kern_lwp.c revision 1.153 1 /* $NetBSD: kern_lwp.c,v 1.153 2011/01/14 02:06:34 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.153 2011/01/14 02:06:34 rmind Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_sa.h"
219 #include "opt_dtrace.h"
220
221 #define _LWP_API_PRIVATE
222
223 #include <sys/param.h>
224 #include <sys/systm.h>
225 #include <sys/cpu.h>
226 #include <sys/pool.h>
227 #include <sys/proc.h>
228 #include <sys/sa.h>
229 #include <sys/savar.h>
230 #include <sys/syscallargs.h>
231 #include <sys/syscall_stats.h>
232 #include <sys/kauth.h>
233 #include <sys/sleepq.h>
234 #include <sys/lockdebug.h>
235 #include <sys/kmem.h>
236 #include <sys/pset.h>
237 #include <sys/intr.h>
238 #include <sys/lwpctl.h>
239 #include <sys/atomic.h>
240 #include <sys/filedesc.h>
241 #include <sys/dtrace_bsd.h>
242 #include <sys/sdt.h>
243
244 #include <uvm/uvm_extern.h>
245 #include <uvm/uvm_object.h>
246
247 static pool_cache_t lwp_cache __read_mostly;
248 struct lwplist alllwp __cacheline_aligned;
249
250 /* DTrace proc provider probes */
251 SDT_PROBE_DEFINE(proc,,,lwp_create,
252 "struct lwp *", NULL,
253 NULL, NULL, NULL, NULL,
254 NULL, NULL, NULL, NULL);
255 SDT_PROBE_DEFINE(proc,,,lwp_start,
256 "struct lwp *", NULL,
257 NULL, NULL, NULL, NULL,
258 NULL, NULL, NULL, NULL);
259 SDT_PROBE_DEFINE(proc,,,lwp_exit,
260 "struct lwp *", NULL,
261 NULL, NULL, NULL, NULL,
262 NULL, NULL, NULL, NULL);
263
264 struct turnstile turnstile0;
265 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
266 #ifdef LWP0_CPU_INFO
267 .l_cpu = LWP0_CPU_INFO,
268 #endif
269 .l_proc = &proc0,
270 .l_lid = 1,
271 .l_flag = LW_SYSTEM,
272 .l_stat = LSONPROC,
273 .l_ts = &turnstile0,
274 .l_syncobj = &sched_syncobj,
275 .l_refcnt = 1,
276 .l_priority = PRI_USER + NPRI_USER - 1,
277 .l_inheritedprio = -1,
278 .l_class = SCHED_OTHER,
279 .l_psid = PS_NONE,
280 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
281 .l_name = __UNCONST("swapper"),
282 .l_fd = &filedesc0,
283 };
284
285 void
286 lwpinit(void)
287 {
288
289 LIST_INIT(&alllwp);
290 lwpinit_specificdata();
291 lwp_sys_init();
292 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
293 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
294 }
295
296 void
297 lwp0_init(void)
298 {
299 struct lwp *l = &lwp0;
300
301 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
302 KASSERT(l->l_lid == proc0.p_nlwpid);
303
304 LIST_INSERT_HEAD(&alllwp, l, l_list);
305
306 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
307 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
308 cv_init(&l->l_sigcv, "sigwait");
309
310 kauth_cred_hold(proc0.p_cred);
311 l->l_cred = proc0.p_cred;
312
313 lwp_initspecific(l);
314
315 SYSCALL_TIME_LWP_INIT(l);
316 }
317
318 /*
319 * Set an suspended.
320 *
321 * Must be called with p_lock held, and the LWP locked. Will unlock the
322 * LWP before return.
323 */
324 int
325 lwp_suspend(struct lwp *curl, struct lwp *t)
326 {
327 int error;
328
329 KASSERT(mutex_owned(t->l_proc->p_lock));
330 KASSERT(lwp_locked(t, NULL));
331
332 KASSERT(curl != t || curl->l_stat == LSONPROC);
333
334 /*
335 * If the current LWP has been told to exit, we must not suspend anyone
336 * else or deadlock could occur. We won't return to userspace.
337 */
338 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
339 lwp_unlock(t);
340 return (EDEADLK);
341 }
342
343 error = 0;
344
345 switch (t->l_stat) {
346 case LSRUN:
347 case LSONPROC:
348 t->l_flag |= LW_WSUSPEND;
349 lwp_need_userret(t);
350 lwp_unlock(t);
351 break;
352
353 case LSSLEEP:
354 t->l_flag |= LW_WSUSPEND;
355
356 /*
357 * Kick the LWP and try to get it to the kernel boundary
358 * so that it will release any locks that it holds.
359 * setrunnable() will release the lock.
