kern_lwp.c revision 1.137 1 /* $NetBSD: kern_lwp.c,v 1.137 2009/12/17 01:25:10 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock and matches lwp::l_cpu.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock and matches lwp::l_cpu.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * (But not always for kernel threads. There are some special cases
200 * as mentioned above. See kern_softint.c.)
201 *
202 * Note that an LWP is considered running or likely to run soon if in
203 * one of the following states. This affects the value of p_nrlwps:
204 *
205 * LSRUN, LSONPROC, LSSLEEP
206 *
207 * p_lock does not need to be held when transitioning among these
208 * three states, hence p_lock is rarely taken for state transitions.
209 */
210
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.137 2009/12/17 01:25:10 rmind Exp $");
213
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_sa.h"
217
218 #define _LWP_API_PRIVATE
219
220 #include <sys/param.h>
221 #include <sys/systm.h>
222 #include <sys/cpu.h>
223 #include <sys/pool.h>
224 #include <sys/proc.h>
225 #include <sys/sa.h>
226 #include <sys/savar.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/sleepq.h>
231 #include <sys/lockdebug.h>
232 #include <sys/kmem.h>
233 #include <sys/pset.h>
234 #include <sys/intr.h>
235 #include <sys/lwpctl.h>
236 #include <sys/atomic.h>
237 #include <sys/filedesc.h>
238
239 #include <uvm/uvm_extern.h>
240 #include <uvm/uvm_object.h>
241
242 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
243
244 struct pool lwp_uc_pool;
245
246 static pool_cache_t lwp_cache;
247 static specificdata_domain_t lwp_specificdata_domain;
248
249 void
250 lwpinit(void)
251 {
252
253 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
254 &pool_allocator_nointr, IPL_NONE);
255 lwp_specificdata_domain = specificdata_domain_create();
256 KASSERT(lwp_specificdata_domain != NULL);
257 lwp_sys_init();
258 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
259 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
260 }
261
262 /*
263 * Set an suspended.
264 *
265 * Must be called with p_lock held, and the LWP locked. Will unlock the
266 * LWP before return.
267 */
268 int
269 lwp_suspend(struct lwp *curl, struct lwp *t)
270 {
271 int error;
272
273 KASSERT(mutex_owned(t->l_proc->p_lock));
274 KASSERT(lwp_locked(t, NULL));
275
276 KASSERT(curl != t || curl->l_stat == LSONPROC);
277
278 /*
279 * If the current LWP has been told to exit, we must not suspend anyone
280 * else or deadlock could occur. We won't return to userspace.
281 */
282 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
283 lwp_unlock(t);
284 return (EDEADLK);
285 }
286
287 error = 0;
288
289 switch (t->l_stat) {
290 case LSRUN:
291 case LSONPROC:
292 t->l_flag |= LW_WSUSPEND;
293 lwp_need_userret(t);
294 lwp_unlock(t);
295 break;
296
297 case LSSLEEP:
298 t->l_flag |= LW_WSUSPEND;
299
300 /*
301 * Kick the LWP and try to get it to the kernel boundary
302 * so that it will release any locks that it holds.
303 * setrunnable() will release the lock.
304 */
305 if ((t->l_flag & LW_SINTR) != 0)
306 setrunnable(t);
307 else
308 lwp_unlock(t);
309 break;
310
311 case LSSUSPENDED:
312 lwp_unlock(t);
313 break;
314
315 case LSSTOP:
316 t->l_flag |= LW_WSUSPEND;
317 setrunnable(t);
318 break;
319
320 case LSIDL:
321 case LSZOMB:
322 error = EINTR; /* It's what Solaris does..... */
323 lwp_unlock(t);
324 break;
325 }
326
327 return (error);
328 }
329
330 /*
331 * Restart a suspended LWP.
332 *
333 * Must be called with p_lock held, and the LWP locked. Will unlock the
334 * LWP before return.
335 */
336 void
337 lwp_continue(struct lwp *l)
338 {
339
340 KASSERT(mutex_owned(l->l_proc->p_lock));
341 KASSERT(lwp_locked(l, NULL));
342
343 /* If rebooting or not suspended, then just bail out. */
344 if ((l->l_flag & LW_WREBOOT) != 0) {
345 lwp_unlock(l);
346 return;
347 }
348
349 l->l_flag &= ~LW_WSUSPEND;
350
351 if (l->l_stat != LSSUSPENDED) {
352 lwp_unlock(l);
353 return;
354 }
355
356 /* setrunnable() will release the lock. */
357 setrunnable(l);
358 }
359
360 /*
361 * Wait for an LWP within the current process to exit. If 'lid' is
362 * non-zero, we are waiting for a specific LWP.
363 *
364 * Must be called with p->p_lock held.
365 */
366 int
367 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
368 {
369 struct proc *p = l->l_proc;
370 struct lwp *l2;
371 int nfound, error;
372 lwpid_t curlid;
373 bool exiting;
374
375 KASSERT(mutex_owned(p->p_lock));
376
377 p->p_nlwpwait++;
378 l->l_waitingfor = lid;
379 curlid = l->l_lid;
380 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
381
382 for (;;) {
383 /*
384 * Avoid a race between exit1() and sigexit(): if the
385 * process is dumping core, then we need to bail out: call
386 * into lwp_userret() where we will be suspended until the
387 * deed is done.
388 */
389 if ((p->p_sflag & PS_WCORE) != 0) {
390 mutex_exit(p->p_lock);
391 lwp_userret(l);
392 #ifdef DIAGNOSTIC
393 panic("lwp_wait1");
394 #endif
395 /* NOTREACHED */
396 }
397
398 /*
399 * First off, drain any detached LWP that is waiting to be
400 * reaped.
