kern_lwp.c revision 1.137.2.1 1 /* $NetBSD: kern_lwp.c,v 1.137.2.1 2010/04/30 14:44:09 uebayasi Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock and matches lwp::l_cpu.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock and matches lwp::l_cpu.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * (But not always for kernel threads. There are some special cases
200 * as mentioned above. See kern_softint.c.)
201 *
202 * Note that an LWP is considered running or likely to run soon if in
203 * one of the following states. This affects the value of p_nrlwps:
204 *
205 * LSRUN, LSONPROC, LSSLEEP
206 *
207 * p_lock does not need to be held when transitioning among these
208 * three states, hence p_lock is rarely taken for state transitions.
209 */
210
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.137.2.1 2010/04/30 14:44:09 uebayasi Exp $");
213
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_sa.h"
217 #include "opt_dtrace.h"
218
219 #define _LWP_API_PRIVATE
220
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/sa.h>
227 #include <sys/savar.h>
228 #include <sys/syscallargs.h>
229 #include <sys/syscall_stats.h>
230 #include <sys/kauth.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241
242 #include <uvm/uvm_extern.h>
243 #include <uvm/uvm_object.h>
244
245 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
246 static pool_cache_t lwp_cache;
247
248 /* DTrace proc provider probes */
249 SDT_PROBE_DEFINE(proc,,,lwp_create,
250 "struct lwp *", NULL,
251 NULL, NULL, NULL, NULL,
252 NULL, NULL, NULL, NULL);
253 SDT_PROBE_DEFINE(proc,,,lwp_start,
254 "struct lwp *", NULL,
255 NULL, NULL, NULL, NULL,
256 NULL, NULL, NULL, NULL);
257 SDT_PROBE_DEFINE(proc,,,lwp_exit,
258 "struct lwp *", NULL,
259 NULL, NULL, NULL, NULL,
260 NULL, NULL, NULL, NULL);
261
262 void
263 lwpinit(void)
264 {
265
266 lwpinit_specificdata();
267 lwp_sys_init();
268 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
269 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
270 }
271
272 /*
273 * Set an suspended.
274 *
275 * Must be called with p_lock held, and the LWP locked. Will unlock the
276 * LWP before return.
277 */
278 int
279 lwp_suspend(struct lwp *curl, struct lwp *t)
280 {
281 int error;
282
283 KASSERT(mutex_owned(t->l_proc->p_lock));
284 KASSERT(lwp_locked(t, NULL));
285
286 KASSERT(curl != t || curl->l_stat == LSONPROC);
287
288 /*
289 * If the current LWP has been told to exit, we must not suspend anyone
290 * else or deadlock could occur. We won't return to userspace.
291 */
292 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
293 lwp_unlock(t);
294 return (EDEADLK);
295 }
296
297 error = 0;
298
299 switch (t->l_stat) {
300 case LSRUN:
301 case LSONPROC:
302 t->l_flag |= LW_WSUSPEND;
303 lwp_need_userret(t);
304 lwp_unlock(t);
305 break;
306
307 case LSSLEEP:
308 t->l_flag |= LW_WSUSPEND;
309
310 /*
311 * Kick the LWP and try to get it to the kernel boundary
312 * so that it will release any locks that it holds.
313 * setrunnable() will release the lock.
314 */
315 if ((t->l_flag & LW_SINTR) != 0)
316 setrunnable(t);
317 else
318 lwp_unlock(t);
319 break;
320
321 case LSSUSPENDED:
322 lwp_unlock(t);
323 break;
324
325 case LSSTOP:
326 t->l_flag |= LW_WSUSPEND;
327 setrunnable(t);
328 break;
329
330 case LSIDL:
331 case LSZOMB:
332 error = EINTR; /* It's what Solaris does..... */
333 lwp_unlock(t);
334 break;
335 }
336
337 return (error);
338 }
339
340 /*
341 * Restart a suspended LWP.
342 *
343 * Must be called with p_lock held, and the LWP locked. Will unlock the
344 * LWP before return.
345 */
346 void
347 lwp_continue(struct lwp *l)
348 {
349
350 KASSERT(mutex_owned(l->l_proc->p_lock));
351 KASSERT(lwp_locked(l, NULL));
352
353 /* If rebooting or not suspended, then just bail out. */
354 if ((l->l_flag & LW_WREBOOT) != 0) {
355 lwp_unlock(l);
356 return;
357 }
358
359 l->l_flag &= ~LW_WSUSPEND;
360
361 if (l->l_stat != LSSUSPENDED) {
362 lwp_unlock(l);
363 return;
364 }
365
366 /* setrunnable() will release the lock. */
367 setrunnable(l);
368 }
369
370 /*
371 * Restart a stopped LWP.
372 *
373 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
374 * LWP before return.
375 */
376 void
377 lwp_unstop(struct lwp *l)
378 {
379 struct proc *p = l->l_proc;
380
381 KASSERT(mutex_owned(proc_lock));
382 KASSERT(mutex_owned(p->p_lock));
383
384 lwp_lock(l);
385
386 /* If not stopped, then just bail out. */
387 if (l->l_stat != LSSTOP) {
388 lwp_unlock(l);
389 return;
390 }
391
392 p->p_stat = SACTIVE;
393 p->p_sflag &= ~PS_STOPPING;
394
395 if (!p->p_waited)
396 p->p_pptr->p_nstopchild--;
397
398 if (l->l_wchan == NULL) {
399 /* setrunnable() will release the lock. */
400 setrunnable(l);
401 } else {
402 l->l_stat = LSSLEEP;
403 p->p_nrlwps++;
404 lwp_unlock(l);
405 }
406 }
407
408 /*
409 * Wait for an LWP within the current process to exit. If 'lid' is
410 * non-zero, we are waiting for a specific LWP.
