kern_lwp.c revision 1.147 1 /* $NetBSD: kern_lwp.c,v 1.147 2010/06/10 20:54:53 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSONPROC, LSZOMB:
163 *
164 * Always covered by spc_lwplock, which protects running LWPs.
165 * This is a per-CPU lock and matches lwp::l_cpu.
166 *
167 * LSIDL, LSRUN:
168 *
169 * Always covered by spc_mutex, which protects the run queues.
170 * This is a per-CPU lock and matches lwp::l_cpu.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a lock associated with the sleep queue that the
175 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue lock. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the lock is spc_lwplock.
183 *
184 * The lock order is as follows:
185 *
186 * spc::spc_lwplock ->
187 * sleeptab::st_mutex ->
188 * tschain_t::tc_mutex ->
189 * spc::spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * (But not always for kernel threads. There are some special cases
200 * as mentioned above. See kern_softint.c.)
201 *
202 * Note that an LWP is considered running or likely to run soon if in
203 * one of the following states. This affects the value of p_nrlwps:
204 *
205 * LSRUN, LSONPROC, LSSLEEP
206 *
207 * p_lock does not need to be held when transitioning among these
208 * three states, hence p_lock is rarely taken for state transitions.
209 */
210
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.147 2010/06/10 20:54:53 pooka Exp $");
213
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_sa.h"
217 #include "opt_dtrace.h"
218
219 #define _LWP_API_PRIVATE
220
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/sa.h>
227 #include <sys/savar.h>
228 #include <sys/syscallargs.h>
229 #include <sys/syscall_stats.h>
230 #include <sys/kauth.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241
242 #include <uvm/uvm_extern.h>
243 #include <uvm/uvm_object.h>
244
245 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
246 static pool_cache_t lwp_cache;
247
248 /* DTrace proc provider probes */
249 SDT_PROBE_DEFINE(proc,,,lwp_create,
250 "struct lwp *", NULL,
251 NULL, NULL, NULL, NULL,
252 NULL, NULL, NULL, NULL);
253 SDT_PROBE_DEFINE(proc,,,lwp_start,
254 "struct lwp *", NULL,
255 NULL, NULL, NULL, NULL,
256 NULL, NULL, NULL, NULL);
257 SDT_PROBE_DEFINE(proc,,,lwp_exit,
258 "struct lwp *", NULL,
259 NULL, NULL, NULL, NULL,
260 NULL, NULL, NULL, NULL);
261
262 struct turnstile turnstile0;
263 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
264 #ifdef LWP0_CPU_INFO
265 .l_cpu = LWP0_CPU_INFO,
266 #endif
267 .l_proc = &proc0,
268 .l_lid = 1,
269 .l_flag = LW_SYSTEM,
270 .l_stat = LSONPROC,
271 .l_ts = &turnstile0,
272 .l_syncobj = &sched_syncobj,
273 .l_refcnt = 1,
274 .l_priority = PRI_USER + NPRI_USER - 1,
275 .l_inheritedprio = -1,
276 .l_class = SCHED_OTHER,
277 .l_psid = PS_NONE,
278 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
279 .l_name = __UNCONST("swapper"),
280 .l_fd = &filedesc0,
281 };
282
283 void
284 lwpinit(void)
285 {
286
287 lwpinit_specificdata();
288 lwp_sys_init();
289 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
290 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
291 }
292
293 void
294 lwp0_init(void)
295 {
296 struct lwp *l = &lwp0;
297
298 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
299 KASSERT(l->l_lid == p->p_nlwpid);
300
301 LIST_INSERT_HEAD(&alllwp, l, l_list);
302
303 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
304 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
305 cv_init(&l->l_sigcv, "sigwait");
306
307 kauth_cred_hold(proc0.p_cred);
308 l->l_cred = proc0.p_cred;
309
310 lwp_initspecific(l);
311
312 SYSCALL_TIME_LWP_INIT(l);
313 }
314
315 /*
316 * Set an suspended.
317 *
318 * Must be called with p_lock held, and the LWP locked. Will unlock the
319 * LWP before return.
320 */
321 int
322 lwp_suspend(struct lwp *curl, struct lwp *t)
323 {
324 int error;
325
326 KASSERT(mutex_owned(t->l_proc->p_lock));
327 KASSERT(lwp_locked(t, NULL));
328
329 KASSERT(curl != t || curl->l_stat == LSONPROC);
330
331 /*
332 * If the current LWP has been told to exit, we must not suspend anyone
333 * else or deadlock could occur. We won't return to userspace.
334 */
335 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
336 lwp_unlock(t);
337 return (EDEADLK);
338 }
339
340 error = 0;
341
342 switch (t->l_stat) {
343 case LSRUN:
344 case LSONPROC:
345 t->l_flag |= LW_WSUSPEND;
346 lwp_need_userret(t);
347 lwp_unlock(t);
348 break;
349
350 case LSSLEEP:
351 t->l_flag |= LW_WSUSPEND;
352
353 /*
354 * Kick the LWP and try to get it to the kernel boundary
355 * so that it will release any locks that it holds.
356 * setrunnable() will release the lock.
357 */
358 if ((t->l_flag & LW_SINTR) != 0)
359 setrunnable(t);
360 else
361 lwp_unlock(t);
362 break;
363
364 case LSSUSPENDED:
365 lwp_unlock(t);
366 break;
367
368 case LSSTOP:
369 t->l_flag |= LW_WSUSPEND;
370 setrunnable(t);
371 break;
372
373 case LSIDL:
374 case LSZOMB:
375 error = EINTR; /* It's what Solaris does..... */
376 lwp_unlock(t);
377 break;
378 }
379
380 return (error);
381 }
382
383 /*
384 * Restart a suspended LWP.
385 *
386 * Must be called with p_lock held, and the LWP locked. Will unlock the
387 * LWP before return.