401 */
402 while ((l2 = p->p_zomblwp) != NULL) {
403 p->p_zomblwp = NULL;
404 lwp_free(l2, false, false);/* releases proc mutex */
405 mutex_enter(p->p_lock);
406 }
407
408 /*
409 * Now look for an LWP to collect. If the whole process is
410 * exiting, count detached LWPs as eligible to be collected,
411 * but don't drain them here.
412 */
413 nfound = 0;
414 error = 0;
415 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
416 /*
417 * If a specific wait and the target is waiting on
418 * us, then avoid deadlock. This also traps LWPs
419 * that try to wait on themselves.
420 *
421 * Note that this does not handle more complicated
422 * cycles, like: t1 -> t2 -> t3 -> t1. The process
423 * can still be killed so it is not a major problem.
424 */
425 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
426 error = EDEADLK;
427 break;
428 }
429 if (l2 == l)
430 continue;
431 if ((l2->l_prflag & LPR_DETACHED) != 0) {
432 nfound += exiting;
433 continue;
434 }
435 if (lid != 0) {
436 if (l2->l_lid != lid)
437 continue;
438 /*
439 * Mark this LWP as the first waiter, if there
440 * is no other.
441 */
442 if (l2->l_waiter == 0)
443 l2->l_waiter = curlid;
444 } else if (l2->l_waiter != 0) {
445 /*
446 * It already has a waiter - so don't
447 * collect it. If the waiter doesn't
448 * grab it we'll get another chance
449 * later.
450 */
451 nfound++;
452 continue;
453 }
454 nfound++;
455
456 /* No need to lock the LWP in order to see LSZOMB. */
457 if (l2->l_stat != LSZOMB)
458 continue;
459
460 /*
461 * We're no longer waiting. Reset the "first waiter"
462 * pointer on the target, in case it was us.
463 */
464 l->l_waitingfor = 0;
465 l2->l_waiter = 0;
466 p->p_nlwpwait--;
467 if (departed)
468 *departed = l2->l_lid;
469 sched_lwp_collect(l2);
470
471 /* lwp_free() releases the proc lock. */
472 lwp_free(l2, false, false);
473 mutex_enter(p->p_lock);
474 return 0;
475 }
476
477 if (error != 0)
478 break;
479 if (nfound == 0) {
480 error = ESRCH;
481 break;
482 }
483
484 /*
485 * The kernel is careful to ensure that it can not deadlock
486 * when exiting - just keep waiting.
487 */
488 if (exiting) {
489 KASSERT(p->p_nlwps > 1);
490 cv_wait(&p->p_lwpcv, p->p_lock);
491 continue;
492 }
493
494 /*
495 * If all other LWPs are waiting for exits or suspends
496 * and the supply of zombies and potential zombies is
497 * exhausted, then we are about to deadlock.
498 *
499 * If the process is exiting (and this LWP is not the one
500 * that is coordinating the exit) then bail out now.
501 */
502 if ((p->p_sflag & PS_WEXIT) != 0 ||
503 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
504 error = EDEADLK;
505 break;
506 }
507
508 /*
509 * Sit around and wait for something to happen. We'll be
510 * awoken if any of the conditions examined change: if an
511 * LWP exits, is collected, or is detached.
512 */
513 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
514 break;
515 }
516
517 /*
518 * We didn't find any LWPs to collect, we may have received a
519 * signal, or some other condition has caused us to bail out.
520 *
521 * If waiting on a specific LWP, clear the waiters marker: some
522 * other LWP may want it. Then, kick all the remaining waiters
523 * so that they can re-check for zombies and for deadlock.
524 */
525 if (lid != 0) {
526 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
527 if (l2->l_lid == lid) {
528 if (l2->l_waiter == curlid)
529 l2->l_waiter = 0;
530 break;
531 }
532 }
533 }
534 p->p_nlwpwait--;
535 l->l_waitingfor = 0;
536 cv_broadcast(&p->p_lwpcv);
537
538 return error;
539 }
540
541 /*
542 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
543 * The new LWP is created in state LSIDL and must be set running,
544 * suspended, or stopped by the caller.
545 */
546 int
547 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
548 void *stack, size_t stacksize, void (*func)(void *), void *arg,
549 lwp_t **rnewlwpp, int sclass)
550 {
551 struct lwp *l2, *isfree;
552 turnstile_t *ts;
553
554 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
555
556 /*
557 * First off, reap any detached LWP waiting to be collected.
558 * We can re-use its LWP structure and turnstile.
559 */
560 isfree = NULL;
561 if (p2->p_zomblwp != NULL) {
562 mutex_enter(p2->p_lock);
563 if ((isfree = p2->p_zomblwp) != NULL) {
564 p2->p_zomblwp = NULL;
565 lwp_free(isfree, true, false);/* releases proc mutex */
566 } else
567 mutex_exit(p2->p_lock);
568 }
569 if (isfree == NULL) {
570 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
571 memset(l2, 0, sizeof(*l2));
572 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
573 SLIST_INIT(&l2->l_pi_lenders);
574 } else {
575 l2 = isfree;
576 ts = l2->l_ts;
577 KASSERT(l2->l_inheritedprio == -1);
578 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
579 memset(l2, 0, sizeof(*l2));
580 l2->l_ts = ts;
581 }
582
583 l2->l_stat = LSIDL;
584 l2->l_proc = p2;
585 l2->l_refcnt = 1;
586 l2->l_class = sclass;
587
588 /*
589 * If vfork(), we want the LWP to run fast and on the same CPU
590 * as its parent, so that it can reuse the VM context and cache
591 * footprint on the local CPU.
