Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.145
      1 /*	$NetBSD: kern_lwp.c,v 1.145 2010/04/12 23:20:18 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.
     64  *
     65  *	LSIDL
     66  *
     67  *		Idle: the LWP has been created but has not yet executed,
     68  *		or it has ceased executing a unit of work and is waiting
     69  *		to be started again.
     70  *
     71  *	LSSUSPENDED:
     72  *
     73  *		Suspended: the LWP has had its execution suspended by
     74  *		another LWP in the same process using the _lwp_suspend()
     75  *		system call.  User-level LWPs also enter the suspended
     76  *		state when the system is shutting down.
     77  *
     78  *	The second set represent a "statement of intent" on behalf of the
     79  *	LWP.  The LWP may in fact be executing on a processor, may be
     80  *	sleeping or idle. It is expected to take the necessary action to
     81  *	stop executing or become "running" again within a short timeframe.
     82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83  *	Importantly, it indicates that its state is tied to a CPU.
     84  *
     85  *	LSZOMB:
     86  *
     87  *		Dead or dying: the LWP has released most of its resources
     88  *		and is about to switch away into oblivion, or has already
     89  *		switched away.  When it switches away, its few remaining
     90  *		resources can be collected.
     91  *
     92  *	LSSLEEP:
     93  *
     94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95  *		has switched away or will switch away shortly to allow other
     96  *		LWPs to run on the CPU.
     97  *
     98  *	LSSTOP:
     99  *
    100  *		Stopped: the LWP has been stopped as a result of a job
    101  *		control signal, or as a result of the ptrace() interface.
    102  *
    103  *		Stopped LWPs may run briefly within the kernel to handle
    104  *		signals that they receive, but will not return to user space
    105  *		until their process' state is changed away from stopped.
    106  *
    107  *		Single LWPs within a process can not be set stopped
    108  *		selectively: all actions that can stop or continue LWPs
    109  *		occur at the process level.
    110  *
    111  * State transitions
    112  *
    113  *	Note that the LSSTOP state may only be set when returning to
    114  *	user space in userret(), or when sleeping interruptably.  The
    115  *	LSSUSPENDED state may only be set in userret().  Before setting
    116  *	those states, we try to ensure that the LWPs will release all
    117  *	locks that they hold, and at a minimum try to ensure that the
    118  *	LWP can be set runnable again by a signal.
    119  *
    120  *	LWPs may transition states in the following ways:
    121  *
    122  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123  *		    				    > SLEEP
    124  *		    				    > STOPPED
    125  *						    > SUSPENDED
    126  *						    > ZOMB
    127  *						    > IDL (special cases)
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *						    > ONPROC (special cases)
    136  *
    137  *	Some state transitions are only possible with kernel threads (eg
    138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139  *	free of unwanted side effects.
    140  *
    141  * Migration
    142  *
    143  *	Migration of threads from one CPU to another could be performed
    144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  *	functions.  The universal lwp_migrate() function should be used for
    146  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  *	of LWP may change, while it is not locked.
    148  *
    149  * Locking
    150  *
    151  *	The majority of fields in 'struct lwp' are covered by a single,
    152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153  *	each field are documented in sys/lwp.h.
    154  *
    155  *	State transitions must be made with the LWP's general lock held,
    156  *	and may cause the LWP's lock pointer to change. Manipulation of
    157  *	the general lock is not performed directly, but through calls to
    158  *	lwp_lock(), lwp_relock() and similar.
    159  *
    160  *	States and their associated locks:
    161  *
    162  *	LSONPROC, LSZOMB:
    163  *
    164  *		Always covered by spc_lwplock, which protects running LWPs.
    165  *		This is a per-CPU lock and matches lwp::l_cpu.
    166  *
    167  *	LSIDL, LSRUN:
    168  *
    169  *		Always covered by spc_mutex, which protects the run queues.
    170  *		This is a per-CPU lock and matches lwp::l_cpu.
    171  *
    172  *	LSSLEEP:
    173  *
    174  *		Covered by a lock associated with the sleep queue that the
    175  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    176  *
    177  *	LSSTOP, LSSUSPENDED:
    178  *
    179  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180  *		l_mutex references the sleep queue lock.  If the LWP was
    181  *		runnable or on the CPU when halted, or has been removed from
    182  *		the sleep queue since halted, then the lock is spc_lwplock.
    183  *
    184  *	The lock order is as follows:
    185  *
    186  *		spc::spc_lwplock ->
    187  *		    sleeptab::st_mutex ->
    188  *			tschain_t::tc_mutex ->
    189  *			    spc::spc_mutex
    190  *
    191  *	Each process has an scheduler state lock (proc::p_lock), and a
    192  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    193  *	so on.  When an LWP is to be entered into or removed from one of the
    194  *	following states, p_lock must be held and the process wide counters
    195  *	adjusted:
    196  *
    197  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    198  *
    199  *	(But not always for kernel threads.  There are some special cases
    200  *	as mentioned above.  See kern_softint.c.)
    201  *
    202  *	Note that an LWP is considered running or likely to run soon if in
    203  *	one of the following states.  This affects the value of p_nrlwps:
    204  *
    205  *		LSRUN, LSONPROC, LSSLEEP
    206  *
    207  *	p_lock does not need to be held when transitioning among these
    208  *	three states, hence p_lock is rarely taken for state transitions.
    209  */
    210 
    211 #include <sys/cdefs.h>
    212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.145 2010/04/12 23:20:18 pooka Exp $");
    213 
    214 #include "opt_ddb.h"
    215 #include "opt_lockdebug.h"
    216 #include "opt_sa.h"
    217 #include "opt_dtrace.h"
    218 
    219 #define _LWP_API_PRIVATE
    220 
    221 #include <sys/param.h>
    222 #include <sys/systm.h>
    223 #include <sys/cpu.h>
    224 #include <sys/pool.h>
    225 #include <sys/proc.h>
    226 #include <sys/sa.h>
    227 #include <sys/savar.h>
    228 #include <sys/syscallargs.h>
    229 #include <sys/syscall_stats.h>
    230 #include <sys/kauth.h>
    231 #include <sys/sleepq.h>
    232 #include <sys/lockdebug.h>
    233 #include <sys/kmem.h>
    234 #include <sys/pset.h>
    235 #include <sys/intr.h>
    236 #include <sys/lwpctl.h>
    237 #include <sys/atomic.h>
    238 #include <sys/filedesc.h>
    239 #include <sys/dtrace_bsd.h>
    240 #include <sys/sdt.h>
    241 
    242 #include <uvm/uvm_extern.h>
    243 #include <uvm/uvm_object.h>
    244 
    245 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    246 
    247 struct pool lwp_uc_pool;
    248 
    249 static pool_cache_t lwp_cache;
    250 
    251 /* DTrace proc provider probes */
    252 SDT_PROBE_DEFINE(proc,,,lwp_create,
    253 	"struct lwp *", NULL,
    254 	NULL, NULL, NULL, NULL,
    255 	NULL, NULL, NULL, NULL);
    256 SDT_PROBE_DEFINE(proc,,,lwp_start,
    257 	"struct lwp *", NULL,
    258 	NULL, NULL, NULL, NULL,
    259 	NULL, NULL, NULL, NULL);
    260 SDT_PROBE_DEFINE(proc,,,lwp_exit,
    261 	"struct lwp *", NULL,
    262 	NULL, NULL, NULL, NULL,
    263 	NULL, NULL, NULL, NULL);
    264 
    265 void
    266 lwpinit(void)
    267 {
    268 
    269 	pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    270 	    &pool_allocator_nointr, IPL_NONE);
    271 	lwpinit_specificdata();
    272 	lwp_sys_init();
    273 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    274 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    275 }
    276 
    277 /*
    278  * Set an suspended.