388 */
389 void
390 lwp_continue(struct lwp *l)
391 {
392
393 KASSERT(mutex_owned(l->l_proc->p_lock));
394 KASSERT(lwp_locked(l, NULL));
395
396 /* If rebooting or not suspended, then just bail out. */
397 if ((l->l_flag & LW_WREBOOT) != 0) {
398 lwp_unlock(l);
399 return;
400 }
401
402 l->l_flag &= ~LW_WSUSPEND;
403
404 if (l->l_stat != LSSUSPENDED) {
405 lwp_unlock(l);
406 return;
407 }
408
409 /* setrunnable() will release the lock. */
410 setrunnable(l);
411 }
412
413 /*
414 * Restart a stopped LWP.
415 *
416 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
417 * LWP before return.
418 */
419 void
420 lwp_unstop(struct lwp *l)
421 {
422 struct proc *p = l->l_proc;
423
424 KASSERT(mutex_owned(proc_lock));
425 KASSERT(mutex_owned(p->p_lock));
426
427 lwp_lock(l);
428
429 /* If not stopped, then just bail out. */
430 if (l->l_stat != LSSTOP) {
431 lwp_unlock(l);
432 return;
433 }
434
435 p->p_stat = SACTIVE;
436 p->p_sflag &= ~PS_STOPPING;
437
438 if (!p->p_waited)
439 p->p_pptr->p_nstopchild--;
440
441 if (l->l_wchan == NULL) {
442 /* setrunnable() will release the lock. */
443 setrunnable(l);
444 } else {
445 l->l_stat = LSSLEEP;
446 p->p_nrlwps++;
447 lwp_unlock(l);
448 }
449 }
450
451 /*
452 * Wait for an LWP within the current process to exit. If 'lid' is
453 * non-zero, we are waiting for a specific LWP.
454 *
455 * Must be called with p->p_lock held.
456 */
457 int
458 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
459 {
460 struct proc *p = l->l_proc;
461 struct lwp *l2;
462 int nfound, error;
463 lwpid_t curlid;
464 bool exiting;
465
466 KASSERT(mutex_owned(p->p_lock));
467
468 p->p_nlwpwait++;
469 l->l_waitingfor = lid;
470 curlid = l->l_lid;
471 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
472
473 for (;;) {
474 /*
475 * Avoid a race between exit1() and sigexit(): if the
476 * process is dumping core, then we need to bail out: call
477 * into lwp_userret() where we will be suspended until the
478 * deed is done.
479 */
480 if ((p->p_sflag & PS_WCORE) != 0) {
481 mutex_exit(p->p_lock);
482 lwp_userret(l);
483 #ifdef DIAGNOSTIC
484 panic("lwp_wait1");
485 #endif
486 /* NOTREACHED */
487 }
488
489 /*
490 * First off, drain any detached LWP that is waiting to be
491 * reaped.
492 */
493 while ((l2 = p->p_zomblwp) != NULL) {
494 p->p_zomblwp = NULL;
495 lwp_free(l2, false, false);/* releases proc mutex */
496 mutex_enter(p->p_lock);
497 }
498
499 /*
500 * Now look for an LWP to collect. If the whole process is
501 * exiting, count detached LWPs as eligible to be collected,
502 * but don't drain them here.
503 */
504 nfound = 0;
505 error = 0;
506 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
507 /*
508 * If a specific wait and the target is waiting on
509 * us, then avoid deadlock. This also traps LWPs
510 * that try to wait on themselves.
511 *
512 * Note that this does not handle more complicated
513 * cycles, like: t1 -> t2 -> t3 -> t1. The process
514 * can still be killed so it is not a major problem.
515 */
516 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
517 error = EDEADLK;
518 break;
519 }
520 if (l2 == l)
521 continue;
522 if ((l2->l_prflag & LPR_DETACHED) != 0) {
523 nfound += exiting;
524 continue;
525 }
526 if (lid != 0) {
527 if (l2->l_lid != lid)
528 continue;
529 /*
530 * Mark this LWP as the first waiter, if there
531 * is no other.
532 */
533 if (l2->l_waiter == 0)
534 l2->l_waiter = curlid;
535 } else if (l2->l_waiter != 0) {
536 /*
537 * It already has a waiter - so don't
538 * collect it. If the waiter doesn't
539 * grab it we'll get another chance
540 * later.
541 */
542 nfound++;
543 continue;
544 }
545 nfound++;
546
547 /* No need to lock the LWP in order to see LSZOMB. */
548 if (l2->l_stat != LSZOMB)
549 continue;
550
551 /*
552 * We're no longer waiting. Reset the "first waiter"
553 * pointer on the target, in case it was us.
554 */
555 l->l_waitingfor = 0;
556 l2->l_waiter = 0;
557 p->p_nlwpwait--;
558 if (departed)
559 *departed = l2->l_lid;
560 sched_lwp_collect(l2);
561
562 /* lwp_free() releases the proc lock. */
563 lwp_free(l2, false, false);
564 mutex_enter(p->p_lock);
565 return 0;
566 }
567
568 if (error != 0)
569 break;
570 if (nfound == 0) {
571 error = ESRCH;
572 break;
573 }
574
575 /*
576 * The kernel is careful to ensure that it can not deadlock
577 * when exiting - just keep waiting.
578 */
579 if (exiting) {
580 KASSERT(p->p_nlwps > 1);
581 cv_wait(&p->p_lwpcv, p->p_lock);
582 continue;
583 }
584
585 /*
586 * If all other LWPs are waiting for exits or suspends
587 * and the supply of zombies and potential zombies is
588 * exhausted, then we are about to deadlock.
589 *
590 * If the process is exiting (and this LWP is not the one
591 * that is coordinating the exit) then bail out now.
592 */
593 if ((p->p_sflag & PS_WEXIT) != 0 ||
594 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
595 error = EDEADLK;
596 break;
597 }
598
599 /*
600 * Sit around and wait for something to happen. We'll be
601 * awoken if any of the conditions examined change: if an
602 * LWP exits, is collected, or is detached.