360 */
361 if ((t->l_flag & LW_SINTR) != 0)
362 setrunnable(t);
363 else
364 lwp_unlock(t);
365 break;
366
367 case LSSUSPENDED:
368 lwp_unlock(t);
369 break;
370
371 case LSSTOP:
372 t->l_flag |= LW_WSUSPEND;
373 setrunnable(t);
374 break;
375
376 case LSIDL:
377 case LSZOMB:
378 error = EINTR; /* It's what Solaris does..... */
379 lwp_unlock(t);
380 break;
381 }
382
383 return (error);
384 }
385
386 /*
387 * Restart a suspended LWP.
388 *
389 * Must be called with p_lock held, and the LWP locked. Will unlock the
390 * LWP before return.
391 */
392 void
393 lwp_continue(struct lwp *l)
394 {
395
396 KASSERT(mutex_owned(l->l_proc->p_lock));
397 KASSERT(lwp_locked(l, NULL));
398
399 /* If rebooting or not suspended, then just bail out. */
400 if ((l->l_flag & LW_WREBOOT) != 0) {
401 lwp_unlock(l);
402 return;
403 }
404
405 l->l_flag &= ~LW_WSUSPEND;
406
407 if (l->l_stat != LSSUSPENDED) {
408 lwp_unlock(l);
409 return;
410 }
411
412 /* setrunnable() will release the lock. */
413 setrunnable(l);
414 }
415
416 /*
417 * Restart a stopped LWP.
418 *
419 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
420 * LWP before return.
421 */
422 void
423 lwp_unstop(struct lwp *l)
424 {
425 struct proc *p = l->l_proc;
426
427 KASSERT(mutex_owned(proc_lock));
428 KASSERT(mutex_owned(p->p_lock));
429
430 lwp_lock(l);
431
432 /* If not stopped, then just bail out. */
433 if (l->l_stat != LSSTOP) {
434 lwp_unlock(l);
435 return;
436 }
437
438 p->p_stat = SACTIVE;
439 p->p_sflag &= ~PS_STOPPING;
440
441 if (!p->p_waited)
442 p->p_pptr->p_nstopchild--;
443
444 if (l->l_wchan == NULL) {
445 /* setrunnable() will release the lock. */
446 setrunnable(l);
447 } else {
448 l->l_stat = LSSLEEP;
449 p->p_nrlwps++;
450 lwp_unlock(l);
451 }
452 }
453
454 /*
455 * Wait for an LWP within the current process to exit. If 'lid' is
456 * non-zero, we are waiting for a specific LWP.
457 *
458 * Must be called with p->p_lock held.
459 */
460 int
461 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
462 {
463 struct proc *p = l->l_proc;
464 struct lwp *l2;
465 int nfound, error;
466 lwpid_t curlid;
467 bool exiting;
468
469 KASSERT(mutex_owned(p->p_lock));
470
471 p->p_nlwpwait++;
472 l->l_waitingfor = lid;
473 curlid = l->l_lid;
474 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
475
476 for (;;) {
477 /*
478 * Avoid a race between exit1() and sigexit(): if the
479 * process is dumping core, then we need to bail out: call
480 * into lwp_userret() where we will be suspended until the
481 * deed is done.
482 */
483 if ((p->p_sflag & PS_WCORE) != 0) {
484 mutex_exit(p->p_lock);
485 lwp_userret(l);
486 #ifdef DIAGNOSTIC
487 panic("lwp_wait1");
488 #endif
489 /* NOTREACHED */
490 }
491
492 /*
493 * First off, drain any detached LWP that is waiting to be
494 * reaped.
495 */
496 while ((l2 = p->p_zomblwp) != NULL) {
497 p->p_zomblwp = NULL;
498 lwp_free(l2, false, false);/* releases proc mutex */
499 mutex_enter(p->p_lock);
500 }
501
502 /*
503 * Now look for an LWP to collect. If the whole process is
504 * exiting, count detached LWPs as eligible to be collected,
505 * but don't drain them here.
506 */
507 nfound = 0;
508 error = 0;
509 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
510 /*
511 * If a specific wait and the target is waiting on
512 * us, then avoid deadlock. This also traps LWPs
513 * that try to wait on themselves.
514 *
515 * Note that this does not handle more complicated
516 * cycles, like: t1 -> t2 -> t3 -> t1. The process
517 * can still be killed so it is not a major problem.
518 */
519 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
520 error = EDEADLK;
521 break;
522 }
523 if (l2 == l)
524 continue;
525 if ((l2->l_prflag & LPR_DETACHED) != 0) {
526 nfound += exiting;
527 continue;
528 }
529 if (lid != 0) {
530 if (l2->l_lid != lid)
531 continue;
532 /*
533 * Mark this LWP as the first waiter, if there
534 * is no other.
