Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.148
      1 /*	$NetBSD: kern_lwp.c,v 1.148 2010/06/11 07:32:32 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.
     64  *
     65  *	LSIDL
     66  *
     67  *		Idle: the LWP has been created but has not yet executed,
     68  *		or it has ceased executing a unit of work and is waiting
     69  *		to be started again.
     70  *
     71  *	LSSUSPENDED:
     72  *
     73  *		Suspended: the LWP has had its execution suspended by
     74  *		another LWP in the same process using the _lwp_suspend()
     75  *		system call.  User-level LWPs also enter the suspended
     76  *		state when the system is shutting down.
     77  *
     78  *	The second set represent a "statement of intent" on behalf of the
     79  *	LWP.  The LWP may in fact be executing on a processor, may be
     80  *	sleeping or idle. It is expected to take the necessary action to
     81  *	stop executing or become "running" again within a short timeframe.
     82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83  *	Importantly, it indicates that its state is tied to a CPU.
     84  *
     85  *	LSZOMB:
     86  *
     87  *		Dead or dying: the LWP has released most of its resources
     88  *		and is about to switch away into oblivion, or has already
     89  *		switched away.  When it switches away, its few remaining
     90  *		resources can be collected.
     91  *
     92  *	LSSLEEP:
     93  *
     94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95  *		has switched away or will switch away shortly to allow other
     96  *		LWPs to run on the CPU.
     97  *
     98  *	LSSTOP:
     99  *
    100  *		Stopped: the LWP has been stopped as a result of a job
    101  *		control signal, or as a result of the ptrace() interface.
    102  *
    103  *		Stopped LWPs may run briefly within the kernel to handle
    104  *		signals that they receive, but will not return to user space
    105  *		until their process' state is changed away from stopped.
    106  *
    107  *		Single LWPs within a process can not be set stopped
    108  *		selectively: all actions that can stop or continue LWPs
    109  *		occur at the process level.
    110  *
    111  * State transitions
    112  *
    113  *	Note that the LSSTOP state may only be set when returning to
    114  *	user space in userret(), or when sleeping interruptably.  The
    115  *	LSSUSPENDED state may only be set in userret().  Before setting
    116  *	those states, we try to ensure that the LWPs will release all
    117  *	locks that they hold, and at a minimum try to ensure that the
    118  *	LWP can be set runnable again by a signal.
    119  *
    120  *	LWPs may transition states in the following ways:
    121  *
    122  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123  *		    				    > SLEEP
    124  *		    				    > STOPPED
    125  *						    > SUSPENDED
    126  *						    > ZOMB
    127  *						    > IDL (special cases)
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *						    > ONPROC (special cases)
    136  *
    137  *	Some state transitions are only possible with kernel threads (eg
    138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139  *	free of unwanted side effects.
    140  *
    141  * Migration
    142  *
    143  *	Migration of threads from one CPU to another could be performed
    144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  *	functions.  The universal lwp_migrate() function should be used for
    146  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  *	of LWP may change, while it is not locked.
    148  *
    149  * Locking
    150  *
    151  *	The majority of fields in 'struct lwp' are covered by a single,
    152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153  *	each field are documented in sys/lwp.h.
    154  *
    155  *	State transitions must be made with the LWP's general lock held,
    156  *	and may cause the LWP's lock pointer to change. Manipulation of
    157  *	the general lock is not performed directly, but through calls to
    158  *	lwp_lock(), lwp_relock() and similar.
    159  *
    160  *	States and their associated locks:
    161  *
    162  *	LSONPROC, LSZOMB:
    163  *
    164  *		Always covered by spc_lwplock, which protects running LWPs.
    165  *		This is a per-CPU lock and matches lwp::l_cpu.
    166  *
    167  *	LSIDL, LSRUN:
    168  *
    169  *		Always covered by spc_mutex, which protects the run queues.
    170  *		This is a per-CPU lock and matches lwp::l_cpu.
    171  *
    172  *	LSSLEEP:
    173  *
    174  *		Covered by a lock associated with the sleep queue that the
    175  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    176  *
    177  *	LSSTOP, LSSUSPENDED:
    178  *
    179  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180  *		l_mutex references the sleep queue lock.  If the LWP was
    181  *		runnable or on the CPU when halted, or has been removed from
    182  *		the sleep queue since halted, then the lock is spc_lwplock.
    183  *
    184  *	The lock order is as follows:
    185  *
    186  *		spc::spc_lwplock ->
    187  *		    sleeptab::st_mutex ->
    188  *			tschain_t::tc_mutex ->
    189  *			    spc::spc_mutex
    190  *
    191  *	Each process has an scheduler state lock (proc::p_lock), and a
    192  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    193  *	so on.  When an LWP is to be entered into or removed from one of the
    194  *	following states, p_lock must be held and the process wide counters
    195  *	adjusted:
    196  *
    197  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    198  *
    199  *	(But not always for kernel threads.  There are some special cases
    200  *	as mentioned above.  See kern_softint.c.)
    201  *
    202  *	Note that an LWP is considered running or likely to run soon if in
    203  *	one of the following states.  This affects the value of p_nrlwps:
    204  *
    205  *		LSRUN, LSONPROC, LSSLEEP
    206  *
    207  *	p_lock does not need to be held when transitioning among these
    208  *	three states, hence p_lock is rarely taken for state transitions.