603 */
604 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
605 break;
606 }
607
608 /*
609 * We didn't find any LWPs to collect, we may have received a
610 * signal, or some other condition has caused us to bail out.
611 *
612 * If waiting on a specific LWP, clear the waiters marker: some
613 * other LWP may want it. Then, kick all the remaining waiters
614 * so that they can re-check for zombies and for deadlock.
615 */
616 if (lid != 0) {
617 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
618 if (l2->l_lid == lid) {
619 if (l2->l_waiter == curlid)
620 l2->l_waiter = 0;
621 break;
622 }
623 }
624 }
625 p->p_nlwpwait--;
626 l->l_waitingfor = 0;
627 cv_broadcast(&p->p_lwpcv);
628
629 return error;
630 }
631
632 /*
633 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
634 * The new LWP is created in state LSIDL and must be set running,
635 * suspended, or stopped by the caller.
636 */
637 int
638 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
639 void *stack, size_t stacksize, void (*func)(void *), void *arg,
640 lwp_t **rnewlwpp, int sclass)
641 {
642 struct lwp *l2, *isfree;
643 turnstile_t *ts;
644
645 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
646
647 /*
648 * First off, reap any detached LWP waiting to be collected.
649 * We can re-use its LWP structure and turnstile.
650 */
651 isfree = NULL;
652 if (p2->p_zomblwp != NULL) {
653 mutex_enter(p2->p_lock);
654 if ((isfree = p2->p_zomblwp) != NULL) {
655 p2->p_zomblwp = NULL;
656 lwp_free(isfree, true, false);/* releases proc mutex */
657 } else
658 mutex_exit(p2->p_lock);
659 }
660 if (isfree == NULL) {
661 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
662 memset(l2, 0, sizeof(*l2));
663 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
664 SLIST_INIT(&l2->l_pi_lenders);
665 } else {
666 l2 = isfree;
667 ts = l2->l_ts;
668 KASSERT(l2->l_inheritedprio == -1);
669 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
670 memset(l2, 0, sizeof(*l2));
671 l2->l_ts = ts;
672 }
673
674 l2->l_stat = LSIDL;
675 l2->l_proc = p2;
676 l2->l_refcnt = 1;
677 l2->l_class = sclass;
678
679 /*
680 * If vfork(), we want the LWP to run fast and on the same CPU
681 * as its parent, so that it can reuse the VM context and cache
682 * footprint on the local CPU.
683 */
684 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
685 l2->l_kpribase = PRI_KERNEL;
686 l2->l_priority = l1->l_priority;
687 l2->l_inheritedprio = -1;
688 l2->l_flag = 0;
689 l2->l_pflag = LP_MPSAFE;
690 TAILQ_INIT(&l2->l_ld_locks);
691
692 /*
693 * If not the first LWP in the process, grab a reference to the
694 * descriptor table.
695 */
696 l2->l_fd = p2->p_fd;
697 if (p2->p_nlwps != 0) {
698 KASSERT(l1->l_proc == p2);
699 fd_hold(l2);
700 } else {
701 KASSERT(l1->l_proc != p2);
702 }
703
704 if (p2->p_flag & PK_SYSTEM) {
705 /* Mark it as a system LWP. */
706 l2->l_flag |= LW_SYSTEM;
707 }
708
709 kpreempt_disable();
710 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
711 l2->l_cpu = l1->l_cpu;
712 kpreempt_enable();
713
714 kdtrace_thread_ctor(NULL, l2);
715 lwp_initspecific(l2);
716 sched_lwp_fork(l1, l2);
717 lwp_update_creds(l2);
718 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
719 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
720 cv_init(&l2->l_sigcv, "sigwait");
721 l2->l_syncobj = &sched_syncobj;
722
723 if (rnewlwpp != NULL)
724 *rnewlwpp = l2;
725
726 uvm_lwp_setuarea(l2, uaddr);
727 uvm_lwp_fork(l1, l2, stack, stacksize, func,
728 (arg != NULL) ? arg : l2);
729
730 mutex_enter(p2->p_lock);
731
732 if ((flags & LWP_DETACHED) != 0) {
733 l2->l_prflag = LPR_DETACHED;
734 p2->p_ndlwps++;
735 } else
736 l2->l_prflag = 0;
737
738 l2->l_sigmask = l1->l_sigmask;
739 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
740 sigemptyset(&l2->l_sigpend.sp_set);
741
742 p2->p_nlwpid++;
743 if (p2->p_nlwpid == 0)
744 p2->p_nlwpid++;
745 l2->l_lid = p2->p_nlwpid;
746 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
747 p2->p_nlwps++;
748
749 if ((p2->p_flag & PK_SYSTEM) == 0) {
750 /* Inherit an affinity */
751 if (l1->l_flag & LW_AFFINITY) {
752 /*
753 * Note that we hold the state lock while inheriting
754 * the affinity to avoid race with sched_setaffinity().
755 */
756 lwp_lock(l1);
757 if (l1->l_flag & LW_AFFINITY) {
758 kcpuset_use(l1->l_affinity);
759 l2->l_affinity = l1->l_affinity;
760 l2->l_flag |= LW_AFFINITY;
761 }
762 lwp_unlock(l1);
763 }
764 lwp_lock(l2);
765 /* Inherit a processor-set */
766 l2->l_psid = l1->l_psid;
767 /* Look for a CPU to start */
768 l2->l_cpu = sched_takecpu(l2);
769 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
770 }
771 mutex_exit(p2->p_lock);
772
773 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
774
775 mutex_enter(proc_lock);
776 LIST_INSERT_HEAD(&alllwp, l2, l_list);
777 mutex_exit(proc_lock);
778
779 SYSCALL_TIME_LWP_INIT(l2);
780
781 if (p2->p_emul->e_lwp_fork)
782 (*p2->p_emul->e_lwp_fork)(l1, l2);
783
784 return (0);
785 }
786
787 /*
788 * Called by MD code when a new LWP begins execution. Must be called
789 * with the previous LWP locked (so at splsched), or if there is no
790 * previous LWP, at splsched.