535 */
536 if (l2->l_waiter == 0)
537 l2->l_waiter = curlid;
538 } else if (l2->l_waiter != 0) {
539 /*
540 * It already has a waiter - so don't
541 * collect it. If the waiter doesn't
542 * grab it we'll get another chance
543 * later.
544 */
545 nfound++;
546 continue;
547 }
548 nfound++;
549
550 /* No need to lock the LWP in order to see LSZOMB. */
551 if (l2->l_stat != LSZOMB)
552 continue;
553
554 /*
555 * We're no longer waiting. Reset the "first waiter"
556 * pointer on the target, in case it was us.
557 */
558 l->l_waitingfor = 0;
559 l2->l_waiter = 0;
560 p->p_nlwpwait--;
561 if (departed)
562 *departed = l2->l_lid;
563 sched_lwp_collect(l2);
564
565 /* lwp_free() releases the proc lock. */
566 lwp_free(l2, false, false);
567 mutex_enter(p->p_lock);
568 return 0;
569 }
570
571 if (error != 0)
572 break;
573 if (nfound == 0) {
574 error = ESRCH;
575 break;
576 }
577
578 /*
579 * The kernel is careful to ensure that it can not deadlock
580 * when exiting - just keep waiting.
581 */
582 if (exiting) {
583 KASSERT(p->p_nlwps > 1);
584 cv_wait(&p->p_lwpcv, p->p_lock);
585 continue;
586 }
587
588 /*
589 * If all other LWPs are waiting for exits or suspends
590 * and the supply of zombies and potential zombies is
591 * exhausted, then we are about to deadlock.
592 *
593 * If the process is exiting (and this LWP is not the one
594 * that is coordinating the exit) then bail out now.
595 */
596 if ((p->p_sflag & PS_WEXIT) != 0 ||
597 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
598 error = EDEADLK;
599 break;
600 }
601
602 /*
603 * Sit around and wait for something to happen. We'll be
604 * awoken if any of the conditions examined change: if an
605 * LWP exits, is collected, or is detached.
606 */
607 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
608 break;
609 }
610
611 /*
612 * We didn't find any LWPs to collect, we may have received a
613 * signal, or some other condition has caused us to bail out.
614 *
615 * If waiting on a specific LWP, clear the waiters marker: some
616 * other LWP may want it. Then, kick all the remaining waiters
617 * so that they can re-check for zombies and for deadlock.
618 */
619 if (lid != 0) {
620 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
621 if (l2->l_lid == lid) {
622 if (l2->l_waiter == curlid)
623 l2->l_waiter = 0;
624 break;
625 }
626 }
627 }
628 p->p_nlwpwait--;
629 l->l_waitingfor = 0;
630 cv_broadcast(&p->p_lwpcv);
631
632 return error;
633 }
634
635 /*
636 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
637 * The new LWP is created in state LSIDL and must be set running,
638 * suspended, or stopped by the caller.
639 */
640 int
641 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
642 void *stack, size_t stacksize, void (*func)(void *), void *arg,
643 lwp_t **rnewlwpp, int sclass)
644 {
645 struct lwp *l2, *isfree;
646 turnstile_t *ts;
647 lwpid_t lid;
648
649 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
650
651 /*
652 * First off, reap any detached LWP waiting to be collected.
653 * We can re-use its LWP structure and turnstile.
654 */
655 isfree = NULL;
656 if (p2->p_zomblwp != NULL) {
657 mutex_enter(p2->p_lock);
658 if ((isfree = p2->p_zomblwp) != NULL) {
659 p2->p_zomblwp = NULL;
660 lwp_free(isfree, true, false);/* releases proc mutex */
661 } else
662 mutex_exit(p2->p_lock);
663 }
664 if (isfree == NULL) {
665 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
666 memset(l2, 0, sizeof(*l2));
667 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
668 SLIST_INIT(&l2->l_pi_lenders);
669 } else {
670 l2 = isfree;
671 ts = l2->l_ts;
672 KASSERT(l2->l_inheritedprio == -1);
673 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
674 memset(l2, 0, sizeof(*l2));
675 l2->l_ts = ts;
676 }
677
678 l2->l_stat = LSIDL;
679 l2->l_proc = p2;
680 l2->l_refcnt = 1;
681 l2->l_class = sclass;
682
683 /*
684 * If vfork(), we want the LWP to run fast and on the same CPU
685 * as its parent, so that it can reuse the VM context and cache
686 * footprint on the local CPU.
687 */
688 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
689 l2->l_kpribase = PRI_KERNEL;
690 l2->l_priority = l1->l_priority;
691 l2->l_inheritedprio = -1;
692 l2->l_flag = 0;
693 l2->l_pflag = LP_MPSAFE;
694 TAILQ_INIT(&l2->l_ld_locks);
695
696 /*
697 * If not the first LWP in the process, grab a reference to the
698 * descriptor table.
