503 if ((p->p_sflag & PS_WEXIT) != 0 ||
504 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
505 error = EDEADLK;
506 break;
507 }
508
509 /*
510 * Sit around and wait for something to happen. We'll be
511 * awoken if any of the conditions examined change: if an
512 * LWP exits, is collected, or is detached.
513 */
514 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
515 break;
516 }
517
518 /*
519 * We didn't find any LWPs to collect, we may have received a
520 * signal, or some other condition has caused us to bail out.
521 *
522 * If waiting on a specific LWP, clear the waiters marker: some
523 * other LWP may want it. Then, kick all the remaining waiters
524 * so that they can re-check for zombies and for deadlock.
525 */
526 if (lid != 0) {
527 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
528 if (l2->l_lid == lid) {
529 if (l2->l_waiter == curlid)
530 l2->l_waiter = 0;
531 break;
532 }
533 }
534 }
535 p->p_nlwpwait--;
536 l->l_waitingfor = 0;
537 cv_broadcast(&p->p_lwpcv);
538
539 return error;
540 }
541
542 /*
543 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
544 * The new LWP is created in state LSIDL and must be set running,
545 * suspended, or stopped by the caller.
546 */
547 int
548 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
549 void *stack, size_t stacksize, void (*func)(void *), void *arg,
550 lwp_t **rnewlwpp, int sclass)
551 {
552 struct lwp *l2, *isfree;
553 turnstile_t *ts;
554
555 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
556
557 /*
558 * First off, reap any detached LWP waiting to be collected.
559 * We can re-use its LWP structure and turnstile.
560 */
561 isfree = NULL;
562 if (p2->p_zomblwp != NULL) {
563 mutex_enter(p2->p_lock);
564 if ((isfree = p2->p_zomblwp) != NULL) {
565 p2->p_zomblwp = NULL;
566 lwp_free(isfree, true, false);/* releases proc mutex */
567 } else
568 mutex_exit(p2->p_lock);
569 }
570 if (isfree == NULL) {
571 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
572 memset(l2, 0, sizeof(*l2));
573 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
574 SLIST_INIT(&l2->l_pi_lenders);
575 } else {
576 l2 = isfree;
577 ts = l2->l_ts;
578 KASSERT(l2->l_inheritedprio == -1);
579 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
580 memset(l2, 0, sizeof(*l2));
581 l2->l_ts = ts;
582 }
583
584 l2->l_stat = LSIDL;
585 l2->l_proc = p2;
586 l2->l_refcnt = 1;
587 l2->l_class = sclass;
588
589 /*
590 * If vfork(), we want the LWP to run fast and on the same CPU
591 * as its parent, so that it can reuse the VM context and cache
592 * footprint on the local CPU.
593 */
594 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
595 l2->l_kpribase = PRI_KERNEL;
596 l2->l_priority = l1->l_priority;
597 l2->l_inheritedprio = -1;
598 l2->l_flag = 0;
599 l2->l_pflag = LP_MPSAFE;
600 TAILQ_INIT(&l2->l_ld_locks);
601
602 /*
603 * If not the first LWP in the process, grab a reference to the
604 * descriptor table.
605 */
606 l2->l_fd = p2->p_fd;
607 if (p2->p_nlwps != 0) {
608 KASSERT(l1->l_proc == p2);
609 fd_hold(l2);
610 } else {
611 KASSERT(l1->l_proc != p2);
612 }
613
614 if (p2->p_flag & PK_SYSTEM) {
615 /* Mark it as a system LWP. */
616 l2->l_flag |= LW_SYSTEM;
617 }
618
619 kpreempt_disable();
620 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
621 l2->l_cpu = l1->l_cpu;
622 kpreempt_enable();
623
624 lwp_initspecific(l2);
625 sched_lwp_fork(l1, l2);
626 lwp_update_creds(l2);
627 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
628 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
629 cv_init(&l2->l_sigcv, "sigwait");
630 l2->l_syncobj = &sched_syncobj;
631
632 if (rnewlwpp != NULL)
633 *rnewlwpp = l2;
634
635 l2->l_addr = UAREA_TO_USER(uaddr);
636 uvm_lwp_fork(l1, l2, stack, stacksize, func,
637 (arg != NULL) ? arg : l2);
638
639 mutex_enter(p2->p_lock);
640
641 if ((flags & LWP_DETACHED) != 0) {
642 l2->l_prflag = LPR_DETACHED;
643 p2->p_ndlwps++;
644 } else
645 l2->l_prflag = 0;
646
647 l2->l_sigmask = l1->l_sigmask;
648 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
649 sigemptyset(&l2->l_sigpend.sp_set);
650
651 p2->p_nlwpid++;
652 if (p2->p_nlwpid == 0)
653 p2->p_nlwpid++;
654 l2->l_lid = p2->p_nlwpid;
655 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
656 p2->p_nlwps++;
657
658 if ((p2->p_flag & PK_SYSTEM) == 0) {
659 /* Inherit an affinity */
660 if (l1->l_flag & LW_AFFINITY) {
661 /*
662 * Note that we hold the state lock while inheriting
663 * the affinity to avoid race with sched_setaffinity().