791 */
792 void
793 lwp_startup(struct lwp *prev, struct lwp *new)
794 {
795
796 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
797
798 KASSERT(kpreempt_disabled());
799 if (prev != NULL) {
800 /*
801 * Normalize the count of the spin-mutexes, it was
802 * increased in mi_switch(). Unmark the state of
803 * context switch - it is finished for previous LWP.
804 */
805 curcpu()->ci_mtx_count++;
806 membar_exit();
807 prev->l_ctxswtch = 0;
808 }
809 KPREEMPT_DISABLE(new);
810 spl0();
811 pmap_activate(new);
812 LOCKDEBUG_BARRIER(NULL, 0);
813 KPREEMPT_ENABLE(new);
814 if ((new->l_pflag & LP_MPSAFE) == 0) {
815 KERNEL_LOCK(1, new);
816 }
817 }
818
819 /*
820 * Exit an LWP.
821 */
822 void
823 lwp_exit(struct lwp *l)
824 {
825 struct proc *p = l->l_proc;
826 struct lwp *l2;
827 bool current;
828
829 current = (l == curlwp);
830
831 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
832 KASSERT(p == curproc);
833
834 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
835
836 /*
837 * Verify that we hold no locks other than the kernel lock.
838 */
839 LOCKDEBUG_BARRIER(&kernel_lock, 0);
840
841 /*
842 * If we are the last live LWP in a process, we need to exit the
843 * entire process. We do so with an exit status of zero, because
844 * it's a "controlled" exit, and because that's what Solaris does.
845 *
846 * We are not quite a zombie yet, but for accounting purposes we
847 * must increment the count of zombies here.
848 *
849 * Note: the last LWP's specificdata will be deleted here.
850 */
851 mutex_enter(p->p_lock);
852 if (p->p_nlwps - p->p_nzlwps == 1) {
853 KASSERT(current == true);
854 /* XXXSMP kernel_lock not held */
855 exit1(l, 0);
856 /* NOTREACHED */
857 }
858 p->p_nzlwps++;
859 mutex_exit(p->p_lock);
860
861 if (p->p_emul->e_lwp_exit)
862 (*p->p_emul->e_lwp_exit)(l);
863
864 /* Drop filedesc reference. */
865 fd_free();
866
867 /* Delete the specificdata while it's still safe to sleep. */
868 lwp_finispecific(l);
869
870 /*
871 * Release our cached credentials.
872 */
873 kauth_cred_free(l->l_cred);
874 callout_destroy(&l->l_timeout_ch);
875
876 /*
877 * Remove the LWP from the global list.
878 */
879 mutex_enter(proc_lock);
880 LIST_REMOVE(l, l_list);
881 mutex_exit(proc_lock);
882
883 /*
884 * Get rid of all references to the LWP that others (e.g. procfs)
885 * may have, and mark the LWP as a zombie. If the LWP is detached,
886 * mark it waiting for collection in the proc structure. Note that
887 * before we can do that, we need to free any other dead, deatched
888 * LWP waiting to meet its maker.
889 */
890 mutex_enter(p->p_lock);
891 lwp_drainrefs(l);
892
893 if ((l->l_prflag & LPR_DETACHED) != 0) {
894 while ((l2 = p->p_zomblwp) != NULL) {
895 p->p_zomblwp = NULL;
896 lwp_free(l2, false, false);/* releases proc mutex */
897 mutex_enter(p->p_lock);
898 l->l_refcnt++;
899 lwp_drainrefs(l);
900 }
901 p->p_zomblwp = l;
902 }
903
904 /*
905 * If we find a pending signal for the process and we have been
906 * asked to check for signals, then we loose: arrange to have
907 * all other LWPs in the process check for signals.
908 */
909 if ((l->l_flag & LW_PENDSIG) != 0 &&
910 firstsig(&p->p_sigpend.sp_set) != 0) {
911 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
912 lwp_lock(l2);
913 l2->l_flag |= LW_PENDSIG;
914 lwp_unlock(l2);
915 }
916 }
917
918 lwp_lock(l);
919 l->l_stat = LSZOMB;
920 if (l->l_name != NULL)
921 strcpy(l->l_name, "(zombie)");
922 if (l->l_flag & LW_AFFINITY) {
923 l->l_flag &= ~LW_AFFINITY;
924 } else {
925 KASSERT(l->l_affinity == NULL);
926 }
927 lwp_unlock(l);
928 p->p_nrlwps--;
929 cv_broadcast(&p->p_lwpcv);
930 if (l->l_lwpctl != NULL)
931 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
932 mutex_exit(p->p_lock);
933
934 /* Safe without lock since LWP is in zombie state */
935 if (l->l_affinity) {
936 kcpuset_unuse(l->l_affinity, NULL);
937 l->l_affinity = NULL;
938 }
939
940 /*
941 * We can no longer block. At this point, lwp_free() may already
942 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
943 *
944 * Free MD LWP resources.
945 */
946 cpu_lwp_free(l, 0);
947
948 if (current) {
949 pmap_deactivate(l);
950
951 /*
952 * Release the kernel lock, and switch away into
953 * oblivion.
954 */
955 #ifdef notyet
956 /* XXXSMP hold in lwp_userret() */
957 KERNEL_UNLOCK_LAST(l);
958 #else
959 KERNEL_UNLOCK_ALL(l, NULL);
960 #endif
961 lwp_exit_switchaway(l);
962 }
963 }
964
965 /*
966 * Free a dead LWP's remaining resources.
967 *
968 * XXXLWP limits.
969 */
970 void
971 lwp_free(struct lwp *l, bool recycle, bool last)
972 {
973 struct proc *p = l->l_proc;
974 struct rusage *ru;
975 ksiginfoq_t kq;
976
977 KASSERT(l != curlwp);
978
979 /*
980 * If this was not the last LWP in the process, then adjust
981 * counters and unlock.
