kern_lwp.c revision 1.143 1 /* $NetBSD: kern_lwp.c,v 1.143 2010/04/09 11:47:17 njoly Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock and matches lwp::l_cpu.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock and matches lwp::l_cpu.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * (But not always for kernel threads. There are some special cases
200 * as mentioned above. See kern_softint.c.)
201 *
202 * Note that an LWP is considered running or likely to run soon if in
203 * one of the following states. This affects the value of p_nrlwps:
204 *
205 * LSRUN, LSONPROC, LSSLEEP
206 *
207 * p_lock does not need to be held when transitioning among these
208 * three states, hence p_lock is rarely taken for state transitions.
209 */
210
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.143 2010/04/09 11:47:17 njoly Exp $");
213
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_sa.h"
217 #include "opt_dtrace.h"
218
219 #define _LWP_API_PRIVATE
220
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/sa.h>
227 #include <sys/savar.h>
228 #include <sys/syscallargs.h>
229 #include <sys/syscall_stats.h>
230 #include <sys/kauth.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241
242 #include <uvm/uvm_extern.h>
243 #include <uvm/uvm_object.h>
244
245 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
246
247 struct pool lwp_uc_pool;
248
249 static pool_cache_t lwp_cache;
250 static specificdata_domain_t lwp_specificdata_domain;
251
252 /* DTrace proc provider probes */
253 SDT_PROBE_DEFINE(proc,,,lwp_create,
254 "struct lwp *", NULL,
255 NULL, NULL, NULL, NULL,
256 NULL, NULL, NULL, NULL);
257 SDT_PROBE_DEFINE(proc,,,lwp_start,
258 "struct lwp *", NULL,
259 NULL, NULL, NULL, NULL,
260 NULL, NULL, NULL, NULL);
261 SDT_PROBE_DEFINE(proc,,,lwp_exit,
262 "struct lwp *", NULL,
263 NULL, NULL, NULL, NULL,
264 NULL, NULL, NULL, NULL);
265
266 void
267 lwpinit(void)
268 {
269
270 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
271 &pool_allocator_nointr, IPL_NONE);
272 lwp_specificdata_domain = specificdata_domain_create();
273 KASSERT(lwp_specificdata_domain != NULL);
274 lwp_sys_init();
275 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
276 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
277 }
278
279 /*
280 * Set an suspended.
281 *
282 * Must be called with p_lock held, and the LWP locked. Will unlock the
283 * LWP before return.
284 */
285 int
286 lwp_suspend(struct lwp *curl, struct lwp *t)
287 {
288 int error;
289
290 KASSERT(mutex_owned(t->l_proc->p_lock));
291 KASSERT(lwp_locked(t, NULL));
292
293 KASSERT(curl != t || curl->l_stat == LSONPROC);
294
295 /*
296 * If the current LWP has been told to exit, we must not suspend anyone
297 * else or deadlock could occur. We won't return to userspace.
298 */
299 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
300 lwp_unlock(t);
301 return (EDEADLK);
302 }
303
304 error = 0;
305
306 switch (t->l_stat) {
307 case LSRUN:
308 case LSONPROC:
309 t->l_flag |= LW_WSUSPEND;
310 lwp_need_userret(t);
311 lwp_unlock(t);
312 break;
313
314 case LSSLEEP:
315 t->l_flag |= LW_WSUSPEND;
316
317 /*
318 * Kick the LWP and try to get it to the kernel boundary
319 * so that it will release any locks that it holds.
320 * setrunnable() will release the lock.
321 */
322 if ((t->l_flag & LW_SINTR) != 0)
323 setrunnable(t);
324 else
325 lwp_unlock(t);
326 break;
327
328 case LSSUSPENDED:
329 lwp_unlock(t);
330 break;
331
332 case LSSTOP:
333 t->l_flag |= LW_WSUSPEND;
334 setrunnable(t);
335 break;
336
337 case LSIDL:
338 case LSZOMB:
339 error = EINTR; /* It's what Solaris does..... */
340 lwp_unlock(t);
341 break;
342 }
343
344 return (error);
345 }
346
347 /*
348 * Restart a suspended LWP.
349 *
350 * Must be called with p_lock held, and the LWP locked. Will unlock the
351 * LWP before return.
352 */
353 void
354 lwp_continue(struct lwp *l)
355 {
356
357 KASSERT(mutex_owned(l->l_proc->p_lock));
358 KASSERT(lwp_locked(l, NULL));
359
360 /* If rebooting or not suspended, then just bail out. */
361 if ((l->l_flag & LW_WREBOOT) != 0) {
362 lwp_unlock(l);
363 return;
364 }
365
366 l->l_flag &= ~LW_WSUSPEND;
367
368 if (l->l_stat != LSSUSPENDED) {
369 lwp_unlock(l);
370 return;
371 }
372
373 /* setrunnable() will release the lock. */
374 setrunnable(l);
375 }
376
377 /*
378 * Restart a stopped LWP.
379 *
380 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
381 * LWP before return.
382 */
383 void
384 lwp_unstop(struct lwp *l)
385 {
386 struct proc *p = l->l_proc;
387
388 KASSERT(mutex_owned(proc_lock));
389 KASSERT(mutex_owned(p->p_lock));
390
391 lwp_lock(l);
392
393 /* If not stopped, then just bail out. */
394 if (l->l_stat != LSSTOP) {
395 lwp_unlock(l);
396 return;
397 }
398
399 p->p_stat = SACTIVE;
400 p->p_sflag &= ~PS_STOPPING;
401
402 if (!p->p_waited)
403 p->p_pptr->p_nstopchild--;
404
405 if (l->l_wchan == NULL) {
406 /* setrunnable() will release the lock. */
407 setrunnable(l);
408 } else {
409 l->l_stat = LSSLEEP;
410 p->p_nrlwps++;
411 lwp_unlock(l);
412 }
413 }
414
415 /*
416 * Wait for an LWP within the current process to exit. If 'lid' is
417 * non-zero, we are waiting for a specific LWP.