664 */
665 lwp_lock(l1);
666 if (l1->l_flag & LW_AFFINITY) {
667 kcpuset_use(l1->l_affinity);
668 l2->l_affinity = l1->l_affinity;
669 l2->l_flag |= LW_AFFINITY;
670 }
671 lwp_unlock(l1);
672 }
673 lwp_lock(l2);
674 /* Inherit a processor-set */
675 l2->l_psid = l1->l_psid;
676 /* Look for a CPU to start */
677 l2->l_cpu = sched_takecpu(l2);
678 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
679 }
680 mutex_exit(p2->p_lock);
681
682 mutex_enter(proc_lock);
683 LIST_INSERT_HEAD(&alllwp, l2, l_list);
684 mutex_exit(proc_lock);
685
686 SYSCALL_TIME_LWP_INIT(l2);
687
688 if (p2->p_emul->e_lwp_fork)
689 (*p2->p_emul->e_lwp_fork)(l1, l2);
690
691 return (0);
692 }
693
694 /*
695 * Called by MD code when a new LWP begins execution. Must be called
696 * with the previous LWP locked (so at splsched), or if there is no
697 * previous LWP, at splsched.
698 */
699 void
700 lwp_startup(struct lwp *prev, struct lwp *new)
701 {
702
703 KASSERT(kpreempt_disabled());
704 if (prev != NULL) {
705 /*
706 * Normalize the count of the spin-mutexes, it was
707 * increased in mi_switch(). Unmark the state of
708 * context switch - it is finished for previous LWP.
709 */
710 curcpu()->ci_mtx_count++;
711 membar_exit();
712 prev->l_ctxswtch = 0;
713 }
714 KPREEMPT_DISABLE(new);
715 spl0();
716 pmap_activate(new);
717 LOCKDEBUG_BARRIER(NULL, 0);
718 KPREEMPT_ENABLE(new);
719 if ((new->l_pflag & LP_MPSAFE) == 0) {
720 KERNEL_LOCK(1, new);
721 }
722 }
723
724 /*
725 * Exit an LWP.
726 */
727 void
728 lwp_exit(struct lwp *l)
729 {
730 struct proc *p = l->l_proc;
731 struct lwp *l2;
732 bool current;
733
734 current = (l == curlwp);
735
736 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
737 KASSERT(p == curproc);
738
739 /*
740 * Verify that we hold no locks other than the kernel lock.
741 */
742 LOCKDEBUG_BARRIER(&kernel_lock, 0);
743
744 /*
745 * If we are the last live LWP in a process, we need to exit the
746 * entire process. We do so with an exit status of zero, because
747 * it's a "controlled" exit, and because that's what Solaris does.
748 *
749 * We are not quite a zombie yet, but for accounting purposes we
750 * must increment the count of zombies here.
751 *
752 * Note: the last LWP's specificdata will be deleted here.
753 */
754 mutex_enter(p->p_lock);
755 if (p->p_nlwps - p->p_nzlwps == 1) {
756 KASSERT(current == true);
757 /* XXXSMP kernel_lock not held */
758 exit1(l, 0);
759 /* NOTREACHED */
760 }
761 p->p_nzlwps++;
762 mutex_exit(p->p_lock);
763
764 if (p->p_emul->e_lwp_exit)
765 (*p->p_emul->e_lwp_exit)(l);
766
767 /* Drop filedesc reference. */
768 fd_free();
769
770 /* Delete the specificdata while it's still safe to sleep. */
771 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
772
773 /*
774 * Release our cached credentials.
775 */
776 kauth_cred_free(l->l_cred);
777 callout_destroy(&l->l_timeout_ch);
778
779 /*
780 * Remove the LWP from the global list.
781 */
782 mutex_enter(proc_lock);
783 LIST_REMOVE(l, l_list);
784 mutex_exit(proc_lock);
785
786 /*
787 * Get rid of all references to the LWP that others (e.g. procfs)
788 * may have, and mark the LWP as a zombie. If the LWP is detached,
789 * mark it waiting for collection in the proc structure. Note that
790 * before we can do that, we need to free any other dead, deatched
791 * LWP waiting to meet its maker.
