kern_lwp.c revision 1.145 1 /* $NetBSD: kern_lwp.c,v 1.145 2010/04/12 23:20:18 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock and matches lwp::l_cpu.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock and matches lwp::l_cpu.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * (But not always for kernel threads. There are some special cases
200 * as mentioned above. See kern_softint.c.)
201 *
202 * Note that an LWP is considered running or likely to run soon if in
203 * one of the following states. This affects the value of p_nrlwps:
204 *
205 * LSRUN, LSONPROC, LSSLEEP
206 *
207 * p_lock does not need to be held when transitioning among these
208 * three states, hence p_lock is rarely taken for state transitions.
209 */
210
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.145 2010/04/12 23:20:18 pooka Exp $");
213
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_sa.h"
217 #include "opt_dtrace.h"
218
219 #define _LWP_API_PRIVATE
220
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/sa.h>
227 #include <sys/savar.h>
228 #include <sys/syscallargs.h>
229 #include <sys/syscall_stats.h>
230 #include <sys/kauth.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241
242 #include <uvm/uvm_extern.h>
243 #include <uvm/uvm_object.h>
244
245 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
246
247 struct pool lwp_uc_pool;
248
249 static pool_cache_t lwp_cache;
250
251 /* DTrace proc provider probes */
252 SDT_PROBE_DEFINE(proc,,,lwp_create,
253 "struct lwp *", NULL,
254 NULL, NULL, NULL, NULL,
255 NULL, NULL, NULL, NULL);
256 SDT_PROBE_DEFINE(proc,,,lwp_start,
257 "struct lwp *", NULL,
258 NULL, NULL, NULL, NULL,
259 NULL, NULL, NULL, NULL);
260 SDT_PROBE_DEFINE(proc,,,lwp_exit,
261 "struct lwp *", NULL,
262 NULL, NULL, NULL, NULL,
263 NULL, NULL, NULL, NULL);
264
265 void
266 lwpinit(void)
267 {
268
269 pool_init(&lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
270 &pool_allocator_nointr, IPL_NONE);
271 lwpinit_specificdata();
272 lwp_sys_init();
273 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
274 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
275 }
276
277 /*
278 * Set an suspended.
279 *
280 * Must be called with p_lock held, and the LWP locked. Will unlock the
281 * LWP before return.
282 */
283 int
284 lwp_suspend(struct lwp *curl, struct lwp *t)
285 {
286 int error;
287
288 KASSERT(mutex_owned(t->l_proc->p_lock));
289 KASSERT(lwp_locked(t, NULL));
290
291 KASSERT(curl != t || curl->l_stat == LSONPROC);
292
293 /*
294 * If the current LWP has been told to exit, we must not suspend anyone
295 * else or deadlock could occur. We won't return to userspace.
296 */
297 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
298 lwp_unlock(t);
299 return (EDEADLK);
300 }
301
302 error = 0;
303
304 switch (t->l_stat) {
305 case LSRUN:
306 case LSONPROC:
307 t->l_flag |= LW_WSUSPEND;
308 lwp_need_userret(t);
309 lwp_unlock(t);
310 break;
311
312 case LSSLEEP:
313 t->l_flag |= LW_WSUSPEND;
314
315 /*
316 * Kick the LWP and try to get it to the kernel boundary
317 * so that it will release any locks that it holds.
318 * setrunnable() will release the lock.
319 */
320 if ((t->l_flag & LW_SINTR) != 0)
321 setrunnable(t);
322 else
323 lwp_unlock(t);
324 break;
325
326 case LSSUSPENDED:
327 lwp_unlock(t);
328 break;
329
330 case LSSTOP:
331 t->l_flag |= LW_WSUSPEND;
332 setrunnable(t);
333 break;
334
335 case LSIDL:
336 case LSZOMB:
337 error = EINTR; /* It's what Solaris does..... */
338 lwp_unlock(t);
339 break;
340 }
341
342 return (error);
343 }
344
345 /*
346 * Restart a suspended LWP.
347 *
348 * Must be called with p_lock held, and the LWP locked. Will unlock the
349 * LWP before return.
350 */
351 void
352 lwp_continue(struct lwp *l)
353 {
354
355 KASSERT(mutex_owned(l->l_proc->p_lock));
356 KASSERT(lwp_locked(l, NULL));
357
358 /* If rebooting or not suspended, then just bail out. */
359 if ((l->l_flag & LW_WREBOOT) != 0) {
360 lwp_unlock(l);
361 return;
362 }
363
364 l->l_flag &= ~LW_WSUSPEND;
365
366 if (l->l_stat != LSSUSPENDED) {
367 lwp_unlock(l);
368 return;
369 }
370
371 /* setrunnable() will release the lock. */
372 setrunnable(l);
373 }
374
375 /*
376 * Restart a stopped LWP.
377 *
378 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
379 * LWP before return.
380 */
381 void
382 lwp_unstop(struct lwp *l)
383 {
384 struct proc *p = l->l_proc;
385
386 KASSERT(mutex_owned(proc_lock));
387 KASSERT(mutex_owned(p->p_lock));
388
389 lwp_lock(l);
390
391 /* If not stopped, then just bail out. */
392 if (l->l_stat != LSSTOP) {
393 lwp_unlock(l);
394 return;
395 }
396
397 p->p_stat = SACTIVE;
398 p->p_sflag &= ~PS_STOPPING;
399
400 if (!p->p_waited)
401 p->p_pptr->p_nstopchild--;
402
403 if (l->l_wchan == NULL) {
404 /* setrunnable() will release the lock. */
405 setrunnable(l);
406 } else {
407 l->l_stat = LSSLEEP;
408 p->p_nrlwps++;
409 lwp_unlock(l);
410 }
411 }
412
413 /*
414 * Wait for an LWP within the current process to exit. If 'lid' is
415 * non-zero, we are waiting for a specific LWP.