418 *
419 * Must be called with p->p_lock held.
420 */
421 int
422 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
423 {
424 struct proc *p = l->l_proc;
425 struct lwp *l2;
426 int nfound, error;
427 lwpid_t curlid;
428 bool exiting;
429
430 KASSERT(mutex_owned(p->p_lock));
431
432 p->p_nlwpwait++;
433 l->l_waitingfor = lid;
434 curlid = l->l_lid;
435 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
436
437 for (;;) {
438 /*
439 * Avoid a race between exit1() and sigexit(): if the
440 * process is dumping core, then we need to bail out: call
441 * into lwp_userret() where we will be suspended until the
442 * deed is done.
443 */
444 if ((p->p_sflag & PS_WCORE) != 0) {
445 mutex_exit(p->p_lock);
446 lwp_userret(l);
447 #ifdef DIAGNOSTIC
448 panic("lwp_wait1");
449 #endif
450 /* NOTREACHED */
451 }
452
453 /*
454 * First off, drain any detached LWP that is waiting to be
455 * reaped.
456 */
457 while ((l2 = p->p_zomblwp) != NULL) {
458 p->p_zomblwp = NULL;
459 lwp_free(l2, false, false);/* releases proc mutex */
460 mutex_enter(p->p_lock);
461 }
462
463 /*
464 * Now look for an LWP to collect. If the whole process is
465 * exiting, count detached LWPs as eligible to be collected,
466 * but don't drain them here.
467 */
468 nfound = 0;
469 error = 0;
470 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
471 /*
472 * If a specific wait and the target is waiting on
473 * us, then avoid deadlock. This also traps LWPs
474 * that try to wait on themselves.
475 *
476 * Note that this does not handle more complicated
477 * cycles, like: t1 -> t2 -> t3 -> t1. The process
478 * can still be killed so it is not a major problem.
479 */
480 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
481 error = EDEADLK;
482 break;
483 }
484 if (l2 == l)
485 continue;
486 if ((l2->l_prflag & LPR_DETACHED) != 0) {
487 nfound += exiting;
488 continue;
489 }
490 if (lid != 0) {
491 if (l2->l_lid != lid)
492 continue;
493 /*
494 * Mark this LWP as the first waiter, if there
495 * is no other.
496 */
497 if (l2->l_waiter == 0)
498 l2->l_waiter = curlid;
499 } else if (l2->l_waiter != 0) {
500 /*
501 * It already has a waiter - so don't
502 * collect it. If the waiter doesn't
503 * grab it we'll get another chance
504 * later.
505 */
506 nfound++;
507 continue;
508 }
509 nfound++;
510
511 /* No need to lock the LWP in order to see LSZOMB. */
512 if (l2->l_stat != LSZOMB)
513 continue;
514
515 /*
516 * We're no longer waiting. Reset the "first waiter"
517 * pointer on the target, in case it was us.
518 */
519 l->l_waitingfor = 0;
520 l2->l_waiter = 0;
521 p->p_nlwpwait--;
522 if (departed)
523 *departed = l2->l_lid;
524 sched_lwp_collect(l2);
525
526 /* lwp_free() releases the proc lock. */
527 lwp_free(l2, false, false);
528 mutex_enter(p->p_lock);
529 return 0;
530 }
531
532 if (error != 0)
533 break;
534 if (nfound == 0) {
535 error = ESRCH;
536 break;
537 }
538
539 /*
540 * The kernel is careful to ensure that it can not deadlock
541 * when exiting - just keep waiting.
542 */
543 if (exiting) {
544 KASSERT(p->p_nlwps > 1);
545 cv_wait(&p->p_lwpcv, p->p_lock);
546 continue;
547 }
548
549 /*
550 * If all other LWPs are waiting for exits or suspends
551 * and the supply of zombies and potential zombies is
552 * exhausted, then we are about to deadlock.
553 *
554 * If the process is exiting (and this LWP is not the one
555 * that is coordinating the exit) then bail out now.
556 */
557 if ((p->p_sflag & PS_WEXIT) != 0 ||
558 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
559 error = EDEADLK;
560 break;
561 }
562
563 /*
564 * Sit around and wait for something to happen. We'll be
565 * awoken if any of the conditions examined change: if an
566 * LWP exits, is collected, or is detached.
567 */
568 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
569 break;
570 }
571
572 /*
573 * We didn't find any LWPs to collect, we may have received a
574 * signal, or some other condition has caused us to bail out.
575 *
576 * If waiting on a specific LWP, clear the waiters marker: some
577 * other LWP may want it. Then, kick all the remaining waiters
578 * so that they can re-check for zombies and for deadlock.
579 */
580 if (lid != 0) {
581 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
582 if (l2->l_lid == lid) {
583 if (l2->l_waiter == curlid)
584 l2->l_waiter = 0;
585 break;
586 }
587 }
588 }
589 p->p_nlwpwait--;
590 l->l_waitingfor = 0;
591 cv_broadcast(&p->p_lwpcv);
592
593 return error;
594 }
595
596 /*
597 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
598 * The new LWP is created in state LSIDL and must be set running,
599 * suspended, or stopped by the caller.
600 */
601 int
602 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
603 void *stack, size_t stacksize, void (*func)(void *), void *arg,
604 lwp_t **rnewlwpp, int sclass)
605 {
606 struct lwp *l2, *isfree;
607 turnstile_t *ts;
608
609 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
610
611 /*
612 * First off, reap any detached LWP waiting to be collected.
613 * We can re-use its LWP structure and turnstile.