    279  *
    280  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    281  * LWP before return.
    282  */
    283 int
    284 lwp_suspend(struct lwp *curl, struct lwp *t)
    285 {
    286 	int error;
    287 
    288 	KASSERT(mutex_owned(t->l_proc->p_lock));
    289 	KASSERT(lwp_locked(t, NULL));
    290 
    291 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    292 
    293 	/*
    294 	 * If the current LWP has been told to exit, we must not suspend anyone
    295 	 * else or deadlock could occur.  We won't return to userspace.
    296 	 */
    297 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    298 		lwp_unlock(t);
    299 		return (EDEADLK);
    300 	}
    301 
    302 	error = 0;
    303 
    304 	switch (t->l_stat) {
    305 	case LSRUN:
    306 	case LSONPROC:
    307 		t->l_flag |= LW_WSUSPEND;
    308 		lwp_need_userret(t);
    309 		lwp_unlock(t);
    310 		break;
    311 
    312 	case LSSLEEP:
    313 		t->l_flag |= LW_WSUSPEND;
    314 
    315 		/*
    316 		 * Kick the LWP and try to get it to the kernel boundary
    317 		 * so that it will release any locks that it holds.
    318 		 * setrunnable() will release the lock.
    319 		 */
    320 		if ((t->l_flag & LW_SINTR) != 0)
    321 			setrunnable(t);
    322 		else
    323 			lwp_unlock(t);
    324 		break;
    325 
    326 	case LSSUSPENDED:
    327 		lwp_unlock(t);
    328 		break;
    329 
    330 	case LSSTOP:
    331 		t->l_flag |= LW_WSUSPEND;
    332 		setrunnable(t);
    333 		break;
    334 
    335 	case LSIDL:
    336 	case LSZOMB:
    337 		error = EINTR; /* It's what Solaris does..... */
    338 		lwp_unlock(t);
    339 		break;
    340 	}
    341 
    342 	return (error);
    343 }
    344 
    345 /*
    346  * Restart a suspended LWP.
    347  *
    348  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    349  * LWP before return.
    350  */
    351 void
    352 lwp_continue(struct lwp *l)
    353 {
    354 
    355 	KASSERT(mutex_owned(l->l_proc->p_lock));
    356 	KASSERT(lwp_locked(l, NULL));
    357 
    358 	/* If rebooting or not suspended, then just bail out. */
    359 	if ((l->l_flag & LW_WREBOOT) != 0) {
    360 		lwp_unlock(l);
    361 		return;
    362 	}
    363 
    364 	l->l_flag &= ~LW_WSUSPEND;
    365 
    366 	if (l->l_stat != LSSUSPENDED) {
    367 		lwp_unlock(l);
    368 		return;
    369 	}
    370 
    371 	/* setrunnable() will release the lock. */
    372 	setrunnable(l);
    373 }
    374 
    375 /*
    376  * Restart a stopped LWP.
    377  *
    378  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    379  * LWP before return.
    380  */
    381 void
    382 lwp_unstop(struct lwp *l)
    383 {
    384 	struct proc *p = l->l_proc;
    385 
    386 	KASSERT(mutex_owned(proc_lock));
    387 	KASSERT(mutex_owned(p->p_lock));
    388 
    389 	lwp_lock(l);
    390 
    391 	/* If not stopped, then just bail out. */
    392 	if (l->l_stat != LSSTOP) {
    393 		lwp_unlock(l);
    394 		return;
    395 	}
    396 
    397 	p->p_stat = SACTIVE;
    398 	p->p_sflag &= ~PS_STOPPING;
    399 
    400 	if (!p->p_waited)
    401 		p->p_pptr->p_nstopchild--;
    402 
    403 	if (l->l_wchan == NULL) {
    404 		/* setrunnable() will release the lock. */
    405 		setrunnable(l);
    406 	} else {
    407 		l->l_stat = LSSLEEP;
    408 		p->p_nrlwps++;
    409 		lwp_unlock(l);
    410 	}
    411 }
    412 
    413 /*
    414  * Wait for an LWP within the current process to exit.  If 'lid' is
    415  * non-zero, we are waiting for a specific LWP.
    416  *
    417  * Must be called with p->p_lock held.
    418  */
    419 int
    420 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    421 {
    422 	struct proc *p = l->l_proc;
    423 	struct lwp *l2;
    424 	int nfound, error;
    425 	lwpid_t curlid;
    426 	bool exiting;
    427 
    428 	KASSERT(mutex_owned(p->p_lock));
    429 
    430 	p->p_nlwpwait++;
    431 	l->l_waitingfor = lid;
    432 	curlid = l->l_lid;
    433 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    434 
    435 	for (;;) {
    436 		/*
    437 		 * Avoid a race between exit1() and sigexit(): if the
    438 		 * process is dumping core, then we need to bail out: call
    439 		 * into lwp_userret() where we will be suspended until the
    440 		 * deed is done.
    441 		 */
    442 		if ((p->p_sflag & PS_WCORE) != 0) {
    443 			mutex_exit(p->p_lock);
    444 			lwp_userret(l);
    445 #ifdef DIAGNOSTIC
    446 			panic("lwp_wait1");
    447 #endif
    448 			/* NOTREACHED */
    449 		}
    450 
    451 		/*
    452 		 * First off, drain any detached LWP that is waiting to be
    453 		 * reaped.
    454 		 */
    455 		while ((l2 = p->p_zomblwp) != NULL) {
    456 			p->p_zomblwp = NULL;
    457 			lwp_free(l2, false, false);/* releases proc mutex */
    458 			mutex_enter(p->p_lock);
    459 		}
    460 
    461 		/*
    462 		 * Now look for an LWP to collect.  If the whole process is
    463 		 * exiting, count detached LWPs as eligible to be collected,
    464 		 * but don't drain them here.
    465 		 */
    466 		nfound = 0;
    467 		error = 0;
    468 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    469 			/*
    470 			 * If a specific wait and the target is waiting on
    471 			 * us, then avoid deadlock.  This also traps LWPs
    472 			 * that try to wait on themselves.
    473 			 *
    474 			 * Note that this does not handle more complicated
    475 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    476 			 * can still be killed so it is not a major problem.