699 */
700 l2->l_fd = p2->p_fd;
701 if (p2->p_nlwps != 0) {
702 KASSERT(l1->l_proc == p2);
703 fd_hold(l2);
704 } else {
705 KASSERT(l1->l_proc != p2);
706 }
707
708 if (p2->p_flag & PK_SYSTEM) {
709 /* Mark it as a system LWP. */
710 l2->l_flag |= LW_SYSTEM;
711 }
712
713 kpreempt_disable();
714 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
715 l2->l_cpu = l1->l_cpu;
716 kpreempt_enable();
717
718 kdtrace_thread_ctor(NULL, l2);
719 lwp_initspecific(l2);
720 sched_lwp_fork(l1, l2);
721 lwp_update_creds(l2);
722 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
723 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
724 cv_init(&l2->l_sigcv, "sigwait");
725 l2->l_syncobj = &sched_syncobj;
726
727 if (rnewlwpp != NULL)
728 *rnewlwpp = l2;
729
730 uvm_lwp_setuarea(l2, uaddr);
731 uvm_lwp_fork(l1, l2, stack, stacksize, func,
732 (arg != NULL) ? arg : l2);
733
734 if ((flags & LWP_PIDLID) != 0) {
735 lid = proc_alloc_pid(p2);
736 l2->l_pflag |= LP_PIDLID;
737 } else {
738 lid = 0;
739 }
740
741 mutex_enter(p2->p_lock);
742
743 if ((flags & LWP_DETACHED) != 0) {
744 l2->l_prflag = LPR_DETACHED;
745 p2->p_ndlwps++;
746 } else
747 l2->l_prflag = 0;
748
749 l2->l_sigmask = l1->l_sigmask;
750 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
751 sigemptyset(&l2->l_sigpend.sp_set);
752
753 if (lid == 0) {
754 p2->p_nlwpid++;
755 if (p2->p_nlwpid == 0)
756 p2->p_nlwpid++;
757 lid = p2->p_nlwpid;
758 }
759 l2->l_lid = lid;
760 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
761 p2->p_nlwps++;
762 p2->p_nrlwps++;
763
764 if ((p2->p_flag & PK_SYSTEM) == 0) {
765 /* Inherit an affinity */
766 if (l1->l_flag & LW_AFFINITY) {
767 /*
768 * Note that we hold the state lock while inheriting
769 * the affinity to avoid race with sched_setaffinity().
770 */
771 lwp_lock(l1);
772 if (l1->l_flag & LW_AFFINITY) {
773 kcpuset_use(l1->l_affinity);
774 l2->l_affinity = l1->l_affinity;
775 l2->l_flag |= LW_AFFINITY;
776 }
777 lwp_unlock(l1);
778 }
779 lwp_lock(l2);
780 /* Inherit a processor-set */
781 l2->l_psid = l1->l_psid;
782 /* Look for a CPU to start */
783 l2->l_cpu = sched_takecpu(l2);
784 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
785 }
786 mutex_exit(p2->p_lock);
787
788 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
789
790 mutex_enter(proc_lock);
791 LIST_INSERT_HEAD(&alllwp, l2, l_list);
792 mutex_exit(proc_lock);
793
794 SYSCALL_TIME_LWP_INIT(l2);
795
796 if (p2->p_emul->e_lwp_fork)
797 (*p2->p_emul->e_lwp_fork)(l1, l2);
798
799 return (0);
800 }
801
802 /*
803 * Called by MD code when a new LWP begins execution. Must be called
804 * with the previous LWP locked (so at splsched), or if there is no
805 * previous LWP, at splsched.
806 */
807 void
808 lwp_startup(struct lwp *prev, struct lwp *new)
809 {
810
811 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
812
813 KASSERT(kpreempt_disabled());
814 if (prev != NULL) {
815 /*
816 * Normalize the count of the spin-mutexes, it was
817 * increased in mi_switch(). Unmark the state of
818 * context switch - it is finished for previous LWP.
819 */
820 curcpu()->ci_mtx_count++;
821 membar_exit();
822 prev->l_ctxswtch = 0;
823 }
824 KPREEMPT_DISABLE(new);
825 spl0();
826 pmap_activate(new);
827 LOCKDEBUG_BARRIER(NULL, 0);
828 KPREEMPT_ENABLE(new);
829 if ((new->l_pflag & LP_MPSAFE) == 0) {
830 KERNEL_LOCK(1, new);
831 }
832 }
833
834 /*
835 * Exit an LWP.
836 */
837 void
838 lwp_exit(struct lwp *l)
839 {
840 struct proc *p = l->l_proc;
841 struct lwp *l2;
842 bool current;
843
844 current = (l == curlwp);
845
846 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
847 KASSERT(p == curproc);
848
849 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
850
851 /*
852 * Verify that we hold no locks other than the kernel lock.