592 */
593 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
594 l2->l_kpribase = PRI_KERNEL;
595 l2->l_priority = l1->l_priority;
596 l2->l_inheritedprio = -1;
597 l2->l_flag = 0;
598 l2->l_pflag = LP_MPSAFE;
599 TAILQ_INIT(&l2->l_ld_locks);
600
601 /*
602 * If not the first LWP in the process, grab a reference to the
603 * descriptor table.
604 */
605 l2->l_fd = p2->p_fd;
606 if (p2->p_nlwps != 0) {
607 KASSERT(l1->l_proc == p2);
608 fd_hold(l2);
609 } else {
610 KASSERT(l1->l_proc != p2);
611 }
612
613 if (p2->p_flag & PK_SYSTEM) {
614 /* Mark it as a system LWP. */
615 l2->l_flag |= LW_SYSTEM;
616 }
617
618 kpreempt_disable();
619 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
620 l2->l_cpu = l1->l_cpu;
621 kpreempt_enable();
622
623 lwp_initspecific(l2);
624 sched_lwp_fork(l1, l2);
625 lwp_update_creds(l2);
626 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
627 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
628 cv_init(&l2->l_sigcv, "sigwait");
629 l2->l_syncobj = &sched_syncobj;
630
631 if (rnewlwpp != NULL)
632 *rnewlwpp = l2;
633
634 uvm_lwp_setuarea(l2, uaddr);
635 uvm_lwp_fork(l1, l2, stack, stacksize, func,
636 (arg != NULL) ? arg : l2);
637
638 mutex_enter(p2->p_lock);
639
640 if ((flags & LWP_DETACHED) != 0) {
641 l2->l_prflag = LPR_DETACHED;
642 p2->p_ndlwps++;
643 } else
644 l2->l_prflag = 0;
645
646 l2->l_sigmask = l1->l_sigmask;
647 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
648 sigemptyset(&l2->l_sigpend.sp_set);
649
650 p2->p_nlwpid++;
651 if (p2->p_nlwpid == 0)
652 p2->p_nlwpid++;
653 l2->l_lid = p2->p_nlwpid;
654 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
655 p2->p_nlwps++;
656
657 if ((p2->p_flag & PK_SYSTEM) == 0) {
658 /* Inherit an affinity */
659 if (l1->l_flag & LW_AFFINITY) {
660 /*
661 * Note that we hold the state lock while inheriting
662 * the affinity to avoid race with sched_setaffinity().
663 */
664 lwp_lock(l1);
665 if (l1->l_flag & LW_AFFINITY) {
666 kcpuset_use(l1->l_affinity);
667 l2->l_affinity = l1->l_affinity;
668 l2->l_flag |= LW_AFFINITY;
669 }
670 lwp_unlock(l1);
671 }
672 lwp_lock(l2);
673 /* Inherit a processor-set */
674 l2->l_psid = l1->l_psid;
675 /* Look for a CPU to start */
676 l2->l_cpu = sched_takecpu(l2);
677 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
678 }
679 mutex_exit(p2->p_lock);
680
681 mutex_enter(proc_lock);
682 LIST_INSERT_HEAD(&alllwp, l2, l_list);
683 mutex_exit(proc_lock);
684
685 SYSCALL_TIME_LWP_INIT(l2);
686
687 if (p2->p_emul->e_lwp_fork)
688 (*p2->p_emul->e_lwp_fork)(l1, l2);
689
690 return (0);
691 }
692
693 /*
694 * Called by MD code when a new LWP begins execution. Must be called
695 * with the previous LWP locked (so at splsched), or if there is no
696 * previous LWP, at splsched.
697 */
698 void
699 lwp_startup(struct lwp *prev, struct lwp *new)
700 {
701
702 KASSERT(kpreempt_disabled());
703 if (prev != NULL) {
704 /*
705 * Normalize the count of the spin-mutexes, it was
706 * increased in mi_switch(). Unmark the state of
707 * context switch - it is finished for previous LWP.
708 */
709 curcpu()->ci_mtx_count++;
710 membar_exit();
711 prev->l_ctxswtch = 0;
712 }
713 KPREEMPT_DISABLE(new);
714 spl0();
715 pmap_activate(new);
716 LOCKDEBUG_BARRIER(NULL, 0);
717 KPREEMPT_ENABLE(new);
718 if ((new->l_pflag & LP_MPSAFE) == 0) {
719 KERNEL_LOCK(1, new);
720 }
721 }
722
723 /*
724 * Exit an LWP.
725 */
726 void
727 lwp_exit(struct lwp *l)
728 {
729 struct proc *p = l->l_proc;
730 struct lwp *l2;
731 bool current;
732
733 current = (l == curlwp);
734
735 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
736 KASSERT(p == curproc);
737
738 /*
739 * Verify that we hold no locks other than the kernel lock.
740 */
741 LOCKDEBUG_BARRIER(&kernel_lock, 0);
742
743 /*
744 * If we are the last live LWP in a process, we need to exit the
745 * entire process. We do so with an exit status of zero, because
746 * it's a "controlled" exit, and because that's what Solaris does.
747 *
748 * We are not quite a zombie yet, but for accounting purposes we
749 * must increment the count of zombies here.
750 *
751 * Note: the last LWP's specificdata will be deleted here.
752 */
753 mutex_enter(p->p_lock);
754 if (p->p_nlwps - p->p_nzlwps == 1) {
755 KASSERT(current == true);
756 /* XXXSMP kernel_lock not held */
757 exit1(l, 0);
758 /* NOTREACHED */
759 }
760 p->p_nzlwps++;
761 mutex_exit(p->p_lock);
762
763 if (p->p_emul->e_lwp_exit)
764 (*p->p_emul->e_lwp_exit)(l);
765
766 /* Drop filedesc reference. */
767 fd_free();
768
769 /* Delete the specificdata while it's still safe to sleep. */
770 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
771
772 /*
773 * Release our cached credentials.