416 *
417 * Must be called with p->p_lock held.
418 */
419 int
420 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
421 {
422 struct proc *p = l->l_proc;
423 struct lwp *l2;
424 int nfound, error;
425 lwpid_t curlid;
426 bool exiting;
427
428 KASSERT(mutex_owned(p->p_lock));
429
430 p->p_nlwpwait++;
431 l->l_waitingfor = lid;
432 curlid = l->l_lid;
433 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
434
435 for (;;) {
436 /*
437 * Avoid a race between exit1() and sigexit(): if the
438 * process is dumping core, then we need to bail out: call
439 * into lwp_userret() where we will be suspended until the
440 * deed is done.
441 */
442 if ((p->p_sflag & PS_WCORE) != 0) {
443 mutex_exit(p->p_lock);
444 lwp_userret(l);
445 #ifdef DIAGNOSTIC
446 panic("lwp_wait1");
447 #endif
448 /* NOTREACHED */
449 }
450
451 /*
452 * First off, drain any detached LWP that is waiting to be
453 * reaped.
454 */
455 while ((l2 = p->p_zomblwp) != NULL) {
456 p->p_zomblwp = NULL;
457 lwp_free(l2, false, false);/* releases proc mutex */
458 mutex_enter(p->p_lock);
459 }
460
461 /*
462 * Now look for an LWP to collect. If the whole process is
463 * exiting, count detached LWPs as eligible to be collected,
464 * but don't drain them here.
465 */
466 nfound = 0;
467 error = 0;
468 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
469 /*
470 * If a specific wait and the target is waiting on
471 * us, then avoid deadlock. This also traps LWPs
472 * that try to wait on themselves.
473 *
474 * Note that this does not handle more complicated
475 * cycles, like: t1 -> t2 -> t3 -> t1. The process
476 * can still be killed so it is not a major problem.
477 */
478 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
479 error = EDEADLK;
480 break;
481 }
482 if (l2 == l)
483 continue;
484 if ((l2->l_prflag & LPR_DETACHED) != 0) {
485 nfound += exiting;
486 continue;
487 }
488 if (lid != 0) {
489 if (l2->l_lid != lid)
490 continue;
491 /*
492 * Mark this LWP as the first waiter, if there
493 * is no other.
494 */
495 if (l2->l_waiter == 0)
496 l2->l_waiter = curlid;
497 } else if (l2->l_waiter != 0) {
498 /*
499 * It already has a waiter - so don't
500 * collect it. If the waiter doesn't
501 * grab it we'll get another chance
502 * later.
503 */
504 nfound++;
505 continue;
506 }
507 nfound++;
508
509 /* No need to lock the LWP in order to see LSZOMB. */
510 if (l2->l_stat != LSZOMB)
511 continue;
512
513 /*
514 * We're no longer waiting. Reset the "first waiter"
515 * pointer on the target, in case it was us.
516 */
517 l->l_waitingfor = 0;
518 l2->l_waiter = 0;
519 p->p_nlwpwait--;
520 if (departed)
521 *departed = l2->l_lid;
522 sched_lwp_collect(l2);
523
524 /* lwp_free() releases the proc lock. */
525 lwp_free(l2, false, false);
526 mutex_enter(p->p_lock);
527 return 0;
528 }
529
530 if (error != 0)
531 break;
532 if (nfound == 0) {
533 error = ESRCH;
534 break;
535 }
536
537 /*
538 * The kernel is careful to ensure that it can not deadlock
539 * when exiting - just keep waiting.
540 */
541 if (exiting) {
542 KASSERT(p->p_nlwps > 1);
543 cv_wait(&p->p_lwpcv, p->p_lock);
544 continue;
545 }
546
547 /*
548 * If all other LWPs are waiting for exits or suspends
549 * and the supply of zombies and potential zombies is
550 * exhausted, then we are about to deadlock.
551 *
552 * If the process is exiting (and this LWP is not the one
553 * that is coordinating the exit) then bail out now.
554 */
555 if ((p->p_sflag & PS_WEXIT) != 0 ||
556 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
557 error = EDEADLK;
558 break;
559 }
560
561 /*
562 * Sit around and wait for something to happen. We'll be
563 * awoken if any of the conditions examined change: if an
564 * LWP exits, is collected, or is detached.
565 */
566 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
567 break;
568 }
569
570 /*
571 * We didn't find any LWPs to collect, we may have received a
572 * signal, or some other condition has caused us to bail out.
573 *
574 * If waiting on a specific LWP, clear the waiters marker: some
575 * other LWP may want it. Then, kick all the remaining waiters
576 * so that they can re-check for zombies and for deadlock.
577 */
578 if (lid != 0) {
579 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
580 if (l2->l_lid == lid) {
581 if (l2->l_waiter == curlid)
582 l2->l_waiter = 0;
583 break;
584 }
585 }
586 }
587 p->p_nlwpwait--;
588 l->l_waitingfor = 0;
589 cv_broadcast(&p->p_lwpcv);
590
591 return error;
592 }
593
594 /*
595 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
596 * The new LWP is created in state LSIDL and must be set running,
597 * suspended, or stopped by the caller.
598 */
599 int
600 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
601 void *stack, size_t stacksize, void (*func)(void *), void *arg,
602 lwp_t **rnewlwpp, int sclass)
603 {
604 struct lwp *l2, *isfree;
605 turnstile_t *ts;
606
607 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
608
609 /*
610 * First off, reap any detached LWP waiting to be collected.
611 * We can re-use its LWP structure and turnstile.