411 *
412 * Must be called with p->p_lock held.
413 */
414 int
415 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
416 {
417 struct proc *p = l->l_proc;
418 struct lwp *l2;
419 int nfound, error;
420 lwpid_t curlid;
421 bool exiting;
422
423 KASSERT(mutex_owned(p->p_lock));
424
425 p->p_nlwpwait++;
426 l->l_waitingfor = lid;
427 curlid = l->l_lid;
428 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
429
430 for (;;) {
431 /*
432 * Avoid a race between exit1() and sigexit(): if the
433 * process is dumping core, then we need to bail out: call
434 * into lwp_userret() where we will be suspended until the
435 * deed is done.
436 */
437 if ((p->p_sflag & PS_WCORE) != 0) {
438 mutex_exit(p->p_lock);
439 lwp_userret(l);
440 #ifdef DIAGNOSTIC
441 panic("lwp_wait1");
442 #endif
443 /* NOTREACHED */
444 }
445
446 /*
447 * First off, drain any detached LWP that is waiting to be
448 * reaped.
449 */
450 while ((l2 = p->p_zomblwp) != NULL) {
451 p->p_zomblwp = NULL;
452 lwp_free(l2, false, false);/* releases proc mutex */
453 mutex_enter(p->p_lock);
454 }
455
456 /*
457 * Now look for an LWP to collect. If the whole process is
458 * exiting, count detached LWPs as eligible to be collected,
459 * but don't drain them here.
460 */
461 nfound = 0;
462 error = 0;
463 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
464 /*
465 * If a specific wait and the target is waiting on
466 * us, then avoid deadlock. This also traps LWPs
467 * that try to wait on themselves.
468 *
469 * Note that this does not handle more complicated
470 * cycles, like: t1 -> t2 -> t3 -> t1. The process
471 * can still be killed so it is not a major problem.
472 */
473 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
474 error = EDEADLK;
475 break;
476 }
477 if (l2 == l)
478 continue;
479 if ((l2->l_prflag & LPR_DETACHED) != 0) {
480 nfound += exiting;
481 continue;
482 }
483 if (lid != 0) {
484 if (l2->l_lid != lid)
485 continue;
486 /*
487 * Mark this LWP as the first waiter, if there
488 * is no other.
489 */
490 if (l2->l_waiter == 0)
491 l2->l_waiter = curlid;
492 } else if (l2->l_waiter != 0) {
493 /*
494 * It already has a waiter - so don't
495 * collect it. If the waiter doesn't
496 * grab it we'll get another chance
497 * later.
498 */
499 nfound++;
500 continue;
501 }
502 nfound++;
503
504 /* No need to lock the LWP in order to see LSZOMB. */
505 if (l2->l_stat != LSZOMB)
506 continue;
507
508 /*
509 * We're no longer waiting. Reset the "first waiter"
510 * pointer on the target, in case it was us.
511 */
512 l->l_waitingfor = 0;
513 l2->l_waiter = 0;
514 p->p_nlwpwait--;
515 if (departed)
516 *departed = l2->l_lid;
517 sched_lwp_collect(l2);
518
519 /* lwp_free() releases the proc lock. */
520 lwp_free(l2, false, false);
521 mutex_enter(p->p_lock);
522 return 0;
523 }
524
525 if (error != 0)
526 break;
527 if (nfound == 0) {
528 error = ESRCH;
529 break;
530 }
531
532 /*
533 * The kernel is careful to ensure that it can not deadlock
534 * when exiting - just keep waiting.
535 */
536 if (exiting) {
537 KASSERT(p->p_nlwps > 1);
538 cv_wait(&p->p_lwpcv, p->p_lock);
539 continue;
540 }
541
542 /*
543 * If all other LWPs are waiting for exits or suspends
544 * and the supply of zombies and potential zombies is
545 * exhausted, then we are about to deadlock.
546 *
547 * If the process is exiting (and this LWP is not the one
548 * that is coordinating the exit) then bail out now.
549 */
550 if ((p->p_sflag & PS_WEXIT) != 0 ||
551 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
552 error = EDEADLK;
553 break;
554 }
555
556 /*
557 * Sit around and wait for something to happen. We'll be
558 * awoken if any of the conditions examined change: if an
559 * LWP exits, is collected, or is detached.
560 */
561 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
562 break;
563 }
564
565 /*
566 * We didn't find any LWPs to collect, we may have received a
567 * signal, or some other condition has caused us to bail out.
568 *
569 * If waiting on a specific LWP, clear the waiters marker: some
570 * other LWP may want it. Then, kick all the remaining waiters
571 * so that they can re-check for zombies and for deadlock.
572 */
573 if (lid != 0) {
574 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
575 if (l2->l_lid == lid) {
576 if (l2->l_waiter == curlid)
577 l2->l_waiter = 0;
578 break;
579 }
580 }
581 }
582 p->p_nlwpwait--;
583 l->l_waitingfor = 0;
584 cv_broadcast(&p->p_lwpcv);
585
586 return error;
587 }
588
589 /*
590 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
591 * The new LWP is created in state LSIDL and must be set running,
592 * suspended, or stopped by the caller.
593 */
594 int
595 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
596 void *stack, size_t stacksize, void (*func)(void *), void *arg,
597 lwp_t **rnewlwpp, int sclass)
598 {
599 struct lwp *l2, *isfree;
600 turnstile_t *ts;
601
602 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
603
604 /*
605 * First off, reap any detached LWP waiting to be collected.
606 * We can re-use its LWP structure and turnstile.