    209  */
    210 
    211 #include <sys/cdefs.h>
    212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.148 2010/06/11 07:32:32 pooka Exp $");
    213 
    214 #include "opt_ddb.h"
    215 #include "opt_lockdebug.h"
    216 #include "opt_sa.h"
    217 #include "opt_dtrace.h"
    218 
    219 #define _LWP_API_PRIVATE
    220 
    221 #include <sys/param.h>
    222 #include <sys/systm.h>
    223 #include <sys/cpu.h>
    224 #include <sys/pool.h>
    225 #include <sys/proc.h>
    226 #include <sys/sa.h>
    227 #include <sys/savar.h>
    228 #include <sys/syscallargs.h>
    229 #include <sys/syscall_stats.h>
    230 #include <sys/kauth.h>
    231 #include <sys/sleepq.h>
    232 #include <sys/lockdebug.h>
    233 #include <sys/kmem.h>
    234 #include <sys/pset.h>
    235 #include <sys/intr.h>
    236 #include <sys/lwpctl.h>
    237 #include <sys/atomic.h>
    238 #include <sys/filedesc.h>
    239 #include <sys/dtrace_bsd.h>
    240 #include <sys/sdt.h>
    241 
    242 #include <uvm/uvm_extern.h>
    243 #include <uvm/uvm_object.h>
    244 
    245 struct lwplist		alllwp = LIST_HEAD_INITIALIZER(alllwp);
    246 static pool_cache_t	lwp_cache;
    247 
    248 /* DTrace proc provider probes */
    249 SDT_PROBE_DEFINE(proc,,,lwp_create,
    250 	"struct lwp *", NULL,
    251 	NULL, NULL, NULL, NULL,
    252 	NULL, NULL, NULL, NULL);
    253 SDT_PROBE_DEFINE(proc,,,lwp_start,
    254 	"struct lwp *", NULL,
    255 	NULL, NULL, NULL, NULL,
    256 	NULL, NULL, NULL, NULL);
    257 SDT_PROBE_DEFINE(proc,,,lwp_exit,
    258 	"struct lwp *", NULL,
    259 	NULL, NULL, NULL, NULL,
    260 	NULL, NULL, NULL, NULL);
    261 
    262 struct turnstile turnstile0;
    263 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    264 #ifdef LWP0_CPU_INFO
    265 	.l_cpu = LWP0_CPU_INFO,
    266 #endif
    267 	.l_proc = &proc0,
    268 	.l_lid = 1,
    269 	.l_flag = LW_SYSTEM,
    270 	.l_stat = LSONPROC,
    271 	.l_ts = &turnstile0,
    272 	.l_syncobj = &sched_syncobj,
    273 	.l_refcnt = 1,
    274 	.l_priority = PRI_USER + NPRI_USER - 1,
    275 	.l_inheritedprio = -1,
    276 	.l_class = SCHED_OTHER,
    277 	.l_psid = PS_NONE,
    278 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    279 	.l_name = __UNCONST("swapper"),
    280 	.l_fd = &filedesc0,
    281 };
    282 
    283 void
    284 lwpinit(void)
    285 {
    286 
    287 	lwpinit_specificdata();
    288 	lwp_sys_init();
    289 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    290 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    291 }
    292 
    293 void
    294 lwp0_init(void)
    295 {
    296 	struct lwp *l = &lwp0;
    297 
    298 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    299 	KASSERT(l->l_lid == proc0.p_nlwpid);
    300 
    301 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    302 
    303 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    304 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    305 	cv_init(&l->l_sigcv, "sigwait");
    306 
    307 	kauth_cred_hold(proc0.p_cred);
    308 	l->l_cred = proc0.p_cred;
    309 
    310 	lwp_initspecific(l);
    311 
    312 	SYSCALL_TIME_LWP_INIT(l);
    313 }
    314 
    315 /*
    316  * Set an suspended.
    317  *
    318  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    319  * LWP before return.
    320  */
    321 int
    322 lwp_suspend(struct lwp *curl, struct lwp *t)
    323 {
    324 	int error;
    325 
    326 	KASSERT(mutex_owned(t->l_proc->p_lock));
    327 	KASSERT(lwp_locked(t, NULL));
    328 
    329 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    330 
    331 	/*
    332 	 * If the current LWP has been told to exit, we must not suspend anyone
    333 	 * else or deadlock could occur.  We won't return to userspace.
    334 	 */
    335 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    336 		lwp_unlock(t);
    337 		return (EDEADLK);
    338 	}
    339 
    340 	error = 0;
    341 
    342 	switch (t->l_stat) {
    343 	case LSRUN:
    344 	case LSONPROC:
    345 		t->l_flag |= LW_WSUSPEND;
    346 		lwp_need_userret(t);
    347 		lwp_unlock(t);
    348 		break;
    349 
    350 	case LSSLEEP:
    351 		t->l_flag |= LW_WSUSPEND;
    352 
    353 		/*
    354 		 * Kick the LWP and try to get it to the kernel boundary
    355 		 * so that it will release any locks that it holds.
    356 		 * setrunnable() will release the lock.
    357 		 */
    358 		if ((t->l_flag & LW_SINTR) != 0)
    359 			setrunnable(t);
    360 		else
    361 			lwp_unlock(t);
    362 		break;
    363 
    364 	case LSSUSPENDED:
    365 		lwp_unlock(t);
    366 		break;
    367 
    368 	case LSSTOP:
    369 		t->l_flag |= LW_WSUSPEND;
    370 		setrunnable(t);
    371 		break;
    372 
    373 	case LSIDL:
    374 	case LSZOMB:
    375 		error = EINTR; /* It's what Solaris does..... */
    376 		lwp_unlock(t);
    377 		break;
    378 	}
    379 
    380 	return (error);
    381 }
    382 
    383 /*
    384  * Restart a suspended LWP.
    385  *
    386  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    387  * LWP before return.
    388  */
    389 void
    390 lwp_continue(struct lwp *l)
    391 {
    392 
    393 	KASSERT(mutex_owned(l->l_proc->p_lock));
    394 	KASSERT(lwp_locked(l, NULL));
    395 
    396 	/* If rebooting or not suspended, then just bail out. */
    397 	if ((l->l_flag & LW_WREBOOT) != 0) {
    398 		lwp_unlock(l);
    399 		return;
    400 	}
    401 
    402 	l->l_flag &= ~LW_WSUSPEND;
    403 
    404 	if (l->l_stat != LSSUSPENDED) {
    405 		lwp_unlock(l);
    406 		return;
    407 	}
    408 
    409 	/* setrunnable() will release the lock. */
    410 	setrunnable(l);
    411 }
    412 
    413 /*
    414  * Restart a stopped LWP.
    415  *
    416  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    417  * LWP before return.
    418  */
    419 void
    420 lwp_unstop(struct lwp *l)
    421 {
    422 	struct proc *p = l->l_proc;
    423 
    424 	KASSERT(mutex_owned(proc_lock));
    425 	KASSERT(mutex_owned(p->p_lock));
    426 
    427 	lwp_lock(l);
    428 
    429 	/* If not stopped, then just bail out. */
    430 	if (l->l_stat != LSSTOP) {
    431 		lwp_unlock(l);
    432 		return;
    433 	}
    434 
    435 	p->p_stat = SACTIVE;
    436 	p->p_sflag &= ~PS_STOPPING;
    437 
    438 	if (!p->p_waited)
    439 		p->p_pptr->p_nstopchild--;
    440 
    441 	if (l->l_wchan == NULL) {
    442 		/* setrunnable() will release the lock. */
    443 		setrunnable(l);
    444 	} else {
    445 		l->l_stat = LSSLEEP;
    446 		p->p_nrlwps++;
    447 		lwp_unlock(l);
    448 	}
    449 }
    450 
    451 /*
    452  * Wait for an LWP within the current process to exit.  If 'lid' is
    453  * non-zero, we are waiting for a specific LWP.
    454  *
    455  * Must be called with p->p_lock held.
    456  */
    457 int
    458 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    459 {
    460 	struct proc *p = l->l_proc;
    461 	struct lwp *l2;
    462 	int nfound, error;
    463 	lwpid_t curlid;
    464 	bool exiting;
    465 
    466 	KASSERT(mutex_owned(p->p_lock));
    467 
    468 	p->p_nlwpwait++;
    469 	l->l_waitingfor = lid;
    470 	curlid = l->l_lid;
    471 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    472 
    473 	for (;;) {
    474 		/*
    475 		 * Avoid a race between exit1() and sigexit(): if the
    476 		 * process is dumping core, then we need to bail out: call
    477 		 * into lwp_userret() where we will be suspended until the
    478 		 * deed is done.
    479 		 */
    480 		if ((p->p_sflag & PS_WCORE) != 0) {
    481 			mutex_exit(p->p_lock);
    482 			lwp_userret(l);
    483 #ifdef DIAGNOSTIC
    484 			panic("lwp_wait1");
    485 #endif
    486 			/* NOTREACHED */
    487 		}
    488 
    489 		/*
    490 		 * First off, drain any detached LWP that is waiting to be
    491 		 * reaped.