614 */
615 isfree = NULL;
616 if (p2->p_zomblwp != NULL) {
617 mutex_enter(p2->p_lock);
618 if ((isfree = p2->p_zomblwp) != NULL) {
619 p2->p_zomblwp = NULL;
620 lwp_free(isfree, true, false);/* releases proc mutex */
621 } else
622 mutex_exit(p2->p_lock);
623 }
624 if (isfree == NULL) {
625 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
626 memset(l2, 0, sizeof(*l2));
627 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
628 SLIST_INIT(&l2->l_pi_lenders);
629 } else {
630 l2 = isfree;
631 ts = l2->l_ts;
632 KASSERT(l2->l_inheritedprio == -1);
633 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
634 memset(l2, 0, sizeof(*l2));
635 l2->l_ts = ts;
636 }
637
638 l2->l_stat = LSIDL;
639 l2->l_proc = p2;
640 l2->l_refcnt = 1;
641 l2->l_class = sclass;
642
643 /*
644 * If vfork(), we want the LWP to run fast and on the same CPU
645 * as its parent, so that it can reuse the VM context and cache
646 * footprint on the local CPU.
647 */
648 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
649 l2->l_kpribase = PRI_KERNEL;
650 l2->l_priority = l1->l_priority;
651 l2->l_inheritedprio = -1;
652 l2->l_flag = 0;
653 l2->l_pflag = LP_MPSAFE;
654 TAILQ_INIT(&l2->l_ld_locks);
655
656 /*
657 * If not the first LWP in the process, grab a reference to the
658 * descriptor table.
659 */
660 l2->l_fd = p2->p_fd;
661 if (p2->p_nlwps != 0) {
662 KASSERT(l1->l_proc == p2);
663 fd_hold(l2);
664 } else {
665 KASSERT(l1->l_proc != p2);
666 }
667
668 if (p2->p_flag & PK_SYSTEM) {
669 /* Mark it as a system LWP. */
670 l2->l_flag |= LW_SYSTEM;
671 }
672
673 kpreempt_disable();
674 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
675 l2->l_cpu = l1->l_cpu;
676 kpreempt_enable();
677
678 kdtrace_thread_ctor(NULL, l2);
679 lwp_initspecific(l2);
680 sched_lwp_fork(l1, l2);
681 lwp_update_creds(l2);
682 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
683 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
684 cv_init(&l2->l_sigcv, "sigwait");
685 l2->l_syncobj = &sched_syncobj;
686
687 if (rnewlwpp != NULL)
688 *rnewlwpp = l2;
689
690 uvm_lwp_setuarea(l2, uaddr);
691 uvm_lwp_fork(l1, l2, stack, stacksize, func,
692 (arg != NULL) ? arg : l2);
693
694 mutex_enter(p2->p_lock);
695
696 if ((flags & LWP_DETACHED) != 0) {
697 l2->l_prflag = LPR_DETACHED;
698 p2->p_ndlwps++;
699 } else
700 l2->l_prflag = 0;
701
702 l2->l_sigmask = l1->l_sigmask;
703 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
704 sigemptyset(&l2->l_sigpend.sp_set);
705
706 p2->p_nlwpid++;
707 if (p2->p_nlwpid == 0)
708 p2->p_nlwpid++;
709 l2->l_lid = p2->p_nlwpid;
710 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
711 p2->p_nlwps++;
712
713 if ((p2->p_flag & PK_SYSTEM) == 0) {
714 /* Inherit an affinity */
715 if (l1->l_flag & LW_AFFINITY) {
716 /*
717 * Note that we hold the state lock while inheriting
718 * the affinity to avoid race with sched_setaffinity().
719 */
720 lwp_lock(l1);
721 if (l1->l_flag & LW_AFFINITY) {
722 kcpuset_use(l1->l_affinity);
723 l2->l_affinity = l1->l_affinity;
724 l2->l_flag |= LW_AFFINITY;
725 }
726 lwp_unlock(l1);
727 }
728 lwp_lock(l2);
729 /* Inherit a processor-set */
730 l2->l_psid = l1->l_psid;
731 /* Look for a CPU to start */
732 l2->l_cpu = sched_takecpu(l2);
733 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
734 }
735 mutex_exit(p2->p_lock);
736
737 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
738
739 mutex_enter(proc_lock);
740 LIST_INSERT_HEAD(&alllwp, l2, l_list);
741 mutex_exit(proc_lock);
742
743 SYSCALL_TIME_LWP_INIT(l2);
744
745 if (p2->p_emul->e_lwp_fork)
746 (*p2->p_emul->e_lwp_fork)(l1, l2);
747
748 return (0);
749 }
750
751 /*
752 * Called by MD code when a new LWP begins execution. Must be called
753 * with the previous LWP locked (so at splsched), or if there is no
754 * previous LWP, at splsched.
755 */
756 void
757 lwp_startup(struct lwp *prev, struct lwp *new)
758 {
759
760 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
761
762 KASSERT(kpreempt_disabled());
763 if (prev != NULL) {
764 /*
765 * Normalize the count of the spin-mutexes, it was
766 * increased in mi_switch(). Unmark the state of
767 * context switch - it is finished for previous LWP.
768 */
769 curcpu()->ci_mtx_count++;
770 membar_exit();
771 prev->l_ctxswtch = 0;
772 }
773 KPREEMPT_DISABLE(new);
774 spl0();
775 pmap_activate(new);
776 LOCKDEBUG_BARRIER(NULL, 0);
777 KPREEMPT_ENABLE(new);
778 if ((new->l_pflag & LP_MPSAFE) == 0) {
779 KERNEL_LOCK(1, new);
780 }
781 }
782
783 /*
784 * Exit an LWP.
785 */
786 void
787 lwp_exit(struct lwp *l)
788 {
789 struct proc *p = l->l_proc;
790 struct lwp *l2;
791 bool current;
792
793 current = (l == curlwp);
794
795 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
796 KASSERT(p == curproc);
797
798 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
799
800 /*
801 * Verify that we hold no locks other than the kernel lock.
802 */
803 LOCKDEBUG_BARRIER(&kernel_lock, 0);
804
805 /*
806 * If we are the last live LWP in a process, we need to exit the
807 * entire process. We do so with an exit status of zero, because
808 * it's a "controlled" exit, and because that's what Solaris does.
809 *
810 * We are not quite a zombie yet, but for accounting purposes we
811 * must increment the count of zombies here.