774 */
775 kauth_cred_free(l->l_cred);
776 callout_destroy(&l->l_timeout_ch);
777
778 /*
779 * Remove the LWP from the global list.
780 */
781 mutex_enter(proc_lock);
782 LIST_REMOVE(l, l_list);
783 mutex_exit(proc_lock);
784
785 /*
786 * Get rid of all references to the LWP that others (e.g. procfs)
787 * may have, and mark the LWP as a zombie. If the LWP is detached,
788 * mark it waiting for collection in the proc structure. Note that
789 * before we can do that, we need to free any other dead, deatched
790 * LWP waiting to meet its maker.
791 */
792 mutex_enter(p->p_lock);
793 lwp_drainrefs(l);
794
795 if ((l->l_prflag & LPR_DETACHED) != 0) {
796 while ((l2 = p->p_zomblwp) != NULL) {
797 p->p_zomblwp = NULL;
798 lwp_free(l2, false, false);/* releases proc mutex */
799 mutex_enter(p->p_lock);
800 l->l_refcnt++;
801 lwp_drainrefs(l);
802 }
803 p->p_zomblwp = l;
804 }
805
806 /*
807 * If we find a pending signal for the process and we have been
808 * asked to check for signals, then we loose: arrange to have
809 * all other LWPs in the process check for signals.
810 */
811 if ((l->l_flag & LW_PENDSIG) != 0 &&
812 firstsig(&p->p_sigpend.sp_set) != 0) {
813 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
814 lwp_lock(l2);
815 l2->l_flag |= LW_PENDSIG;
816 lwp_unlock(l2);
817 }
818 }
819
820 lwp_lock(l);
821 l->l_stat = LSZOMB;
822 if (l->l_name != NULL)
823 strcpy(l->l_name, "(zombie)");
824 if (l->l_flag & LW_AFFINITY) {
825 l->l_flag &= ~LW_AFFINITY;
826 } else {
827 KASSERT(l->l_affinity == NULL);
828 }
829 lwp_unlock(l);
830 p->p_nrlwps--;
831 cv_broadcast(&p->p_lwpcv);
832 if (l->l_lwpctl != NULL)
833 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
834 mutex_exit(p->p_lock);
835
836 /* Safe without lock since LWP is in zombie state */
837 if (l->l_affinity) {
838 kcpuset_unuse(l->l_affinity, NULL);
839 l->l_affinity = NULL;
840 }
841
842 /*
843 * We can no longer block. At this point, lwp_free() may already
844 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
845 *
846 * Free MD LWP resources.
847 */
848 cpu_lwp_free(l, 0);
849
850 if (current) {
851 pmap_deactivate(l);
852
853 /*
854 * Release the kernel lock, and switch away into
855 * oblivion.
856 */
857 #ifdef notyet
858 /* XXXSMP hold in lwp_userret() */
859 KERNEL_UNLOCK_LAST(l);
860 #else
861 KERNEL_UNLOCK_ALL(l, NULL);
862 #endif
863 lwp_exit_switchaway(l);
864 }
865 }
866
867 /*
868 * Free a dead LWP's remaining resources.
869 *
870 * XXXLWP limits.
871 */
872 void
873 lwp_free(struct lwp *l, bool recycle, bool last)
874 {
875 struct proc *p = l->l_proc;
876 struct rusage *ru;
877 ksiginfoq_t kq;
878
879 KASSERT(l != curlwp);
880
881 /*
882 * If this was not the last LWP in the process, then adjust
883 * counters and unlock.
884 */
885 if (!last) {
886 /*
887 * Add the LWP's run time to the process' base value.
888 * This needs to co-incide with coming off p_lwps.
889 */
890 bintime_add(&p->p_rtime, &l->l_rtime);
891 p->p_pctcpu += l->l_pctcpu;
892 ru = &p->p_stats->p_ru;
893 ruadd(ru, &l->l_ru);
894 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
895 ru->ru_nivcsw += l->l_nivcsw;
896 LIST_REMOVE(l, l_sibling);
897 p->p_nlwps--;
898 p->p_nzlwps--;
899 if ((l->l_prflag & LPR_DETACHED) != 0)
900 p->p_ndlwps--;
901
902 /*
903 * Have any LWPs sleeping in lwp_wait() recheck for
904 * deadlock.
905 */
906 cv_broadcast(&p->p_lwpcv);
907 mutex_exit(p->p_lock);
908 }
909
910 #ifdef MULTIPROCESSOR
911 /*
912 * In the unlikely event that the LWP is still on the CPU,
913 * then spin until it has switched away. We need to release
914 * all locks to avoid deadlock against interrupt handlers on
915 * the target CPU.
916 */
917 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
918 int count;
919 (void)count; /* XXXgcc */
920 KERNEL_UNLOCK_ALL(curlwp, &count);
921 while ((l->l_pflag & LP_RUNNING) != 0 ||
922 l->l_cpu->ci_curlwp == l)
923 SPINLOCK_BACKOFF_HOOK;
924 KERNEL_LOCK(count, curlwp);
925 }
926 #endif
927
928 /*
929 * Destroy the LWP's remaining signal information.
930 */
931 ksiginfo_queue_init(&kq);
932 sigclear(&l->l_sigpend, NULL, &kq);
933 ksiginfo_queue_drain(&kq);
934 cv_destroy(&l->l_sigcv);
935
936 /*
937 * Free the LWP's turnstile and the LWP structure itself unless the
938 * caller wants to recycle them. Also, free the scheduler specific
939 * data.
940 *
941 * We can't return turnstile0 to the pool (it didn't come from it),
942 * so if it comes up just drop it quietly and move on.
943 *
944 * We don't recycle the VM resources at this time.