792 */
793 mutex_enter(p->p_lock);
794 lwp_drainrefs(l);
795
796 if ((l->l_prflag & LPR_DETACHED) != 0) {
797 while ((l2 = p->p_zomblwp) != NULL) {
798 p->p_zomblwp = NULL;
799 lwp_free(l2, false, false);/* releases proc mutex */
800 mutex_enter(p->p_lock);
801 l->l_refcnt++;
802 lwp_drainrefs(l);
803 }
804 p->p_zomblwp = l;
805 }
806
807 /*
808 * If we find a pending signal for the process and we have been
809 * asked to check for signals, then we loose: arrange to have
810 * all other LWPs in the process check for signals.
811 */
812 if ((l->l_flag & LW_PENDSIG) != 0 &&
813 firstsig(&p->p_sigpend.sp_set) != 0) {
814 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
815 lwp_lock(l2);
816 l2->l_flag |= LW_PENDSIG;
817 lwp_unlock(l2);
818 }
819 }
820
821 lwp_lock(l);
822 l->l_stat = LSZOMB;
823 if (l->l_name != NULL)
824 strcpy(l->l_name, "(zombie)");
825 if (l->l_flag & LW_AFFINITY) {
826 l->l_flag &= ~LW_AFFINITY;
827 } else {
828 KASSERT(l->l_affinity == NULL);
829 }
830 lwp_unlock(l);
831 p->p_nrlwps--;
832 cv_broadcast(&p->p_lwpcv);
833 if (l->l_lwpctl != NULL)
834 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
835 mutex_exit(p->p_lock);
836
837 /* Safe without lock since LWP is in zombie state */
838 if (l->l_affinity) {
839 kcpuset_unuse(l->l_affinity, NULL);
840 l->l_affinity = NULL;
841 }
842
843 /*
844 * We can no longer block. At this point, lwp_free() may already
845 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
846 *
847 * Free MD LWP resources.
848 */
849 cpu_lwp_free(l, 0);
850
851 if (current) {
852 pmap_deactivate(l);
853
854 /*
855 * Release the kernel lock, and switch away into
856 * oblivion.
857 */
858 #ifdef notyet
859 /* XXXSMP hold in lwp_userret() */
860 KERNEL_UNLOCK_LAST(l);
861 #else
862 KERNEL_UNLOCK_ALL(l, NULL);
863 #endif
864 lwp_exit_switchaway(l);
865 }
866 }
867
868 /*
869 * Free a dead LWP's remaining resources.
870 *
871 * XXXLWP limits.
872 */
873 void
874 lwp_free(struct lwp *l, bool recycle, bool last)
875 {
876 struct proc *p = l->l_proc;
877 struct rusage *ru;
878 ksiginfoq_t kq;
879
880 KASSERT(l != curlwp);
881
882 /*
883 * If this was not the last LWP in the process, then adjust
884 * counters and unlock.
885 */
886 if (!last) {
887 /*
888 * Add the LWP's run time to the process' base value.
889 * This needs to co-incide with coming off p_lwps.
890 */
891 bintime_add(&p->p_rtime, &l->l_rtime);
892 p->p_pctcpu += l->l_pctcpu;
893 ru = &p->p_stats->p_ru;
894 ruadd(ru, &l->l_ru);
895 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
896 ru->ru_nivcsw += l->l_nivcsw;
897 LIST_REMOVE(l, l_sibling);
898 p->p_nlwps--;
899 p->p_nzlwps--;
900 if ((l->l_prflag & LPR_DETACHED) != 0)
901 p->p_ndlwps--;
902
903 /*
904 * Have any LWPs sleeping in lwp_wait() recheck for
905 * deadlock.
906 */
907 cv_broadcast(&p->p_lwpcv);
908 mutex_exit(p->p_lock);
909 }
910
911 #ifdef MULTIPROCESSOR
912 /*
913 * In the unlikely event that the LWP is still on the CPU,
914 * then spin until it has switched away. We need to release
915 * all locks to avoid deadlock against interrupt handlers on
916 * the target CPU.
917 */
918 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
919 int count;
920 (void)count; /* XXXgcc */
921 KERNEL_UNLOCK_ALL(curlwp, &count);
922 while ((l->l_pflag & LP_RUNNING) != 0 ||
923 l->l_cpu->ci_curlwp == l)
924 SPINLOCK_BACKOFF_HOOK;
925 KERNEL_LOCK(count, curlwp);
926 }
927 #endif
928
929 /*
930 * Destroy the LWP's remaining signal information.
931 */
932 ksiginfo_queue_init(&kq);
933 sigclear(&l->l_sigpend, NULL, &kq);
934 ksiginfo_queue_drain(&kq);
935 cv_destroy(&l->l_sigcv);
936
937 /*
938 * Free the LWP's turnstile and the LWP structure itself unless the
939 * caller wants to recycle them. Also, free the scheduler specific
940 * data.