607 */
608 isfree = NULL;
609 if (p2->p_zomblwp != NULL) {
610 mutex_enter(p2->p_lock);
611 if ((isfree = p2->p_zomblwp) != NULL) {
612 p2->p_zomblwp = NULL;
613 lwp_free(isfree, true, false);/* releases proc mutex */
614 } else
615 mutex_exit(p2->p_lock);
616 }
617 if (isfree == NULL) {
618 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
619 memset(l2, 0, sizeof(*l2));
620 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
621 SLIST_INIT(&l2->l_pi_lenders);
622 } else {
623 l2 = isfree;
624 ts = l2->l_ts;
625 KASSERT(l2->l_inheritedprio == -1);
626 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
627 memset(l2, 0, sizeof(*l2));
628 l2->l_ts = ts;
629 }
630
631 l2->l_stat = LSIDL;
632 l2->l_proc = p2;
633 l2->l_refcnt = 1;
634 l2->l_class = sclass;
635
636 /*
637 * If vfork(), we want the LWP to run fast and on the same CPU
638 * as its parent, so that it can reuse the VM context and cache
639 * footprint on the local CPU.
640 */
641 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
642 l2->l_kpribase = PRI_KERNEL;
643 l2->l_priority = l1->l_priority;
644 l2->l_inheritedprio = -1;
645 l2->l_flag = 0;
646 l2->l_pflag = LP_MPSAFE;
647 TAILQ_INIT(&l2->l_ld_locks);
648
649 /*
650 * If not the first LWP in the process, grab a reference to the
651 * descriptor table.
652 */
653 l2->l_fd = p2->p_fd;
654 if (p2->p_nlwps != 0) {
655 KASSERT(l1->l_proc == p2);
656 fd_hold(l2);
657 } else {
658 KASSERT(l1->l_proc != p2);
659 }
660
661 if (p2->p_flag & PK_SYSTEM) {
662 /* Mark it as a system LWP. */
663 l2->l_flag |= LW_SYSTEM;
664 }
665
666 kpreempt_disable();
667 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
668 l2->l_cpu = l1->l_cpu;
669 kpreempt_enable();
670
671 kdtrace_thread_ctor(NULL, l2);
672 lwp_initspecific(l2);
673 sched_lwp_fork(l1, l2);
674 lwp_update_creds(l2);
675 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
676 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
677 cv_init(&l2->l_sigcv, "sigwait");
678 l2->l_syncobj = &sched_syncobj;
679
680 if (rnewlwpp != NULL)
681 *rnewlwpp = l2;
682
683 uvm_lwp_setuarea(l2, uaddr);
684 uvm_lwp_fork(l1, l2, stack, stacksize, func,
685 (arg != NULL) ? arg : l2);
686
687 mutex_enter(p2->p_lock);
688
689 if ((flags & LWP_DETACHED) != 0) {
690 l2->l_prflag = LPR_DETACHED;
691 p2->p_ndlwps++;
692 } else
693 l2->l_prflag = 0;
694
695 l2->l_sigmask = l1->l_sigmask;
696 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
697 sigemptyset(&l2->l_sigpend.sp_set);
698
699 p2->p_nlwpid++;
700 if (p2->p_nlwpid == 0)
701 p2->p_nlwpid++;
702 l2->l_lid = p2->p_nlwpid;
703 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
704 p2->p_nlwps++;
705
706 if ((p2->p_flag & PK_SYSTEM) == 0) {
707 /* Inherit an affinity */
708 if (l1->l_flag & LW_AFFINITY) {
709 /*
710 * Note that we hold the state lock while inheriting
711 * the affinity to avoid race with sched_setaffinity().
712 */
713 lwp_lock(l1);
714 if (l1->l_flag & LW_AFFINITY) {
715 kcpuset_use(l1->l_affinity);
716 l2->l_affinity = l1->l_affinity;
717 l2->l_flag |= LW_AFFINITY;
718 }
719 lwp_unlock(l1);
720 }
721 lwp_lock(l2);
722 /* Inherit a processor-set */
723 l2->l_psid = l1->l_psid;
724 /* Look for a CPU to start */
725 l2->l_cpu = sched_takecpu(l2);
726 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
727 }
728 mutex_exit(p2->p_lock);
729
730 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
731
732 mutex_enter(proc_lock);
733 LIST_INSERT_HEAD(&alllwp, l2, l_list);
734 mutex_exit(proc_lock);
735
736 SYSCALL_TIME_LWP_INIT(l2);
737
738 if (p2->p_emul->e_lwp_fork)
739 (*p2->p_emul->e_lwp_fork)(l1, l2);
740
741 return (0);
742 }
743
744 /*
745 * Called by MD code when a new LWP begins execution. Must be called
746 * with the previous LWP locked (so at splsched), or if there is no
747 * previous LWP, at splsched.
748 */
749 void
750 lwp_startup(struct lwp *prev, struct lwp *new)
751 {
752
753 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
754
755 KASSERT(kpreempt_disabled());
756 if (prev != NULL) {
757 /*
758 * Normalize the count of the spin-mutexes, it was
759 * increased in mi_switch(). Unmark the state of
760 * context switch - it is finished for previous LWP.
761 */
762 curcpu()->ci_mtx_count++;
763 membar_exit();
764 prev->l_ctxswtch = 0;
765 }
766 KPREEMPT_DISABLE(new);
767 spl0();
768 pmap_activate(new);
769 LOCKDEBUG_BARRIER(NULL, 0);
770 KPREEMPT_ENABLE(new);
771 if ((new->l_pflag & LP_MPSAFE) == 0) {
772 KERNEL_LOCK(1, new);
773 }
774 }
775
776 /*
777 * Exit an LWP.