945 */
946 if (l->l_lwpctl != NULL)
947 lwp_ctl_free(l);
948
949 if (!recycle && l->l_ts != &turnstile0)
950 pool_cache_put(turnstile_cache, l->l_ts);
951 if (l->l_name != NULL)
952 kmem_free(l->l_name, MAXCOMLEN);
953
954 cpu_lwp_free2(l);
955 uvm_lwp_exit(l);
956
957 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
958 KASSERT(l->l_inheritedprio == -1);
959 if (!recycle)
960 pool_cache_put(lwp_cache, l);
961 }
962
963 /*
964 * Migrate the LWP to the another CPU. Unlocks the LWP.
965 */
966 void
967 lwp_migrate(lwp_t *l, struct cpu_info *tci)
968 {
969 struct schedstate_percpu *tspc;
970 int lstat = l->l_stat;
971
972 KASSERT(lwp_locked(l, NULL));
973 KASSERT(tci != NULL);
974
975 /* If LWP is still on the CPU, it must be handled like LSONPROC */
976 if ((l->l_pflag & LP_RUNNING) != 0) {
977 lstat = LSONPROC;
978 }
979
980 /*
981 * The destination CPU could be changed while previous migration
982 * was not finished.
983 */
984 if (l->l_target_cpu != NULL) {
985 l->l_target_cpu = tci;
986 lwp_unlock(l);
987 return;
988 }
989
990 /* Nothing to do if trying to migrate to the same CPU */
991 if (l->l_cpu == tci) {
992 lwp_unlock(l);
993 return;
994 }
995
996 KASSERT(l->l_target_cpu == NULL);
997 tspc = &tci->ci_schedstate;
998 switch (lstat) {
999 case LSRUN:
1000 l->l_target_cpu = tci;
1001 break;
1002 case LSIDL:
1003 l->l_cpu = tci;
1004 lwp_unlock_to(l, tspc->spc_mutex);
1005 return;
1006 case LSSLEEP:
1007 l->l_cpu = tci;
1008 break;
1009 case LSSTOP:
1010 case LSSUSPENDED:
1011 l->l_cpu = tci;
1012 if (l->l_wchan == NULL) {
1013 lwp_unlock_to(l, tspc->spc_lwplock);
1014 return;
1015 }
1016 break;
1017 case LSONPROC:
1018 l->l_target_cpu = tci;
1019 spc_lock(l->l_cpu);
1020 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1021 spc_unlock(l->l_cpu);
1022 break;
1023 }
1024 lwp_unlock(l);
1025 }
1026
1027 /*
1028 * Find the LWP in the process. Arguments may be zero, in such case,
1029 * the calling process and first LWP in the list will be used.
1030 * On success - returns proc locked.
1031 */
1032 struct lwp *
1033 lwp_find2(pid_t pid, lwpid_t lid)
1034 {
1035 proc_t *p;
1036 lwp_t *l;
1037
1038 /* Find the process */
1039 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1040 if (p == NULL)
1041 return NULL;
1042 mutex_enter(p->p_lock);
1043 if (pid != 0) {
1044 /* Case of p_find */
1045 mutex_exit(proc_lock);
1046 }
1047
1048 /* Find the thread */
1049 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1050 if (l == NULL) {
1051 mutex_exit(p->p_lock);
1052 }
1053
1054 return l;
1055 }
1056
1057 /*
1058 * Look up a live LWP within the speicifed process, and return it locked.
1059 *
1060 * Must be called with p->p_lock held.
1061 */
1062 struct lwp *
1063 lwp_find(struct proc *p, int id)
1064 {
1065 struct lwp *l;
1066
1067 KASSERT(mutex_owned(p->p_lock));
1068
1069 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1070 if (l->l_lid == id)
1071 break;
1072 }
1073
1074 /*
1075 * No need to lock - all of these conditions will
1076 * be visible with the process level mutex held.
1077 */
1078 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1079 l = NULL;
1080
1081 return l;
1082 }
1083
1084 /*
1085 * Update an LWP's cached credentials to mirror the process' master copy.
1086 *
1087 * This happens early in the syscall path, on user trap, and on LWP
1088 * creation. A long-running LWP can also voluntarily choose to update
1089 * it's credentials by calling this routine. This may be called from
1090 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1091 */
1092 void
1093 lwp_update_creds(struct lwp *l)
1094 {
1095 kauth_cred_t oc;
1096 struct proc *p;
1097
1098 p = l->l_proc;
1099 oc = l->l_cred;
1100
1101 mutex_enter(p->p_lock);
1102 kauth_cred_hold(p->p_cred);
1103 l->l_cred = p->p_cred;
1104 l->l_prflag &= ~LPR_CRMOD;
1105 mutex_exit(p->p_lock);
1106 if (oc != NULL)
1107 kauth_cred_free(oc);
1108 }
1109
1110 /*
1111 * Verify that an LWP is locked, and optionally verify that the lock matches
1112 * one we specify.
1113 */
1114 int
1115 lwp_locked(struct lwp *l, kmutex_t *mtx)
1116 {
1117 kmutex_t *cur = l->l_mutex;
1118
1119 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1120 }
1121
1122 /*
1123 * Lock an LWP.
1124 */
1125 kmutex_t *
1126 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1127 {
1128
1129 /*
1130 * XXXgcc ignoring kmutex_t * volatile on i386
1131 *
1132 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1133 */
1134 #if 1
1135 while (l->l_mutex != old) {
1136 #else
1137 for (;;) {
1138 #endif
1139 mutex_spin_exit(old);
1140 old = l->l_mutex;
1141 mutex_spin_enter(old);
1142
1143 /*
1144 * mutex_enter() will have posted a read barrier. Re-test
1145 * l->l_mutex. If it has changed, we need to try again.