941 *
942 * We can't return turnstile0 to the pool (it didn't come from it),
943 * so if it comes up just drop it quietly and move on.
944 *
945 * We don't recycle the VM resources at this time.
946 */
947 if (l->l_lwpctl != NULL)
948 lwp_ctl_free(l);
949
950 if (!recycle && l->l_ts != &turnstile0)
951 pool_cache_put(turnstile_cache, l->l_ts);
952 if (l->l_name != NULL)
953 kmem_free(l->l_name, MAXCOMLEN);
954
955 cpu_lwp_free2(l);
956 uvm_lwp_exit(l);
957
958 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
959 KASSERT(l->l_inheritedprio == -1);
960 if (!recycle)
961 pool_cache_put(lwp_cache, l);
962 }
963
964 /*
965 * Migrate the LWP to the another CPU. Unlocks the LWP.
966 */
967 void
968 lwp_migrate(lwp_t *l, struct cpu_info *tci)
969 {
970 struct schedstate_percpu *tspc;
971 int lstat = l->l_stat;
972
973 KASSERT(lwp_locked(l, NULL));
974 KASSERT(tci != NULL);
975
976 /* If LWP is still on the CPU, it must be handled like LSONPROC */
977 if ((l->l_pflag & LP_RUNNING) != 0) {
978 lstat = LSONPROC;
979 }
980
981 /*
982 * The destination CPU could be changed while previous migration
983 * was not finished.
984 */
985 if (l->l_target_cpu != NULL) {
986 l->l_target_cpu = tci;
987 lwp_unlock(l);
988 return;
989 }
990
991 /* Nothing to do if trying to migrate to the same CPU */
992 if (l->l_cpu == tci) {
993 lwp_unlock(l);
994 return;
995 }
996
997 KASSERT(l->l_target_cpu == NULL);
998 tspc = &tci->ci_schedstate;
999 switch (lstat) {
1000 case LSRUN:
1001 l->l_target_cpu = tci;
1002 break;
1003 case LSIDL:
1004 l->l_cpu = tci;
1005 lwp_unlock_to(l, tspc->spc_mutex);
1006 return;
1007 case LSSLEEP:
1008 l->l_cpu = tci;
1009 break;
1010 case LSSTOP:
1011 case LSSUSPENDED:
1012 l->l_cpu = tci;
1013 if (l->l_wchan == NULL) {
1014 lwp_unlock_to(l, tspc->spc_lwplock);
1015 return;
1016 }
1017 break;
1018 case LSONPROC:
1019 l->l_target_cpu = tci;
1020 spc_lock(l->l_cpu);
1021 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1022 spc_unlock(l->l_cpu);
1023 break;
1024 }
1025 lwp_unlock(l);
1026 }
1027
1028 /*
1029 * Find the LWP in the process. Arguments may be zero, in such case,
1030 * the calling process and first LWP in the list will be used.
1031 * On success - returns proc locked.
1032 */
1033 struct lwp *
1034 lwp_find2(pid_t pid, lwpid_t lid)
1035 {
1036 proc_t *p;
1037 lwp_t *l;
1038
1039 /* Find the process */
1040 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1041 if (p == NULL)
1042 return NULL;
1043 mutex_enter(p->p_lock);
1044 if (pid != 0) {
1045 /* Case of p_find */
1046 mutex_exit(proc_lock);
1047 }
1048
1049 /* Find the thread */
1050 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1051 if (l == NULL) {
1052 mutex_exit(p->p_lock);
1053 }
1054
1055 return l;
1056 }
1057
1058 /*
1059 * Look up a live LWP within the speicifed process, and return it locked.
1060 *
1061 * Must be called with p->p_lock held.
1062 */
1063 struct lwp *
1064 lwp_find(struct proc *p, int id)
1065 {
1066 struct lwp *l;
1067
1068 KASSERT(mutex_owned(p->p_lock));
1069
1070 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1071 if (l->l_lid == id)
1072 break;
1073 }
1074
1075 /*
1076 * No need to lock - all of these conditions will
1077 * be visible with the process level mutex held.
1078 */
1079 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1080 l = NULL;
1081
1082 return l;
1083 }
1084
1085 /*
1086 * Update an LWP's cached credentials to mirror the process' master copy.