853 */
854 LOCKDEBUG_BARRIER(&kernel_lock, 0);
855
856 /*
857 * If we are the last live LWP in a process, we need to exit the
858 * entire process. We do so with an exit status of zero, because
859 * it's a "controlled" exit, and because that's what Solaris does.
860 *
861 * We are not quite a zombie yet, but for accounting purposes we
862 * must increment the count of zombies here.
863 *
864 * Note: the last LWP's specificdata will be deleted here.
865 */
866 mutex_enter(p->p_lock);
867 if (p->p_nlwps - p->p_nzlwps == 1) {
868 KASSERT(current == true);
869 /* XXXSMP kernel_lock not held */
870 exit1(l, 0);
871 /* NOTREACHED */
872 }
873 p->p_nzlwps++;
874 mutex_exit(p->p_lock);
875
876 if (p->p_emul->e_lwp_exit)
877 (*p->p_emul->e_lwp_exit)(l);
878
879 /* Drop filedesc reference. */
880 fd_free();
881
882 /* Delete the specificdata while it's still safe to sleep. */
883 lwp_finispecific(l);
884
885 /*
886 * Release our cached credentials.
887 */
888 kauth_cred_free(l->l_cred);
889 callout_destroy(&l->l_timeout_ch);
890
891 /*
892 * Remove the LWP from the global list.
893 * Free its LID from the PID namespace if needed.
894 */
895 mutex_enter(proc_lock);
896 LIST_REMOVE(l, l_list);
897 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
898 proc_free_pid(l->l_lid);
899 }
900 mutex_exit(proc_lock);
901
902 /*
903 * Get rid of all references to the LWP that others (e.g. procfs)
904 * may have, and mark the LWP as a zombie. If the LWP is detached,
905 * mark it waiting for collection in the proc structure. Note that
906 * before we can do that, we need to free any other dead, deatched
907 * LWP waiting to meet its maker.
908 */
909 mutex_enter(p->p_lock);
910 lwp_drainrefs(l);
911
912 if ((l->l_prflag & LPR_DETACHED) != 0) {
913 while ((l2 = p->p_zomblwp) != NULL) {
914 p->p_zomblwp = NULL;
915 lwp_free(l2, false, false);/* releases proc mutex */
916 mutex_enter(p->p_lock);
917 l->l_refcnt++;
918 lwp_drainrefs(l);
919 }
920 p->p_zomblwp = l;
921 }
922
923 /*
924 * If we find a pending signal for the process and we have been
925 * asked to check for signals, then we lose: arrange to have
926 * all other LWPs in the process check for signals.
927 */
928 if ((l->l_flag & LW_PENDSIG) != 0 &&
929 firstsig(&p->p_sigpend.sp_set) != 0) {
930 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
931 lwp_lock(l2);
932 l2->l_flag |= LW_PENDSIG;
933 lwp_unlock(l2);
934 }
935 }
936
937 lwp_lock(l);
938 l->l_stat = LSZOMB;
939 if (l->l_name != NULL)
940 strcpy(l->l_name, "(zombie)");
941 if (l->l_flag & LW_AFFINITY) {
942 l->l_flag &= ~LW_AFFINITY;
943 } else {
944 KASSERT(l->l_affinity == NULL);
945 }
946 lwp_unlock(l);
947 p->p_nrlwps--;
948 cv_broadcast(&p->p_lwpcv);
949 if (l->l_lwpctl != NULL)
950 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
951 mutex_exit(p->p_lock);
952
953 /* Safe without lock since LWP is in zombie state */
954 if (l->l_affinity) {
955 kcpuset_unuse(l->l_affinity, NULL);
956 l->l_affinity = NULL;
957 }
958
959 /*
960 * We can no longer block. At this point, lwp_free() may already
961 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
962 *
963 * Free MD LWP resources.
964 */
965 cpu_lwp_free(l, 0);
966
967 if (current) {
968 pmap_deactivate(l);
969
970 /*
971 * Release the kernel lock, and switch away into
972 * oblivion.
973 */
974 #ifdef notyet
975 /* XXXSMP hold in lwp_userret() */
976 KERNEL_UNLOCK_LAST(l);
977 #else
978 KERNEL_UNLOCK_ALL(l, NULL);
979 #endif
980 lwp_exit_switchaway(l);
981 }
982 }
983
984 /*
985 * Free a dead LWP's remaining resources.
986 *
987 * XXXLWP limits.
988 */
989 void
990 lwp_free(struct lwp *l, bool recycle, bool last)
991 {
992 struct proc *p = l->l_proc;
993 struct rusage *ru;
994 ksiginfoq_t kq;
995
996 KASSERT(l != curlwp);
997
998 /*
999 * If this was not the last LWP in the process, then adjust
1000 * counters and unlock.