612 */
613 isfree = NULL;
614 if (p2->p_zomblwp != NULL) {
615 mutex_enter(p2->p_lock);
616 if ((isfree = p2->p_zomblwp) != NULL) {
617 p2->p_zomblwp = NULL;
618 lwp_free(isfree, true, false);/* releases proc mutex */
619 } else
620 mutex_exit(p2->p_lock);
621 }
622 if (isfree == NULL) {
623 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
624 memset(l2, 0, sizeof(*l2));
625 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
626 SLIST_INIT(&l2->l_pi_lenders);
627 } else {
628 l2 = isfree;
629 ts = l2->l_ts;
630 KASSERT(l2->l_inheritedprio == -1);
631 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
632 memset(l2, 0, sizeof(*l2));
633 l2->l_ts = ts;
634 }
635
636 l2->l_stat = LSIDL;
637 l2->l_proc = p2;
638 l2->l_refcnt = 1;
639 l2->l_class = sclass;
640
641 /*
642 * If vfork(), we want the LWP to run fast and on the same CPU
643 * as its parent, so that it can reuse the VM context and cache
644 * footprint on the local CPU.
645 */
646 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
647 l2->l_kpribase = PRI_KERNEL;
648 l2->l_priority = l1->l_priority;
649 l2->l_inheritedprio = -1;
650 l2->l_flag = 0;
651 l2->l_pflag = LP_MPSAFE;
652 TAILQ_INIT(&l2->l_ld_locks);
653
654 /*
655 * If not the first LWP in the process, grab a reference to the
656 * descriptor table.
657 */
658 l2->l_fd = p2->p_fd;
659 if (p2->p_nlwps != 0) {
660 KASSERT(l1->l_proc == p2);
661 fd_hold(l2);
662 } else {
663 KASSERT(l1->l_proc != p2);
664 }
665
666 if (p2->p_flag & PK_SYSTEM) {
667 /* Mark it as a system LWP. */
668 l2->l_flag |= LW_SYSTEM;
669 }
670
671 kpreempt_disable();
672 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
673 l2->l_cpu = l1->l_cpu;
674 kpreempt_enable();
675
676 kdtrace_thread_ctor(NULL, l2);
677 lwp_initspecific(l2);
678 sched_lwp_fork(l1, l2);
679 lwp_update_creds(l2);
680 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
681 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
682 cv_init(&l2->l_sigcv, "sigwait");
683 l2->l_syncobj = &sched_syncobj;
684
685 if (rnewlwpp != NULL)
686 *rnewlwpp = l2;
687
688 uvm_lwp_setuarea(l2, uaddr);
689 uvm_lwp_fork(l1, l2, stack, stacksize, func,
690 (arg != NULL) ? arg : l2);
691
692 mutex_enter(p2->p_lock);
693
694 if ((flags & LWP_DETACHED) != 0) {
695 l2->l_prflag = LPR_DETACHED;
696 p2->p_ndlwps++;
697 } else
698 l2->l_prflag = 0;
699
700 l2->l_sigmask = l1->l_sigmask;
701 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
702 sigemptyset(&l2->l_sigpend.sp_set);
703
704 p2->p_nlwpid++;
705 if (p2->p_nlwpid == 0)
706 p2->p_nlwpid++;
707 l2->l_lid = p2->p_nlwpid;
708 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
709 p2->p_nlwps++;
710
711 if ((p2->p_flag & PK_SYSTEM) == 0) {
712 /* Inherit an affinity */
713 if (l1->l_flag & LW_AFFINITY) {
714 /*
715 * Note that we hold the state lock while inheriting
716 * the affinity to avoid race with sched_setaffinity().
717 */
718 lwp_lock(l1);
719 if (l1->l_flag & LW_AFFINITY) {
720 kcpuset_use(l1->l_affinity);
721 l2->l_affinity = l1->l_affinity;
722 l2->l_flag |= LW_AFFINITY;
723 }
724 lwp_unlock(l1);
725 }
726 lwp_lock(l2);
727 /* Inherit a processor-set */
728 l2->l_psid = l1->l_psid;
729 /* Look for a CPU to start */
730 l2->l_cpu = sched_takecpu(l2);
731 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
732 }
733 mutex_exit(p2->p_lock);
734
735 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
736
737 mutex_enter(proc_lock);
738 LIST_INSERT_HEAD(&alllwp, l2, l_list);
739 mutex_exit(proc_lock);
740
741 SYSCALL_TIME_LWP_INIT(l2);
742
743 if (p2->p_emul->e_lwp_fork)
744 (*p2->p_emul->e_lwp_fork)(l1, l2);
745
746 return (0);
747 }
748
749 /*
750 * Called by MD code when a new LWP begins execution. Must be called
751 * with the previous LWP locked (so at splsched), or if there is no
752 * previous LWP, at splsched.
753 */
754 void
755 lwp_startup(struct lwp *prev, struct lwp *new)
756 {
757
758 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
759
760 KASSERT(kpreempt_disabled());
761 if (prev != NULL) {
762 /*
763 * Normalize the count of the spin-mutexes, it was
764 * increased in mi_switch(). Unmark the state of
765 * context switch - it is finished for previous LWP.
766 */
767 curcpu()->ci_mtx_count++;
768 membar_exit();
769 prev->l_ctxswtch = 0;
770 }
771 KPREEMPT_DISABLE(new);
772 spl0();
773 pmap_activate(new);
774 LOCKDEBUG_BARRIER(NULL, 0);
775 KPREEMPT_ENABLE(new);
776 if ((new->l_pflag & LP_MPSAFE) == 0) {
777 KERNEL_LOCK(1, new);
778 }
779 }
780
781 /*
782 * Exit an LWP.