    492 		 */
    493 		while ((l2 = p->p_zomblwp) != NULL) {
    494 			p->p_zomblwp = NULL;
    495 			lwp_free(l2, false, false);/* releases proc mutex */
    496 			mutex_enter(p->p_lock);
    497 		}
    498 
    499 		/*
    500 		 * Now look for an LWP to collect.  If the whole process is
    501 		 * exiting, count detached LWPs as eligible to be collected,
    502 		 * but don't drain them here.
    503 		 */
    504 		nfound = 0;
    505 		error = 0;
    506 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    507 			/*
    508 			 * If a specific wait and the target is waiting on
    509 			 * us, then avoid deadlock.  This also traps LWPs
    510 			 * that try to wait on themselves.
    511 			 *
    512 			 * Note that this does not handle more complicated
    513 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    514 			 * can still be killed so it is not a major problem.
    515 			 */
    516 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    517 				error = EDEADLK;
    518 				break;
    519 			}
    520 			if (l2 == l)
    521 				continue;
    522 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    523 				nfound += exiting;
    524 				continue;
    525 			}
    526 			if (lid != 0) {
    527 				if (l2->l_lid != lid)
    528 					continue;
    529 				/*
    530 				 * Mark this LWP as the first waiter, if there
    531 				 * is no other.
    532 				 */
    533 				if (l2->l_waiter == 0)
    534 					l2->l_waiter = curlid;
    535 			} else if (l2->l_waiter != 0) {
    536 				/*
    537 				 * It already has a waiter - so don't
    538 				 * collect it.  If the waiter doesn't
    539 				 * grab it we'll get another chance
    540 				 * later.
    541 				 */
    542 				nfound++;
    543 				continue;
    544 			}
    545 			nfound++;
    546 
    547 			/* No need to lock the LWP in order to see LSZOMB. */
    548 			if (l2->l_stat != LSZOMB)
    549 				continue;
    550 
    551 			/*
    552 			 * We're no longer waiting.  Reset the "first waiter"
    553 			 * pointer on the target, in case it was us.
    554 			 */
    555 			l->l_waitingfor = 0;
    556 			l2->l_waiter = 0;
    557 			p->p_nlwpwait--;
    558 			if (departed)
    559 				*departed = l2->l_lid;
    560 			sched_lwp_collect(l2);
    561 
    562 			/* lwp_free() releases the proc lock. */
    563 			lwp_free(l2, false, false);
    564 			mutex_enter(p->p_lock);
    565 			return 0;
    566 		}
    567 
    568 		if (error != 0)
    569 			break;
    570 		if (nfound == 0) {
    571 			error = ESRCH;
    572 			break;
    573 		}
    574 
    575 		/*
    576 		 * The kernel is careful to ensure that it can not deadlock
    577 		 * when exiting - just keep waiting.
    578 		 */
    579 		if (exiting) {
    580 			KASSERT(p->p_nlwps > 1);
    581 			cv_wait(&p->p_lwpcv, p->p_lock);
    582 			continue;
    583 		}
    584 
    585 		/*
    586 		 * If all other LWPs are waiting for exits or suspends
    587 		 * and the supply of zombies and potential zombies is
    588 		 * exhausted, then we are about to deadlock.
    589 		 *
    590 		 * If the process is exiting (and this LWP is not the one
    591 		 * that is coordinating the exit) then bail out now.
    592 		 */
    593 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    594 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    595 			error = EDEADLK;
    596 			break;
    597 		}
    598 
    599 		/*
    600 		 * Sit around and wait for something to happen.  We'll be
    601 		 * awoken if any of the conditions examined change: if an
    602 		 * LWP exits, is collected, or is detached.
    603 		 */
    604 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    605 			break;
    606 	}
    607 
    608 	/*
    609 	 * We didn't find any LWPs to collect, we may have received a
    610 	 * signal, or some other condition has caused us to bail out.
    611 	 *
    612 	 * If waiting on a specific LWP, clear the waiters marker: some
    613 	 * other LWP may want it.  Then, kick all the remaining waiters
    614 	 * so that they can re-check for zombies and for deadlock.
    615 	 */
    616 	if (lid != 0) {
    617 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    618 			if (l2->l_lid == lid) {
    619 				if (l2->l_waiter == curlid)
    620 					l2->l_waiter = 0;
    621 				break;
    622 			}
    623 		}
    624 	}
    625 	p->p_nlwpwait--;
    626 	l->l_waitingfor = 0;
    627 	cv_broadcast(&p->p_lwpcv);
    628 
    629 	return error;
    630 }
    631 
    632 /*
    633  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    634  * The new LWP is created in state LSIDL and must be set running,
    635  * suspended, or stopped by the caller.
    636  */
    637 int
    638 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    639 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    640 	   lwp_t **rnewlwpp, int sclass)
    641 {
    642 	struct lwp *l2, *isfree;
    643 	turnstile_t *ts;
    644 
    645 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    646 
    647 	/*
    648 	 * First off, reap any detached LWP waiting to be collected.
    649 	 * We can re-use its LWP structure and turnstile.
    650 	 */
    651 	isfree = NULL;
    652 	if (p2->p_zomblwp != NULL) {
    653 		mutex_enter(p2->p_lock);
    654 		if ((isfree = p2->p_zomblwp) != NULL) {
    655 			p2->p_zomblwp = NULL;
    656 			lwp_free(isfree, true, false);/* releases proc mutex */
    657 		} else
    658 			mutex_exit(p2->p_lock);
    659 	}
    660 	if (isfree == NULL) {
    661 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    662 		memset(l2, 0, sizeof(*l2));
    663 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    664 		SLIST_INIT(&l2->l_pi_lenders);
    665 	} else {
    666 		l2 = isfree;
    667 		ts = l2->l_ts;
    668 		KASSERT(l2->l_inheritedprio == -1);
    669 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    670 		memset(l2, 0, sizeof(*l2));
    671 		l2->l_ts = ts;
    672 	}
    673 
    674 	l2->l_stat = LSIDL;
    675 	l2->l_proc = p2;
    676 	l2->l_refcnt = 1;
    677 	l2->l_class = sclass;
    678 
    679 	/*
    680 	 * If vfork(), we want the LWP to run fast and on the same CPU
    681 	 * as its parent, so that it can reuse the VM context and cache
    682 	 * footprint on the local CPU.
    683 	 */
    684 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    685 	l2->l_kpribase = PRI_KERNEL;
    686 	l2->l_priority = l1->l_priority;
    687 	l2->l_inheritedprio = -1;
    688 	l2->l_flag = 0;
    689 	l2->l_pflag = LP_MPSAFE;
    690 	TAILQ_INIT(&l2->l_ld_locks);
    691 
    692 	/*
    693 	 * If not the first LWP in the process, grab a reference to the
    694 	 * descriptor table.