1087 *
1088 * This happens early in the syscall path, on user trap, and on LWP
1089 * creation. A long-running LWP can also voluntarily choose to update
1090 * it's credentials by calling this routine. This may be called from
1091 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1092 */
1093 void
1094 lwp_update_creds(struct lwp *l)
1095 {
1096 kauth_cred_t oc;
1097 struct proc *p;
1098
1099 p = l->l_proc;
1100 oc = l->l_cred;
1101
1102 mutex_enter(p->p_lock);
1103 kauth_cred_hold(p->p_cred);
1104 l->l_cred = p->p_cred;
1105 l->l_prflag &= ~LPR_CRMOD;
1106 mutex_exit(p->p_lock);
1107 if (oc != NULL)
1108 kauth_cred_free(oc);
1109 }
1110
1111 /*
1112 * Verify that an LWP is locked, and optionally verify that the lock matches
1113 * one we specify.
1114 */
1115 int
1116 lwp_locked(struct lwp *l, kmutex_t *mtx)
1117 {
1118 kmutex_t *cur = l->l_mutex;
1119
1120 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1121 }
1122
1123 /*
1124 * Lock an LWP.
1125 */
1126 kmutex_t *
1127 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1128 {
1129
1130 /*
1131 * XXXgcc ignoring kmutex_t * volatile on i386
1132 *
1133 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1134 */
1135 #if 1
1136 while (l->l_mutex != old) {
1137 #else
1138 for (;;) {
1139 #endif
1140 mutex_spin_exit(old);
1141 old = l->l_mutex;
1142 mutex_spin_enter(old);
1143
1144 /*
1145 * mutex_enter() will have posted a read barrier. Re-test
1146 * l->l_mutex. If it has changed, we need to try again.
1147 */
1148 #if 1
1149 }
1150 #else
1151 } while (__predict_false(l->l_mutex != old));
1152 #endif
1153
1154 return old;
1155 }
1156
1157 /*
1158 * Lend a new mutex to an LWP. The old mutex must be held.
1159 */
1160 void
1161 lwp_setlock(struct lwp *l, kmutex_t *new)
1162 {
1163
1164 KASSERT(mutex_owned(l->l_mutex));
1165
1166 membar_exit();
1167 l->l_mutex = new;
1168 }
1169
1170 /*
1171 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1172 * must be held.
1173 */
1174 void
1175 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1176 {
1177 kmutex_t *old;
1178
1179 KASSERT(mutex_owned(l->l_mutex));
1180
1181 old = l->l_mutex;
1182 membar_exit();
1183 l->l_mutex = new;
1184 mutex_spin_exit(old);
1185 }
1186
1187 /*
1188 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1189 * locked.
1190 */
1191 void
1192 lwp_relock(struct lwp *l, kmutex_t *new)
1193 {
1194 kmutex_t *old;
1195
1196 KASSERT(mutex_owned(l->l_mutex));
1197
1198 old = l->l_mutex;
1199 if (old != new) {
1200 mutex_spin_enter(new);
1201 l->l_mutex = new;
1202 mutex_spin_exit(old);
1203 }
1204 }
1205
1206 int
1207 lwp_trylock(struct lwp *l)
1208 {
1209 kmutex_t *old;
1210
1211 for (;;) {
1212 if (!mutex_tryenter(old = l->l_mutex))
1213 return 0;
1214 if (__predict_true(l->l_mutex == old))
1215 return 1;
1216 mutex_spin_exit(old);
1217 }
1218 }
1219
1220 void
1221 lwp_unsleep(lwp_t *l, bool cleanup)
1222 {
1223
1224 KASSERT(mutex_owned(l->l_mutex));
1225 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1226 }
1227
1228
1229 /*
1230 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1231 * set.
1232 */
1233 void
1234 lwp_userret(struct lwp *l)
1235 {
1236 struct proc *p;
1237 void (*hook)(void);
1238 int sig;
1239
1240 KASSERT(l == curlwp);
1241 KASSERT(l->l_stat == LSONPROC);
1242 p = l->l_proc;
1243
1244 #ifndef __HAVE_FAST_SOFTINTS
1245 /* Run pending soft interrupts. */
1246 if (l->l_cpu->ci_data.cpu_softints != 0)
1247 softint_overlay();
1248 #endif
1249
1250 #ifdef KERN_SA
1251 /* Generate UNBLOCKED upcall if needed */
1252 if (l->l_flag & LW_SA_BLOCKING) {
1253 sa_unblock_userret(l);
1254 /* NOTREACHED */
1255 }
1256 #endif
1257
1258 /*
1259 * It should be safe to do this read unlocked on a multiprocessor
1260 * system..
1261 *
1262 * LW_SA_UPCALL will be handled after the while() loop, so don't
1263 * consider it now.
1264 */
1265 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1266 /*
1267 * Process pending signals first, unless the process
1268 * is dumping core or exiting, where we will instead
1269 * enter the LW_WSUSPEND case below.