812 *
813 * Note: the last LWP's specificdata will be deleted here.
814 */
815 mutex_enter(p->p_lock);
816 if (p->p_nlwps - p->p_nzlwps == 1) {
817 KASSERT(current == true);
818 /* XXXSMP kernel_lock not held */
819 exit1(l, 0);
820 /* NOTREACHED */
821 }
822 p->p_nzlwps++;
823 mutex_exit(p->p_lock);
824
825 if (p->p_emul->e_lwp_exit)
826 (*p->p_emul->e_lwp_exit)(l);
827
828 /* Drop filedesc reference. */
829 fd_free();
830
831 /* Delete the specificdata while it's still safe to sleep. */
832 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
833
834 /*
835 * Release our cached credentials.
836 */
837 kauth_cred_free(l->l_cred);
838 callout_destroy(&l->l_timeout_ch);
839
840 /*
841 * Remove the LWP from the global list.
842 */
843 mutex_enter(proc_lock);
844 LIST_REMOVE(l, l_list);
845 mutex_exit(proc_lock);
846
847 /*
848 * Get rid of all references to the LWP that others (e.g. procfs)
849 * may have, and mark the LWP as a zombie. If the LWP is detached,
850 * mark it waiting for collection in the proc structure. Note that
851 * before we can do that, we need to free any other dead, deatched
852 * LWP waiting to meet its maker.
853 */
854 mutex_enter(p->p_lock);
855 lwp_drainrefs(l);
856
857 if ((l->l_prflag & LPR_DETACHED) != 0) {
858 while ((l2 = p->p_zomblwp) != NULL) {
859 p->p_zomblwp = NULL;
860 lwp_free(l2, false, false);/* releases proc mutex */
861 mutex_enter(p->p_lock);
862 l->l_refcnt++;
863 lwp_drainrefs(l);
864 }
865 p->p_zomblwp = l;
866 }
867
868 /*
869 * If we find a pending signal for the process and we have been
870 * asked to check for signals, then we loose: arrange to have
871 * all other LWPs in the process check for signals.
872 */
873 if ((l->l_flag & LW_PENDSIG) != 0 &&
874 firstsig(&p->p_sigpend.sp_set) != 0) {
875 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
876 lwp_lock(l2);
877 l2->l_flag |= LW_PENDSIG;
878 lwp_unlock(l2);
879 }
880 }
881
882 lwp_lock(l);
883 l->l_stat = LSZOMB;
884 if (l->l_name != NULL)
885 strcpy(l->l_name, "(zombie)");
886 if (l->l_flag & LW_AFFINITY) {
887 l->l_flag &= ~LW_AFFINITY;
888 } else {
889 KASSERT(l->l_affinity == NULL);
890 }
891 lwp_unlock(l);
892 p->p_nrlwps--;
893 cv_broadcast(&p->p_lwpcv);
894 if (l->l_lwpctl != NULL)
895 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
896 mutex_exit(p->p_lock);
897
898 /* Safe without lock since LWP is in zombie state */
899 if (l->l_affinity) {
900 kcpuset_unuse(l->l_affinity, NULL);
901 l->l_affinity = NULL;
902 }
903
904 /*
905 * We can no longer block. At this point, lwp_free() may already
906 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
907 *
908 * Free MD LWP resources.
909 */
910 cpu_lwp_free(l, 0);
911
912 if (current) {
913 pmap_deactivate(l);
914
915 /*
916 * Release the kernel lock, and switch away into
917 * oblivion.
918 */
919 #ifdef notyet
920 /* XXXSMP hold in lwp_userret() */
921 KERNEL_UNLOCK_LAST(l);
922 #else
923 KERNEL_UNLOCK_ALL(l, NULL);
924 #endif
925 lwp_exit_switchaway(l);
926 }
927 }
928
929 /*
930 * Free a dead LWP's remaining resources.
931 *
932 * XXXLWP limits.
933 */
934 void
935 lwp_free(struct lwp *l, bool recycle, bool last)
936 {
937 struct proc *p = l->l_proc;
938 struct rusage *ru;
939 ksiginfoq_t kq;
940
941 KASSERT(l != curlwp);
942
943 /*
944 * If this was not the last LWP in the process, then adjust
945 * counters and unlock.
946 */
947 if (!last) {
948 /*
949 * Add the LWP's run time to the process' base value.
950 * This needs to co-incide with coming off p_lwps.
951 */
952 bintime_add(&p->p_rtime, &l->l_rtime);
953 p->p_pctcpu += l->l_pctcpu;
954 ru = &p->p_stats->p_ru;
955 ruadd(ru, &l->l_ru);
956 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
957 ru->ru_nivcsw += l->l_nivcsw;
958 LIST_REMOVE(l, l_sibling);
959 p->p_nlwps--;
960 p->p_nzlwps--;
961 if ((l->l_prflag & LPR_DETACHED) != 0)
962 p->p_ndlwps--;
963
964 /*
965 * Have any LWPs sleeping in lwp_wait() recheck for
966 * deadlock.
967 */
968 cv_broadcast(&p->p_lwpcv);
969 mutex_exit(p->p_lock);
970 }
971
972 #ifdef MULTIPROCESSOR
973 /*
974 * In the unlikely event that the LWP is still on the CPU,
975 * then spin until it has switched away. We need to release
976 * all locks to avoid deadlock against interrupt handlers on
977 * the target CPU.
978 */
979 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
980 int count;
981 (void)count; /* XXXgcc */
982 KERNEL_UNLOCK_ALL(curlwp, &count);
983 while ((l->l_pflag & LP_RUNNING) != 0 ||
984 l->l_cpu->ci_curlwp == l)
985 SPINLOCK_BACKOFF_HOOK;
986 KERNEL_LOCK(count, curlwp);
987 }
988 #endif
989
990 /*
991 * Destroy the LWP's remaining signal information.