1146 */
1147 #if 1
1148 }
1149 #else
1150 } while (__predict_false(l->l_mutex != old));
1151 #endif
1152
1153 return old;
1154 }
1155
1156 /*
1157 * Lend a new mutex to an LWP. The old mutex must be held.
1158 */
1159 void
1160 lwp_setlock(struct lwp *l, kmutex_t *new)
1161 {
1162
1163 KASSERT(mutex_owned(l->l_mutex));
1164
1165 membar_exit();
1166 l->l_mutex = new;
1167 }
1168
1169 /*
1170 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1171 * must be held.
1172 */
1173 void
1174 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1175 {
1176 kmutex_t *old;
1177
1178 KASSERT(mutex_owned(l->l_mutex));
1179
1180 old = l->l_mutex;
1181 membar_exit();
1182 l->l_mutex = new;
1183 mutex_spin_exit(old);
1184 }
1185
1186 /*
1187 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1188 * locked.
1189 */
1190 void
1191 lwp_relock(struct lwp *l, kmutex_t *new)
1192 {
1193 kmutex_t *old;
1194
1195 KASSERT(mutex_owned(l->l_mutex));
1196
1197 old = l->l_mutex;
1198 if (old != new) {
1199 mutex_spin_enter(new);
1200 l->l_mutex = new;
1201 mutex_spin_exit(old);
1202 }
1203 }
1204
1205 int
1206 lwp_trylock(struct lwp *l)
1207 {
1208 kmutex_t *old;
1209
1210 for (;;) {
1211 if (!mutex_tryenter(old = l->l_mutex))
1212 return 0;
1213 if (__predict_true(l->l_mutex == old))
1214 return 1;
1215 mutex_spin_exit(old);
1216 }
1217 }
1218
1219 void
1220 lwp_unsleep(lwp_t *l, bool cleanup)
1221 {
1222
1223 KASSERT(mutex_owned(l->l_mutex));
1224 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1225 }
1226
1227
1228 /*
1229 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1230 * set.
1231 */
1232 void
1233 lwp_userret(struct lwp *l)
1234 {
1235 struct proc *p;
1236 void (*hook)(void);
1237 int sig;
1238
1239 KASSERT(l == curlwp);
1240 KASSERT(l->l_stat == LSONPROC);
1241 p = l->l_proc;
1242
1243 #ifndef __HAVE_FAST_SOFTINTS
1244 /* Run pending soft interrupts. */
1245 if (l->l_cpu->ci_data.cpu_softints != 0)
1246 softint_overlay();
1247 #endif
1248
1249 #ifdef KERN_SA
1250 /* Generate UNBLOCKED upcall if needed */
1251 if (l->l_flag & LW_SA_BLOCKING) {
1252 sa_unblock_userret(l);
1253 /* NOTREACHED */
1254 }
1255 #endif
1256
1257 /*
1258 * It should be safe to do this read unlocked on a multiprocessor
1259 * system..
1260 *
1261 * LW_SA_UPCALL will be handled after the while() loop, so don't
1262 * consider it now.
1263 */
1264 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1265 /*
1266 * Process pending signals first, unless the process
1267 * is dumping core or exiting, where we will instead
1268 * enter the LW_WSUSPEND case below.
1269 */
1270 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1271 LW_PENDSIG) {
1272 mutex_enter(p->p_lock);
1273 while ((sig = issignal(l)) != 0)
1274 postsig(sig);
1275 mutex_exit(p->p_lock);
1276 }
1277
1278 /*
1279 * Core-dump or suspend pending.
1280 *
1281 * In case of core dump, suspend ourselves, so that the
1282 * kernel stack and therefore the userland registers saved
1283 * in the trapframe are around for coredump() to write them
1284 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1285 * will write the core file out once all other LWPs are
1286 * suspended.
1287 */
1288 if ((l->l_flag & LW_WSUSPEND) != 0) {
1289 mutex_enter(p->p_lock);
1290 p->p_nrlwps--;
1291 cv_broadcast(&p->p_lwpcv);
1292 lwp_lock(l);
1293 l->l_stat = LSSUSPENDED;
1294 lwp_unlock(l);
1295 mutex_exit(p->p_lock);
1296 lwp_lock(l);
1297 mi_switch(l);
1298 }
1299
1300 /* Process is exiting. */
1301 if ((l->l_flag & LW_WEXIT) != 0) {
1302 lwp_exit(l);
1303 KASSERT(0);
1304 /* NOTREACHED */
1305 }
1306
1307 /* Call userret hook; used by Linux emulation. */
1308 if ((l->l_flag & LW_WUSERRET) != 0) {
1309 lwp_lock(l);
1310 l->l_flag &= ~LW_WUSERRET;
1311 lwp_unlock(l);
1312 hook = p->p_userret;
1313 p->p_userret = NULL;
1314 (*hook)();
1315 }
1316 }
1317
1318 #ifdef KERN_SA
1319 /*
1320 * Timer events are handled specially. We only try once to deliver
1321 * pending timer upcalls; if if fails, we can try again on the next
1322 * loop around. If we need to re-enter lwp_userret(), MD code will
1323 * bounce us back here through the trap path after we return.
1324 */
1325 if (p->p_timerpend)
1326 timerupcall(l);
1327 if (l->l_flag & LW_SA_UPCALL)
1328 sa_upcall_userret(l);
1329 #endif /* KERN_SA */
1330 }
1331
1332 /*
1333 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1334 */
1335 void
1336 lwp_need_userret(struct lwp *l)
1337 {
1338 KASSERT(lwp_locked(l, NULL));
1339
1340 /*
1341 * Since the tests in lwp_userret() are done unlocked, make sure
1342 * that the condition will be seen before forcing the LWP to enter
1343 * kernel mode.