1270 */
1271 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1272 LW_PENDSIG) {
1273 mutex_enter(p->p_lock);
1274 while ((sig = issignal(l)) != 0)
1275 postsig(sig);
1276 mutex_exit(p->p_lock);
1277 }
1278
1279 /*
1280 * Core-dump or suspend pending.
1281 *
1282 * In case of core dump, suspend ourselves, so that the
1283 * kernel stack and therefore the userland registers saved
1284 * in the trapframe are around for coredump() to write them
1285 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1286 * will write the core file out once all other LWPs are
1287 * suspended.
1288 */
1289 if ((l->l_flag & LW_WSUSPEND) != 0) {
1290 mutex_enter(p->p_lock);
1291 p->p_nrlwps--;
1292 cv_broadcast(&p->p_lwpcv);
1293 lwp_lock(l);
1294 l->l_stat = LSSUSPENDED;
1295 lwp_unlock(l);
1296 mutex_exit(p->p_lock);
1297 lwp_lock(l);
1298 mi_switch(l);
1299 }
1300
1301 /* Process is exiting. */
1302 if ((l->l_flag & LW_WEXIT) != 0) {
1303 lwp_exit(l);
1304 KASSERT(0);
1305 /* NOTREACHED */
1306 }
1307
1308 /* Call userret hook; used by Linux emulation. */
1309 if ((l->l_flag & LW_WUSERRET) != 0) {
1310 lwp_lock(l);
1311 l->l_flag &= ~LW_WUSERRET;
1312 lwp_unlock(l);
1313 hook = p->p_userret;
1314 p->p_userret = NULL;
1315 (*hook)();
1316 }
1317 }
1318
1319 #ifdef KERN_SA
1320 /*
1321 * Timer events are handled specially. We only try once to deliver
1322 * pending timer upcalls; if if fails, we can try again on the next
1323 * loop around. If we need to re-enter lwp_userret(), MD code will
1324 * bounce us back here through the trap path after we return.
1325 */
1326 if (p->p_timerpend)
1327 timerupcall(l);
1328 if (l->l_flag & LW_SA_UPCALL)
1329 sa_upcall_userret(l);
1330 #endif /* KERN_SA */
1331 }
1332
1333 /*
1334 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1335 */
1336 void
1337 lwp_need_userret(struct lwp *l)
1338 {
1339 KASSERT(lwp_locked(l, NULL));
1340
1341 /*
1342 * Since the tests in lwp_userret() are done unlocked, make sure
1343 * that the condition will be seen before forcing the LWP to enter
1344 * kernel mode.
1345 */
1346 membar_producer();
1347 cpu_signotify(l);
1348 }
1349
1350 /*
1351 * Add one reference to an LWP. This will prevent the LWP from
1352 * exiting, thus keep the lwp structure and PCB around to inspect.
1353 */
1354 void
1355 lwp_addref(struct lwp *l)
1356 {
1357
1358 KASSERT(mutex_owned(l->l_proc->p_lock));
1359 KASSERT(l->l_stat != LSZOMB);
1360 KASSERT(l->l_refcnt != 0);
1361
1362 l->l_refcnt++;
1363 }
1364
1365 /*
1366 * Remove one reference to an LWP. If this is the last reference,
1367 * then we must finalize the LWP's death.
1368 */
1369 void
1370 lwp_delref(struct lwp *l)
1371 {
1372 struct proc *p = l->l_proc;
1373
1374 mutex_enter(p->p_lock);
1375 KASSERT(l->l_stat != LSZOMB);
1376 KASSERT(l->l_refcnt > 0);
1377 if (--l->l_refcnt == 0)
1378 cv_broadcast(&p->p_lwpcv);
1379 mutex_exit(p->p_lock);
1380 }
1381
1382 /*
1383 * Drain all references to the current LWP.
1384 */
1385 void
1386 lwp_drainrefs(struct lwp *l)
1387 {
1388 struct proc *p = l->l_proc;
1389
1390 KASSERT(mutex_owned(p->p_lock));
1391 KASSERT(l->l_refcnt != 0);
1392
1393 l->l_refcnt--;
1394 while (l->l_refcnt != 0)
1395 cv_wait(&p->p_lwpcv, p->p_lock);
1396 }
1397
1398 /*
1399 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1400 * be held.
1401 */
1402 bool
1403 lwp_alive(lwp_t *l)
1404 {
1405
1406 KASSERT(mutex_owned(l->l_proc->p_lock));
1407
1408 switch (l->l_stat) {
1409 case LSSLEEP:
1410 case LSRUN:
1411 case LSONPROC:
1412 case LSSTOP:
1413 case LSSUSPENDED:
1414 return true;
1415 default:
1416 return false;
1417 }
1418 }
1419
1420 /*
1421 * Return first live LWP in the process.