778 */
779 void
780 lwp_exit(struct lwp *l)
781 {
782 struct proc *p = l->l_proc;
783 struct lwp *l2;
784 bool current;
785
786 current = (l == curlwp);
787
788 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
789 KASSERT(p == curproc);
790
791 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
792
793 /*
794 * Verify that we hold no locks other than the kernel lock.
795 */
796 LOCKDEBUG_BARRIER(&kernel_lock, 0);
797
798 /*
799 * If we are the last live LWP in a process, we need to exit the
800 * entire process. We do so with an exit status of zero, because
801 * it's a "controlled" exit, and because that's what Solaris does.
802 *
803 * We are not quite a zombie yet, but for accounting purposes we
804 * must increment the count of zombies here.
805 *
806 * Note: the last LWP's specificdata will be deleted here.
807 */
808 mutex_enter(p->p_lock);
809 if (p->p_nlwps - p->p_nzlwps == 1) {
810 KASSERT(current == true);
811 /* XXXSMP kernel_lock not held */
812 exit1(l, 0);
813 /* NOTREACHED */
814 }
815 p->p_nzlwps++;
816 mutex_exit(p->p_lock);
817
818 if (p->p_emul->e_lwp_exit)
819 (*p->p_emul->e_lwp_exit)(l);
820
821 /* Drop filedesc reference. */
822 fd_free();
823
824 /* Delete the specificdata while it's still safe to sleep. */
825 lwp_finispecific(l);
826
827 /*
828 * Release our cached credentials.
829 */
830 kauth_cred_free(l->l_cred);
831 callout_destroy(&l->l_timeout_ch);
832
833 /*
834 * Remove the LWP from the global list.
835 */
836 mutex_enter(proc_lock);
837 LIST_REMOVE(l, l_list);
838 mutex_exit(proc_lock);
839
840 /*
841 * Get rid of all references to the LWP that others (e.g. procfs)
842 * may have, and mark the LWP as a zombie. If the LWP is detached,
843 * mark it waiting for collection in the proc structure. Note that
844 * before we can do that, we need to free any other dead, deatched
845 * LWP waiting to meet its maker.
846 */
847 mutex_enter(p->p_lock);
848 lwp_drainrefs(l);
849
850 if ((l->l_prflag & LPR_DETACHED) != 0) {
851 while ((l2 = p->p_zomblwp) != NULL) {
852 p->p_zomblwp = NULL;
853 lwp_free(l2, false, false);/* releases proc mutex */
854 mutex_enter(p->p_lock);
855 l->l_refcnt++;
856 lwp_drainrefs(l);
857 }
858 p->p_zomblwp = l;
859 }
860
861 /*
862 * If we find a pending signal for the process and we have been
863 * asked to check for signals, then we loose: arrange to have
864 * all other LWPs in the process check for signals.
865 */
866 if ((l->l_flag & LW_PENDSIG) != 0 &&
867 firstsig(&p->p_sigpend.sp_set) != 0) {
868 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
869 lwp_lock(l2);
870 l2->l_flag |= LW_PENDSIG;
871 lwp_unlock(l2);
872 }
873 }
874
875 lwp_lock(l);
876 l->l_stat = LSZOMB;
877 if (l->l_name != NULL)
878 strcpy(l->l_name, "(zombie)");
879 if (l->l_flag & LW_AFFINITY) {
880 l->l_flag &= ~LW_AFFINITY;
881 } else {
882 KASSERT(l->l_affinity == NULL);
883 }
884 lwp_unlock(l);
885 p->p_nrlwps--;
886 cv_broadcast(&p->p_lwpcv);
887 if (l->l_lwpctl != NULL)
888 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
889 mutex_exit(p->p_lock);
890
891 /* Safe without lock since LWP is in zombie state */
892 if (l->l_affinity) {
893 kcpuset_unuse(l->l_affinity, NULL);
894 l->l_affinity = NULL;
895 }
896
897 /*
898 * We can no longer block. At this point, lwp_free() may already
899 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
900 *
901 * Free MD LWP resources.
902 */
903 cpu_lwp_free(l, 0);
904
905 if (current) {
906 pmap_deactivate(l);
907
908 /*
909 * Release the kernel lock, and switch away into
910 * oblivion.
911 */
912 #ifdef notyet
913 /* XXXSMP hold in lwp_userret() */
914 KERNEL_UNLOCK_LAST(l);
915 #else
916 KERNEL_UNLOCK_ALL(l, NULL);
917 #endif
918 lwp_exit_switchaway(l);
919 }
920 }
921
922 /*
923 * Free a dead LWP's remaining resources.
924 *
925 * XXXLWP limits.
926 */
927 void
928 lwp_free(struct lwp *l, bool recycle, bool last)
929 {
930 struct proc *p = l->l_proc;
931 struct rusage *ru;
932 ksiginfoq_t kq;
933
934 KASSERT(l != curlwp);
935
936 /*
937 * If this was not the last LWP in the process, then adjust
938 * counters and unlock.
939 */
940 if (!last) {
941 /*
942 * Add the LWP's run time to the process' base value.
943 * This needs to co-incide with coming off p_lwps.
944 */
945 bintime_add(&p->p_rtime, &l->l_rtime);
946 p->p_pctcpu += l->l_pctcpu;
947 ru = &p->p_stats->p_ru;
948 ruadd(ru, &l->l_ru);
949 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
950 ru->ru_nivcsw += l->l_nivcsw;
951 LIST_REMOVE(l, l_sibling);
952 p->p_nlwps--;
953 p->p_nzlwps--;
954 if ((l->l_prflag & LPR_DETACHED) != 0)
955 p->p_ndlwps--;
956
957 /*
958 * Have any LWPs sleeping in lwp_wait() recheck for
959 * deadlock.