    695 	 */
    696 	l2->l_fd = p2->p_fd;
    697 	if (p2->p_nlwps != 0) {
    698 		KASSERT(l1->l_proc == p2);
    699 		fd_hold(l2);
    700 	} else {
    701 		KASSERT(l1->l_proc != p2);
    702 	}
    703 
    704 	if (p2->p_flag & PK_SYSTEM) {
    705 		/* Mark it as a system LWP. */
    706 		l2->l_flag |= LW_SYSTEM;
    707 	}
    708 
    709 	kpreempt_disable();
    710 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    711 	l2->l_cpu = l1->l_cpu;
    712 	kpreempt_enable();
    713 
    714 	kdtrace_thread_ctor(NULL, l2);
    715 	lwp_initspecific(l2);
    716 	sched_lwp_fork(l1, l2);
    717 	lwp_update_creds(l2);
    718 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    719 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    720 	cv_init(&l2->l_sigcv, "sigwait");
    721 	l2->l_syncobj = &sched_syncobj;
    722 
    723 	if (rnewlwpp != NULL)
    724 		*rnewlwpp = l2;
    725 
    726 	uvm_lwp_setuarea(l2, uaddr);
    727 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    728 	    (arg != NULL) ? arg : l2);
    729 
    730 	mutex_enter(p2->p_lock);
    731 
    732 	if ((flags & LWP_DETACHED) != 0) {
    733 		l2->l_prflag = LPR_DETACHED;
    734 		p2->p_ndlwps++;
    735 	} else
    736 		l2->l_prflag = 0;
    737 
    738 	l2->l_sigmask = l1->l_sigmask;
    739 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    740 	sigemptyset(&l2->l_sigpend.sp_set);
    741 
    742 	p2->p_nlwpid++;
    743 	if (p2->p_nlwpid == 0)
    744 		p2->p_nlwpid++;
    745 	l2->l_lid = p2->p_nlwpid;
    746 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    747 	p2->p_nlwps++;
    748 
    749 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    750 		/* Inherit an affinity */
    751 		if (l1->l_flag & LW_AFFINITY) {
    752 			/*
    753 			 * Note that we hold the state lock while inheriting
    754 			 * the affinity to avoid race with sched_setaffinity().
    755 			 */
    756 			lwp_lock(l1);
    757 			if (l1->l_flag & LW_AFFINITY) {
    758 				kcpuset_use(l1->l_affinity);
    759 				l2->l_affinity = l1->l_affinity;
    760 				l2->l_flag |= LW_AFFINITY;
    761 			}
    762 			lwp_unlock(l1);
    763 		}
    764 		lwp_lock(l2);
    765 		/* Inherit a processor-set */
    766 		l2->l_psid = l1->l_psid;
    767 		/* Look for a CPU to start */
    768 		l2->l_cpu = sched_takecpu(l2);
    769 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    770 	}
    771 	mutex_exit(p2->p_lock);
    772 
    773 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
    774 
    775 	mutex_enter(proc_lock);
    776 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    777 	mutex_exit(proc_lock);
    778 
    779 	SYSCALL_TIME_LWP_INIT(l2);
    780 
    781 	if (p2->p_emul->e_lwp_fork)
    782 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    783 
    784 	return (0);
    785 }
    786 
    787 /*
    788  * Called by MD code when a new LWP begins execution.  Must be called
    789  * with the previous LWP locked (so at splsched), or if there is no
    790  * previous LWP, at splsched.
    791  */
    792 void
    793 lwp_startup(struct lwp *prev, struct lwp *new)
    794 {
    795 
    796 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
    797 
    798 	KASSERT(kpreempt_disabled());
    799 	if (prev != NULL) {
    800 		/*
    801 		 * Normalize the count of the spin-mutexes, it was
    802 		 * increased in mi_switch().  Unmark the state of
    803 		 * context switch - it is finished for previous LWP.
    804 		 */
    805 		curcpu()->ci_mtx_count++;
    806 		membar_exit();
    807 		prev->l_ctxswtch = 0;
    808 	}
    809 	KPREEMPT_DISABLE(new);
    810 	spl0();
    811 	pmap_activate(new);
    812 	LOCKDEBUG_BARRIER(NULL, 0);
    813 	KPREEMPT_ENABLE(new);
    814 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    815 		KERNEL_LOCK(1, new);
    816 	}
    817 }
    818 
    819 /*
    820  * Exit an LWP.
    821  */
    822 void
    823 lwp_exit(struct lwp *l)
    824 {
    825 	struct proc *p = l->l_proc;
    826 	struct lwp *l2;
    827 	bool current;
    828 
    829 	current = (l == curlwp);
    830 
    831 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    832 	KASSERT(p == curproc);
    833 
    834 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
    835 
    836 	/*
    837 	 * Verify that we hold no locks other than the kernel lock.
    838 	 */
    839 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    840 
    841 	/*
    842 	 * If we are the last live LWP in a process, we need to exit the
    843 	 * entire process.  We do so with an exit status of zero, because
    844 	 * it's a "controlled" exit, and because that's what Solaris does.
    845 	 *
    846 	 * We are not quite a zombie yet, but for accounting purposes we
    847 	 * must increment the count of zombies here.
    848 	 *
    849 	 * Note: the last LWP's specificdata will be deleted here.
    850 	 */
    851 	mutex_enter(p->p_lock);
    852 	if (p->p_nlwps - p->p_nzlwps == 1) {
    853 		KASSERT(current == true);
    854 		/* XXXSMP kernel_lock not held */
    855 		exit1(l, 0);
    856 		/* NOTREACHED */
    857 	}
    858 	p->p_nzlwps++;
    859 	mutex_exit(p->p_lock);
    860 
    861 	if (p->p_emul->e_lwp_exit)
    862 		(*p->p_emul->e_lwp_exit)(l);
    863 
    864 	/* Drop filedesc reference. */
    865 	fd_free();
    866 
    867 	/* Delete the specificdata while it's still safe to sleep. */
    868 	lwp_finispecific(l);
    869 
    870 	/*
    871 	 * Release our cached credentials.
    872 	 */
    873 	kauth_cred_free(l->l_cred);
    874 	callout_destroy(&l->l_timeout_ch);
    875 
    876 	/*
    877 	 * Remove the LWP from the global list.
    878 	 */
    879 	mutex_enter(proc_lock);
    880 	LIST_REMOVE(l, l_list);
    881 	mutex_exit(proc_lock);
    882 
    883 	/*
    884 	 * Get rid of all references to the LWP that others (e.g. procfs)
    885 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    886 	 * mark it waiting for collection in the proc structure.  Note that
    887 	 * before we can do that, we need to free any other dead, deatched
    888 	 * LWP waiting to meet its maker.
    889 	 */
    890 	mutex_enter(p->p_lock);
    891 	lwp_drainrefs(l);
    892 
    893 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    894 		while ((l2 = p->p_zomblwp) != NULL) {
    895 			p->p_zomblwp = NULL;
    896 			lwp_free(l2, false, false);/* releases proc mutex */
    897 			mutex_enter(p->p_lock);
    898 			l->l_refcnt++;
    899 			lwp_drainrefs(l);
    900 		}
    901 		p->p_zomblwp = l;
    902 	}
    903 
    904 	/*
    905 	 * If we find a pending signal for the process and we have been
    906 	 * asked to check for signals, then we loose: arrange to have
    907 	 * all other LWPs in the process check for signals.