1344 */
1345 membar_producer();
1346 cpu_signotify(l);
1347 }
1348
1349 /*
1350 * Add one reference to an LWP. This will prevent the LWP from
1351 * exiting, thus keep the lwp structure and PCB around to inspect.
1352 */
1353 void
1354 lwp_addref(struct lwp *l)
1355 {
1356
1357 KASSERT(mutex_owned(l->l_proc->p_lock));
1358 KASSERT(l->l_stat != LSZOMB);
1359 KASSERT(l->l_refcnt != 0);
1360
1361 l->l_refcnt++;
1362 }
1363
1364 /*
1365 * Remove one reference to an LWP. If this is the last reference,
1366 * then we must finalize the LWP's death.
1367 */
1368 void
1369 lwp_delref(struct lwp *l)
1370 {
1371 struct proc *p = l->l_proc;
1372
1373 mutex_enter(p->p_lock);
1374 KASSERT(l->l_stat != LSZOMB);
1375 KASSERT(l->l_refcnt > 0);
1376 if (--l->l_refcnt == 0)
1377 cv_broadcast(&p->p_lwpcv);
1378 mutex_exit(p->p_lock);
1379 }
1380
1381 /*
1382 * Drain all references to the current LWP.
1383 */
1384 void
1385 lwp_drainrefs(struct lwp *l)
1386 {
1387 struct proc *p = l->l_proc;
1388
1389 KASSERT(mutex_owned(p->p_lock));
1390 KASSERT(l->l_refcnt != 0);
1391
1392 l->l_refcnt--;
1393 while (l->l_refcnt != 0)
1394 cv_wait(&p->p_lwpcv, p->p_lock);
1395 }
1396
1397 /*
1398 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1399 * be held.
1400 */
1401 bool
1402 lwp_alive(lwp_t *l)
1403 {
1404
1405 KASSERT(mutex_owned(l->l_proc->p_lock));
1406
1407 switch (l->l_stat) {
1408 case LSSLEEP:
1409 case LSRUN:
1410 case LSONPROC:
1411 case LSSTOP:
1412 case LSSUSPENDED:
1413 return true;
1414 default:
1415 return false;
1416 }
1417 }
1418
1419 /*
1420 * Return first live LWP in the process.
1421 */
1422 lwp_t *
1423 lwp_find_first(proc_t *p)
1424 {
1425 lwp_t *l;
1426
1427 KASSERT(mutex_owned(p->p_lock));
1428
1429 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1430 if (lwp_alive(l)) {
1431 return l;
1432 }
1433 }
1434
1435 return NULL;
1436 }
1437
1438 /*
1439 * lwp_specific_key_create --
1440 * Create a key for subsystem lwp-specific data.
1441 */
1442 int
1443 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1444 {
1445
1446 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1447 }
1448
1449 /*
1450 * lwp_specific_key_delete --
1451 * Delete a key for subsystem lwp-specific data.
1452 */
1453 void
1454 lwp_specific_key_delete(specificdata_key_t key)
1455 {
1456
1457 specificdata_key_delete(lwp_specificdata_domain, key);
1458 }
1459
1460 /*
1461 * lwp_initspecific --
1462 * Initialize an LWP's specificdata container.
1463 */
1464 void
1465 lwp_initspecific(struct lwp *l)
1466 {
1467 int error;
1468
1469 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1470 KASSERT(error == 0);
1471 }
1472
1473 /*
1474 * lwp_finispecific --
1475 * Finalize an LWP's specificdata container.
1476 */
1477 void
1478 lwp_finispecific(struct lwp *l)
1479 {
1480
1481 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1482 }
1483
1484 /*
1485 * lwp_getspecific --
1486 * Return lwp-specific data corresponding to the specified key.
1487 *
1488 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1489 * only its OWN SPECIFIC DATA. If it is necessary to access another
1490 * LWP's specifc data, care must be taken to ensure that doing so
1491 * would not cause internal data structure inconsistency (i.e. caller
1492 * can guarantee that the target LWP is not inside an lwp_getspecific()
1493 * or lwp_setspecific() call).
1494 */
1495 void *
1496 lwp_getspecific(specificdata_key_t key)
1497 {
1498
1499 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1500 &curlwp->l_specdataref, key));
1501 }
1502
1503 void *
1504 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1505 {
1506
1507 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1508 &l->l_specdataref, key));
1509 }
1510
1511 /*
1512 * lwp_setspecific --
1513 * Set lwp-specific data corresponding to the specified key.
1514 */
1515 void
1516 lwp_setspecific(specificdata_key_t key, void *data)
1517 {
1518
1519 specificdata_setspecific(lwp_specificdata_domain,
1520 &curlwp->l_specdataref, key, data);
1521 }
1522
1523 /*
1524 * Allocate a new lwpctl structure for a user LWP.
1525 */
1526 int
1527 lwp_ctl_alloc(vaddr_t *uaddr)
1528 {
1529 lcproc_t *lp;
1530 u_int bit, i, offset;
1531 struct uvm_object *uao;
1532 int error;
1533 lcpage_t *lcp;
1534 proc_t *p;
1535 lwp_t *l;
1536
1537 l = curlwp;
1538 p = l->l_proc;
1539
1540 if (l->l_lcpage != NULL) {
1541 lcp = l->l_lcpage;
1542 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1543 return (EINVAL);
1544 }
1545
1546 /* First time around, allocate header structure for the process. */
1547 if ((lp = p->p_lwpctl) == NULL) {
1548 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1549 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1550 lp->lp_uao = NULL;
1551 TAILQ_INIT(&lp->lp_pages);
1552 mutex_enter(p->p_lock);
1553 if (p->p_lwpctl == NULL) {
1554 p->p_lwpctl = lp;
1555 mutex_exit(p->p_lock);
1556 } else {
1557 mutex_exit(p->p_lock);
1558 mutex_destroy(&lp->lp_lock);
1559 kmem_free(lp, sizeof(*lp));
1560 lp = p->p_lwpctl;
1561 }
1562 }
1563
1564 /*
1565 * Set up an anonymous memory region to hold the shared pages.