982 */
983 if (!last) {
984 /*
985 * Add the LWP's run time to the process' base value.
986 * This needs to co-incide with coming off p_lwps.
987 */
988 bintime_add(&p->p_rtime, &l->l_rtime);
989 p->p_pctcpu += l->l_pctcpu;
990 ru = &p->p_stats->p_ru;
991 ruadd(ru, &l->l_ru);
992 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
993 ru->ru_nivcsw += l->l_nivcsw;
994 LIST_REMOVE(l, l_sibling);
995 p->p_nlwps--;
996 p->p_nzlwps--;
997 if ((l->l_prflag & LPR_DETACHED) != 0)
998 p->p_ndlwps--;
999
1000 /*
1001 * Have any LWPs sleeping in lwp_wait() recheck for
1002 * deadlock.
1003 */
1004 cv_broadcast(&p->p_lwpcv);
1005 mutex_exit(p->p_lock);
1006 }
1007
1008 #ifdef MULTIPROCESSOR
1009 /*
1010 * In the unlikely event that the LWP is still on the CPU,
1011 * then spin until it has switched away. We need to release
1012 * all locks to avoid deadlock against interrupt handlers on
1013 * the target CPU.
1014 */
1015 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1016 int count;
1017 (void)count; /* XXXgcc */
1018 KERNEL_UNLOCK_ALL(curlwp, &count);
1019 while ((l->l_pflag & LP_RUNNING) != 0 ||
1020 l->l_cpu->ci_curlwp == l)
1021 SPINLOCK_BACKOFF_HOOK;
1022 KERNEL_LOCK(count, curlwp);
1023 }
1024 #endif
1025
1026 /*
1027 * Destroy the LWP's remaining signal information.
1028 */
1029 ksiginfo_queue_init(&kq);
1030 sigclear(&l->l_sigpend, NULL, &kq);
1031 ksiginfo_queue_drain(&kq);
1032 cv_destroy(&l->l_sigcv);
1033
1034 /*
1035 * Free the LWP's turnstile and the LWP structure itself unless the
1036 * caller wants to recycle them. Also, free the scheduler specific
1037 * data.
1038 *
1039 * We can't return turnstile0 to the pool (it didn't come from it),
1040 * so if it comes up just drop it quietly and move on.
1041 *
1042 * We don't recycle the VM resources at this time.
1043 */
1044 if (l->l_lwpctl != NULL)
1045 lwp_ctl_free(l);
1046
1047 if (!recycle && l->l_ts != &turnstile0)
1048 pool_cache_put(turnstile_cache, l->l_ts);
1049 if (l->l_name != NULL)
1050 kmem_free(l->l_name, MAXCOMLEN);
1051
1052 cpu_lwp_free2(l);
1053 uvm_lwp_exit(l);
1054
1055 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1056 KASSERT(l->l_inheritedprio == -1);
1057 kdtrace_thread_dtor(NULL, l);
1058 if (!recycle)
1059 pool_cache_put(lwp_cache, l);
1060 }
1061
1062 /*
1063 * Migrate the LWP to the another CPU. Unlocks the LWP.
1064 */
1065 void
1066 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1067 {
1068 struct schedstate_percpu *tspc;
1069 int lstat = l->l_stat;
1070
1071 KASSERT(lwp_locked(l, NULL));
1072 KASSERT(tci != NULL);
1073
1074 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1075 if ((l->l_pflag & LP_RUNNING) != 0) {
1076 lstat = LSONPROC;
1077 }
1078
1079 /*
1080 * The destination CPU could be changed while previous migration
1081 * was not finished.
1082 */
1083 if (l->l_target_cpu != NULL) {
1084 l->l_target_cpu = tci;
1085 lwp_unlock(l);
1086 return;
1087 }
1088
1089 /* Nothing to do if trying to migrate to the same CPU */
1090 if (l->l_cpu == tci) {
1091 lwp_unlock(l);
1092 return;
1093 }
1094
1095 KASSERT(l->l_target_cpu == NULL);
1096 tspc = &tci->ci_schedstate;
1097 switch (lstat) {
1098 case LSRUN:
1099 l->l_target_cpu = tci;
1100 break;
1101 case LSIDL:
1102 l->l_cpu = tci;
1103 lwp_unlock_to(l, tspc->spc_mutex);
1104 return;
1105 case LSSLEEP:
1106 l->l_cpu = tci;
1107 break;
1108 case LSSTOP:
1109 case LSSUSPENDED:
1110 l->l_cpu = tci;
1111 if (l->l_wchan == NULL) {
1112 lwp_unlock_to(l, tspc->spc_lwplock);
1113 return;
1114 }
1115 break;
1116 case LSONPROC:
1117 l->l_target_cpu = tci;
1118 spc_lock(l->l_cpu);
1119 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1120 spc_unlock(l->l_cpu);
1121 break;
1122 }
1123 lwp_unlock(l);
1124 }
1125
1126 /*
1127 * Find the LWP in the process. Arguments may be zero, in such case,
1128 * the calling process and first LWP in the list will be used.
1129 * On success - returns proc locked.
1130 */
1131 struct lwp *
1132 lwp_find2(pid_t pid, lwpid_t lid)
1133 {
1134 proc_t *p;
1135 lwp_t *l;
1136
1137 /* Find the process */
1138 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1139 if (p == NULL)
1140 return NULL;
1141 mutex_enter(p->p_lock);
1142 if (pid != 0) {
1143 /* Case of p_find */
1144 mutex_exit(proc_lock);
1145 }
1146
1147 /* Find the thread */
1148 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1149 if (l == NULL) {
1150 mutex_exit(p->p_lock);
1151 }
1152
1153 return l;
1154 }
1155
1156 /*
1157 * Look up a live LWP within the speicifed process, and return it locked.
1158 *
1159 * Must be called with p->p_lock held.