783 */
784 void
785 lwp_exit(struct lwp *l)
786 {
787 struct proc *p = l->l_proc;
788 struct lwp *l2;
789 bool current;
790
791 current = (l == curlwp);
792
793 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
794 KASSERT(p == curproc);
795
796 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
797
798 /*
799 * Verify that we hold no locks other than the kernel lock.
800 */
801 LOCKDEBUG_BARRIER(&kernel_lock, 0);
802
803 /*
804 * If we are the last live LWP in a process, we need to exit the
805 * entire process. We do so with an exit status of zero, because
806 * it's a "controlled" exit, and because that's what Solaris does.
807 *
808 * We are not quite a zombie yet, but for accounting purposes we
809 * must increment the count of zombies here.
810 *
811 * Note: the last LWP's specificdata will be deleted here.
812 */
813 mutex_enter(p->p_lock);
814 if (p->p_nlwps - p->p_nzlwps == 1) {
815 KASSERT(current == true);
816 /* XXXSMP kernel_lock not held */
817 exit1(l, 0);
818 /* NOTREACHED */
819 }
820 p->p_nzlwps++;
821 mutex_exit(p->p_lock);
822
823 if (p->p_emul->e_lwp_exit)
824 (*p->p_emul->e_lwp_exit)(l);
825
826 /* Drop filedesc reference. */
827 fd_free();
828
829 /* Delete the specificdata while it's still safe to sleep. */
830 lwp_finispecific(l);
831
832 /*
833 * Release our cached credentials.
834 */
835 kauth_cred_free(l->l_cred);
836 callout_destroy(&l->l_timeout_ch);
837
838 /*
839 * Remove the LWP from the global list.
840 */
841 mutex_enter(proc_lock);
842 LIST_REMOVE(l, l_list);
843 mutex_exit(proc_lock);
844
845 /*
846 * Get rid of all references to the LWP that others (e.g. procfs)
847 * may have, and mark the LWP as a zombie. If the LWP is detached,
848 * mark it waiting for collection in the proc structure. Note that
849 * before we can do that, we need to free any other dead, deatched
850 * LWP waiting to meet its maker.
851 */
852 mutex_enter(p->p_lock);
853 lwp_drainrefs(l);
854
855 if ((l->l_prflag & LPR_DETACHED) != 0) {
856 while ((l2 = p->p_zomblwp) != NULL) {
857 p->p_zomblwp = NULL;
858 lwp_free(l2, false, false);/* releases proc mutex */
859 mutex_enter(p->p_lock);
860 l->l_refcnt++;
861 lwp_drainrefs(l);
862 }
863 p->p_zomblwp = l;
864 }
865
866 /*
867 * If we find a pending signal for the process and we have been
868 * asked to check for signals, then we loose: arrange to have
869 * all other LWPs in the process check for signals.
870 */
871 if ((l->l_flag & LW_PENDSIG) != 0 &&
872 firstsig(&p->p_sigpend.sp_set) != 0) {
873 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
874 lwp_lock(l2);
875 l2->l_flag |= LW_PENDSIG;
876 lwp_unlock(l2);
877 }
878 }
879
880 lwp_lock(l);
881 l->l_stat = LSZOMB;
882 if (l->l_name != NULL)
883 strcpy(l->l_name, "(zombie)");
884 if (l->l_flag & LW_AFFINITY) {
885 l->l_flag &= ~LW_AFFINITY;
886 } else {
887 KASSERT(l->l_affinity == NULL);
888 }
889 lwp_unlock(l);
890 p->p_nrlwps--;
891 cv_broadcast(&p->p_lwpcv);
892 if (l->l_lwpctl != NULL)
893 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
894 mutex_exit(p->p_lock);
895
896 /* Safe without lock since LWP is in zombie state */
897 if (l->l_affinity) {
898 kcpuset_unuse(l->l_affinity, NULL);
899 l->l_affinity = NULL;
900 }
901
902 /*
903 * We can no longer block. At this point, lwp_free() may already
904 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
905 *
906 * Free MD LWP resources.
907 */
908 cpu_lwp_free(l, 0);
909
910 if (current) {
911 pmap_deactivate(l);
912
913 /*
914 * Release the kernel lock, and switch away into
915 * oblivion.
916 */
917 #ifdef notyet
918 /* XXXSMP hold in lwp_userret() */
919 KERNEL_UNLOCK_LAST(l);
920 #else
921 KERNEL_UNLOCK_ALL(l, NULL);
922 #endif
923 lwp_exit_switchaway(l);
924 }
925 }
926
927 /*
928 * Free a dead LWP's remaining resources.
929 *
930 * XXXLWP limits.
931 */
932 void
933 lwp_free(struct lwp *l, bool recycle, bool last)
934 {
935 struct proc *p = l->l_proc;
936 struct rusage *ru;
937 ksiginfoq_t kq;
938
939 KASSERT(l != curlwp);
940
941 /*
942 * If this was not the last LWP in the process, then adjust
943 * counters and unlock.
944 */
945 if (!last) {
946 /*
947 * Add the LWP's run time to the process' base value.
948 * This needs to co-incide with coming off p_lwps.
949 */
950 bintime_add(&p->p_rtime, &l->l_rtime);
951 p->p_pctcpu += l->l_pctcpu;
952 ru = &p->p_stats->p_ru;
953 ruadd(ru, &l->l_ru);
954 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
955 ru->ru_nivcsw += l->l_nivcsw;
956 LIST_REMOVE(l, l_sibling);
957 p->p_nlwps--;
958 p->p_nzlwps--;
959 if ((l->l_prflag & LPR_DETACHED) != 0)
960 p->p_ndlwps--;
961
962 /*
963 * Have any LWPs sleeping in lwp_wait() recheck for
964 * deadlock.