    908 	 */
    909 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    910 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    911 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    912 			lwp_lock(l2);
    913 			l2->l_flag |= LW_PENDSIG;
    914 			lwp_unlock(l2);
    915 		}
    916 	}
    917 
    918 	lwp_lock(l);
    919 	l->l_stat = LSZOMB;
    920 	if (l->l_name != NULL)
    921 		strcpy(l->l_name, "(zombie)");
    922 	if (l->l_flag & LW_AFFINITY) {
    923 		l->l_flag &= ~LW_AFFINITY;
    924 	} else {
    925 		KASSERT(l->l_affinity == NULL);
    926 	}
    927 	lwp_unlock(l);
    928 	p->p_nrlwps--;
    929 	cv_broadcast(&p->p_lwpcv);
    930 	if (l->l_lwpctl != NULL)
    931 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    932 	mutex_exit(p->p_lock);
    933 
    934 	/* Safe without lock since LWP is in zombie state */
    935 	if (l->l_affinity) {
    936 		kcpuset_unuse(l->l_affinity, NULL);
    937 		l->l_affinity = NULL;
    938 	}
    939 
    940 	/*
    941 	 * We can no longer block.  At this point, lwp_free() may already
    942 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    943 	 *
    944 	 * Free MD LWP resources.
    945 	 */
    946 	cpu_lwp_free(l, 0);
    947 
    948 	if (current) {
    949 		pmap_deactivate(l);
    950 
    951 		/*
    952 		 * Release the kernel lock, and switch away into
    953 		 * oblivion.
    954 		 */
    955 #ifdef notyet
    956 		/* XXXSMP hold in lwp_userret() */
    957 		KERNEL_UNLOCK_LAST(l);
    958 #else
    959 		KERNEL_UNLOCK_ALL(l, NULL);
    960 #endif
    961 		lwp_exit_switchaway(l);
    962 	}
    963 }
    964 
    965 /*
    966  * Free a dead LWP's remaining resources.
    967  *
    968  * XXXLWP limits.
    969  */
    970 void
    971 lwp_free(struct lwp *l, bool recycle, bool last)
    972 {
    973 	struct proc *p = l->l_proc;
    974 	struct rusage *ru;
    975 	ksiginfoq_t kq;
    976 
    977 	KASSERT(l != curlwp);
    978 
    979 	/*
    980 	 * If this was not the last LWP in the process, then adjust
    981 	 * counters and unlock.
    982 	 */
    983 	if (!last) {
    984 		/*
    985 		 * Add the LWP's run time to the process' base value.
    986 		 * This needs to co-incide with coming off p_lwps.
    987 		 */
    988 		bintime_add(&p->p_rtime, &l->l_rtime);
    989 		p->p_pctcpu += l->l_pctcpu;
    990 		ru = &p->p_stats->p_ru;
    991 		ruadd(ru, &l->l_ru);
    992 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
    993 		ru->ru_nivcsw += l->l_nivcsw;
    994 		LIST_REMOVE(l, l_sibling);
    995 		p->p_nlwps--;
    996 		p->p_nzlwps--;
    997 		if ((l->l_prflag & LPR_DETACHED) != 0)
    998 			p->p_ndlwps--;
    999 
   1000 		/*
   1001 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1002 		 * deadlock.
   1003 		 */
   1004 		cv_broadcast(&p->p_lwpcv);
   1005 		mutex_exit(p->p_lock);
   1006 	}
   1007 
   1008 #ifdef MULTIPROCESSOR
   1009 	/*
   1010 	 * In the unlikely event that the LWP is still on the CPU,
   1011 	 * then spin until it has switched away.  We need to release
   1012 	 * all locks to avoid deadlock against interrupt handlers on
   1013 	 * the target CPU.
   1014 	 */
   1015 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
   1016 		int count;
   1017 		(void)count; /* XXXgcc */
   1018 		KERNEL_UNLOCK_ALL(curlwp, &count);
   1019 		while ((l->l_pflag & LP_RUNNING) != 0 ||
   1020 		    l->l_cpu->ci_curlwp == l)
   1021 			SPINLOCK_BACKOFF_HOOK;
   1022 		KERNEL_LOCK(count, curlwp);
   1023 	}
   1024 #endif
   1025 
   1026 	/*
   1027 	 * Destroy the LWP's remaining signal information.
   1028 	 */
   1029 	ksiginfo_queue_init(&kq);
   1030 	sigclear(&l->l_sigpend, NULL, &kq);
   1031 	ksiginfo_queue_drain(&kq);
   1032 	cv_destroy(&l->l_sigcv);
   1033 
   1034 	/*
   1035 	 * Free the LWP's turnstile and the LWP structure itself unless the
   1036 	 * caller wants to recycle them.  Also, free the scheduler specific
   1037 	 * data.
   1038 	 *
   1039 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1040 	 * so if it comes up just drop it quietly and move on.
   1041 	 *
   1042 	 * We don't recycle the VM resources at this time.
   1043 	 */
   1044 	if (l->l_lwpctl != NULL)
   1045 		lwp_ctl_free(l);
   1046 
   1047 	if (!recycle && l->l_ts != &turnstile0)
   1048 		pool_cache_put(turnstile_cache, l->l_ts);
   1049 	if (l->l_name != NULL)
   1050 		kmem_free(l->l_name, MAXCOMLEN);
   1051 
   1052 	cpu_lwp_free2(l);
   1053 	uvm_lwp_exit(l);
   1054 
   1055 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1056 	KASSERT(l->l_inheritedprio == -1);
   1057 	kdtrace_thread_dtor(NULL, l);
   1058 	if (!recycle)
   1059 		pool_cache_put(lwp_cache, l);
   1060 }
   1061 
   1062 /*
   1063  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1064  */
   1065 void
   1066 lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1067 {
   1068 	struct schedstate_percpu *tspc;
   1069 	int lstat = l->l_stat;
   1070 
   1071 	KASSERT(lwp_locked(l, NULL));
   1072 	KASSERT(tci != NULL);
   1073 
   1074 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1075 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1076 		lstat = LSONPROC;
   1077 	}
   1078 
   1079 	/*
   1080 	 * The destination CPU could be changed while previous migration
   1081 	 * was not finished.