960 */
961 cv_broadcast(&p->p_lwpcv);
962 mutex_exit(p->p_lock);
963 }
964
965 #ifdef MULTIPROCESSOR
966 /*
967 * In the unlikely event that the LWP is still on the CPU,
968 * then spin until it has switched away. We need to release
969 * all locks to avoid deadlock against interrupt handlers on
970 * the target CPU.
971 */
972 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
973 int count;
974 (void)count; /* XXXgcc */
975 KERNEL_UNLOCK_ALL(curlwp, &count);
976 while ((l->l_pflag & LP_RUNNING) != 0 ||
977 l->l_cpu->ci_curlwp == l)
978 SPINLOCK_BACKOFF_HOOK;
979 KERNEL_LOCK(count, curlwp);
980 }
981 #endif
982
983 /*
984 * Destroy the LWP's remaining signal information.
985 */
986 ksiginfo_queue_init(&kq);
987 sigclear(&l->l_sigpend, NULL, &kq);
988 ksiginfo_queue_drain(&kq);
989 cv_destroy(&l->l_sigcv);
990
991 /*
992 * Free the LWP's turnstile and the LWP structure itself unless the
993 * caller wants to recycle them. Also, free the scheduler specific
994 * data.
995 *
996 * We can't return turnstile0 to the pool (it didn't come from it),
997 * so if it comes up just drop it quietly and move on.
998 *
999 * We don't recycle the VM resources at this time.
1000 */
1001 if (l->l_lwpctl != NULL)
1002 lwp_ctl_free(l);
1003
1004 if (!recycle && l->l_ts != &turnstile0)
1005 pool_cache_put(turnstile_cache, l->l_ts);
1006 if (l->l_name != NULL)
1007 kmem_free(l->l_name, MAXCOMLEN);
1008
1009 cpu_lwp_free2(l);
1010 uvm_lwp_exit(l);
1011
1012 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1013 KASSERT(l->l_inheritedprio == -1);
1014 kdtrace_thread_dtor(NULL, l);
1015 if (!recycle)
1016 pool_cache_put(lwp_cache, l);
1017 }
1018
1019 /*
1020 * Migrate the LWP to the another CPU. Unlocks the LWP.
1021 */
1022 void
1023 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1024 {
1025 struct schedstate_percpu *tspc;
1026 int lstat = l->l_stat;
1027
1028 KASSERT(lwp_locked(l, NULL));
1029 KASSERT(tci != NULL);
1030
1031 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1032 if ((l->l_pflag & LP_RUNNING) != 0) {
1033 lstat = LSONPROC;
1034 }
1035
1036 /*
1037 * The destination CPU could be changed while previous migration
1038 * was not finished.
1039 */
1040 if (l->l_target_cpu != NULL) {
1041 l->l_target_cpu = tci;
1042 lwp_unlock(l);
1043 return;
1044 }
1045
1046 /* Nothing to do if trying to migrate to the same CPU */
1047 if (l->l_cpu == tci) {
1048 lwp_unlock(l);
1049 return;
1050 }
1051
1052 KASSERT(l->l_target_cpu == NULL);
1053 tspc = &tci->ci_schedstate;
1054 switch (lstat) {
1055 case LSRUN:
1056 l->l_target_cpu = tci;
1057 break;
1058 case LSIDL:
1059 l->l_cpu = tci;
1060 lwp_unlock_to(l, tspc->spc_mutex);
1061 return;
1062 case LSSLEEP:
1063 l->l_cpu = tci;
1064 break;
1065 case LSSTOP:
1066 case LSSUSPENDED:
1067 l->l_cpu = tci;
1068 if (l->l_wchan == NULL) {
1069 lwp_unlock_to(l, tspc->spc_lwplock);
1070 return;
1071 }
1072 break;
1073 case LSONPROC:
1074 l->l_target_cpu = tci;
1075 spc_lock(l->l_cpu);
1076 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1077 spc_unlock(l->l_cpu);
1078 break;
1079 }
1080 lwp_unlock(l);
1081 }
1082
1083 /*
1084 * Find the LWP in the process. Arguments may be zero, in such case,
1085 * the calling process and first LWP in the list will be used.
1086 * On success - returns proc locked.
1087 */
1088 struct lwp *
1089 lwp_find2(pid_t pid, lwpid_t lid)
1090 {
1091 proc_t *p;
1092 lwp_t *l;
1093
1094 /* Find the process */
1095 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1096 if (p == NULL)
1097 return NULL;
1098 mutex_enter(p->p_lock);
1099 if (pid != 0) {
1100 /* Case of p_find */
1101 mutex_exit(proc_lock);
1102 }
1103
1104 /* Find the thread */
1105 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1106 if (l == NULL) {
1107 mutex_exit(p->p_lock);
1108 }
1109
1110 return l;
1111 }
1112
1113 /*
1114 * Look up a live LWP within the speicifed process, and return it locked.
1115 *
1116 * Must be called with p->p_lock held.
1117 */
1118 struct lwp *
1119 lwp_find(struct proc *p, int id)
1120 {
1121 struct lwp *l;
1122
1123 KASSERT(mutex_owned(p->p_lock));
1124
1125 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1126 if (l->l_lid == id)
1127 break;
1128 }
1129
1130 /*
1131 * No need to lock - all of these conditions will
1132 * be visible with the process level mutex held.
1133 */
1134 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1135 l = NULL;
1136
1137 return l;
1138 }
1139
1140 /*
1141 * Update an LWP's cached credentials to mirror the process' master copy.