965 */
966 cv_broadcast(&p->p_lwpcv);
967 mutex_exit(p->p_lock);
968 }
969
970 #ifdef MULTIPROCESSOR
971 /*
972 * In the unlikely event that the LWP is still on the CPU,
973 * then spin until it has switched away. We need to release
974 * all locks to avoid deadlock against interrupt handlers on
975 * the target CPU.
976 */
977 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
978 int count;
979 (void)count; /* XXXgcc */
980 KERNEL_UNLOCK_ALL(curlwp, &count);
981 while ((l->l_pflag & LP_RUNNING) != 0 ||
982 l->l_cpu->ci_curlwp == l)
983 SPINLOCK_BACKOFF_HOOK;
984 KERNEL_LOCK(count, curlwp);
985 }
986 #endif
987
988 /*
989 * Destroy the LWP's remaining signal information.
990 */
991 ksiginfo_queue_init(&kq);
992 sigclear(&l->l_sigpend, NULL, &kq);
993 ksiginfo_queue_drain(&kq);
994 cv_destroy(&l->l_sigcv);
995
996 /*
997 * Free the LWP's turnstile and the LWP structure itself unless the
998 * caller wants to recycle them. Also, free the scheduler specific
999 * data.
1000 *
1001 * We can't return turnstile0 to the pool (it didn't come from it),
1002 * so if it comes up just drop it quietly and move on.
1003 *
1004 * We don't recycle the VM resources at this time.
1005 */
1006 if (l->l_lwpctl != NULL)
1007 lwp_ctl_free(l);
1008
1009 if (!recycle && l->l_ts != &turnstile0)
1010 pool_cache_put(turnstile_cache, l->l_ts);
1011 if (l->l_name != NULL)
1012 kmem_free(l->l_name, MAXCOMLEN);
1013
1014 cpu_lwp_free2(l);
1015 uvm_lwp_exit(l);
1016
1017 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1018 KASSERT(l->l_inheritedprio == -1);
1019 kdtrace_thread_dtor(NULL, l);
1020 if (!recycle)
1021 pool_cache_put(lwp_cache, l);
1022 }
1023
1024 /*
1025 * Migrate the LWP to the another CPU. Unlocks the LWP.
1026 */
1027 void
1028 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1029 {
1030 struct schedstate_percpu *tspc;
1031 int lstat = l->l_stat;
1032
1033 KASSERT(lwp_locked(l, NULL));
1034 KASSERT(tci != NULL);
1035
1036 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1037 if ((l->l_pflag & LP_RUNNING) != 0) {
1038 lstat = LSONPROC;
1039 }
1040
1041 /*
1042 * The destination CPU could be changed while previous migration
1043 * was not finished.
1044 */
1045 if (l->l_target_cpu != NULL) {
1046 l->l_target_cpu = tci;
1047 lwp_unlock(l);
1048 return;
1049 }
1050
1051 /* Nothing to do if trying to migrate to the same CPU */
1052 if (l->l_cpu == tci) {
1053 lwp_unlock(l);
1054 return;
1055 }
1056
1057 KASSERT(l->l_target_cpu == NULL);
1058 tspc = &tci->ci_schedstate;
1059 switch (lstat) {
1060 case LSRUN:
1061 l->l_target_cpu = tci;
1062 break;
1063 case LSIDL:
1064 l->l_cpu = tci;
1065 lwp_unlock_to(l, tspc->spc_mutex);
1066 return;
1067 case LSSLEEP:
1068 l->l_cpu = tci;
1069 break;
1070 case LSSTOP:
1071 case LSSUSPENDED:
1072 l->l_cpu = tci;
1073 if (l->l_wchan == NULL) {
1074 lwp_unlock_to(l, tspc->spc_lwplock);
1075 return;
1076 }
1077 break;
1078 case LSONPROC:
1079 l->l_target_cpu = tci;
1080 spc_lock(l->l_cpu);
1081 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1082 spc_unlock(l->l_cpu);
1083 break;
1084 }
1085 lwp_unlock(l);
1086 }
1087
1088 /*
1089 * Find the LWP in the process. Arguments may be zero, in such case,
1090 * the calling process and first LWP in the list will be used.
1091 * On success - returns proc locked.
1092 */
1093 struct lwp *
1094 lwp_find2(pid_t pid, lwpid_t lid)
1095 {
1096 proc_t *p;
1097 lwp_t *l;
1098
1099 /* Find the process */
1100 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1101 if (p == NULL)
1102 return NULL;
1103 mutex_enter(p->p_lock);
1104 if (pid != 0) {
1105 /* Case of p_find */
1106 mutex_exit(proc_lock);
1107 }
1108
1109 /* Find the thread */
1110 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1111 if (l == NULL) {
1112 mutex_exit(p->p_lock);
1113 }
1114
1115 return l;
1116 }
1117
1118 /*
1119 * Look up a live LWP within the speicifed process, and return it locked.
1120 *
1121 * Must be called with p->p_lock held.
1122 */
1123 struct lwp *
1124 lwp_find(struct proc *p, int id)
1125 {
1126 struct lwp *l;
1127
1128 KASSERT(mutex_owned(p->p_lock));
1129
1130 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1131 if (l->l_lid == id)
1132 break;
1133 }
1134
1135 /*
1136 * No need to lock - all of these conditions will
1137 * be visible with the process level mutex held.
1138 */
1139 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1140 l = NULL;
1141
1142 return l;
1143 }
1144
1145 /*
1146 * Update an LWP's cached credentials to mirror the process' master copy.