1160 */
1161 struct lwp *
1162 lwp_find(struct proc *p, int id)
1163 {
1164 struct lwp *l;
1165
1166 KASSERT(mutex_owned(p->p_lock));
1167
1168 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1169 if (l->l_lid == id)
1170 break;
1171 }
1172
1173 /*
1174 * No need to lock - all of these conditions will
1175 * be visible with the process level mutex held.
1176 */
1177 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1178 l = NULL;
1179
1180 return l;
1181 }
1182
1183 /*
1184 * Update an LWP's cached credentials to mirror the process' master copy.
1185 *
1186 * This happens early in the syscall path, on user trap, and on LWP
1187 * creation. A long-running LWP can also voluntarily choose to update
1188 * it's credentials by calling this routine. This may be called from
1189 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1190 */
1191 void
1192 lwp_update_creds(struct lwp *l)
1193 {
1194 kauth_cred_t oc;
1195 struct proc *p;
1196
1197 p = l->l_proc;
1198 oc = l->l_cred;
1199
1200 mutex_enter(p->p_lock);
1201 kauth_cred_hold(p->p_cred);
1202 l->l_cred = p->p_cred;
1203 l->l_prflag &= ~LPR_CRMOD;
1204 mutex_exit(p->p_lock);
1205 if (oc != NULL)
1206 kauth_cred_free(oc);
1207 }
1208
1209 /*
1210 * Verify that an LWP is locked, and optionally verify that the lock matches
1211 * one we specify.
1212 */
1213 int
1214 lwp_locked(struct lwp *l, kmutex_t *mtx)
1215 {
1216 kmutex_t *cur = l->l_mutex;
1217
1218 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1219 }
1220
1221 /*
1222 * Lock an LWP.
1223 */
1224 kmutex_t *
1225 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1226 {
1227
1228 /*
1229 * XXXgcc ignoring kmutex_t * volatile on i386
1230 *
1231 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1232 */
1233 #if 1
1234 while (l->l_mutex != old) {
1235 #else
1236 for (;;) {
1237 #endif
1238 mutex_spin_exit(old);
1239 old = l->l_mutex;
1240 mutex_spin_enter(old);
1241
1242 /*
1243 * mutex_enter() will have posted a read barrier. Re-test
1244 * l->l_mutex. If it has changed, we need to try again.
1245 */
1246 #if 1
1247 }
1248 #else
1249 } while (__predict_false(l->l_mutex != old));
1250 #endif
1251
1252 return old;
1253 }
1254
1255 /*
1256 * Lend a new mutex to an LWP. The old mutex must be held.
1257 */
1258 void
1259 lwp_setlock(struct lwp *l, kmutex_t *new)
1260 {
1261
1262 KASSERT(mutex_owned(l->l_mutex));
1263
1264 membar_exit();
1265 l->l_mutex = new;
1266 }
1267
1268 /*
1269 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1270 * must be held.
1271 */
1272 void
1273 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1274 {
1275 kmutex_t *old;
1276
1277 KASSERT(mutex_owned(l->l_mutex));
1278
1279 old = l->l_mutex;
1280 membar_exit();
1281 l->l_mutex = new;
1282 mutex_spin_exit(old);
1283 }
1284
1285 /*
1286 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1287 * locked.
1288 */
1289 void
1290 lwp_relock(struct lwp *l, kmutex_t *new)
1291 {
1292 kmutex_t *old;
1293
1294 KASSERT(mutex_owned(l->l_mutex));
1295
1296 old = l->l_mutex;
1297 if (old != new) {
1298 mutex_spin_enter(new);
1299 l->l_mutex = new;
1300 mutex_spin_exit(old);
1301 }
1302 }
1303
1304 int
1305 lwp_trylock(struct lwp *l)
1306 {
1307 kmutex_t *old;
1308
1309 for (;;) {
1310 if (!mutex_tryenter(old = l->l_mutex))
1311 return 0;
1312 if (__predict_true(l->l_mutex == old))
1313 return 1;
1314 mutex_spin_exit(old);
1315 }
1316 }
1317
1318 void
1319 lwp_unsleep(lwp_t *l, bool cleanup)
1320 {
1321
1322 KASSERT(mutex_owned(l->l_mutex));
1323 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1324 }
1325
1326
1327 /*
1328 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1329 * set.
1330 */
1331 void
1332 lwp_userret(struct lwp *l)
1333 {
1334 struct proc *p;
1335 void (*hook)(void);
1336 int sig;
1337
1338 KASSERT(l == curlwp);
1339 KASSERT(l->l_stat == LSONPROC);
1340 p = l->l_proc;
1341
1342 #ifndef __HAVE_FAST_SOFTINTS
1343 /* Run pending soft interrupts. */
1344 if (l->l_cpu->ci_data.cpu_softints != 0)
1345 softint_overlay();
1346 #endif
1347
1348 #ifdef KERN_SA
1349 /* Generate UNBLOCKED upcall if needed */
1350 if (l->l_flag & LW_SA_BLOCKING) {
1351 sa_unblock_userret(l);
1352 /* NOTREACHED */
1353 }
1354 #endif
1355
1356 /*
1357 * It should be safe to do this read unlocked on a multiprocessor
1358 * system..
1359 *
1360 * LW_SA_UPCALL will be handled after the while() loop, so don't
1361 * consider it now.
1362 */
1363 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1364 /*
1365 * Process pending signals first, unless the process
1366 * is dumping core or exiting, where we will instead
1367 * enter the LW_WSUSPEND case below.
1368 */
1369 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1370 LW_PENDSIG) {
1371 mutex_enter(p->p_lock);
1372 while ((sig = issignal(l)) != 0)
1373 postsig(sig);
1374 mutex_exit(p->p_lock);
1375 }
1376
1377 /*
1378 * Core-dump or suspend pending.
1379 *
1380 * In case of core dump, suspend ourselves, so that the
1381 * kernel stack and therefore the userland registers saved
1382 * in the trapframe are around for coredump() to write them
1383 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1384 * will write the core file out once all other LWPs are
1385 * suspended.