    477 			 */
    478 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    479 				error = EDEADLK;
    480 				break;
    481 			}
    482 			if (l2 == l)
    483 				continue;
    484 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    485 				nfound += exiting;
    486 				continue;
    487 			}
    488 			if (lid != 0) {
    489 				if (l2->l_lid != lid)
    490 					continue;
    491 				/*
    492 				 * Mark this LWP as the first waiter, if there
    493 				 * is no other.
    494 				 */
    495 				if (l2->l_waiter == 0)
    496 					l2->l_waiter = curlid;
    497 			} else if (l2->l_waiter != 0) {
    498 				/*
    499 				 * It already has a waiter - so don't
    500 				 * collect it.  If the waiter doesn't
    501 				 * grab it we'll get another chance
    502 				 * later.
    503 				 */
    504 				nfound++;
    505 				continue;
    506 			}
    507 			nfound++;
    508 
    509 			/* No need to lock the LWP in order to see LSZOMB. */
    510 			if (l2->l_stat != LSZOMB)
    511 				continue;
    512 
    513 			/*
    514 			 * We're no longer waiting.  Reset the "first waiter"
    515 			 * pointer on the target, in case it was us.
    516 			 */
    517 			l->l_waitingfor = 0;
    518 			l2->l_waiter = 0;
    519 			p->p_nlwpwait--;
    520 			if (departed)
    521 				*departed = l2->l_lid;
    522 			sched_lwp_collect(l2);
    523 
    524 			/* lwp_free() releases the proc lock. */
    525 			lwp_free(l2, false, false);
    526 			mutex_enter(p->p_lock);
    527 			return 0;
    528 		}
    529 
    530 		if (error != 0)
    531 			break;
    532 		if (nfound == 0) {
    533 			error = ESRCH;
    534 			break;
    535 		}
    536 
    537 		/*
    538 		 * The kernel is careful to ensure that it can not deadlock
    539 		 * when exiting - just keep waiting.
    540 		 */
    541 		if (exiting) {
    542 			KASSERT(p->p_nlwps > 1);
    543 			cv_wait(&p->p_lwpcv, p->p_lock);
    544 			continue;
    545 		}
    546 
    547 		/*
    548 		 * If all other LWPs are waiting for exits or suspends
    549 		 * and the supply of zombies and potential zombies is
    550 		 * exhausted, then we are about to deadlock.
    551 		 *
    552 		 * If the process is exiting (and this LWP is not the one
    553 		 * that is coordinating the exit) then bail out now.
    554 		 */
    555 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    556 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    557 			error = EDEADLK;
    558 			break;
    559 		}
    560 
    561 		/*
    562 		 * Sit around and wait for something to happen.  We'll be
    563 		 * awoken if any of the conditions examined change: if an
    564 		 * LWP exits, is collected, or is detached.
    565 		 */
    566 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    567 			break;
    568 	}
    569 
    570 	/*
    571 	 * We didn't find any LWPs to collect, we may have received a
    572 	 * signal, or some other condition has caused us to bail out.
    573 	 *
    574 	 * If waiting on a specific LWP, clear the waiters marker: some
    575 	 * other LWP may want it.  Then, kick all the remaining waiters
    576 	 * so that they can re-check for zombies and for deadlock.
    577 	 */
    578 	if (lid != 0) {
    579 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    580 			if (l2->l_lid == lid) {
    581 				if (l2->l_waiter == curlid)
    582 					l2->l_waiter = 0;
    583 				break;
    584 			}
    585 		}
    586 	}
    587 	p->p_nlwpwait--;
    588 	l->l_waitingfor = 0;
    589 	cv_broadcast(&p->p_lwpcv);
    590 
    591 	return error;
    592 }
    593 
    594 /*
    595  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    596  * The new LWP is created in state LSIDL and must be set running,
    597  * suspended, or stopped by the caller.
    598  */
    599 int
    600 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    601 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    602 	   lwp_t **rnewlwpp, int sclass)
    603 {
    604 	struct lwp *l2, *isfree;
    605 	turnstile_t *ts;
    606 
    607 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    608 
    609 	/*
    610 	 * First off, reap any detached LWP waiting to be collected.
    611 	 * We can re-use its LWP structure and turnstile.
    612 	 */
    613 	isfree = NULL;
    614 	if (p2->p_zomblwp != NULL) {
    615 		mutex_enter(p2->p_lock);
    616 		if ((isfree = p2->p_zomblwp) != NULL) {
    617 			p2->p_zomblwp = NULL;
    618 			lwp_free(isfree, true, false);/* releases proc mutex */
    619 		} else
    620 			mutex_exit(p2->p_lock);
    621 	}
    622 	if (isfree == NULL) {
    623 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    624 		memset(l2, 0, sizeof(*l2));
    625 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    626 		SLIST_INIT(&l2->l_pi_lenders);
    627 	} else {
    628 		l2 = isfree;
    629 		ts = l2->l_ts;
    630 		KASSERT(l2->l_inheritedprio == -1);
    631 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    632 		memset(l2, 0, sizeof(*l2));
    633 		l2->l_ts = ts;
    634 	}
    635 
    636 	l2->l_stat = LSIDL;
    637 	l2->l_proc = p2;
    638 	l2->l_refcnt = 1;
    639 	l2->l_class = sclass;
    640 
    641 	/*
    642 	 * If vfork(), we want the LWP to run fast and on the same CPU
    643 	 * as its parent, so that it can reuse the VM context and cache
    644 	 * footprint on the local CPU.
    645 	 */
    646 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    647 	l2->l_kpribase = PRI_KERNEL;
    648 	l2->l_priority = l1->l_priority;
    649 	l2->l_inheritedprio = -1;
    650 	l2->l_flag = 0;
    651 	l2->l_pflag = LP_MPSAFE;
    652 	TAILQ_INIT(&l2->l_ld_locks);
    653 
    654 	/*
    655 	 * If not the first LWP in the process, grab a reference to the
    656 	 * descriptor table.