1147 *
1148 * This happens early in the syscall path, on user trap, and on LWP
1149 * creation. A long-running LWP can also voluntarily choose to update
1150 * it's credentials by calling this routine. This may be called from
1151 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1152 */
1153 void
1154 lwp_update_creds(struct lwp *l)
1155 {
1156 kauth_cred_t oc;
1157 struct proc *p;
1158
1159 p = l->l_proc;
1160 oc = l->l_cred;
1161
1162 mutex_enter(p->p_lock);
1163 kauth_cred_hold(p->p_cred);
1164 l->l_cred = p->p_cred;
1165 l->l_prflag &= ~LPR_CRMOD;
1166 mutex_exit(p->p_lock);
1167 if (oc != NULL)
1168 kauth_cred_free(oc);
1169 }
1170
1171 /*
1172 * Verify that an LWP is locked, and optionally verify that the lock matches
1173 * one we specify.
1174 */
1175 int
1176 lwp_locked(struct lwp *l, kmutex_t *mtx)
1177 {
1178 kmutex_t *cur = l->l_mutex;
1179
1180 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1181 }
1182
1183 /*
1184 * Lock an LWP.
1185 */
1186 kmutex_t *
1187 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1188 {
1189
1190 /*
1191 * XXXgcc ignoring kmutex_t * volatile on i386
1192 *
1193 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1194 */
1195 #if 1
1196 while (l->l_mutex != old) {
1197 #else
1198 for (;;) {
1199 #endif
1200 mutex_spin_exit(old);
1201 old = l->l_mutex;
1202 mutex_spin_enter(old);
1203
1204 /*
1205 * mutex_enter() will have posted a read barrier. Re-test
1206 * l->l_mutex. If it has changed, we need to try again.
1207 */
1208 #if 1
1209 }
1210 #else
1211 } while (__predict_false(l->l_mutex != old));
1212 #endif
1213
1214 return old;
1215 }
1216
1217 /*
1218 * Lend a new mutex to an LWP. The old mutex must be held.
1219 */
1220 void
1221 lwp_setlock(struct lwp *l, kmutex_t *new)
1222 {
1223
1224 KASSERT(mutex_owned(l->l_mutex));
1225
1226 membar_exit();
1227 l->l_mutex = new;
1228 }
1229
1230 /*
1231 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1232 * must be held.
1233 */
1234 void
1235 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1236 {
1237 kmutex_t *old;
1238
1239 KASSERT(mutex_owned(l->l_mutex));
1240
1241 old = l->l_mutex;
1242 membar_exit();
1243 l->l_mutex = new;
1244 mutex_spin_exit(old);
1245 }
1246
1247 /*
1248 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1249 * locked.
1250 */
1251 void
1252 lwp_relock(struct lwp *l, kmutex_t *new)
1253 {
1254 kmutex_t *old;
1255
1256 KASSERT(mutex_owned(l->l_mutex));
1257
1258 old = l->l_mutex;
1259 if (old != new) {
1260 mutex_spin_enter(new);
1261 l->l_mutex = new;
1262 mutex_spin_exit(old);
1263 }
1264 }
1265
1266 int
1267 lwp_trylock(struct lwp *l)
1268 {
1269 kmutex_t *old;
1270
1271 for (;;) {
1272 if (!mutex_tryenter(old = l->l_mutex))
1273 return 0;
1274 if (__predict_true(l->l_mutex == old))
1275 return 1;
1276 mutex_spin_exit(old);
1277 }
1278 }
1279
1280 void
1281 lwp_unsleep(lwp_t *l, bool cleanup)
1282 {
1283
1284 KASSERT(mutex_owned(l->l_mutex));
1285 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1286 }
1287
1288
1289 /*
1290 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1291 * set.
1292 */
1293 void
1294 lwp_userret(struct lwp *l)
1295 {
1296 struct proc *p;
1297 void (*hook)(void);
1298 int sig;
1299
1300 KASSERT(l == curlwp);
1301 KASSERT(l->l_stat == LSONPROC);
1302 p = l->l_proc;
1303
1304 #ifndef __HAVE_FAST_SOFTINTS
1305 /* Run pending soft interrupts. */
1306 if (l->l_cpu->ci_data.cpu_softints != 0)
1307 softint_overlay();
1308 #endif
1309
1310 #ifdef KERN_SA
1311 /* Generate UNBLOCKED upcall if needed */
1312 if (l->l_flag & LW_SA_BLOCKING) {
1313 sa_unblock_userret(l);
1314 /* NOTREACHED */
1315 }
1316 #endif
1317
1318 /*
1319 * It should be safe to do this read unlocked on a multiprocessor
1320 * system..
1321 *
1322 * LW_SA_UPCALL will be handled after the while() loop, so don't
1323 * consider it now.
1324 */
1325 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1326 /*
1327 * Process pending signals first, unless the process
1328 * is dumping core or exiting, where we will instead
1329 * enter the LW_WSUSPEND case below.
1330 */
1331 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1332 LW_PENDSIG) {
1333 mutex_enter(p->p_lock);
1334 while ((sig = issignal(l)) != 0)
1335 postsig(sig);
1336 mutex_exit(p->p_lock);
1337 }
1338
1339 /*
1340 * Core-dump or suspend pending.
1341 *
1342 * In case of core dump, suspend ourselves, so that the
1343 * kernel stack and therefore the userland registers saved
1344 * in the trapframe are around for coredump() to write them
1345 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1346 * will write the core file out once all other LWPs are
1347 * suspended.