   1082 	 */
   1083 	if (l->l_target_cpu != NULL) {
   1084 		l->l_target_cpu = tci;
   1085 		lwp_unlock(l);
   1086 		return;
   1087 	}
   1088 
   1089 	/* Nothing to do if trying to migrate to the same CPU */
   1090 	if (l->l_cpu == tci) {
   1091 		lwp_unlock(l);
   1092 		return;
   1093 	}
   1094 
   1095 	KASSERT(l->l_target_cpu == NULL);
   1096 	tspc = &tci->ci_schedstate;
   1097 	switch (lstat) {
   1098 	case LSRUN:
   1099 		l->l_target_cpu = tci;
   1100 		break;
   1101 	case LSIDL:
   1102 		l->l_cpu = tci;
   1103 		lwp_unlock_to(l, tspc->spc_mutex);
   1104 		return;
   1105 	case LSSLEEP:
   1106 		l->l_cpu = tci;
   1107 		break;
   1108 	case LSSTOP:
   1109 	case LSSUSPENDED:
   1110 		l->l_cpu = tci;
   1111 		if (l->l_wchan == NULL) {
   1112 			lwp_unlock_to(l, tspc->spc_lwplock);
   1113 			return;
   1114 		}
   1115 		break;
   1116 	case LSONPROC:
   1117 		l->l_target_cpu = tci;
   1118 		spc_lock(l->l_cpu);
   1119 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1120 		spc_unlock(l->l_cpu);
   1121 		break;
   1122 	}
   1123 	lwp_unlock(l);
   1124 }
   1125 
   1126 /*
   1127  * Find the LWP in the process.  Arguments may be zero, in such case,
   1128  * the calling process and first LWP in the list will be used.
   1129  * On success - returns proc locked.
   1130  */
   1131 struct lwp *
   1132 lwp_find2(pid_t pid, lwpid_t lid)
   1133 {
   1134 	proc_t *p;
   1135 	lwp_t *l;
   1136 
   1137 	/* Find the process */
   1138 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
   1139 	if (p == NULL)
   1140 		return NULL;
   1141 	mutex_enter(p->p_lock);
   1142 	if (pid != 0) {
   1143 		/* Case of p_find */
   1144 		mutex_exit(proc_lock);
   1145 	}
   1146 
   1147 	/* Find the thread */
   1148 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
   1149 	if (l == NULL) {
   1150 		mutex_exit(p->p_lock);
   1151 	}
   1152 
   1153 	return l;
   1154 }
   1155 
   1156 /*
   1157  * Look up a live LWP within the speicifed process, and return it locked.
   1158  *
   1159  * Must be called with p->p_lock held.
   1160  */
   1161 struct lwp *
   1162 lwp_find(struct proc *p, int id)
   1163 {
   1164 	struct lwp *l;
   1165 
   1166 	KASSERT(mutex_owned(p->p_lock));
   1167 
   1168 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1169 		if (l->l_lid == id)
   1170 			break;
   1171 	}
   1172 
   1173 	/*
   1174 	 * No need to lock - all of these conditions will
   1175 	 * be visible with the process level mutex held.
   1176 	 */
   1177 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1178 		l = NULL;
   1179 
   1180 	return l;
   1181 }
   1182 
   1183 /*
   1184  * Update an LWP's cached credentials to mirror the process' master copy.
   1185  *
   1186  * This happens early in the syscall path, on user trap, and on LWP
   1187  * creation.  A long-running LWP can also voluntarily choose to update
   1188  * it's credentials by calling this routine.  This may be called from
   1189  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1190  */
   1191 void
   1192 lwp_update_creds(struct lwp *l)
   1193 {
   1194 	kauth_cred_t oc;
   1195 	struct proc *p;
   1196 
   1197 	p = l->l_proc;
   1198 	oc = l->l_cred;
   1199 
   1200 	mutex_enter(p->p_lock);
   1201 	kauth_cred_hold(p->p_cred);
   1202 	l->l_cred = p->p_cred;
   1203 	l->l_prflag &= ~LPR_CRMOD;
   1204 	mutex_exit(p->p_lock);
   1205 	if (oc != NULL)
   1206 		kauth_cred_free(oc);
   1207 }
   1208 
   1209 /*
   1210  * Verify that an LWP is locked, and optionally verify that the lock matches
   1211  * one we specify.
   1212  */
   1213 int
   1214 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1215 {
   1216 	kmutex_t *cur = l->l_mutex;
   1217 
   1218 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1219 }
   1220 
   1221 /*
   1222  * Lock an LWP.
   1223  */
   1224 kmutex_t *
   1225 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1226 {
   1227 
   1228 	/*
   1229 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1230 	 *
   1231 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1232 	 */
   1233 #if 1
   1234 	while (l->l_mutex != old) {
   1235 #else
   1236 	for (;;) {
   1237 #endif
   1238 		mutex_spin_exit(old);
   1239 		old = l->l_mutex;
   1240 		mutex_spin_enter(old);
   1241 
   1242 		/*
   1243 		 * mutex_enter() will have posted a read barrier.  Re-test
   1244 		 * l->l_mutex.  If it has changed, we need to try again.
   1245 		 */
   1246 #if 1
   1247 	}
   1248 #else
   1249 	} while (__predict_false(l->l_mutex != old));
   1250 #endif
   1251 
   1252 	return old;
   1253 }
   1254 
   1255 /*
   1256  * Lend a new mutex to an LWP.  The old mutex must be held.
   1257  */
   1258 void
   1259 lwp_setlock(struct lwp *l, kmutex_t *new)
   1260 {
   1261 
   1262 	KASSERT(mutex_owned(l->l_mutex));
   1263 
   1264 	membar_exit();
   1265 	l->l_mutex = new;
   1266 }
   1267 
   1268 /*
   1269  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1270  * must be held.
   1271  */
   1272 void
   1273 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1274 {
   1275 	kmutex_t *old;
   1276 
   1277 	KASSERT(mutex_owned(l->l_mutex));
   1278 
   1279 	old = l->l_mutex;
   1280 	membar_exit();
   1281 	l->l_mutex = new;
   1282 	mutex_spin_exit(old);
   1283 }
   1284 
   1285 /*
   1286  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1287  * locked.
   1288  */
   1289 void
   1290 lwp_relock(struct lwp *l, kmutex_t *new)
   1291 {
   1292 	kmutex_t *old;
   1293 
   1294 	KASSERT(mutex_owned(l->l_mutex));
   1295 
   1296 	old = l->l_mutex;
   1297 	if (old != new) {
   1298 		mutex_spin_enter(new);
   1299 		l->l_mutex = new;
   1300 		mutex_spin_exit(old);
   1301 	}
   1302 }
   1303 
   1304 int
   1305 lwp_trylock(struct lwp *l)
   1306 {
   1307 	kmutex_t *old;
   1308 
   1309 	for (;;) {
   1310 		if (!mutex_tryenter(old = l->l_mutex))
   1311 			return 0;
   1312 		if (__predict_true(l->l_mutex == old))
   1313 			return 1;
   1314 		mutex_spin_exit(old);
   1315 	}
   1316 }
   1317 
   1318 void
   1319 lwp_unsleep(lwp_t *l, bool cleanup)
   1320 {
   1321 
   1322 	KASSERT(mutex_owned(l->l_mutex));
   1323 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1324 }
   1325 
   1326 
   1327 /*
   1328  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1329  * set.