    657 	 */
    658 	l2->l_fd = p2->p_fd;
    659 	if (p2->p_nlwps != 0) {
    660 		KASSERT(l1->l_proc == p2);
    661 		fd_hold(l2);
    662 	} else {
    663 		KASSERT(l1->l_proc != p2);
    664 	}
    665 
    666 	if (p2->p_flag & PK_SYSTEM) {
    667 		/* Mark it as a system LWP. */
    668 		l2->l_flag |= LW_SYSTEM;
    669 	}
    670 
    671 	kpreempt_disable();
    672 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    673 	l2->l_cpu = l1->l_cpu;
    674 	kpreempt_enable();
    675 
    676 	kdtrace_thread_ctor(NULL, l2);
    677 	lwp_initspecific(l2);
    678 	sched_lwp_fork(l1, l2);
    679 	lwp_update_creds(l2);
    680 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    681 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    682 	cv_init(&l2->l_sigcv, "sigwait");
    683 	l2->l_syncobj = &sched_syncobj;
    684 
    685 	if (rnewlwpp != NULL)
    686 		*rnewlwpp = l2;
    687 
    688 	uvm_lwp_setuarea(l2, uaddr);
    689 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    690 	    (arg != NULL) ? arg : l2);
    691 
    692 	mutex_enter(p2->p_lock);
    693 
    694 	if ((flags & LWP_DETACHED) != 0) {
    695 		l2->l_prflag = LPR_DETACHED;
    696 		p2->p_ndlwps++;
    697 	} else
    698 		l2->l_prflag = 0;
    699 
    700 	l2->l_sigmask = l1->l_sigmask;
    701 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    702 	sigemptyset(&l2->l_sigpend.sp_set);
    703 
    704 	p2->p_nlwpid++;
    705 	if (p2->p_nlwpid == 0)
    706 		p2->p_nlwpid++;
    707 	l2->l_lid = p2->p_nlwpid;
    708 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    709 	p2->p_nlwps++;
    710 
    711 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    712 		/* Inherit an affinity */
    713 		if (l1->l_flag & LW_AFFINITY) {
    714 			/*
    715 			 * Note that we hold the state lock while inheriting
    716 			 * the affinity to avoid race with sched_setaffinity().
    717 			 */
    718 			lwp_lock(l1);
    719 			if (l1->l_flag & LW_AFFINITY) {
    720 				kcpuset_use(l1->l_affinity);
    721 				l2->l_affinity = l1->l_affinity;
    722 				l2->l_flag |= LW_AFFINITY;
    723 			}
    724 			lwp_unlock(l1);
    725 		}
    726 		lwp_lock(l2);
    727 		/* Inherit a processor-set */
    728 		l2->l_psid = l1->l_psid;
    729 		/* Look for a CPU to start */
    730 		l2->l_cpu = sched_takecpu(l2);
    731 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    732 	}
    733 	mutex_exit(p2->p_lock);
    734 
    735 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
    736 
    737 	mutex_enter(proc_lock);
    738 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    739 	mutex_exit(proc_lock);
    740 
    741 	SYSCALL_TIME_LWP_INIT(l2);
    742 
    743 	if (p2->p_emul->e_lwp_fork)
    744 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    745 
    746 	return (0);
    747 }
    748 
    749 /*
    750  * Called by MD code when a new LWP begins execution.  Must be called
    751  * with the previous LWP locked (so at splsched), or if there is no
    752  * previous LWP, at splsched.
    753  */
    754 void
    755 lwp_startup(struct lwp *prev, struct lwp *new)
    756 {
    757 
    758 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
    759 
    760 	KASSERT(kpreempt_disabled());
    761 	if (prev != NULL) {
    762 		/*
    763 		 * Normalize the count of the spin-mutexes, it was
    764 		 * increased in mi_switch().  Unmark the state of
    765 		 * context switch - it is finished for previous LWP.
    766 		 */
    767 		curcpu()->ci_mtx_count++;
    768 		membar_exit();
    769 		prev->l_ctxswtch = 0;
    770 	}
    771 	KPREEMPT_DISABLE(new);
    772 	spl0();
    773 	pmap_activate(new);
    774 	LOCKDEBUG_BARRIER(NULL, 0);
    775 	KPREEMPT_ENABLE(new);
    776 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    777 		KERNEL_LOCK(1, new);
    778 	}
    779 }
    780 
    781 /*
    782  * Exit an LWP.
    783  */
    784 void
    785 lwp_exit(struct lwp *l)
    786 {
    787 	struct proc *p = l->l_proc;
    788 	struct lwp *l2;
    789 	bool current;
    790 
    791 	current = (l == curlwp);
    792 
    793 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    794 	KASSERT(p == curproc);
    795 
    796 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
    797 
    798 	/*
    799 	 * Verify that we hold no locks other than the kernel lock.
    800 	 */
    801 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    802 
    803 	/*
    804 	 * If we are the last live LWP in a process, we need to exit the
    805 	 * entire process.  We do so with an exit status of zero, because
    806 	 * it's a "controlled" exit, and because that's what Solaris does.
    807 	 *
    808 	 * We are not quite a zombie yet, but for accounting purposes we
    809 	 * must increment the count of zombies here.
    810 	 *
    811 	 * Note: the last LWP's specificdata will be deleted here.
    812 	 */
    813 	mutex_enter(p->p_lock);
    814 	if (p->p_nlwps - p->p_nzlwps == 1) {
    815 		KASSERT(current == true);
    816 		/* XXXSMP kernel_lock not held */
    817 		exit1(l, 0);
    818 		/* NOTREACHED */
    819 	}
    820 	p->p_nzlwps++;
    821 	mutex_exit(p->p_lock);
    822 
    823 	if (p->p_emul->e_lwp_exit)
    824 		(*p->p_emul->e_lwp_exit)(l);
    825 
    826 	/* Drop filedesc reference. */
    827 	fd_free();
    828 
    829 	/* Delete the specificdata while it's still safe to sleep. */
    830 	lwp_finispecific(l);
    831 
    832 	/*
    833 	 * Release our cached credentials.
    834 	 */
    835 	kauth_cred_free(l->l_cred);
    836 	callout_destroy(&l->l_timeout_ch);
    837 
    838 	/*
    839 	 * Remove the LWP from the global list.
    840 	 */
    841 	mutex_enter(proc_lock);
    842 	LIST_REMOVE(l, l_list);
    843 	mutex_exit(proc_lock);
    844 
    845 	/*
    846 	 * Get rid of all references to the LWP that others (e.g. procfs)
    847 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    848 	 * mark it waiting for collection in the proc structure.  Note that
    849 	 * before we can do that, we need to free any other dead, deatched
    850 	 * LWP waiting to meet its maker.
    851 	 */
    852 	mutex_enter(p->p_lock);
    853 	lwp_drainrefs(l);
    854 
    855 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    856 		while ((l2 = p->p_zomblwp) != NULL) {
    857 			p->p_zomblwp = NULL;
    858 			lwp_free(l2, false, false);/* releases proc mutex */
    859 			mutex_enter(p->p_lock);
    860 			l->l_refcnt++;
    861 			lwp_drainrefs(l);
    862 		}
    863 		p->p_zomblwp = l;
    864 	}
    865 
    866 	/*
    867 	 * If we find a pending signal for the process and we have been
    868 	 * asked to check for signals, then we loose: arrange to have
    869 	 * all other LWPs in the process check for signals.