992 */
993 ksiginfo_queue_init(&kq);
994 sigclear(&l->l_sigpend, NULL, &kq);
995 ksiginfo_queue_drain(&kq);
996 cv_destroy(&l->l_sigcv);
997
998 /*
999 * Free the LWP's turnstile and the LWP structure itself unless the
1000 * caller wants to recycle them. Also, free the scheduler specific
1001 * data.
1002 *
1003 * We can't return turnstile0 to the pool (it didn't come from it),
1004 * so if it comes up just drop it quietly and move on.
1005 *
1006 * We don't recycle the VM resources at this time.
1007 */
1008 if (l->l_lwpctl != NULL)
1009 lwp_ctl_free(l);
1010
1011 if (!recycle && l->l_ts != &turnstile0)
1012 pool_cache_put(turnstile_cache, l->l_ts);
1013 if (l->l_name != NULL)
1014 kmem_free(l->l_name, MAXCOMLEN);
1015
1016 cpu_lwp_free2(l);
1017 uvm_lwp_exit(l);
1018
1019 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1020 KASSERT(l->l_inheritedprio == -1);
1021 kdtrace_thread_dtor(NULL, l);
1022 if (!recycle)
1023 pool_cache_put(lwp_cache, l);
1024 }
1025
1026 /*
1027 * Migrate the LWP to the another CPU. Unlocks the LWP.
1028 */
1029 void
1030 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1031 {
1032 struct schedstate_percpu *tspc;
1033 int lstat = l->l_stat;
1034
1035 KASSERT(lwp_locked(l, NULL));
1036 KASSERT(tci != NULL);
1037
1038 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1039 if ((l->l_pflag & LP_RUNNING) != 0) {
1040 lstat = LSONPROC;
1041 }
1042
1043 /*
1044 * The destination CPU could be changed while previous migration
1045 * was not finished.
1046 */
1047 if (l->l_target_cpu != NULL) {
1048 l->l_target_cpu = tci;
1049 lwp_unlock(l);
1050 return;
1051 }
1052
1053 /* Nothing to do if trying to migrate to the same CPU */
1054 if (l->l_cpu == tci) {
1055 lwp_unlock(l);
1056 return;
1057 }
1058
1059 KASSERT(l->l_target_cpu == NULL);
1060 tspc = &tci->ci_schedstate;
1061 switch (lstat) {
1062 case LSRUN:
1063 l->l_target_cpu = tci;
1064 break;
1065 case LSIDL:
1066 l->l_cpu = tci;
1067 lwp_unlock_to(l, tspc->spc_mutex);
1068 return;
1069 case LSSLEEP:
1070 l->l_cpu = tci;
1071 break;
1072 case LSSTOP:
1073 case LSSUSPENDED:
1074 l->l_cpu = tci;
1075 if (l->l_wchan == NULL) {
1076 lwp_unlock_to(l, tspc->spc_lwplock);
1077 return;
1078 }
1079 break;
1080 case LSONPROC:
1081 l->l_target_cpu = tci;
1082 spc_lock(l->l_cpu);
1083 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1084 spc_unlock(l->l_cpu);
1085 break;
1086 }
1087 lwp_unlock(l);
1088 }
1089
1090 /*
1091 * Find the LWP in the process. Arguments may be zero, in such case,
1092 * the calling process and first LWP in the list will be used.
1093 * On success - returns proc locked.
1094 */
1095 struct lwp *
1096 lwp_find2(pid_t pid, lwpid_t lid)
1097 {
1098 proc_t *p;
1099 lwp_t *l;
1100
1101 /* Find the process */
1102 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1103 if (p == NULL)
1104 return NULL;
1105 mutex_enter(p->p_lock);
1106 if (pid != 0) {
1107 /* Case of p_find */
1108 mutex_exit(proc_lock);
1109 }
1110
1111 /* Find the thread */
1112 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1113 if (l == NULL) {
1114 mutex_exit(p->p_lock);
1115 }
1116
1117 return l;
1118 }
1119
1120 /*
1121 * Look up a live LWP within the speicifed process, and return it locked.
1122 *
1123 * Must be called with p->p_lock held.
1124 */
1125 struct lwp *
1126 lwp_find(struct proc *p, int id)
1127 {
1128 struct lwp *l;
1129
1130 KASSERT(mutex_owned(p->p_lock));
1131
1132 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1133 if (l->l_lid == id)
1134 break;
1135 }
1136
1137 /*
1138 * No need to lock - all of these conditions will
1139 * be visible with the process level mutex held.
1140 */
1141 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1142 l = NULL;
1143
1144 return l;
1145 }
1146
1147 /*
1148 * Update an LWP's cached credentials to mirror the process' master copy.
1149 *
1150 * This happens early in the syscall path, on user trap, and on LWP
1151 * creation. A long-running LWP can also voluntarily choose to update
1152 * it's credentials by calling this routine. This may be called from
1153 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1154 */
1155 void
1156 lwp_update_creds(struct lwp *l)
1157 {
1158 kauth_cred_t oc;
1159 struct proc *p;
1160
1161 p = l->l_proc;
1162 oc = l->l_cred;
1163
1164 mutex_enter(p->p_lock);
1165 kauth_cred_hold(p->p_cred);
1166 l->l_cred = p->p_cred;
1167 l->l_prflag &= ~LPR_CRMOD;
1168 mutex_exit(p->p_lock);
1169 if (oc != NULL)
1170 kauth_cred_free(oc);
1171 }
1172
1173 /*
1174 * Verify that an LWP is locked, and optionally verify that the lock matches
1175 * one we specify.
1176 */
1177 int
1178 lwp_locked(struct lwp *l, kmutex_t *mtx)
1179 {
1180 kmutex_t *cur = l->l_mutex;
1181
1182 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1183 }
1184
1185 /*
1186 * Lock an LWP.
1187 */
1188 kmutex_t *
1189 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1190 {
1191
1192 /*
1193 * XXXgcc ignoring kmutex_t * volatile on i386
1194 *
1195 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1196 */
1197 #if 1
1198 while (l->l_mutex != old) {
1199 #else
1200 for (;;) {
1201 #endif
1202 mutex_spin_exit(old);
1203 old = l->l_mutex;
1204 mutex_spin_enter(old);
1205
1206 /*
1207 * mutex_enter() will have posted a read barrier. Re-test
1208 * l->l_mutex. If it has changed, we need to try again.