1422 */
1423 lwp_t *
1424 lwp_find_first(proc_t *p)
1425 {
1426 lwp_t *l;
1427
1428 KASSERT(mutex_owned(p->p_lock));
1429
1430 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1431 if (lwp_alive(l)) {
1432 return l;
1433 }
1434 }
1435
1436 return NULL;
1437 }
1438
1439 /*
1440 * lwp_specific_key_create --
1441 * Create a key for subsystem lwp-specific data.
1442 */
1443 int
1444 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1445 {
1446
1447 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1448 }
1449
1450 /*
1451 * lwp_specific_key_delete --
1452 * Delete a key for subsystem lwp-specific data.
1453 */
1454 void
1455 lwp_specific_key_delete(specificdata_key_t key)
1456 {
1457
1458 specificdata_key_delete(lwp_specificdata_domain, key);
1459 }
1460
1461 /*
1462 * lwp_initspecific --
1463 * Initialize an LWP's specificdata container.
1464 */
1465 void
1466 lwp_initspecific(struct lwp *l)
1467 {
1468 int error;
1469
1470 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1471 KASSERT(error == 0);
1472 }
1473
1474 /*
1475 * lwp_finispecific --
1476 * Finalize an LWP's specificdata container.
1477 */
1478 void
1479 lwp_finispecific(struct lwp *l)
1480 {
1481
1482 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1483 }
1484
1485 /*
1486 * lwp_getspecific --
1487 * Return lwp-specific data corresponding to the specified key.
1488 *
1489 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1490 * only its OWN SPECIFIC DATA. If it is necessary to access another
1491 * LWP's specifc data, care must be taken to ensure that doing so
1492 * would not cause internal data structure inconsistency (i.e. caller
1493 * can guarantee that the target LWP is not inside an lwp_getspecific()
1494 * or lwp_setspecific() call).
1495 */
1496 void *
1497 lwp_getspecific(specificdata_key_t key)
1498 {
1499
1500 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1501 &curlwp->l_specdataref, key));
1502 }
1503
1504 void *
1505 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1506 {
1507
1508 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1509 &l->l_specdataref, key));
1510 }
1511
1512 /*
1513 * lwp_setspecific --
1514 * Set lwp-specific data corresponding to the specified key.
1515 */
1516 void
1517 lwp_setspecific(specificdata_key_t key, void *data)
1518 {
1519
1520 specificdata_setspecific(lwp_specificdata_domain,
1521 &curlwp->l_specdataref, key, data);
1522 }
1523
1524 /*
1525 * Allocate a new lwpctl structure for a user LWP.
1526 */
1527 int
1528 lwp_ctl_alloc(vaddr_t *uaddr)
1529 {
1530 lcproc_t *lp;
1531 u_int bit, i, offset;
1532 struct uvm_object *uao;
1533 int error;
1534 lcpage_t *lcp;
1535 proc_t *p;
1536 lwp_t *l;
1537
1538 l = curlwp;
1539 p = l->l_proc;
1540
1541 if (l->l_lcpage != NULL) {
1542 lcp = l->l_lcpage;
1543 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1544 return (EINVAL);
1545 }
1546
1547 /* First time around, allocate header structure for the process. */
1548 if ((lp = p->p_lwpctl) == NULL) {
1549 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1550 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1551 lp->lp_uao = NULL;
1552 TAILQ_INIT(&lp->lp_pages);
1553 mutex_enter(p->p_lock);
1554 if (p->p_lwpctl == NULL) {
1555 p->p_lwpctl = lp;
1556 mutex_exit(p->p_lock);
1557 } else {
1558 mutex_exit(p->p_lock);
1559 mutex_destroy(&lp->lp_lock);
1560 kmem_free(lp, sizeof(*lp));
1561 lp = p->p_lwpctl;
1562 }
1563 }
1564
1565 /*
1566 * Set up an anonymous memory region to hold the shared pages.
1567 * Map them into the process' address space. The user vmspace
1568 * gets the first reference on the UAO.
1569 */
1570 mutex_enter(&lp->lp_lock);
1571 if (lp->lp_uao == NULL) {
1572 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1573 lp->lp_cur = 0;
1574 lp->lp_max = LWPCTL_UAREA_SZ;
1575 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1576 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1577 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1578 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1579 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1580 if (error != 0) {
1581 uao_detach(lp->lp_uao);
1582 lp->lp_uao = NULL;
1583 mutex_exit(&lp->lp_lock);
1584 return error;
1585 }
1586 }
1587
1588 /* Get a free block and allocate for this LWP. */
1589 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1590 if (lcp->lcp_nfree != 0)
1591 break;
1592 }
1593 if (lcp == NULL) {
1594 /* Nothing available - try to set up a free page. */
1595 if (lp->lp_cur == lp->lp_max) {
1596 mutex_exit(&lp->lp_lock);
1597 return ENOMEM;
1598 }
1599 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1600 if (lcp == NULL) {
1601 mutex_exit(&lp->lp_lock);
1602 return ENOMEM;
1603 }
1604 /*
1605 * Wire the next page down in kernel space. Since this
1606 * is a new mapping, we must add a reference.