    870 	 */
    871 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    872 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    873 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    874 			lwp_lock(l2);
    875 			l2->l_flag |= LW_PENDSIG;
    876 			lwp_unlock(l2);
    877 		}
    878 	}
    879 
    880 	lwp_lock(l);
    881 	l->l_stat = LSZOMB;
    882 	if (l->l_name != NULL)
    883 		strcpy(l->l_name, "(zombie)");
    884 	if (l->l_flag & LW_AFFINITY) {
    885 		l->l_flag &= ~LW_AFFINITY;
    886 	} else {
    887 		KASSERT(l->l_affinity == NULL);
    888 	}
    889 	lwp_unlock(l);
    890 	p->p_nrlwps--;
    891 	cv_broadcast(&p->p_lwpcv);
    892 	if (l->l_lwpctl != NULL)
    893 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    894 	mutex_exit(p->p_lock);
    895 
    896 	/* Safe without lock since LWP is in zombie state */
    897 	if (l->l_affinity) {
    898 		kcpuset_unuse(l->l_affinity, NULL);
    899 		l->l_affinity = NULL;
    900 	}
    901 
    902 	/*
    903 	 * We can no longer block.  At this point, lwp_free() may already
    904 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    905 	 *
    906 	 * Free MD LWP resources.
    907 	 */
    908 	cpu_lwp_free(l, 0);
    909 
    910 	if (current) {
    911 		pmap_deactivate(l);
    912 
    913 		/*
    914 		 * Release the kernel lock, and switch away into
    915 		 * oblivion.
    916 		 */
    917 #ifdef notyet
    918 		/* XXXSMP hold in lwp_userret() */
    919 		KERNEL_UNLOCK_LAST(l);
    920 #else
    921 		KERNEL_UNLOCK_ALL(l, NULL);
    922 #endif
    923 		lwp_exit_switchaway(l);
    924 	}
    925 }
    926 
    927 /*
    928  * Free a dead LWP's remaining resources.
    929  *
    930  * XXXLWP limits.
    931  */
    932 void
    933 lwp_free(struct lwp *l, bool recycle, bool last)
    934 {
    935 	struct proc *p = l->l_proc;
    936 	struct rusage *ru;
    937 	ksiginfoq_t kq;
    938 
    939 	KASSERT(l != curlwp);
    940 
    941 	/*
    942 	 * If this was not the last LWP in the process, then adjust
    943 	 * counters and unlock.
    944 	 */
    945 	if (!last) {
    946 		/*
    947 		 * Add the LWP's run time to the process' base value.
    948 		 * This needs to co-incide with coming off p_lwps.
    949 		 */
    950 		bintime_add(&p->p_rtime, &l->l_rtime);
    951 		p->p_pctcpu += l->l_pctcpu;
    952 		ru = &p->p_stats->p_ru;
    953 		ruadd(ru, &l->l_ru);
    954 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    955 		ru->ru_nivcsw += l->l_nivcsw;
    956 		LIST_REMOVE(l, l_sibling);
    957 		p->p_nlwps--;
    958 		p->p_nzlwps--;
    959 		if ((l->l_prflag & LPR_DETACHED) != 0)
    960 			p->p_ndlwps--;
    961 
    962 		/*
    963 		 * Have any LWPs sleeping in lwp_wait() recheck for
    964 		 * deadlock.
    965 		 */
    966 		cv_broadcast(&p->p_lwpcv);
    967 		mutex_exit(p->p_lock);
    968 	}
    969 
    970 #ifdef MULTIPROCESSOR
    971 	/*
    972 	 * In the unlikely event that the LWP is still on the CPU,
    973 	 * then spin until it has switched away.  We need to release
    974 	 * all locks to avoid deadlock against interrupt handlers on
    975 	 * the target CPU.
    976 	 */
    977 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    978 		int count;
    979 		(void)count; /* XXXgcc */
    980 		KERNEL_UNLOCK_ALL(curlwp, &count);
    981 		while ((l->l_pflag & LP_RUNNING) != 0 ||
    982 		    l->l_cpu->ci_curlwp == l)
    983 			SPINLOCK_BACKOFF_HOOK;
    984 		KERNEL_LOCK(count, curlwp);
    985 	}
    986 #endif
    987 
    988 	/*
    989 	 * Destroy the LWP's remaining signal information.
    990 	 */
    991 	ksiginfo_queue_init(&kq);
    992 	sigclear(&l->l_sigpend, NULL, &kq);
    993 	ksiginfo_queue_drain(&kq);
    994 	cv_destroy(&l->l_sigcv);
    995 
    996 	/*
    997 	 * Free the LWP's turnstile and the LWP structure itself unless the
    998 	 * caller wants to recycle them.  Also, free the scheduler specific
    999 	 * data.
   1000 	 *
   1001 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1002 	 * so if it comes up just drop it quietly and move on.
   1003 	 *
   1004 	 * We don't recycle the VM resources at this time.
   1005 	 */
   1006 	if (l->l_lwpctl != NULL)
   1007 		lwp_ctl_free(l);
   1008 
   1009 	if (!recycle && l->l_ts != &turnstile0)
   1010 		pool_cache_put(turnstile_cache, l->l_ts);
   1011 	if (l->l_name != NULL)
   1012 		kmem_free(l->l_name, MAXCOMLEN);
   1013 
   1014 	cpu_lwp_free2(l);
   1015 	uvm_lwp_exit(l);
   1016 
   1017 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1018 	KASSERT(l->l_inheritedprio == -1);
   1019 	kdtrace_thread_dtor(NULL, l);
   1020 	if (!recycle)
   1021 		pool_cache_put(lwp_cache, l);
   1022 }
   1023 
   1024 /*
   1025  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1026  */
   1027 void
   1028 lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1029 {
   1030 	struct schedstate_percpu *tspc;
   1031 	int lstat = l->l_stat;
   1032 
   1033 	KASSERT(lwp_locked(l, NULL));
   1034 	KASSERT(tci != NULL);
   1035 
   1036 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1037 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1038 		lstat = LSONPROC;
   1039 	}
   1040 
   1041 	/*
   1042 	 * The destination CPU could be changed while previous migration
   1043 	 * was not finished.
   1044 	 */
   1045 	if (l->l_target_cpu != NULL) {
   1046 		l->l_target_cpu = tci;
   1047 		lwp_unlock(l);
   1048 		return;
   1049 	}
   1050 
   1051 	/* Nothing to do if trying to migrate to the same CPU */
   1052 	if (l->l_cpu == tci) {
   1053 		lwp_unlock(l);
   1054 		return;
   1055 	}
   1056 
   1057 	KASSERT(l->l_target_cpu == NULL);
   1058 	tspc = &tci->ci_schedstate;
   1059 	switch (lstat) {
   1060 	case LSRUN:
   1061 		l->l_target_cpu = tci;
   1062 		break;
   1063 	case LSIDL:
   1064 		l->l_cpu = tci;
   1065 		lwp_unlock_to(l, tspc->spc_mutex);
   1066 		return;
   1067 	case LSSLEEP:
   1068 		l->l_cpu = tci;
   1069 		break;
   1070 	case LSSTOP:
   1071 	case LSSUSPENDED:
   1072 		l->l_cpu = tci;
   1073 		if (l->l_wchan == NULL) {
   1074 			lwp_unlock_to(l, tspc->spc_lwplock);
   1075 			return;
   1076 		}
   1077 		break;
   1078 	case LSONPROC:
   1079 		l->l_target_cpu = tci;
   1080 		spc_lock(l->l_cpu);
   1081 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1082 		spc_unlock(l->l_cpu);
   1083 		break;
   1084 	}
   1085 	lwp_unlock(l);
   1086 }
   1087 
   1088 /*
   1089  * Find the LWP in the process.  Arguments may be zero, in such case,
   1090  * the calling process and first LWP in the list will be used.