1348 */
1349 if ((l->l_flag & LW_WSUSPEND) != 0) {
1350 mutex_enter(p->p_lock);
1351 p->p_nrlwps--;
1352 cv_broadcast(&p->p_lwpcv);
1353 lwp_lock(l);
1354 l->l_stat = LSSUSPENDED;
1355 lwp_unlock(l);
1356 mutex_exit(p->p_lock);
1357 lwp_lock(l);
1358 mi_switch(l);
1359 }
1360
1361 /* Process is exiting. */
1362 if ((l->l_flag & LW_WEXIT) != 0) {
1363 lwp_exit(l);
1364 KASSERT(0);
1365 /* NOTREACHED */
1366 }
1367
1368 /* Call userret hook; used by Linux emulation. */
1369 if ((l->l_flag & LW_WUSERRET) != 0) {
1370 lwp_lock(l);
1371 l->l_flag &= ~LW_WUSERRET;
1372 lwp_unlock(l);
1373 hook = p->p_userret;
1374 p->p_userret = NULL;
1375 (*hook)();
1376 }
1377 }
1378
1379 #ifdef KERN_SA
1380 /*
1381 * Timer events are handled specially. We only try once to deliver
1382 * pending timer upcalls; if if fails, we can try again on the next
1383 * loop around. If we need to re-enter lwp_userret(), MD code will
1384 * bounce us back here through the trap path after we return.
1385 */
1386 if (p->p_timerpend)
1387 timerupcall(l);
1388 if (l->l_flag & LW_SA_UPCALL)
1389 sa_upcall_userret(l);
1390 #endif /* KERN_SA */
1391 }
1392
1393 /*
1394 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1395 */
1396 void
1397 lwp_need_userret(struct lwp *l)
1398 {
1399 KASSERT(lwp_locked(l, NULL));
1400
1401 /*
1402 * Since the tests in lwp_userret() are done unlocked, make sure
1403 * that the condition will be seen before forcing the LWP to enter
1404 * kernel mode.
1405 */
1406 membar_producer();
1407 cpu_signotify(l);
1408 }
1409
1410 /*
1411 * Add one reference to an LWP. This will prevent the LWP from
1412 * exiting, thus keep the lwp structure and PCB around to inspect.
1413 */
1414 void
1415 lwp_addref(struct lwp *l)
1416 {
1417
1418 KASSERT(mutex_owned(l->l_proc->p_lock));
1419 KASSERT(l->l_stat != LSZOMB);
1420 KASSERT(l->l_refcnt != 0);
1421
1422 l->l_refcnt++;
1423 }
1424
1425 /*
1426 * Remove one reference to an LWP. If this is the last reference,
1427 * then we must finalize the LWP's death.
1428 */
1429 void
1430 lwp_delref(struct lwp *l)
1431 {
1432 struct proc *p = l->l_proc;
1433
1434 mutex_enter(p->p_lock);
1435 lwp_delref2(l);
1436 mutex_exit(p->p_lock);
1437 }
1438
1439 /*
1440 * Remove one reference to an LWP. If this is the last reference,
1441 * then we must finalize the LWP's death. The proc mutex is held
1442 * on entry.
1443 */
1444 void
1445 lwp_delref2(struct lwp *l)
1446 {
1447 struct proc *p = l->l_proc;
1448
1449 KASSERT(mutex_owned(p->p_lock));
1450 KASSERT(l->l_stat != LSZOMB);
1451 KASSERT(l->l_refcnt > 0);
1452 if (--l->l_refcnt == 0)
1453 cv_broadcast(&p->p_lwpcv);
1454 }
1455
1456 /*
1457 * Drain all references to the current LWP.
1458 */
1459 void
1460 lwp_drainrefs(struct lwp *l)
1461 {
1462 struct proc *p = l->l_proc;
1463
1464 KASSERT(mutex_owned(p->p_lock));
1465 KASSERT(l->l_refcnt != 0);
1466
1467 l->l_refcnt--;
1468 while (l->l_refcnt != 0)
1469 cv_wait(&p->p_lwpcv, p->p_lock);
1470 }
1471
1472 /*
1473 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1474 * be held.
1475 */
1476 bool
1477 lwp_alive(lwp_t *l)
1478 {
1479
1480 KASSERT(mutex_owned(l->l_proc->p_lock));
1481
1482 switch (l->l_stat) {
1483 case LSSLEEP:
1484 case LSRUN:
1485 case LSONPROC:
1486 case LSSTOP:
1487 case LSSUSPENDED:
1488 return true;
1489 default:
1490 return false;
1491 }
1492 }
1493
1494 /*
1495 * Return first live LWP in the process.
1496 */
1497 lwp_t *
1498 lwp_find_first(proc_t *p)
1499 {
1500 lwp_t *l;
1501
1502 KASSERT(mutex_owned(p->p_lock));
1503
1504 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1505 if (lwp_alive(l)) {
1506 return l;
1507 }
1508 }
1509
1510 return NULL;
1511 }
1512
1513 /*
1514 * Allocate a new lwpctl structure for a user LWP.
1515 */
1516 int
1517 lwp_ctl_alloc(vaddr_t *uaddr)
1518 {
1519 lcproc_t *lp;
1520 u_int bit, i, offset;
1521 struct uvm_object *uao;
1522 int error;
1523 lcpage_t *lcp;
1524 proc_t *p;
1525 lwp_t *l;
1526
1527 l = curlwp;
1528 p = l->l_proc;
1529
1530 if (l->l_lcpage != NULL) {
1531 lcp = l->l_lcpage;
1532 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1533 return 0;
1534 }
1535
1536 /* First time around, allocate header structure for the process. */
1537 if ((lp = p->p_lwpctl) == NULL) {
1538 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1539 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1540 lp->lp_uao = NULL;
1541 TAILQ_INIT(&lp->lp_pages);
1542 mutex_enter(p->p_lock);
1543 if (p->p_lwpctl == NULL) {
1544 p->p_lwpctl = lp;
1545 mutex_exit(p->p_lock);
1546 } else {
1547 mutex_exit(p->p_lock);
1548 mutex_destroy(&lp->lp_lock);
1549 kmem_free(lp, sizeof(*lp));
1550 lp = p->p_lwpctl;
1551 }
1552 }
1553
1554 /*
1555 * Set up an anonymous memory region to hold the shared pages.