1001 */
1002 if (!last) {
1003 /*
1004 * Add the LWP's run time to the process' base value.
1005 * This needs to co-incide with coming off p_lwps.
1006 */
1007 bintime_add(&p->p_rtime, &l->l_rtime);
1008 p->p_pctcpu += l->l_pctcpu;
1009 ru = &p->p_stats->p_ru;
1010 ruadd(ru, &l->l_ru);
1011 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1012 ru->ru_nivcsw += l->l_nivcsw;
1013 LIST_REMOVE(l, l_sibling);
1014 p->p_nlwps--;
1015 p->p_nzlwps--;
1016 if ((l->l_prflag & LPR_DETACHED) != 0)
1017 p->p_ndlwps--;
1018
1019 /*
1020 * Have any LWPs sleeping in lwp_wait() recheck for
1021 * deadlock.
1022 */
1023 cv_broadcast(&p->p_lwpcv);
1024 mutex_exit(p->p_lock);
1025 }
1026
1027 #ifdef MULTIPROCESSOR
1028 /*
1029 * In the unlikely event that the LWP is still on the CPU,
1030 * then spin until it has switched away. We need to release
1031 * all locks to avoid deadlock against interrupt handlers on
1032 * the target CPU.
1033 */
1034 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1035 int count;
1036 (void)count; /* XXXgcc */
1037 KERNEL_UNLOCK_ALL(curlwp, &count);
1038 while ((l->l_pflag & LP_RUNNING) != 0 ||
1039 l->l_cpu->ci_curlwp == l)
1040 SPINLOCK_BACKOFF_HOOK;
1041 KERNEL_LOCK(count, curlwp);
1042 }
1043 #endif
1044
1045 /*
1046 * Destroy the LWP's remaining signal information.
1047 */
1048 ksiginfo_queue_init(&kq);
1049 sigclear(&l->l_sigpend, NULL, &kq);
1050 ksiginfo_queue_drain(&kq);
1051 cv_destroy(&l->l_sigcv);
1052
1053 /*
1054 * Free the LWP's turnstile and the LWP structure itself unless the
1055 * caller wants to recycle them. Also, free the scheduler specific
1056 * data.
1057 *
1058 * We can't return turnstile0 to the pool (it didn't come from it),
1059 * so if it comes up just drop it quietly and move on.
1060 *
1061 * We don't recycle the VM resources at this time.
1062 */
1063 if (l->l_lwpctl != NULL)
1064 lwp_ctl_free(l);
1065
1066 if (!recycle && l->l_ts != &turnstile0)
1067 pool_cache_put(turnstile_cache, l->l_ts);
1068 if (l->l_name != NULL)
1069 kmem_free(l->l_name, MAXCOMLEN);
1070
1071 cpu_lwp_free2(l);
1072 uvm_lwp_exit(l);
1073
1074 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1075 KASSERT(l->l_inheritedprio == -1);
1076 kdtrace_thread_dtor(NULL, l);
1077 if (!recycle)
1078 pool_cache_put(lwp_cache, l);
1079 }
1080
1081 /*
1082 * Migrate the LWP to the another CPU. Unlocks the LWP.
1083 */
1084 void
1085 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1086 {
1087 struct schedstate_percpu *tspc;
1088 int lstat = l->l_stat;
1089
1090 KASSERT(lwp_locked(l, NULL));
1091 KASSERT(tci != NULL);
1092
1093 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1094 if ((l->l_pflag & LP_RUNNING) != 0) {
1095 lstat = LSONPROC;
1096 }
1097
1098 /*
1099 * The destination CPU could be changed while previous migration
1100 * was not finished.
1101 */
1102 if (l->l_target_cpu != NULL) {
1103 l->l_target_cpu = tci;
1104 lwp_unlock(l);
1105 return;
1106 }
1107
1108 /* Nothing to do if trying to migrate to the same CPU */
1109 if (l->l_cpu == tci) {
1110 lwp_unlock(l);
1111 return;
1112 }
1113
1114 KASSERT(l->l_target_cpu == NULL);
1115 tspc = &tci->ci_schedstate;
1116 switch (lstat) {
1117 case LSRUN:
1118 l->l_target_cpu = tci;
1119 break;
1120 case LSIDL:
1121 l->l_cpu = tci;
1122 lwp_unlock_to(l, tspc->spc_mutex);
1123 return;
1124 case LSSLEEP:
1125 l->l_cpu = tci;
1126 break;
1127 case LSSTOP:
1128 case LSSUSPENDED:
1129 l->l_cpu = tci;
1130 if (l->l_wchan == NULL) {
1131 lwp_unlock_to(l, tspc->spc_lwplock);
1132 return;
1133 }
1134 break;
1135 case LSONPROC:
1136 l->l_target_cpu = tci;
1137 spc_lock(l->l_cpu);
1138 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1139 spc_unlock(l->l_cpu);
1140 break;
1141 }
1142 lwp_unlock(l);
1143 }
1144
1145 /*
1146 * Find the LWP in the process. Arguments may be zero, in such case,
1147 * the calling process and first LWP in the list will be used.