1566 * Map them into the process' address space. The user vmspace
1567 * gets the first reference on the UAO.
1568 */
1569 mutex_enter(&lp->lp_lock);
1570 if (lp->lp_uao == NULL) {
1571 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1572 lp->lp_cur = 0;
1573 lp->lp_max = LWPCTL_UAREA_SZ;
1574 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1575 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1576 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1577 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1578 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1579 if (error != 0) {
1580 uao_detach(lp->lp_uao);
1581 lp->lp_uao = NULL;
1582 mutex_exit(&lp->lp_lock);
1583 return error;
1584 }
1585 }
1586
1587 /* Get a free block and allocate for this LWP. */
1588 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1589 if (lcp->lcp_nfree != 0)
1590 break;
1591 }
1592 if (lcp == NULL) {
1593 /* Nothing available - try to set up a free page. */
1594 if (lp->lp_cur == lp->lp_max) {
1595 mutex_exit(&lp->lp_lock);
1596 return ENOMEM;
1597 }
1598 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1599 if (lcp == NULL) {
1600 mutex_exit(&lp->lp_lock);
1601 return ENOMEM;
1602 }
1603 /*
1604 * Wire the next page down in kernel space. Since this
1605 * is a new mapping, we must add a reference.
1606 */
1607 uao = lp->lp_uao;
1608 (*uao->pgops->pgo_reference)(uao);
1609 lcp->lcp_kaddr = vm_map_min(kernel_map);
1610 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1611 uao, lp->lp_cur, PAGE_SIZE,
1612 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1613 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1614 if (error != 0) {
1615 mutex_exit(&lp->lp_lock);
1616 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1617 (*uao->pgops->pgo_detach)(uao);
1618 return error;
1619 }
1620 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1621 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1622 if (error != 0) {
1623 mutex_exit(&lp->lp_lock);
1624 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1625 lcp->lcp_kaddr + PAGE_SIZE);
1626 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1627 return error;
1628 }
1629 /* Prepare the page descriptor and link into the list. */
1630 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1631 lp->lp_cur += PAGE_SIZE;
1632 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1633 lcp->lcp_rotor = 0;
1634 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1635 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1636 }
1637 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1638 if (++i >= LWPCTL_BITMAP_ENTRIES)
1639 i = 0;
1640 }
1641 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1642 lcp->lcp_bitmap[i] ^= (1 << bit);
1643 lcp->lcp_rotor = i;
1644 lcp->lcp_nfree--;
1645 l->l_lcpage = lcp;
1646 offset = (i << 5) + bit;
1647 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1648 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1649 mutex_exit(&lp->lp_lock);
1650
1651 KPREEMPT_DISABLE(l);
1652 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1653 KPREEMPT_ENABLE(l);
1654
1655 return 0;
1656 }
1657
1658 /*
1659 * Free an lwpctl structure back to the per-process list.
1660 */
1661 void
1662 lwp_ctl_free(lwp_t *l)
1663 {
1664 lcproc_t *lp;
1665 lcpage_t *lcp;
1666 u_int map, offset;
1667
1668 lp = l->l_proc->p_lwpctl;
1669 KASSERT(lp != NULL);
1670
1671 lcp = l->l_lcpage;
1672 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1673 KASSERT(offset < LWPCTL_PER_PAGE);
1674
1675 mutex_enter(&lp->lp_lock);
1676 lcp->lcp_nfree++;
1677 map = offset >> 5;
1678 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1679 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1680 lcp->lcp_rotor = map;
1681 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1682 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1683 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1684 }
1685 mutex_exit(&lp->lp_lock);
1686 }
1687
1688 /*
1689 * Process is exiting; tear down lwpctl state. This can only be safely
1690 * called by the last LWP in the process.
1691 */
1692 void
1693 lwp_ctl_exit(void)
1694 {
1695 lcpage_t *lcp, *next;
1696 lcproc_t *lp;
1697 proc_t *p;
1698 lwp_t *l;
1699
1700 l = curlwp;
1701 l->l_lwpctl = NULL;
1702 l->l_lcpage = NULL;
1703 p = l->l_proc;
1704 lp = p->p_lwpctl;
1705
1706 KASSERT(lp != NULL);
1707 KASSERT(p->p_nlwps == 1);
1708
1709 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1710 next = TAILQ_NEXT(lcp, lcp_chain);
1711 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1712 lcp->lcp_kaddr + PAGE_SIZE);
1713 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1714 }
1715
1716 if (lp->lp_uao != NULL) {
1717 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1718 lp->lp_uva + LWPCTL_UAREA_SZ);
1719 }
1720
1721 mutex_destroy(&lp->lp_lock);
1722 kmem_free(lp, sizeof(*lp));
1723 p->p_lwpctl = NULL;
1724 }
1725
1726 /*
1727 * Return the current LWP's "preemption counter". Used to detect
1728 * preemption across operations that can tolerate preemption without
1729 * crashing, but which may generate incorrect results if preempted.
1730 */
1731 uint64_t
1732 lwp_pctr(void)
1733 {
1734
1735 return curlwp->l_ncsw;
1736 }
1737
1738 #if defined(DDB)
1739 void
1740 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1741 {
1742 lwp_t *l;
1743
1744 LIST_FOREACH(l, &alllwp, l_list) {
1745 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1746
1747 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1748 continue;
1749 }
1750 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1751 (void *)addr, (void *)stack,
1752 (size_t)(addr - stack), l);
1753 }
1754 }
1755 #endif /* defined(DDB) */
1756