   1330  */
   1331 void
   1332 lwp_userret(struct lwp *l)
   1333 {
   1334 	struct proc *p;
   1335 	void (*hook)(void);
   1336 	int sig;
   1337 
   1338 	KASSERT(l == curlwp);
   1339 	KASSERT(l->l_stat == LSONPROC);
   1340 	p = l->l_proc;
   1341 
   1342 #ifndef __HAVE_FAST_SOFTINTS
   1343 	/* Run pending soft interrupts. */
   1344 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1345 		softint_overlay();
   1346 #endif
   1347 
   1348 #ifdef KERN_SA
   1349 	/* Generate UNBLOCKED upcall if needed */
   1350 	if (l->l_flag & LW_SA_BLOCKING) {
   1351 		sa_unblock_userret(l);
   1352 		/* NOTREACHED */
   1353 	}
   1354 #endif
   1355 
   1356 	/*
   1357 	 * It should be safe to do this read unlocked on a multiprocessor
   1358 	 * system..
   1359 	 *
   1360 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
   1361 	 * consider it now.
   1362 	 */
   1363 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
   1364 		/*
   1365 		 * Process pending signals first, unless the process
   1366 		 * is dumping core or exiting, where we will instead
   1367 		 * enter the LW_WSUSPEND case below.
   1368 		 */
   1369 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1370 		    LW_PENDSIG) {
   1371 			mutex_enter(p->p_lock);
   1372 			while ((sig = issignal(l)) != 0)
   1373 				postsig(sig);
   1374 			mutex_exit(p->p_lock);
   1375 		}
   1376 
   1377 		/*
   1378 		 * Core-dump or suspend pending.
   1379 		 *
   1380 		 * In case of core dump, suspend ourselves, so that the
   1381 		 * kernel stack and therefore the userland registers saved
   1382 		 * in the trapframe are around for coredump() to write them
   1383 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1384 		 * will write the core file out once all other LWPs are
   1385 		 * suspended.
   1386 		 */
   1387 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1388 			mutex_enter(p->p_lock);
   1389 			p->p_nrlwps--;
   1390 			cv_broadcast(&p->p_lwpcv);
   1391 			lwp_lock(l);
   1392 			l->l_stat = LSSUSPENDED;
   1393 			lwp_unlock(l);
   1394 			mutex_exit(p->p_lock);
   1395 			lwp_lock(l);
   1396 			mi_switch(l);
   1397 		}
   1398 
   1399 		/* Process is exiting. */
   1400 		if ((l->l_flag & LW_WEXIT) != 0) {
   1401 			lwp_exit(l);
   1402 			KASSERT(0);
   1403 			/* NOTREACHED */
   1404 		}
   1405 
   1406 		/* Call userret hook; used by Linux emulation. */
   1407 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1408 			lwp_lock(l);
   1409 			l->l_flag &= ~LW_WUSERRET;
   1410 			lwp_unlock(l);
   1411 			hook = p->p_userret;
   1412 			p->p_userret = NULL;
   1413 			(*hook)();
   1414 		}
   1415 	}
   1416 
   1417 #ifdef KERN_SA
   1418 	/*
   1419 	 * Timer events are handled specially.  We only try once to deliver
   1420 	 * pending timer upcalls; if if fails, we can try again on the next
   1421 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
   1422 	 * bounce us back here through the trap path after we return.
   1423 	 */
   1424 	if (p->p_timerpend)
   1425 		timerupcall(l);
   1426 	if (l->l_flag & LW_SA_UPCALL)
   1427 		sa_upcall_userret(l);
   1428 #endif /* KERN_SA */
   1429 }
   1430 
   1431 /*
   1432  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1433  */
   1434 void
   1435 lwp_need_userret(struct lwp *l)
   1436 {
   1437 	KASSERT(lwp_locked(l, NULL));
   1438 
   1439 	/*
   1440 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1441 	 * that the condition will be seen before forcing the LWP to enter
   1442 	 * kernel mode.
   1443 	 */
   1444 	membar_producer();
   1445 	cpu_signotify(l);
   1446 }
   1447 
   1448 /*
   1449  * Add one reference to an LWP.  This will prevent the LWP from
   1450  * exiting, thus keep the lwp structure and PCB around to inspect.
   1451  */
   1452 void
   1453 lwp_addref(struct lwp *l)
   1454 {
   1455 
   1456 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1457 	KASSERT(l->l_stat != LSZOMB);
   1458 	KASSERT(l->l_refcnt != 0);
   1459 
   1460 	l->l_refcnt++;
   1461 }
   1462 
   1463 /*
   1464  * Remove one reference to an LWP.  If this is the last reference,
   1465  * then we must finalize the LWP's death.
   1466  */
   1467 void
   1468 lwp_delref(struct lwp *l)
   1469 {
   1470 	struct proc *p = l->l_proc;
   1471 
   1472 	mutex_enter(p->p_lock);
   1473 	lwp_delref2(l);
   1474 	mutex_exit(p->p_lock);
   1475 }
   1476 
   1477 /*
   1478  * Remove one reference to an LWP.  If this is the last reference,
   1479  * then we must finalize the LWP's death.  The proc mutex is held
   1480  * on entry.
   1481  */
   1482 void
   1483 lwp_delref2(struct lwp *l)
   1484 {
   1485 	struct proc *p = l->l_proc;
   1486 
   1487 	KASSERT(mutex_owned(p->p_lock));
   1488 	KASSERT(l->l_stat != LSZOMB);
   1489 	KASSERT(l->l_refcnt > 0);
   1490 	if (--l->l_refcnt == 0)
   1491 		cv_broadcast(&p->p_lwpcv);
   1492 }
   1493 
   1494 /*
   1495  * Drain all references to the current LWP.
   1496  */
   1497 void
   1498 lwp_drainrefs(struct lwp *l)
   1499 {
   1500 	struct proc *p = l->l_proc;
   1501 
   1502 	KASSERT(mutex_owned(p->p_lock));
   1503 	KASSERT(l->l_refcnt != 0);
   1504 
   1505 	l->l_refcnt--;
   1506 	while (l->l_refcnt != 0)
   1507 		cv_wait(&p->p_lwpcv, p->p_lock);
   1508 }
   1509 
   1510 /*
   1511  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1512  * be held.
   1513  */
   1514 bool
   1515 lwp_alive(lwp_t *l)
   1516 {
   1517 
   1518 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1519 
   1520 	switch (l->l_stat) {
   1521 	case LSSLEEP:
   1522 	case LSRUN:
   1523 	case LSONPROC:
   1524 	case LSSTOP:
   1525 	case LSSUSPENDED:
   1526 		return true;
   1527 	default:
   1528 		return false;
   1529 	}
   1530 }
   1531 
   1532 /*
   1533  * Return first live LWP in the process.
   1534  */
   1535 lwp_t *
   1536 lwp_find_first(proc_t *p)
   1537 {
   1538 	lwp_t *l;
   1539 
   1540 	KASSERT(mutex_owned(p->p_lock));
   1541 
   1542 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1543 		if (lwp_alive(l)) {
   1544 			return l;
   1545 		}
   1546 	}
   1547 
   1548 	return NULL;
   1549 }
   1550 
   1551 /*
   1552  * Allocate a new lwpctl structure for a user LWP.