1607 */
1608 uao = lp->lp_uao;
1609 (*uao->pgops->pgo_reference)(uao);
1610 lcp->lcp_kaddr = vm_map_min(kernel_map);
1611 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1612 uao, lp->lp_cur, PAGE_SIZE,
1613 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1614 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1615 if (error != 0) {
1616 mutex_exit(&lp->lp_lock);
1617 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1618 (*uao->pgops->pgo_detach)(uao);
1619 return error;
1620 }
1621 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1622 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1623 if (error != 0) {
1624 mutex_exit(&lp->lp_lock);
1625 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1626 lcp->lcp_kaddr + PAGE_SIZE);
1627 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1628 return error;
1629 }
1630 /* Prepare the page descriptor and link into the list. */
1631 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1632 lp->lp_cur += PAGE_SIZE;
1633 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1634 lcp->lcp_rotor = 0;
1635 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1636 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1637 }
1638 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1639 if (++i >= LWPCTL_BITMAP_ENTRIES)
1640 i = 0;
1641 }
1642 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1643 lcp->lcp_bitmap[i] ^= (1 << bit);
1644 lcp->lcp_rotor = i;
1645 lcp->lcp_nfree--;
1646 l->l_lcpage = lcp;
1647 offset = (i << 5) + bit;
1648 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1649 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1650 mutex_exit(&lp->lp_lock);
1651
1652 KPREEMPT_DISABLE(l);
1653 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1654 KPREEMPT_ENABLE(l);
1655
1656 return 0;
1657 }
1658
1659 /*
1660 * Free an lwpctl structure back to the per-process list.
1661 */
1662 void
1663 lwp_ctl_free(lwp_t *l)
1664 {
1665 lcproc_t *lp;
1666 lcpage_t *lcp;
1667 u_int map, offset;
1668
1669 lp = l->l_proc->p_lwpctl;
1670 KASSERT(lp != NULL);
1671
1672 lcp = l->l_lcpage;
1673 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1674 KASSERT(offset < LWPCTL_PER_PAGE);
1675
1676 mutex_enter(&lp->lp_lock);
1677 lcp->lcp_nfree++;
1678 map = offset >> 5;
1679 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1680 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1681 lcp->lcp_rotor = map;
1682 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1683 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1684 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1685 }
1686 mutex_exit(&lp->lp_lock);
1687 }
1688
1689 /*
1690 * Process is exiting; tear down lwpctl state. This can only be safely
1691 * called by the last LWP in the process.
1692 */
1693 void
1694 lwp_ctl_exit(void)
1695 {
1696 lcpage_t *lcp, *next;
1697 lcproc_t *lp;
1698 proc_t *p;
1699 lwp_t *l;
1700
1701 l = curlwp;
1702 l->l_lwpctl = NULL;
1703 l->l_lcpage = NULL;
1704 p = l->l_proc;
1705 lp = p->p_lwpctl;
1706
1707 KASSERT(lp != NULL);
1708 KASSERT(p->p_nlwps == 1);
1709
1710 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1711 next = TAILQ_NEXT(lcp, lcp_chain);
1712 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1713 lcp->lcp_kaddr + PAGE_SIZE);
1714 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1715 }
1716
1717 if (lp->lp_uao != NULL) {
1718 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1719 lp->lp_uva + LWPCTL_UAREA_SZ);
1720 }
1721
1722 mutex_destroy(&lp->lp_lock);
1723 kmem_free(lp, sizeof(*lp));
1724 p->p_lwpctl = NULL;
1725 }
1726
1727 /*
1728 * Return the current LWP's "preemption counter". Used to detect
1729 * preemption across operations that can tolerate preemption without
1730 * crashing, but which may generate incorrect results if preempted.
1731 */
1732 uint64_t
1733 lwp_pctr(void)
1734 {
1735
1736 return curlwp->l_ncsw;
1737 }
1738
1739 #if defined(DDB)
1740 void
1741 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1742 {
1743 lwp_t *l;
1744
1745 LIST_FOREACH(l, &alllwp, l_list) {
1746 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1747
1748 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1749 continue;
1750 }
1751 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1752 (void *)addr, (void *)stack,
1753 (size_t)(addr - stack), l);
1754 }
1755 }
1756 #endif /* defined(DDB) */
1757