1209 */
1210 #if 1
1211 }
1212 #else
1213 } while (__predict_false(l->l_mutex != old));
1214 #endif
1215
1216 return old;
1217 }
1218
1219 /*
1220 * Lend a new mutex to an LWP. The old mutex must be held.
1221 */
1222 void
1223 lwp_setlock(struct lwp *l, kmutex_t *new)
1224 {
1225
1226 KASSERT(mutex_owned(l->l_mutex));
1227
1228 membar_exit();
1229 l->l_mutex = new;
1230 }
1231
1232 /*
1233 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1234 * must be held.
1235 */
1236 void
1237 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1238 {
1239 kmutex_t *old;
1240
1241 KASSERT(mutex_owned(l->l_mutex));
1242
1243 old = l->l_mutex;
1244 membar_exit();
1245 l->l_mutex = new;
1246 mutex_spin_exit(old);
1247 }
1248
1249 /*
1250 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1251 * locked.
1252 */
1253 void
1254 lwp_relock(struct lwp *l, kmutex_t *new)
1255 {
1256 kmutex_t *old;
1257
1258 KASSERT(mutex_owned(l->l_mutex));
1259
1260 old = l->l_mutex;
1261 if (old != new) {
1262 mutex_spin_enter(new);
1263 l->l_mutex = new;
1264 mutex_spin_exit(old);
1265 }
1266 }
1267
1268 int
1269 lwp_trylock(struct lwp *l)
1270 {
1271 kmutex_t *old;
1272
1273 for (;;) {
1274 if (!mutex_tryenter(old = l->l_mutex))
1275 return 0;
1276 if (__predict_true(l->l_mutex == old))
1277 return 1;
1278 mutex_spin_exit(old);
1279 }
1280 }
1281
1282 void
1283 lwp_unsleep(lwp_t *l, bool cleanup)
1284 {
1285
1286 KASSERT(mutex_owned(l->l_mutex));
1287 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1288 }
1289
1290
1291 /*
1292 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1293 * set.
1294 */
1295 void
1296 lwp_userret(struct lwp *l)
1297 {
1298 struct proc *p;
1299 void (*hook)(void);
1300 int sig;
1301
1302 KASSERT(l == curlwp);
1303 KASSERT(l->l_stat == LSONPROC);
1304 p = l->l_proc;
1305
1306 #ifndef __HAVE_FAST_SOFTINTS
1307 /* Run pending soft interrupts. */
1308 if (l->l_cpu->ci_data.cpu_softints != 0)
1309 softint_overlay();
1310 #endif
1311
1312 #ifdef KERN_SA
1313 /* Generate UNBLOCKED upcall if needed */
1314 if (l->l_flag & LW_SA_BLOCKING) {
1315 sa_unblock_userret(l);
1316 /* NOTREACHED */
1317 }
1318 #endif
1319
1320 /*
1321 * It should be safe to do this read unlocked on a multiprocessor
1322 * system..
1323 *
1324 * LW_SA_UPCALL will be handled after the while() loop, so don't
1325 * consider it now.
1326 */
1327 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1328 /*
1329 * Process pending signals first, unless the process
1330 * is dumping core or exiting, where we will instead
1331 * enter the LW_WSUSPEND case below.
1332 */
1333 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1334 LW_PENDSIG) {
1335 mutex_enter(p->p_lock);
1336 while ((sig = issignal(l)) != 0)
1337 postsig(sig);
1338 mutex_exit(p->p_lock);
1339 }
1340
1341 /*
1342 * Core-dump or suspend pending.
1343 *
1344 * In case of core dump, suspend ourselves, so that the
1345 * kernel stack and therefore the userland registers saved
1346 * in the trapframe are around for coredump() to write them
1347 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1348 * will write the core file out once all other LWPs are
1349 * suspended.
1350 */
1351 if ((l->l_flag & LW_WSUSPEND) != 0) {
1352 mutex_enter(p->p_lock);
1353 p->p_nrlwps--;
1354 cv_broadcast(&p->p_lwpcv);
1355 lwp_lock(l);
1356 l->l_stat = LSSUSPENDED;
1357 lwp_unlock(l);
1358 mutex_exit(p->p_lock);
1359 lwp_lock(l);
1360 mi_switch(l);
1361 }
1362
1363 /* Process is exiting. */
1364 if ((l->l_flag & LW_WEXIT) != 0) {
1365 lwp_exit(l);
1366 KASSERT(0);
1367 /* NOTREACHED */
1368 }
1369
1370 /* Call userret hook; used by Linux emulation. */
1371 if ((l->l_flag & LW_WUSERRET) != 0) {
1372 lwp_lock(l);
1373 l->l_flag &= ~LW_WUSERRET;
1374 lwp_unlock(l);
1375 hook = p->p_userret;
1376 p->p_userret = NULL;
1377 (*hook)();
1378 }
1379 }
1380
1381 #ifdef KERN_SA
1382 /*
1383 * Timer events are handled specially. We only try once to deliver
1384 * pending timer upcalls; if if fails, we can try again on the next
1385 * loop around. If we need to re-enter lwp_userret(), MD code will
1386 * bounce us back here through the trap path after we return.
1387 */
1388 if (p->p_timerpend)
1389 timerupcall(l);
1390 if (l->l_flag & LW_SA_UPCALL)
1391 sa_upcall_userret(l);
1392 #endif /* KERN_SA */
1393 }
1394
1395 /*
1396 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1397 */
1398 void
1399 lwp_need_userret(struct lwp *l)
1400 {
1401 KASSERT(lwp_locked(l, NULL));
1402
1403 /*
1404 * Since the tests in lwp_userret() are done unlocked, make sure
1405 * that the condition will be seen before forcing the LWP to enter
1406 * kernel mode.