   1091  * On success - returns proc locked.
   1092  */
   1093 struct lwp *
   1094 lwp_find2(pid_t pid, lwpid_t lid)
   1095 {
   1096 	proc_t *p;
   1097 	lwp_t *l;
   1098 
   1099 	/* Find the process */
   1100 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
   1101 	if (p == NULL)
   1102 		return NULL;
   1103 	mutex_enter(p->p_lock);
   1104 	if (pid != 0) {
   1105 		/* Case of p_find */
   1106 		mutex_exit(proc_lock);
   1107 	}
   1108 
   1109 	/* Find the thread */
   1110 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
   1111 	if (l == NULL) {
   1112 		mutex_exit(p->p_lock);
   1113 	}
   1114 
   1115 	return l;
   1116 }
   1117 
   1118 /*
   1119  * Look up a live LWP within the speicifed process, and return it locked.
   1120  *
   1121  * Must be called with p->p_lock held.
   1122  */
   1123 struct lwp *
   1124 lwp_find(struct proc *p, int id)
   1125 {
   1126 	struct lwp *l;
   1127 
   1128 	KASSERT(mutex_owned(p->p_lock));
   1129 
   1130 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1131 		if (l->l_lid == id)
   1132 			break;
   1133 	}
   1134 
   1135 	/*
   1136 	 * No need to lock - all of these conditions will
   1137 	 * be visible with the process level mutex held.
   1138 	 */
   1139 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1140 		l = NULL;
   1141 
   1142 	return l;
   1143 }
   1144 
   1145 /*
   1146  * Update an LWP's cached credentials to mirror the process' master copy.
   1147  *
   1148  * This happens early in the syscall path, on user trap, and on LWP
   1149  * creation.  A long-running LWP can also voluntarily choose to update
   1150  * it's credentials by calling this routine.  This may be called from
   1151  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1152  */
   1153 void
   1154 lwp_update_creds(struct lwp *l)
   1155 {
   1156 	kauth_cred_t oc;
   1157 	struct proc *p;
   1158 
   1159 	p = l->l_proc;
   1160 	oc = l->l_cred;
   1161 
   1162 	mutex_enter(p->p_lock);
   1163 	kauth_cred_hold(p->p_cred);
   1164 	l->l_cred = p->p_cred;
   1165 	l->l_prflag &= ~LPR_CRMOD;
   1166 	mutex_exit(p->p_lock);
   1167 	if (oc != NULL)
   1168 		kauth_cred_free(oc);
   1169 }
   1170 
   1171 /*
   1172  * Verify that an LWP is locked, and optionally verify that the lock matches
   1173  * one we specify.
   1174  */
   1175 int
   1176 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1177 {
   1178 	kmutex_t *cur = l->l_mutex;
   1179 
   1180 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1181 }
   1182 
   1183 /*
   1184  * Lock an LWP.
   1185  */
   1186 kmutex_t *
   1187 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1188 {
   1189 
   1190 	/*
   1191 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1192 	 *
   1193 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1194 	 */
   1195 #if 1
   1196 	while (l->l_mutex != old) {
   1197 #else
   1198 	for (;;) {
   1199 #endif
   1200 		mutex_spin_exit(old);
   1201 		old = l->l_mutex;
   1202 		mutex_spin_enter(old);
   1203 
   1204 		/*
   1205 		 * mutex_enter() will have posted a read barrier.  Re-test
   1206 		 * l->l_mutex.  If it has changed, we need to try again.
   1207 		 */
   1208 #if 1
   1209 	}
   1210 #else
   1211 	} while (__predict_false(l->l_mutex != old));
   1212 #endif
   1213 
   1214 	return old;
   1215 }
   1216 
   1217 /*
   1218  * Lend a new mutex to an LWP.  The old mutex must be held.
   1219  */
   1220 void
   1221 lwp_setlock(struct lwp *l, kmutex_t *new)
   1222 {
   1223 
   1224 	KASSERT(mutex_owned(l->l_mutex));
   1225 
   1226 	membar_exit();
   1227 	l->l_mutex = new;
   1228 }
   1229 
   1230 /*
   1231  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1232  * must be held.
   1233  */
   1234 void
   1235 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1236 {
   1237 	kmutex_t *old;
   1238 
   1239 	KASSERT(mutex_owned(l->l_mutex));
   1240 
   1241 	old = l->l_mutex;
   1242 	membar_exit();
   1243 	l->l_mutex = new;
   1244 	mutex_spin_exit(old);
   1245 }
   1246 
   1247 /*
   1248  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1249  * locked.
   1250  */
   1251 void
   1252 lwp_relock(struct lwp *l, kmutex_t *new)
   1253 {
   1254 	kmutex_t *old;
   1255 
   1256 	KASSERT(mutex_owned(l->l_mutex));
   1257 
   1258 	old = l->l_mutex;
   1259 	if (old != new) {
   1260 		mutex_spin_enter(new);
   1261 		l->l_mutex = new;
   1262 		mutex_spin_exit(old);
   1263 	}
   1264 }
   1265 
   1266 int
   1267 lwp_trylock(struct lwp *l)
   1268 {
   1269 	kmutex_t *old;
   1270 
   1271 	for (;;) {
   1272 		if (!mutex_tryenter(old = l->l_mutex))
   1273 			return 0;
   1274 		if (__predict_true(l->l_mutex == old))
   1275 			return 1;
   1276 		mutex_spin_exit(old);
   1277 	}
   1278 }
   1279 
   1280 void
   1281 lwp_unsleep(lwp_t *l, bool cleanup)
   1282 {
   1283 
   1284 	KASSERT(mutex_owned(l->l_mutex));
   1285 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1286 }
   1287 
   1288 
   1289 /*
   1290  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1291  * set.
   1292  */
   1293 void
   1294 lwp_userret(struct lwp *l)
   1295 {
   1296 	struct proc *p;
   1297 	void (*hook)(void);
   1298 	int sig;
   1299 
   1300 	KASSERT(l == curlwp);
   1301 	KASSERT(l->l_stat == LSONPROC);
   1302 	p = l->l_proc;
   1303 
   1304 #ifndef __HAVE_FAST_SOFTINTS
   1305 	/* Run pending soft interrupts. */
   1306 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1307 		softint_overlay();
   1308 #endif
   1309 
   1310 #ifdef KERN_SA
   1311 	/* Generate UNBLOCKED upcall if needed */
   1312 	if (l->l_flag & LW_SA_BLOCKING) {
   1313 		sa_unblock_userret(l);
   1314 		/* NOTREACHED */
   1315 	}
   1316 #endif
   1317 
   1318 	/*
   1319 	 * It should be safe to do this read unlocked on a multiprocessor
   1320 	 * system..