1556 * Map them into the process' address space. The user vmspace
1557 * gets the first reference on the UAO.
1558 */
1559 mutex_enter(&lp->lp_lock);
1560 if (lp->lp_uao == NULL) {
1561 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1562 lp->lp_cur = 0;
1563 lp->lp_max = LWPCTL_UAREA_SZ;
1564 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1565 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1566 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1567 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1568 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1569 if (error != 0) {
1570 uao_detach(lp->lp_uao);
1571 lp->lp_uao = NULL;
1572 mutex_exit(&lp->lp_lock);
1573 return error;
1574 }
1575 }
1576
1577 /* Get a free block and allocate for this LWP. */
1578 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1579 if (lcp->lcp_nfree != 0)
1580 break;
1581 }
1582 if (lcp == NULL) {
1583 /* Nothing available - try to set up a free page. */
1584 if (lp->lp_cur == lp->lp_max) {
1585 mutex_exit(&lp->lp_lock);
1586 return ENOMEM;
1587 }
1588 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1589 if (lcp == NULL) {
1590 mutex_exit(&lp->lp_lock);
1591 return ENOMEM;
1592 }
1593 /*
1594 * Wire the next page down in kernel space. Since this
1595 * is a new mapping, we must add a reference.
1596 */
1597 uao = lp->lp_uao;
1598 (*uao->pgops->pgo_reference)(uao);
1599 lcp->lcp_kaddr = vm_map_min(kernel_map);
1600 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1601 uao, lp->lp_cur, PAGE_SIZE,
1602 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1603 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1604 if (error != 0) {
1605 mutex_exit(&lp->lp_lock);
1606 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1607 (*uao->pgops->pgo_detach)(uao);
1608 return error;
1609 }
1610 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1611 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1612 if (error != 0) {
1613 mutex_exit(&lp->lp_lock);
1614 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1615 lcp->lcp_kaddr + PAGE_SIZE);
1616 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1617 return error;
1618 }
1619 /* Prepare the page descriptor and link into the list. */
1620 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1621 lp->lp_cur += PAGE_SIZE;
1622 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1623 lcp->lcp_rotor = 0;
1624 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1625 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1626 }
1627 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1628 if (++i >= LWPCTL_BITMAP_ENTRIES)
1629 i = 0;
1630 }
1631 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1632 lcp->lcp_bitmap[i] ^= (1 << bit);
1633 lcp->lcp_rotor = i;
1634 lcp->lcp_nfree--;
1635 l->l_lcpage = lcp;
1636 offset = (i << 5) + bit;
1637 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1638 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1639 mutex_exit(&lp->lp_lock);
1640
1641 KPREEMPT_DISABLE(l);
1642 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1643 KPREEMPT_ENABLE(l);
1644
1645 return 0;
1646 }
1647
1648 /*
1649 * Free an lwpctl structure back to the per-process list.
1650 */
1651 void
1652 lwp_ctl_free(lwp_t *l)
1653 {
1654 lcproc_t *lp;
1655 lcpage_t *lcp;
1656 u_int map, offset;
1657
1658 lp = l->l_proc->p_lwpctl;
1659 KASSERT(lp != NULL);
1660
1661 lcp = l->l_lcpage;
1662 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1663 KASSERT(offset < LWPCTL_PER_PAGE);
1664
1665 mutex_enter(&lp->lp_lock);
1666 lcp->lcp_nfree++;
1667 map = offset >> 5;
1668 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1669 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1670 lcp->lcp_rotor = map;
1671 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1672 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1673 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1674 }
1675 mutex_exit(&lp->lp_lock);
1676 }
1677
1678 /*
1679 * Process is exiting; tear down lwpctl state. This can only be safely
1680 * called by the last LWP in the process.
1681 */
1682 void
1683 lwp_ctl_exit(void)
1684 {
1685 lcpage_t *lcp, *next;
1686 lcproc_t *lp;
1687 proc_t *p;
1688 lwp_t *l;
1689
1690 l = curlwp;
1691 l->l_lwpctl = NULL;
1692 l->l_lcpage = NULL;
1693 p = l->l_proc;
1694 lp = p->p_lwpctl;
1695
1696 KASSERT(lp != NULL);
1697 KASSERT(p->p_nlwps == 1);
1698
1699 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1700 next = TAILQ_NEXT(lcp, lcp_chain);
1701 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1702 lcp->lcp_kaddr + PAGE_SIZE);
1703 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1704 }
1705
1706 if (lp->lp_uao != NULL) {
1707 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1708 lp->lp_uva + LWPCTL_UAREA_SZ);
1709 }
1710
1711 mutex_destroy(&lp->lp_lock);
1712 kmem_free(lp, sizeof(*lp));
1713 p->p_lwpctl = NULL;
1714 }
1715
1716 /*
1717 * Return the current LWP's "preemption counter". Used to detect
1718 * preemption across operations that can tolerate preemption without
1719 * crashing, but which may generate incorrect results if preempted.
1720 */
1721 uint64_t
1722 lwp_pctr(void)
1723 {
1724
1725 return curlwp->l_ncsw;
1726 }
1727
1728 #if defined(DDB)
1729 void
1730 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1731 {
1732 lwp_t *l;
1733
1734 LIST_FOREACH(l, &alllwp, l_list) {
1735 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1736
1737 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1738 continue;
1739 }
1740 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1741 (void *)addr, (void *)stack,
1742 (size_t)(addr - stack), l);
1743 }
1744 }
1745 #endif /* defined(DDB) */
1746