1148 * On success - returns proc locked.
1149 */
1150 struct lwp *
1151 lwp_find2(pid_t pid, lwpid_t lid)
1152 {
1153 proc_t *p;
1154 lwp_t *l;
1155
1156 /* Find the process. */
1157 if (pid != 0) {
1158 mutex_enter(proc_lock);
1159 p = proc_find(pid);
1160 if (p == NULL) {
1161 mutex_exit(proc_lock);
1162 return NULL;
1163 }
1164 mutex_enter(p->p_lock);
1165 mutex_exit(proc_lock);
1166 } else {
1167 p = curlwp->l_proc;
1168 mutex_enter(p->p_lock);
1169 }
1170 /* Find the thread. */
1171 if (lid != 0) {
1172 l = lwp_find(p, lid);
1173 } else {
1174 l = LIST_FIRST(&p->p_lwps);
1175 }
1176 if (l == NULL) {
1177 mutex_exit(p->p_lock);
1178 }
1179 return l;
1180 }
1181
1182 /*
1183 * Look up a live LWP within the specified process, and return it locked.
1184 *
1185 * Must be called with p->p_lock held.
1186 */
1187 struct lwp *
1188 lwp_find(struct proc *p, lwpid_t id)
1189 {
1190 struct lwp *l;
1191
1192 KASSERT(mutex_owned(p->p_lock));
1193
1194 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1195 if (l->l_lid == id)
1196 break;
1197 }
1198
1199 /*
1200 * No need to lock - all of these conditions will
1201 * be visible with the process level mutex held.
1202 */
1203 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1204 l = NULL;
1205
1206 return l;
1207 }
1208
1209 /*
1210 * Update an LWP's cached credentials to mirror the process' master copy.
1211 *
1212 * This happens early in the syscall path, on user trap, and on LWP
1213 * creation. A long-running LWP can also voluntarily choose to update
1214 * it's credentials by calling this routine. This may be called from
1215 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1216 */
1217 void
1218 lwp_update_creds(struct lwp *l)
1219 {
1220 kauth_cred_t oc;
1221 struct proc *p;
1222
1223 p = l->l_proc;
1224 oc = l->l_cred;
1225
1226 mutex_enter(p->p_lock);
1227 kauth_cred_hold(p->p_cred);
1228 l->l_cred = p->p_cred;
1229 l->l_prflag &= ~LPR_CRMOD;
1230 mutex_exit(p->p_lock);
1231 if (oc != NULL)
1232 kauth_cred_free(oc);
1233 }
1234
1235 /*
1236 * Verify that an LWP is locked, and optionally verify that the lock matches
1237 * one we specify.
1238 */
1239 int
1240 lwp_locked(struct lwp *l, kmutex_t *mtx)
1241 {
1242 kmutex_t *cur = l->l_mutex;
1243
1244 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1245 }
1246
1247 /*
1248 * Lend a new mutex to an LWP. The old mutex must be held.
1249 */
1250 void
1251 lwp_setlock(struct lwp *l, kmutex_t *new)
1252 {
1253
1254 KASSERT(mutex_owned(l->l_mutex));
1255
1256 membar_exit();
1257 l->l_mutex = new;
1258 }
1259
1260 /*
1261 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1262 * must be held.
1263 */
1264 void
1265 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1266 {
1267 kmutex_t *old;
1268
1269 KASSERT(lwp_locked(l, NULL));
1270
1271 old = l->l_mutex;
1272 membar_exit();
1273 l->l_mutex = new;
1274 mutex_spin_exit(old);
1275 }
1276
1277 int
1278 lwp_trylock(struct lwp *l)
1279 {
1280 kmutex_t *old;
1281
1282 for (;;) {
1283 if (!mutex_tryenter(old = l->l_mutex))
1284 return 0;
1285 if (__predict_true(l->l_mutex == old))
1286 return 1;
1287 mutex_spin_exit(old);
1288 }
1289 }
1290
1291 void
1292 lwp_unsleep(lwp_t *l, bool cleanup)
1293 {
1294
1295 KASSERT(mutex_owned(l->l_mutex));
1296 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1297 }
1298
1299 /*
1300 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1301 * set.