1142 *
1143 * This happens early in the syscall path, on user trap, and on LWP
1144 * creation. A long-running LWP can also voluntarily choose to update
1145 * it's credentials by calling this routine. This may be called from
1146 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1147 */
1148 void
1149 lwp_update_creds(struct lwp *l)
1150 {
1151 kauth_cred_t oc;
1152 struct proc *p;
1153
1154 p = l->l_proc;
1155 oc = l->l_cred;
1156
1157 mutex_enter(p->p_lock);
1158 kauth_cred_hold(p->p_cred);
1159 l->l_cred = p->p_cred;
1160 l->l_prflag &= ~LPR_CRMOD;
1161 mutex_exit(p->p_lock);
1162 if (oc != NULL)
1163 kauth_cred_free(oc);
1164 }
1165
1166 /*
1167 * Verify that an LWP is locked, and optionally verify that the lock matches
1168 * one we specify.
1169 */
1170 int
1171 lwp_locked(struct lwp *l, kmutex_t *mtx)
1172 {
1173 kmutex_t *cur = l->l_mutex;
1174
1175 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1176 }
1177
1178 /*
1179 * Lock an LWP.
1180 */
1181 kmutex_t *
1182 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1183 {
1184
1185 /*
1186 * XXXgcc ignoring kmutex_t * volatile on i386
1187 *
1188 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1189 */
1190 #if 1
1191 while (l->l_mutex != old) {
1192 #else
1193 for (;;) {
1194 #endif
1195 mutex_spin_exit(old);
1196 old = l->l_mutex;
1197 mutex_spin_enter(old);
1198
1199 /*
1200 * mutex_enter() will have posted a read barrier. Re-test
1201 * l->l_mutex. If it has changed, we need to try again.
1202 */
1203 #if 1
1204 }
1205 #else
1206 } while (__predict_false(l->l_mutex != old));
1207 #endif
1208
1209 return old;
1210 }
1211
1212 /*
1213 * Lend a new mutex to an LWP. The old mutex must be held.
1214 */
1215 void
1216 lwp_setlock(struct lwp *l, kmutex_t *new)
1217 {
1218
1219 KASSERT(mutex_owned(l->l_mutex));
1220
1221 membar_exit();
1222 l->l_mutex = new;
1223 }
1224
1225 /*
1226 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1227 * must be held.
1228 */
1229 void
1230 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1231 {
1232 kmutex_t *old;
1233
1234 KASSERT(mutex_owned(l->l_mutex));
1235
1236 old = l->l_mutex;
1237 membar_exit();
1238 l->l_mutex = new;
1239 mutex_spin_exit(old);
1240 }
1241
1242 /*
1243 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1244 * locked.
1245 */
1246 void
1247 lwp_relock(struct lwp *l, kmutex_t *new)
1248 {
1249 kmutex_t *old;
1250
1251 KASSERT(mutex_owned(l->l_mutex));
1252
1253 old = l->l_mutex;
1254 if (old != new) {
1255 mutex_spin_enter(new);
1256 l->l_mutex = new;
1257 mutex_spin_exit(old);
1258 }
1259 }
1260
1261 int
1262 lwp_trylock(struct lwp *l)
1263 {
1264 kmutex_t *old;
1265
1266 for (;;) {
1267 if (!mutex_tryenter(old = l->l_mutex))
1268 return 0;
1269 if (__predict_true(l->l_mutex == old))
1270 return 1;
1271 mutex_spin_exit(old);
1272 }
1273 }
1274
1275 void
1276 lwp_unsleep(lwp_t *l, bool cleanup)
1277 {
1278
1279 KASSERT(mutex_owned(l->l_mutex));
1280 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1281 }
1282
1283
1284 /*
1285 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1286 * set.
1287 */
1288 void
1289 lwp_userret(struct lwp *l)
1290 {
1291 struct proc *p;
1292 void (*hook)(void);
1293 int sig;
1294
1295 KASSERT(l == curlwp);
1296 KASSERT(l->l_stat == LSONPROC);
1297 p = l->l_proc;
1298
1299 #ifndef __HAVE_FAST_SOFTINTS
1300 /* Run pending soft interrupts. */
1301 if (l->l_cpu->ci_data.cpu_softints != 0)
1302 softint_overlay();
1303 #endif
1304
1305 #ifdef KERN_SA
1306 /* Generate UNBLOCKED upcall if needed */
1307 if (l->l_flag & LW_SA_BLOCKING) {
1308 sa_unblock_userret(l);
1309 /* NOTREACHED */
1310 }
1311 #endif
1312
1313 /*
1314 * It should be safe to do this read unlocked on a multiprocessor
1315 * system..
1316 *
1317 * LW_SA_UPCALL will be handled after the while() loop, so don't
1318 * consider it now.
1319 */
1320 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1321 /*
1322 * Process pending signals first, unless the process
1323 * is dumping core or exiting, where we will instead
1324 * enter the LW_WSUSPEND case below.
1325 */
1326 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1327 LW_PENDSIG) {
1328 mutex_enter(p->p_lock);
1329 while ((sig = issignal(l)) != 0)
1330 postsig(sig);
1331 mutex_exit(p->p_lock);
1332 }
1333
1334 /*
1335 * Core-dump or suspend pending.
1336 *
1337 * In case of core dump, suspend ourselves, so that the
1338 * kernel stack and therefore the userland registers saved
1339 * in the trapframe are around for coredump() to write them
1340 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1341 * will write the core file out once all other LWPs are
1342 * suspended.