   1553  */
   1554 int
   1555 lwp_ctl_alloc(vaddr_t *uaddr)
   1556 {
   1557 	lcproc_t *lp;
   1558 	u_int bit, i, offset;
   1559 	struct uvm_object *uao;
   1560 	int error;
   1561 	lcpage_t *lcp;
   1562 	proc_t *p;
   1563 	lwp_t *l;
   1564 
   1565 	l = curlwp;
   1566 	p = l->l_proc;
   1567 
   1568 	if (l->l_lcpage != NULL) {
   1569 		lcp = l->l_lcpage;
   1570 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1571 		return 0;
   1572 	}
   1573 
   1574 	/* First time around, allocate header structure for the process. */
   1575 	if ((lp = p->p_lwpctl) == NULL) {
   1576 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1577 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1578 		lp->lp_uao = NULL;
   1579 		TAILQ_INIT(&lp->lp_pages);
   1580 		mutex_enter(p->p_lock);
   1581 		if (p->p_lwpctl == NULL) {
   1582 			p->p_lwpctl = lp;
   1583 			mutex_exit(p->p_lock);
   1584 		} else {
   1585 			mutex_exit(p->p_lock);
   1586 			mutex_destroy(&lp->lp_lock);
   1587 			kmem_free(lp, sizeof(*lp));
   1588 			lp = p->p_lwpctl;
   1589 		}
   1590 	}
   1591 
   1592  	/*
   1593  	 * Set up an anonymous memory region to hold the shared pages.
   1594  	 * Map them into the process' address space.  The user vmspace
   1595  	 * gets the first reference on the UAO.
   1596  	 */
   1597 	mutex_enter(&lp->lp_lock);
   1598 	if (lp->lp_uao == NULL) {
   1599 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1600 		lp->lp_cur = 0;
   1601 		lp->lp_max = LWPCTL_UAREA_SZ;
   1602 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1603 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1604 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1605 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1606 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1607 		if (error != 0) {
   1608 			uao_detach(lp->lp_uao);
   1609 			lp->lp_uao = NULL;
   1610 			mutex_exit(&lp->lp_lock);
   1611 			return error;
   1612 		}
   1613 	}
   1614 
   1615 	/* Get a free block and allocate for this LWP. */
   1616 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1617 		if (lcp->lcp_nfree != 0)
   1618 			break;
   1619 	}
   1620 	if (lcp == NULL) {
   1621 		/* Nothing available - try to set up a free page. */
   1622 		if (lp->lp_cur == lp->lp_max) {
   1623 			mutex_exit(&lp->lp_lock);
   1624 			return ENOMEM;
   1625 		}
   1626 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1627 		if (lcp == NULL) {
   1628 			mutex_exit(&lp->lp_lock);
   1629 			return ENOMEM;
   1630 		}
   1631 		/*
   1632 		 * Wire the next page down in kernel space.  Since this
   1633 		 * is a new mapping, we must add a reference.
   1634 		 */
   1635 		uao = lp->lp_uao;
   1636 		(*uao->pgops->pgo_reference)(uao);
   1637 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1638 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1639 		    uao, lp->lp_cur, PAGE_SIZE,
   1640 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1641 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1642 		if (error != 0) {
   1643 			mutex_exit(&lp->lp_lock);
   1644 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1645 			(*uao->pgops->pgo_detach)(uao);
   1646 			return error;
   1647 		}
   1648 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1649 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1650 		if (error != 0) {
   1651 			mutex_exit(&lp->lp_lock);
   1652 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1653 			    lcp->lcp_kaddr + PAGE_SIZE);
   1654 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1655 			return error;
   1656 		}
   1657 		/* Prepare the page descriptor and link into the list. */
   1658 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1659 		lp->lp_cur += PAGE_SIZE;
   1660 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1661 		lcp->lcp_rotor = 0;
   1662 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1663 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1664 	}
   1665 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1666 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1667 			i = 0;
   1668 	}
   1669 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1670 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1671 	lcp->lcp_rotor = i;
   1672 	lcp->lcp_nfree--;
   1673 	l->l_lcpage = lcp;
   1674 	offset = (i << 5) + bit;
   1675 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1676 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1677 	mutex_exit(&lp->lp_lock);
   1678 
   1679 	KPREEMPT_DISABLE(l);
   1680 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1681 	KPREEMPT_ENABLE(l);
   1682 
   1683 	return 0;
   1684 }
   1685 
   1686 /*
   1687  * Free an lwpctl structure back to the per-process list.
   1688  */
   1689 void
   1690 lwp_ctl_free(lwp_t *l)
   1691 {
   1692 	lcproc_t *lp;
   1693 	lcpage_t *lcp;
   1694 	u_int map, offset;
   1695 
   1696 	lp = l->l_proc->p_lwpctl;
   1697 	KASSERT(lp != NULL);
   1698 
   1699 	lcp = l->l_lcpage;
   1700 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1701 	KASSERT(offset < LWPCTL_PER_PAGE);
   1702 
   1703 	mutex_enter(&lp->lp_lock);
   1704 	lcp->lcp_nfree++;
   1705 	map = offset >> 5;
   1706 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1707 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1708 		lcp->lcp_rotor = map;
   1709 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1710 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1711 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1712 	}
   1713 	mutex_exit(&lp->lp_lock);
   1714 }
   1715 
   1716 /*
   1717  * Process is exiting; tear down lwpctl state.  This can only be safely
   1718  * called by the last LWP in the process.
   1719  */
   1720 void
   1721 lwp_ctl_exit(void)
   1722 {
   1723 	lcpage_t *lcp, *next;
   1724 	lcproc_t *lp;
   1725 	proc_t *p;
   1726 	lwp_t *l;
   1727 
   1728 	l = curlwp;
   1729 	l->l_lwpctl = NULL;
   1730 	l->l_lcpage = NULL;
   1731 	p = l->l_proc;
   1732 	lp = p->p_lwpctl;
   1733 
   1734 	KASSERT(lp != NULL);
   1735 	KASSERT(p->p_nlwps == 1);
   1736 
   1737 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1738 		next = TAILQ_NEXT(lcp, lcp_chain);
   1739 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1740 		    lcp->lcp_kaddr + PAGE_SIZE);
   1741 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1742 	}
   1743 
   1744 	if (lp->lp_uao != NULL) {
   1745 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1746 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1747 	}
   1748 
   1749 	mutex_destroy(&lp->lp_lock);
   1750 	kmem_free(lp, sizeof(*lp));
   1751 	p->p_lwpctl = NULL;
   1752 }
   1753 
   1754 /*
   1755  * Return the current LWP's "preemption counter".  Used to detect
   1756  * preemption across operations that can tolerate preemption without
   1757  * crashing, but which may generate incorrect results if preempted.
   1758  */
   1759 uint64_t
   1760 lwp_pctr(void)
   1761 {
   1762 
   1763 	return curlwp->l_ncsw;
   1764 }
   1765 
   1766 #if defined(DDB)
   1767 void
   1768 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1769 {
   1770 	lwp_t *l;
   1771 
   1772 	LIST_FOREACH(l, &alllwp, l_list) {
   1773 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1774 
   1775 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1776 			continue;
   1777 		}
   1778 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1779 		    (void *)addr, (void *)stack,
   1780 		    (size_t)(addr - stack), l);
   1781 	}
   1782 }
   1783 #endif /* defined(DDB) */
   1784