   1321 	 *
   1322 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
   1323 	 * consider it now.
   1324 	 */
   1325 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
   1326 		/*
   1327 		 * Process pending signals first, unless the process
   1328 		 * is dumping core or exiting, where we will instead
   1329 		 * enter the LW_WSUSPEND case below.
   1330 		 */
   1331 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1332 		    LW_PENDSIG) {
   1333 			mutex_enter(p->p_lock);
   1334 			while ((sig = issignal(l)) != 0)
   1335 				postsig(sig);
   1336 			mutex_exit(p->p_lock);
   1337 		}
   1338 
   1339 		/*
   1340 		 * Core-dump or suspend pending.
   1341 		 *
   1342 		 * In case of core dump, suspend ourselves, so that the
   1343 		 * kernel stack and therefore the userland registers saved
   1344 		 * in the trapframe are around for coredump() to write them
   1345 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1346 		 * will write the core file out once all other LWPs are
   1347 		 * suspended.
   1348 		 */
   1349 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1350 			mutex_enter(p->p_lock);
   1351 			p->p_nrlwps--;
   1352 			cv_broadcast(&p->p_lwpcv);
   1353 			lwp_lock(l);
   1354 			l->l_stat = LSSUSPENDED;
   1355 			lwp_unlock(l);
   1356 			mutex_exit(p->p_lock);
   1357 			lwp_lock(l);
   1358 			mi_switch(l);
   1359 		}
   1360 
   1361 		/* Process is exiting. */
   1362 		if ((l->l_flag & LW_WEXIT) != 0) {
   1363 			lwp_exit(l);
   1364 			KASSERT(0);
   1365 			/* NOTREACHED */
   1366 		}
   1367 
   1368 		/* Call userret hook; used by Linux emulation. */
   1369 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1370 			lwp_lock(l);
   1371 			l->l_flag &= ~LW_WUSERRET;
   1372 			lwp_unlock(l);
   1373 			hook = p->p_userret;
   1374 			p->p_userret = NULL;
   1375 			(*hook)();
   1376 		}
   1377 	}
   1378 
   1379 #ifdef KERN_SA
   1380 	/*
   1381 	 * Timer events are handled specially.  We only try once to deliver
   1382 	 * pending timer upcalls; if if fails, we can try again on the next
   1383 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
   1384 	 * bounce us back here through the trap path after we return.
   1385 	 */
   1386 	if (p->p_timerpend)
   1387 		timerupcall(l);
   1388 	if (l->l_flag & LW_SA_UPCALL)
   1389 		sa_upcall_userret(l);
   1390 #endif /* KERN_SA */
   1391 }
   1392 
   1393 /*
   1394  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1395  */
   1396 void
   1397 lwp_need_userret(struct lwp *l)
   1398 {
   1399 	KASSERT(lwp_locked(l, NULL));
   1400 
   1401 	/*
   1402 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1403 	 * that the condition will be seen before forcing the LWP to enter
   1404 	 * kernel mode.
   1405 	 */
   1406 	membar_producer();
   1407 	cpu_signotify(l);
   1408 }
   1409 
   1410 /*
   1411  * Add one reference to an LWP.  This will prevent the LWP from
   1412  * exiting, thus keep the lwp structure and PCB around to inspect.
   1413  */
   1414 void
   1415 lwp_addref(struct lwp *l)
   1416 {
   1417 
   1418 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1419 	KASSERT(l->l_stat != LSZOMB);
   1420 	KASSERT(l->l_refcnt != 0);
   1421 
   1422 	l->l_refcnt++;
   1423 }
   1424 
   1425 /*
   1426  * Remove one reference to an LWP.  If this is the last reference,
   1427  * then we must finalize the LWP's death.
   1428  */
   1429 void
   1430 lwp_delref(struct lwp *l)
   1431 {
   1432 	struct proc *p = l->l_proc;
   1433 
   1434 	mutex_enter(p->p_lock);
   1435 	lwp_delref2(l);
   1436 	mutex_exit(p->p_lock);
   1437 }
   1438 
   1439 /*
   1440  * Remove one reference to an LWP.  If this is the last reference,
   1441  * then we must finalize the LWP's death.  The proc mutex is held
   1442  * on entry.
   1443  */
   1444 void
   1445 lwp_delref2(struct lwp *l)
   1446 {
   1447 	struct proc *p = l->l_proc;
   1448 
   1449 	KASSERT(mutex_owned(p->p_lock));
   1450 	KASSERT(l->l_stat != LSZOMB);
   1451 	KASSERT(l->l_refcnt > 0);
   1452 	if (--l->l_refcnt == 0)
   1453 		cv_broadcast(&p->p_lwpcv);
   1454 }
   1455 
   1456 /*
   1457  * Drain all references to the current LWP.
   1458  */
   1459 void
   1460 lwp_drainrefs(struct lwp *l)
   1461 {
   1462 	struct proc *p = l->l_proc;
   1463 
   1464 	KASSERT(mutex_owned(p->p_lock));
   1465 	KASSERT(l->l_refcnt != 0);
   1466 
   1467 	l->l_refcnt--;
   1468 	while (l->l_refcnt != 0)
   1469 		cv_wait(&p->p_lwpcv, p->p_lock);
   1470 }
   1471 
   1472 /*
   1473  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1474  * be held.
   1475  */
   1476 bool
   1477 lwp_alive(lwp_t *l)
   1478 {
   1479 
   1480 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1481 
   1482 	switch (l->l_stat) {
   1483 	case LSSLEEP:
   1484 	case LSRUN:
   1485 	case LSONPROC:
   1486 	case LSSTOP:
   1487 	case LSSUSPENDED:
   1488 		return true;
   1489 	default:
   1490 		return false;
   1491 	}
   1492 }
   1493 
   1494 /*
   1495  * Return first live LWP in the process.
   1496  */
   1497 lwp_t *
   1498 lwp_find_first(proc_t *p)
   1499 {
   1500 	lwp_t *l;
   1501 
   1502 	KASSERT(mutex_owned(p->p_lock));
   1503 
   1504 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1505 		if (lwp_alive(l)) {
   1506 			return l;
   1507 		}
   1508 	}
   1509 
   1510 	return NULL;
   1511 }
   1512 
   1513 /*
   1514  * Allocate a new lwpctl structure for a user LWP.