1343 */
1344 if ((l->l_flag & LW_WSUSPEND) != 0) {
1345 mutex_enter(p->p_lock);
1346 p->p_nrlwps--;
1347 cv_broadcast(&p->p_lwpcv);
1348 lwp_lock(l);
1349 l->l_stat = LSSUSPENDED;
1350 lwp_unlock(l);
1351 mutex_exit(p->p_lock);
1352 lwp_lock(l);
1353 mi_switch(l);
1354 }
1355
1356 /* Process is exiting. */
1357 if ((l->l_flag & LW_WEXIT) != 0) {
1358 lwp_exit(l);
1359 KASSERT(0);
1360 /* NOTREACHED */
1361 }
1362
1363 /* Call userret hook; used by Linux emulation. */
1364 if ((l->l_flag & LW_WUSERRET) != 0) {
1365 lwp_lock(l);
1366 l->l_flag &= ~LW_WUSERRET;
1367 lwp_unlock(l);
1368 hook = p->p_userret;
1369 p->p_userret = NULL;
1370 (*hook)();
1371 }
1372 }
1373
1374 #ifdef KERN_SA
1375 /*
1376 * Timer events are handled specially. We only try once to deliver
1377 * pending timer upcalls; if if fails, we can try again on the next
1378 * loop around. If we need to re-enter lwp_userret(), MD code will
1379 * bounce us back here through the trap path after we return.
1380 */
1381 if (p->p_timerpend)
1382 timerupcall(l);
1383 if (l->l_flag & LW_SA_UPCALL)
1384 sa_upcall_userret(l);
1385 #endif /* KERN_SA */
1386 }
1387
1388 /*
1389 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1390 */
1391 void
1392 lwp_need_userret(struct lwp *l)
1393 {
1394 KASSERT(lwp_locked(l, NULL));
1395
1396 /*
1397 * Since the tests in lwp_userret() are done unlocked, make sure
1398 * that the condition will be seen before forcing the LWP to enter
1399 * kernel mode.
1400 */
1401 membar_producer();
1402 cpu_signotify(l);
1403 }
1404
1405 /*
1406 * Add one reference to an LWP. This will prevent the LWP from
1407 * exiting, thus keep the lwp structure and PCB around to inspect.
1408 */
1409 void
1410 lwp_addref(struct lwp *l)
1411 {
1412
1413 KASSERT(mutex_owned(l->l_proc->p_lock));
1414 KASSERT(l->l_stat != LSZOMB);
1415 KASSERT(l->l_refcnt != 0);
1416
1417 l->l_refcnt++;
1418 }
1419
1420 /*
1421 * Remove one reference to an LWP. If this is the last reference,
1422 * then we must finalize the LWP's death.
1423 */
1424 void
1425 lwp_delref(struct lwp *l)
1426 {
1427 struct proc *p = l->l_proc;
1428
1429 mutex_enter(p->p_lock);
1430 lwp_delref2(l);
1431 mutex_exit(p->p_lock);
1432 }
1433
1434 /*
1435 * Remove one reference to an LWP. If this is the last reference,
1436 * then we must finalize the LWP's death. The proc mutex is held
1437 * on entry.
1438 */
1439 void
1440 lwp_delref2(struct lwp *l)
1441 {
1442 struct proc *p = l->l_proc;
1443
1444 KASSERT(mutex_owned(p->p_lock));
1445 KASSERT(l->l_stat != LSZOMB);
1446 KASSERT(l->l_refcnt > 0);
1447 if (--l->l_refcnt == 0)
1448 cv_broadcast(&p->p_lwpcv);
1449 }
1450
1451 /*
1452 * Drain all references to the current LWP.
1453 */
1454 void
1455 lwp_drainrefs(struct lwp *l)
1456 {
1457 struct proc *p = l->l_proc;
1458
1459 KASSERT(mutex_owned(p->p_lock));
1460 KASSERT(l->l_refcnt != 0);
1461
1462 l->l_refcnt--;
1463 while (l->l_refcnt != 0)
1464 cv_wait(&p->p_lwpcv, p->p_lock);
1465 }
1466
1467 /*
1468 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1469 * be held.
1470 */
1471 bool
1472 lwp_alive(lwp_t *l)
1473 {
1474
1475 KASSERT(mutex_owned(l->l_proc->p_lock));
1476
1477 switch (l->l_stat) {
1478 case LSSLEEP:
1479 case LSRUN:
1480 case LSONPROC:
1481 case LSSTOP:
1482 case LSSUSPENDED:
1483 return true;
1484 default:
1485 return false;
1486 }
1487 }
1488
1489 /*
1490 * Return first live LWP in the process.
1491 */
1492 lwp_t *
1493 lwp_find_first(proc_t *p)
1494 {
1495 lwp_t *l;
1496
1497 KASSERT(mutex_owned(p->p_lock));
1498
1499 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1500 if (lwp_alive(l)) {
1501 return l;
1502 }
1503 }
1504
1505 return NULL;
1506 }
1507
1508 /*
1509 * Allocate a new lwpctl structure for a user LWP.
1510 */
1511 int
1512 lwp_ctl_alloc(vaddr_t *uaddr)
1513 {
1514 lcproc_t *lp;
1515 u_int bit, i, offset;
1516 struct uvm_object *uao;
1517 int error;
1518 lcpage_t *lcp;
1519 proc_t *p;
1520 lwp_t *l;
1521
1522 l = curlwp;
1523 p = l->l_proc;
1524
1525 if (l->l_lcpage != NULL) {
1526 lcp = l->l_lcpage;
1527 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1528 return 0;
1529 }
1530
1531 /* First time around, allocate header structure for the process. */
1532 if ((lp = p->p_lwpctl) == NULL) {
1533 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1534 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1535 lp->lp_uao = NULL;
1536 TAILQ_INIT(&lp->lp_pages);
1537 mutex_enter(p->p_lock);
1538 if (p->p_lwpctl == NULL) {
1539 p->p_lwpctl = lp;
1540 mutex_exit(p->p_lock);
1541 } else {
1542 mutex_exit(p->p_lock);
1543 mutex_destroy(&lp->lp_lock);
1544 kmem_free(lp, sizeof(*lp));
1545 lp = p->p_lwpctl;
1546 }
1547 }
1548
1549 /*
1550 * Set up an anonymous memory region to hold the shared pages.