1386 */
1387 if ((l->l_flag & LW_WSUSPEND) != 0) {
1388 mutex_enter(p->p_lock);
1389 p->p_nrlwps--;
1390 cv_broadcast(&p->p_lwpcv);
1391 lwp_lock(l);
1392 l->l_stat = LSSUSPENDED;
1393 lwp_unlock(l);
1394 mutex_exit(p->p_lock);
1395 lwp_lock(l);
1396 mi_switch(l);
1397 }
1398
1399 /* Process is exiting. */
1400 if ((l->l_flag & LW_WEXIT) != 0) {
1401 lwp_exit(l);
1402 KASSERT(0);
1403 /* NOTREACHED */
1404 }
1405
1406 /* Call userret hook; used by Linux emulation. */
1407 if ((l->l_flag & LW_WUSERRET) != 0) {
1408 lwp_lock(l);
1409 l->l_flag &= ~LW_WUSERRET;
1410 lwp_unlock(l);
1411 hook = p->p_userret;
1412 p->p_userret = NULL;
1413 (*hook)();
1414 }
1415 }
1416
1417 #ifdef KERN_SA
1418 /*
1419 * Timer events are handled specially. We only try once to deliver
1420 * pending timer upcalls; if if fails, we can try again on the next
1421 * loop around. If we need to re-enter lwp_userret(), MD code will
1422 * bounce us back here through the trap path after we return.
1423 */
1424 if (p->p_timerpend)
1425 timerupcall(l);
1426 if (l->l_flag & LW_SA_UPCALL)
1427 sa_upcall_userret(l);
1428 #endif /* KERN_SA */
1429 }
1430
1431 /*
1432 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1433 */
1434 void
1435 lwp_need_userret(struct lwp *l)
1436 {
1437 KASSERT(lwp_locked(l, NULL));
1438
1439 /*
1440 * Since the tests in lwp_userret() are done unlocked, make sure
1441 * that the condition will be seen before forcing the LWP to enter
1442 * kernel mode.
1443 */
1444 membar_producer();
1445 cpu_signotify(l);
1446 }
1447
1448 /*
1449 * Add one reference to an LWP. This will prevent the LWP from
1450 * exiting, thus keep the lwp structure and PCB around to inspect.
1451 */
1452 void
1453 lwp_addref(struct lwp *l)
1454 {
1455
1456 KASSERT(mutex_owned(l->l_proc->p_lock));
1457 KASSERT(l->l_stat != LSZOMB);
1458 KASSERT(l->l_refcnt != 0);
1459
1460 l->l_refcnt++;
1461 }
1462
1463 /*
1464 * Remove one reference to an LWP. If this is the last reference,
1465 * then we must finalize the LWP's death.
1466 */
1467 void
1468 lwp_delref(struct lwp *l)
1469 {
1470 struct proc *p = l->l_proc;
1471
1472 mutex_enter(p->p_lock);
1473 lwp_delref2(l);
1474 mutex_exit(p->p_lock);
1475 }
1476
1477 /*
1478 * Remove one reference to an LWP. If this is the last reference,
1479 * then we must finalize the LWP's death. The proc mutex is held
1480 * on entry.
1481 */
1482 void
1483 lwp_delref2(struct lwp *l)
1484 {
1485 struct proc *p = l->l_proc;
1486
1487 KASSERT(mutex_owned(p->p_lock));
1488 KASSERT(l->l_stat != LSZOMB);
1489 KASSERT(l->l_refcnt > 0);
1490 if (--l->l_refcnt == 0)
1491 cv_broadcast(&p->p_lwpcv);
1492 }
1493
1494 /*
1495 * Drain all references to the current LWP.
1496 */
1497 void
1498 lwp_drainrefs(struct lwp *l)
1499 {
1500 struct proc *p = l->l_proc;
1501
1502 KASSERT(mutex_owned(p->p_lock));
1503 KASSERT(l->l_refcnt != 0);
1504
1505 l->l_refcnt--;
1506 while (l->l_refcnt != 0)
1507 cv_wait(&p->p_lwpcv, p->p_lock);
1508 }
1509
1510 /*
1511 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1512 * be held.
1513 */
1514 bool
1515 lwp_alive(lwp_t *l)
1516 {
1517
1518 KASSERT(mutex_owned(l->l_proc->p_lock));
1519
1520 switch (l->l_stat) {
1521 case LSSLEEP:
1522 case LSRUN:
1523 case LSONPROC:
1524 case LSSTOP:
1525 case LSSUSPENDED:
1526 return true;
1527 default:
1528 return false;
1529 }
1530 }
1531
1532 /*
1533 * Return first live LWP in the process.
1534 */
1535 lwp_t *
1536 lwp_find_first(proc_t *p)
1537 {
1538 lwp_t *l;
1539
1540 KASSERT(mutex_owned(p->p_lock));
1541
1542 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1543 if (lwp_alive(l)) {
1544 return l;
1545 }
1546 }
1547
1548 return NULL;
1549 }
1550
1551 /*
1552 * Allocate a new lwpctl structure for a user LWP.
1553 */
1554 int
1555 lwp_ctl_alloc(vaddr_t *uaddr)
1556 {
1557 lcproc_t *lp;
1558 u_int bit, i, offset;
1559 struct uvm_object *uao;
1560 int error;
1561 lcpage_t *lcp;
1562 proc_t *p;
1563 lwp_t *l;
1564
1565 l = curlwp;
1566 p = l->l_proc;
1567
1568 if (l->l_lcpage != NULL) {
1569 lcp = l->l_lcpage;
1570 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1571 return 0;
1572 }
1573
1574 /* First time around, allocate header structure for the process. */
1575 if ((lp = p->p_lwpctl) == NULL) {
1576 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1577 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1578 lp->lp_uao = NULL;
1579 TAILQ_INIT(&lp->lp_pages);
1580 mutex_enter(p->p_lock);
1581 if (p->p_lwpctl == NULL) {
1582 p->p_lwpctl = lp;
1583 mutex_exit(p->p_lock);
1584 } else {
1585 mutex_exit(p->p_lock);
1586 mutex_destroy(&lp->lp_lock);
1587 kmem_free(lp, sizeof(*lp));
1588 lp = p->p_lwpctl;
1589 }
1590 }
1591
1592 /*
1593 * Set up an anonymous memory region to hold the shared pages.