   1515  */
   1516 int
   1517 lwp_ctl_alloc(vaddr_t *uaddr)
   1518 {
   1519 	lcproc_t *lp;
   1520 	u_int bit, i, offset;
   1521 	struct uvm_object *uao;
   1522 	int error;
   1523 	lcpage_t *lcp;
   1524 	proc_t *p;
   1525 	lwp_t *l;
   1526 
   1527 	l = curlwp;
   1528 	p = l->l_proc;
   1529 
   1530 	if (l->l_lcpage != NULL) {
   1531 		lcp = l->l_lcpage;
   1532 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1533 		return 0;
   1534 	}
   1535 
   1536 	/* First time around, allocate header structure for the process. */
   1537 	if ((lp = p->p_lwpctl) == NULL) {
   1538 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1539 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1540 		lp->lp_uao = NULL;
   1541 		TAILQ_INIT(&lp->lp_pages);
   1542 		mutex_enter(p->p_lock);
   1543 		if (p->p_lwpctl == NULL) {
   1544 			p->p_lwpctl = lp;
   1545 			mutex_exit(p->p_lock);
   1546 		} else {
   1547 			mutex_exit(p->p_lock);
   1548 			mutex_destroy(&lp->lp_lock);
   1549 			kmem_free(lp, sizeof(*lp));
   1550 			lp = p->p_lwpctl;
   1551 		}
   1552 	}
   1553 
   1554  	/*
   1555  	 * Set up an anonymous memory region to hold the shared pages.
   1556  	 * Map them into the process' address space.  The user vmspace
   1557  	 * gets the first reference on the UAO.
   1558  	 */
   1559 	mutex_enter(&lp->lp_lock);
   1560 	if (lp->lp_uao == NULL) {
   1561 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1562 		lp->lp_cur = 0;
   1563 		lp->lp_max = LWPCTL_UAREA_SZ;
   1564 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1565 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1566 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1567 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1568 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1569 		if (error != 0) {
   1570 			uao_detach(lp->lp_uao);
   1571 			lp->lp_uao = NULL;
   1572 			mutex_exit(&lp->lp_lock);
   1573 			return error;
   1574 		}
   1575 	}
   1576 
   1577 	/* Get a free block and allocate for this LWP. */
   1578 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1579 		if (lcp->lcp_nfree != 0)
   1580 			break;
   1581 	}
   1582 	if (lcp == NULL) {
   1583 		/* Nothing available - try to set up a free page. */
   1584 		if (lp->lp_cur == lp->lp_max) {
   1585 			mutex_exit(&lp->lp_lock);
   1586 			return ENOMEM;
   1587 		}
   1588 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1589 		if (lcp == NULL) {
   1590 			mutex_exit(&lp->lp_lock);
   1591 			return ENOMEM;
   1592 		}
   1593 		/*
   1594 		 * Wire the next page down in kernel space.  Since this
   1595 		 * is a new mapping, we must add a reference.
   1596 		 */
   1597 		uao = lp->lp_uao;
   1598 		(*uao->pgops->pgo_reference)(uao);
   1599 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1600 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1601 		    uao, lp->lp_cur, PAGE_SIZE,
   1602 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1603 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1604 		if (error != 0) {
   1605 			mutex_exit(&lp->lp_lock);
   1606 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1607 			(*uao->pgops->pgo_detach)(uao);
   1608 			return error;
   1609 		}
   1610 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1611 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1612 		if (error != 0) {
   1613 			mutex_exit(&lp->lp_lock);
   1614 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1615 			    lcp->lcp_kaddr + PAGE_SIZE);
   1616 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1617 			return error;
   1618 		}
   1619 		/* Prepare the page descriptor and link into the list. */
   1620 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1621 		lp->lp_cur += PAGE_SIZE;
   1622 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1623 		lcp->lcp_rotor = 0;
   1624 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1625 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1626 	}
   1627 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1628 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1629 			i = 0;
   1630 	}
   1631 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1632 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1633 	lcp->lcp_rotor = i;
   1634 	lcp->lcp_nfree--;
   1635 	l->l_lcpage = lcp;
   1636 	offset = (i << 5) + bit;
   1637 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1638 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1639 	mutex_exit(&lp->lp_lock);
   1640 
   1641 	KPREEMPT_DISABLE(l);
   1642 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1643 	KPREEMPT_ENABLE(l);
   1644 
   1645 	return 0;
   1646 }
   1647 
   1648 /*
   1649  * Free an lwpctl structure back to the per-process list.
   1650  */
   1651 void
   1652 lwp_ctl_free(lwp_t *l)
   1653 {
   1654 	lcproc_t *lp;
   1655 	lcpage_t *lcp;
   1656 	u_int map, offset;
   1657 
   1658 	lp = l->l_proc->p_lwpctl;
   1659 	KASSERT(lp != NULL);
   1660 
   1661 	lcp = l->l_lcpage;
   1662 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1663 	KASSERT(offset < LWPCTL_PER_PAGE);
   1664 
   1665 	mutex_enter(&lp->lp_lock);
   1666 	lcp->lcp_nfree++;
   1667 	map = offset >> 5;
   1668 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1669 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1670 		lcp->lcp_rotor = map;
   1671 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1672 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1673 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1674 	}
   1675 	mutex_exit(&lp->lp_lock);
   1676 }
   1677 
   1678 /*
   1679  * Process is exiting; tear down lwpctl state.  This can only be safely
   1680  * called by the last LWP in the process.
   1681  */
   1682 void
   1683 lwp_ctl_exit(void)
   1684 {
   1685 	lcpage_t *lcp, *next;
   1686 	lcproc_t *lp;
   1687 	proc_t *p;
   1688 	lwp_t *l;
   1689 
   1690 	l = curlwp;
   1691 	l->l_lwpctl = NULL;
   1692 	l->l_lcpage = NULL;
   1693 	p = l->l_proc;
   1694 	lp = p->p_lwpctl;
   1695 
   1696 	KASSERT(lp != NULL);
   1697 	KASSERT(p->p_nlwps == 1);
   1698 
   1699 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1700 		next = TAILQ_NEXT(lcp, lcp_chain);
   1701 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1702 		    lcp->lcp_kaddr + PAGE_SIZE);
   1703 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1704 	}
   1705 
   1706 	if (lp->lp_uao != NULL) {
   1707 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1708 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1709 	}
   1710 
   1711 	mutex_destroy(&lp->lp_lock);
   1712 	kmem_free(lp, sizeof(*lp));
   1713 	p->p_lwpctl = NULL;
   1714 }
   1715 
   1716 /*
   1717  * Return the current LWP's "preemption counter".  Used to detect
   1718  * preemption across operations that can tolerate preemption without
   1719  * crashing, but which may generate incorrect results if preempted.
   1720  */
   1721 uint64_t
   1722 lwp_pctr(void)
   1723 {
   1724 
   1725 	return curlwp->l_ncsw;
   1726 }
   1727 
   1728 #if defined(DDB)
   1729 void
   1730 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1731 {
   1732 	lwp_t *l;
   1733 
   1734 	LIST_FOREACH(l, &alllwp, l_list) {
   1735 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1736 
   1737 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1738 			continue;
   1739 		}
   1740 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1741 		    (void *)addr, (void *)stack,
   1742 		    (size_t)(addr - stack), l);
   1743 	}
   1744 }
   1745 #endif /* defined(DDB) */
   1746