1551 * Map them into the process' address space. The user vmspace
1552 * gets the first reference on the UAO.
1553 */
1554 mutex_enter(&lp->lp_lock);
1555 if (lp->lp_uao == NULL) {
1556 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1557 lp->lp_cur = 0;
1558 lp->lp_max = LWPCTL_UAREA_SZ;
1559 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1560 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1561 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1562 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1563 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1564 if (error != 0) {
1565 uao_detach(lp->lp_uao);
1566 lp->lp_uao = NULL;
1567 mutex_exit(&lp->lp_lock);
1568 return error;
1569 }
1570 }
1571
1572 /* Get a free block and allocate for this LWP. */
1573 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1574 if (lcp->lcp_nfree != 0)
1575 break;
1576 }
1577 if (lcp == NULL) {
1578 /* Nothing available - try to set up a free page. */
1579 if (lp->lp_cur == lp->lp_max) {
1580 mutex_exit(&lp->lp_lock);
1581 return ENOMEM;
1582 }
1583 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1584 if (lcp == NULL) {
1585 mutex_exit(&lp->lp_lock);
1586 return ENOMEM;
1587 }
1588 /*
1589 * Wire the next page down in kernel space. Since this
1590 * is a new mapping, we must add a reference.
1591 */
1592 uao = lp->lp_uao;
1593 (*uao->pgops->pgo_reference)(uao);
1594 lcp->lcp_kaddr = vm_map_min(kernel_map);
1595 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1596 uao, lp->lp_cur, PAGE_SIZE,
1597 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1598 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1599 if (error != 0) {
1600 mutex_exit(&lp->lp_lock);
1601 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1602 (*uao->pgops->pgo_detach)(uao);
1603 return error;
1604 }
1605 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1606 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1607 if (error != 0) {
1608 mutex_exit(&lp->lp_lock);
1609 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1610 lcp->lcp_kaddr + PAGE_SIZE);
1611 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1612 return error;
1613 }
1614 /* Prepare the page descriptor and link into the list. */
1615 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1616 lp->lp_cur += PAGE_SIZE;
1617 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1618 lcp->lcp_rotor = 0;
1619 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1620 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1621 }
1622 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1623 if (++i >= LWPCTL_BITMAP_ENTRIES)
1624 i = 0;
1625 }
1626 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1627 lcp->lcp_bitmap[i] ^= (1 << bit);
1628 lcp->lcp_rotor = i;
1629 lcp->lcp_nfree--;
1630 l->l_lcpage = lcp;
1631 offset = (i << 5) + bit;
1632 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1633 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1634 mutex_exit(&lp->lp_lock);
1635
1636 KPREEMPT_DISABLE(l);
1637 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1638 KPREEMPT_ENABLE(l);
1639
1640 return 0;
1641 }
1642
1643 /*
1644 * Free an lwpctl structure back to the per-process list.
1645 */
1646 void
1647 lwp_ctl_free(lwp_t *l)
1648 {
1649 lcproc_t *lp;
1650 lcpage_t *lcp;
1651 u_int map, offset;
1652
1653 lp = l->l_proc->p_lwpctl;
1654 KASSERT(lp != NULL);
1655
1656 lcp = l->l_lcpage;
1657 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1658 KASSERT(offset < LWPCTL_PER_PAGE);
1659
1660 mutex_enter(&lp->lp_lock);
1661 lcp->lcp_nfree++;
1662 map = offset >> 5;
1663 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1664 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1665 lcp->lcp_rotor = map;
1666 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1667 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1668 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1669 }
1670 mutex_exit(&lp->lp_lock);
1671 }
1672
1673 /*
1674 * Process is exiting; tear down lwpctl state. This can only be safely
1675 * called by the last LWP in the process.
1676 */
1677 void
1678 lwp_ctl_exit(void)
1679 {
1680 lcpage_t *lcp, *next;
1681 lcproc_t *lp;
1682 proc_t *p;
1683 lwp_t *l;
1684
1685 l = curlwp;
1686 l->l_lwpctl = NULL;
1687 l->l_lcpage = NULL;
1688 p = l->l_proc;
1689 lp = p->p_lwpctl;
1690
1691 KASSERT(lp != NULL);
1692 KASSERT(p->p_nlwps == 1);
1693
1694 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1695 next = TAILQ_NEXT(lcp, lcp_chain);
1696 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1697 lcp->lcp_kaddr + PAGE_SIZE);
1698 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1699 }
1700
1701 if (lp->lp_uao != NULL) {
1702 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1703 lp->lp_uva + LWPCTL_UAREA_SZ);
1704 }
1705
1706 mutex_destroy(&lp->lp_lock);
1707 kmem_free(lp, sizeof(*lp));
1708 p->p_lwpctl = NULL;
1709 }
1710
1711 /*
1712 * Return the current LWP's "preemption counter". Used to detect
1713 * preemption across operations that can tolerate preemption without
1714 * crashing, but which may generate incorrect results if preempted.
1715 */
1716 uint64_t
1717 lwp_pctr(void)
1718 {
1719
1720 return curlwp->l_ncsw;
1721 }
1722
1723 #if defined(DDB)
1724 void
1725 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1726 {
1727 lwp_t *l;
1728
1729 LIST_FOREACH(l, &alllwp, l_list) {
1730 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1731
1732 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1733 continue;
1734 }
1735 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1736 (void *)addr, (void *)stack,
1737 (size_t)(addr - stack), l);
1738 }
1739 }
1740 #endif /* defined(DDB) */
1741