1594 * Map them into the process' address space. The user vmspace
1595 * gets the first reference on the UAO.
1596 */
1597 mutex_enter(&lp->lp_lock);
1598 if (lp->lp_uao == NULL) {
1599 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1600 lp->lp_cur = 0;
1601 lp->lp_max = LWPCTL_UAREA_SZ;
1602 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1603 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1604 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1605 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1606 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1607 if (error != 0) {
1608 uao_detach(lp->lp_uao);
1609 lp->lp_uao = NULL;
1610 mutex_exit(&lp->lp_lock);
1611 return error;
1612 }
1613 }
1614
1615 /* Get a free block and allocate for this LWP. */
1616 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1617 if (lcp->lcp_nfree != 0)
1618 break;
1619 }
1620 if (lcp == NULL) {
1621 /* Nothing available - try to set up a free page. */
1622 if (lp->lp_cur == lp->lp_max) {
1623 mutex_exit(&lp->lp_lock);
1624 return ENOMEM;
1625 }
1626 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1627 if (lcp == NULL) {
1628 mutex_exit(&lp->lp_lock);
1629 return ENOMEM;
1630 }
1631 /*
1632 * Wire the next page down in kernel space. Since this
1633 * is a new mapping, we must add a reference.
1634 */
1635 uao = lp->lp_uao;
1636 (*uao->pgops->pgo_reference)(uao);
1637 lcp->lcp_kaddr = vm_map_min(kernel_map);
1638 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1639 uao, lp->lp_cur, PAGE_SIZE,
1640 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1641 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1642 if (error != 0) {
1643 mutex_exit(&lp->lp_lock);
1644 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1645 (*uao->pgops->pgo_detach)(uao);
1646 return error;
1647 }
1648 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1649 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1650 if (error != 0) {
1651 mutex_exit(&lp->lp_lock);
1652 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1653 lcp->lcp_kaddr + PAGE_SIZE);
1654 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1655 return error;
1656 }
1657 /* Prepare the page descriptor and link into the list. */
1658 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1659 lp->lp_cur += PAGE_SIZE;
1660 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1661 lcp->lcp_rotor = 0;
1662 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1663 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1664 }
1665 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1666 if (++i >= LWPCTL_BITMAP_ENTRIES)
1667 i = 0;
1668 }
1669 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1670 lcp->lcp_bitmap[i] ^= (1 << bit);
1671 lcp->lcp_rotor = i;
1672 lcp->lcp_nfree--;
1673 l->l_lcpage = lcp;
1674 offset = (i << 5) + bit;
1675 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1676 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1677 mutex_exit(&lp->lp_lock);
1678
1679 KPREEMPT_DISABLE(l);
1680 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1681 KPREEMPT_ENABLE(l);
1682
1683 return 0;
1684 }
1685
1686 /*
1687 * Free an lwpctl structure back to the per-process list.
1688 */
1689 void
1690 lwp_ctl_free(lwp_t *l)
1691 {
1692 lcproc_t *lp;
1693 lcpage_t *lcp;
1694 u_int map, offset;
1695
1696 lp = l->l_proc->p_lwpctl;
1697 KASSERT(lp != NULL);
1698
1699 lcp = l->l_lcpage;
1700 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1701 KASSERT(offset < LWPCTL_PER_PAGE);
1702
1703 mutex_enter(&lp->lp_lock);
1704 lcp->lcp_nfree++;
1705 map = offset >> 5;
1706 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1707 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1708 lcp->lcp_rotor = map;
1709 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1710 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1711 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1712 }
1713 mutex_exit(&lp->lp_lock);
1714 }
1715
1716 /*
1717 * Process is exiting; tear down lwpctl state. This can only be safely
1718 * called by the last LWP in the process.
1719 */
1720 void
1721 lwp_ctl_exit(void)
1722 {
1723 lcpage_t *lcp, *next;
1724 lcproc_t *lp;
1725 proc_t *p;
1726 lwp_t *l;
1727
1728 l = curlwp;
1729 l->l_lwpctl = NULL;
1730 l->l_lcpage = NULL;
1731 p = l->l_proc;
1732 lp = p->p_lwpctl;
1733
1734 KASSERT(lp != NULL);
1735 KASSERT(p->p_nlwps == 1);
1736
1737 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1738 next = TAILQ_NEXT(lcp, lcp_chain);
1739 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1740 lcp->lcp_kaddr + PAGE_SIZE);
1741 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1742 }
1743
1744 if (lp->lp_uao != NULL) {
1745 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1746 lp->lp_uva + LWPCTL_UAREA_SZ);
1747 }
1748
1749 mutex_destroy(&lp->lp_lock);
1750 kmem_free(lp, sizeof(*lp));
1751 p->p_lwpctl = NULL;
1752 }
1753
1754 /*
1755 * Return the current LWP's "preemption counter". Used to detect
1756 * preemption across operations that can tolerate preemption without
1757 * crashing, but which may generate incorrect results if preempted.
1758 */
1759 uint64_t
1760 lwp_pctr(void)
1761 {
1762
1763 return curlwp->l_ncsw;
1764 }
1765
1766 #if defined(DDB)
1767 void
1768 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1769 {
1770 lwp_t *l;
1771
1772 LIST_FOREACH(l, &alllwp, l_list) {
1773 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1774
1775 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1776 continue;
1777 }
1778 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1779 (void *)addr, (void *)stack,
1780 (size_t)(addr - stack), l);
1781 }
1782 }
1783 #endif /* defined(DDB) */
1784