1407 */
1408 membar_producer();
1409 cpu_signotify(l);
1410 }
1411
1412 /*
1413 * Add one reference to an LWP. This will prevent the LWP from
1414 * exiting, thus keep the lwp structure and PCB around to inspect.
1415 */
1416 void
1417 lwp_addref(struct lwp *l)
1418 {
1419
1420 KASSERT(mutex_owned(l->l_proc->p_lock));
1421 KASSERT(l->l_stat != LSZOMB);
1422 KASSERT(l->l_refcnt != 0);
1423
1424 l->l_refcnt++;
1425 }
1426
1427 /*
1428 * Remove one reference to an LWP. If this is the last reference,
1429 * then we must finalize the LWP's death.
1430 */
1431 void
1432 lwp_delref(struct lwp *l)
1433 {
1434 struct proc *p = l->l_proc;
1435
1436 mutex_enter(p->p_lock);
1437 lwp_delref2(l);
1438 mutex_exit(p->p_lock);
1439 }
1440
1441 /*
1442 * Remove one reference to an LWP. If this is the last reference,
1443 * then we must finalize the LWP's death. The proc mutex is held
1444 * on entry.
1445 */
1446 void
1447 lwp_delref2(struct lwp *l)
1448 {
1449 struct proc *p = l->l_proc;
1450
1451 KASSERT(mutex_owned(p->p_lock));
1452 KASSERT(l->l_stat != LSZOMB);
1453 KASSERT(l->l_refcnt > 0);
1454 if (--l->l_refcnt == 0)
1455 cv_broadcast(&p->p_lwpcv);
1456 }
1457
1458 /*
1459 * Drain all references to the current LWP.
1460 */
1461 void
1462 lwp_drainrefs(struct lwp *l)
1463 {
1464 struct proc *p = l->l_proc;
1465
1466 KASSERT(mutex_owned(p->p_lock));
1467 KASSERT(l->l_refcnt != 0);
1468
1469 l->l_refcnt--;
1470 while (l->l_refcnt != 0)
1471 cv_wait(&p->p_lwpcv, p->p_lock);
1472 }
1473
1474 /*
1475 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1476 * be held.
1477 */
1478 bool
1479 lwp_alive(lwp_t *l)
1480 {
1481
1482 KASSERT(mutex_owned(l->l_proc->p_lock));
1483
1484 switch (l->l_stat) {
1485 case LSSLEEP:
1486 case LSRUN:
1487 case LSONPROC:
1488 case LSSTOP:
1489 case LSSUSPENDED:
1490 return true;
1491 default:
1492 return false;
1493 }
1494 }
1495
1496 /*
1497 * Return first live LWP in the process.
1498 */
1499 lwp_t *
1500 lwp_find_first(proc_t *p)
1501 {
1502 lwp_t *l;
1503
1504 KASSERT(mutex_owned(p->p_lock));
1505
1506 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1507 if (lwp_alive(l)) {
1508 return l;
1509 }
1510 }
1511
1512 return NULL;
1513 }
1514
1515 /*
1516 * lwp_specific_key_create --
1517 * Create a key for subsystem lwp-specific data.
1518 */
1519 int
1520 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1521 {
1522
1523 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1524 }
1525
1526 /*
1527 * lwp_specific_key_delete --
1528 * Delete a key for subsystem lwp-specific data.
1529 */
1530 void
1531 lwp_specific_key_delete(specificdata_key_t key)
1532 {
1533
1534 specificdata_key_delete(lwp_specificdata_domain, key);
1535 }
1536
1537 /*
1538 * lwp_initspecific --
1539 * Initialize an LWP's specificdata container.
1540 */
1541 void
1542 lwp_initspecific(struct lwp *l)
1543 {
1544 int error;
1545
1546 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1547 KASSERT(error == 0);
1548 }
1549
1550 /*
1551 * lwp_finispecific --
1552 * Finalize an LWP's specificdata container.
1553 */
1554 void
1555 lwp_finispecific(struct lwp *l)
1556 {
1557
1558 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1559 }
1560
1561 /*
1562 * lwp_getspecific --
1563 * Return lwp-specific data corresponding to the specified key.
1564 *
1565 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1566 * only its OWN SPECIFIC DATA. If it is necessary to access another
1567 * LWP's specifc data, care must be taken to ensure that doing so
1568 * would not cause internal data structure inconsistency (i.e. caller
1569 * can guarantee that the target LWP is not inside an lwp_getspecific()
1570 * or lwp_setspecific() call).
1571 */
1572 void *
1573 lwp_getspecific(specificdata_key_t key)
1574 {
1575
1576 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1577 &curlwp->l_specdataref, key));
1578 }
1579
1580 void *
1581 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1582 {
1583
1584 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1585 &l->l_specdataref, key));
1586 }
1587
1588 /*
1589 * lwp_setspecific --
1590 * Set lwp-specific data corresponding to the specified key.
1591 */
1592 void
1593 lwp_setspecific(specificdata_key_t key, void *data)
1594 {
1595
1596 specificdata_setspecific(lwp_specificdata_domain,
1597 &curlwp->l_specdataref, key, data);
1598 }
1599
1600 /*
1601 * Allocate a new lwpctl structure for a user LWP.
1602 */
1603 int
1604 lwp_ctl_alloc(vaddr_t *uaddr)
1605 {
1606 lcproc_t *lp;
1607 u_int bit, i, offset;
1608 struct uvm_object *uao;
1609 int error;
1610 lcpage_t *lcp;
1611 proc_t *p;
1612 lwp_t *l;
1613
1614 l = curlwp;
1615 p = l->l_proc;
1616
1617 if (l->l_lcpage != NULL) {
1618 lcp = l->l_lcpage;
1619 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1620 return 0;
1621 }
1622
1623 /* First time around, allocate header structure for the process. */
1624 if ((lp = p->p_lwpctl) == NULL) {
1625 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1626 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1627 lp->lp_uao = NULL;
1628 TAILQ_INIT(&lp->lp_pages);
1629 mutex_enter(p->p_lock);
1630 if (p->p_lwpctl == NULL) {
1631 p->p_lwpctl = lp;
1632 mutex_exit(p->p_lock);
1633 } else {
1634 mutex_exit(p->p_lock);
1635 mutex_destroy(&lp->lp_lock);
1636 kmem_free(lp, sizeof(*lp));
1637 lp = p->p_lwpctl;
1638 }
1639 }
1640
1641 /*
1642 * Set up an anonymous memory region to hold the shared pages.
1643 * Map them into the process' address space. The user vmspace
1644 * gets the first reference on the UAO.
1645 */
1646 mutex_enter(&lp->lp_lock);
1647 if (lp->lp_uao == NULL) {
1648 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1649 lp->lp_cur = 0;
1650 lp->lp_max = LWPCTL_UAREA_SZ;
1651 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1652 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1653 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1654 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1655 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1656 if (error != 0) {
1657 uao_detach(lp->lp_uao);
1658 lp->lp_uao = NULL;
1659 mutex_exit(&lp->lp_lock);
1660 return error;
1661 }
1662 }
1663
1664 /* Get a free block and allocate for this LWP. */
1665 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1666 if (lcp->lcp_nfree != 0)
1667 break;
1668 }
1669 if (lcp == NULL) {
1670 /* Nothing available - try to set up a free page. */
1671 if (lp->lp_cur == lp->lp_max) {
1672 mutex_exit(&lp->lp_lock);
1673 return ENOMEM;
1674 }
1675 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1676 if (lcp == NULL) {
1677 mutex_exit(&lp->lp_lock);
1678 return ENOMEM;
1679 }
1680 /*
1681 * Wire the next page down in kernel space. Since this
1682 * is a new mapping, we must add a reference.
1683 */
1684 uao = lp->lp_uao;
1685 (*uao->pgops->pgo_reference)(uao);
1686 lcp->lcp_kaddr = vm_map_min(kernel_map);
1687 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1688 uao, lp->lp_cur, PAGE_SIZE,
1689 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1690 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1691 if (error != 0) {
1692 mutex_exit(&lp->lp_lock);
1693 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1694 (*uao->pgops->pgo_detach)(uao);
1695 return error;
1696 }
1697 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1698 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1699 if (error != 0) {
1700 mutex_exit(&lp->lp_lock);
1701 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1702 lcp->lcp_kaddr + PAGE_SIZE);
1703 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1704 return error;
1705 }
1706 /* Prepare the page descriptor and link into the list. */
1707 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1708 lp->lp_cur += PAGE_SIZE;
1709 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1710 lcp->lcp_rotor = 0;
1711 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1712 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1713 }
1714 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1715 if (++i >= LWPCTL_BITMAP_ENTRIES)
1716 i = 0;
1717 }
1718 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1719 lcp->lcp_bitmap[i] ^= (1 << bit);
1720 lcp->lcp_rotor = i;
1721 lcp->lcp_nfree--;
1722 l->l_lcpage = lcp;
1723 offset = (i << 5) + bit;
1724 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1725 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1726 mutex_exit(&lp->lp_lock);
1727
1728 KPREEMPT_DISABLE(l);
1729 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1730 KPREEMPT_ENABLE(l);
1731
1732 return 0;
1733 }
1734
1735 /*
1736 * Free an lwpctl structure back to the per-process list.
1737 */
1738 void
1739 lwp_ctl_free(lwp_t *l)
1740 {
1741 lcproc_t *lp;
1742 lcpage_t *lcp;
1743 u_int map, offset;
1744
1745 lp = l->l_proc->p_lwpctl;
1746 KASSERT(lp != NULL);
1747
1748 lcp = l->l_lcpage;
1749 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1750 KASSERT(offset < LWPCTL_PER_PAGE);
1751
1752 mutex_enter(&lp->lp_lock);
1753 lcp->lcp_nfree++;
1754 map = offset >> 5;
1755 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1756 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1757 lcp->lcp_rotor = map;
1758 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1759 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1760 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1761 }
1762 mutex_exit(&lp->lp_lock);
1763 }
1764
1765 /*
1766 * Process is exiting; tear down lwpctl state. This can only be safely
1767 * called by the last LWP in the process.
1768 */
1769 void
1770 lwp_ctl_exit(void)
1771 {
1772 lcpage_t *lcp, *next;
1773 lcproc_t *lp;
1774 proc_t *p;
1775 lwp_t *l;
1776
1777 l = curlwp;
1778 l->l_lwpctl = NULL;
1779 l->l_lcpage = NULL;
1780 p = l->l_proc;
1781 lp = p->p_lwpctl;
1782
1783 KASSERT(lp != NULL);
1784 KASSERT(p->p_nlwps == 1);
1785
1786 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1787 next = TAILQ_NEXT(lcp, lcp_chain);
1788 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1789 lcp->lcp_kaddr + PAGE_SIZE);
1790 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1791 }
1792
1793 if (lp->lp_uao != NULL) {
1794 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1795 lp->lp_uva + LWPCTL_UAREA_SZ);
1796 }
1797
1798 mutex_destroy(&lp->lp_lock);
1799 kmem_free(lp, sizeof(*lp));
1800 p->p_lwpctl = NULL;
1801 }
1802
1803 /*
1804 * Return the current LWP's "preemption counter". Used to detect
1805 * preemption across operations that can tolerate preemption without
1806 * crashing, but which may generate incorrect results if preempted.
1807 */
1808 uint64_t
1809 lwp_pctr(void)
1810 {
1811
1812 return curlwp->l_ncsw;
1813 }
1814
1815 #if defined(DDB)
1816 void
1817 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1818 {
1819 lwp_t *l;
1820
1821 LIST_FOREACH(l, &alllwp, l_list) {
1822 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1823
1824 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1825 continue;
1826 }
1827 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1828 (void *)addr, (void *)stack,
1829 (size_t)(addr - stack), l);
1830 }
1831 }
1832 #endif /* defined(DDB) */
1833