1302 */
1303 void
1304 lwp_userret(struct lwp *l)
1305 {
1306 struct proc *p;
1307 int sig;
1308
1309 KASSERT(l == curlwp);
1310 KASSERT(l->l_stat == LSONPROC);
1311 p = l->l_proc;
1312
1313 #ifndef __HAVE_FAST_SOFTINTS
1314 /* Run pending soft interrupts. */
1315 if (l->l_cpu->ci_data.cpu_softints != 0)
1316 softint_overlay();
1317 #endif
1318
1319 #ifdef KERN_SA
1320 /* Generate UNBLOCKED upcall if needed */
1321 if (l->l_flag & LW_SA_BLOCKING) {
1322 sa_unblock_userret(l);
1323 /* NOTREACHED */
1324 }
1325 #endif
1326
1327 /*
1328 * It should be safe to do this read unlocked on a multiprocessor
1329 * system..
1330 *
1331 * LW_SA_UPCALL will be handled after the while() loop, so don't
1332 * consider it now.
1333 */
1334 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1335 /*
1336 * Process pending signals first, unless the process
1337 * is dumping core or exiting, where we will instead
1338 * enter the LW_WSUSPEND case below.
1339 */
1340 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1341 LW_PENDSIG) {
1342 mutex_enter(p->p_lock);
1343 while ((sig = issignal(l)) != 0)
1344 postsig(sig);
1345 mutex_exit(p->p_lock);
1346 }
1347
1348 /*
1349 * Core-dump or suspend pending.
1350 *
1351 * In case of core dump, suspend ourselves, so that the
1352 * kernel stack and therefore the userland registers saved
1353 * in the trapframe are around for coredump() to write them
1354 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1355 * will write the core file out once all other LWPs are
1356 * suspended.
1357 */
1358 if ((l->l_flag & LW_WSUSPEND) != 0) {
1359 mutex_enter(p->p_lock);
1360 p->p_nrlwps--;
1361 cv_broadcast(&p->p_lwpcv);
1362 lwp_lock(l);
1363 l->l_stat = LSSUSPENDED;
1364 lwp_unlock(l);
1365 mutex_exit(p->p_lock);
1366 lwp_lock(l);
1367 mi_switch(l);
1368 }
1369
1370 /* Process is exiting. */
1371 if ((l->l_flag & LW_WEXIT) != 0) {
1372 lwp_exit(l);
1373 KASSERT(0);
1374 /* NOTREACHED */
1375 }
1376 }
1377
1378 #ifdef KERN_SA
1379 /*
1380 * Timer events are handled specially. We only try once to deliver
1381 * pending timer upcalls; if if fails, we can try again on the next
1382 * loop around. If we need to re-enter lwp_userret(), MD code will
1383 * bounce us back here through the trap path after we return.
1384 */
1385 if (p->p_timerpend)
1386 timerupcall(l);
1387 if (l->l_flag & LW_SA_UPCALL)
1388 sa_upcall_userret(l);
1389 #endif /* KERN_SA */
1390 }
1391
1392 /*
1393 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1394 */
1395 void
1396 lwp_need_userret(struct lwp *l)
1397 {
1398 KASSERT(lwp_locked(l, NULL));
1399
1400 /*
1401 * Since the tests in lwp_userret() are done unlocked, make sure
1402 * that the condition will be seen before forcing the LWP to enter
1403 * kernel mode.
1404 */
1405 membar_producer();
1406 cpu_signotify(l);
1407 }
1408
1409 /*
1410 * Add one reference to an LWP. This will prevent the LWP from
1411 * exiting, thus keep the lwp structure and PCB around to inspect.
1412 */
1413 void
1414 lwp_addref(struct lwp *l)
1415 {
1416
1417 KASSERT(mutex_owned(l->l_proc->p_lock));
1418 KASSERT(l->l_stat != LSZOMB);
1419 KASSERT(l->l_refcnt != 0);
1420
1421 l->l_refcnt++;
1422 }
1423
1424 /*
1425 * Remove one reference to an LWP. If this is the last reference,
1426 * then we must finalize the LWP's death.
1427 */
1428 void
1429 lwp_delref(struct lwp *l)
1430 {
1431 struct proc *p = l->l_proc;
1432
1433 mutex_enter(p->p_lock);
1434 lwp_delref2(l);
1435 mutex_exit(p->p_lock);
1436 }
1437
1438 /*
1439 * Remove one reference to an LWP. If this is the last reference,
1440 * then we must finalize the LWP's death. The proc mutex is held
1441 * on entry.
1442 */
1443 void
1444 lwp_delref2(struct lwp *l)
1445 {
1446 struct proc *p = l->l_proc;
1447
1448 KASSERT(mutex_owned(p->p_lock));
1449 KASSERT(l->l_stat != LSZOMB);
1450 KASSERT(l->l_refcnt > 0);
1451 if (--l->l_refcnt == 0)
1452 cv_broadcast(&p->p_lwpcv);
1453 }
1454
1455 /*
1456 * Drain all references to the current LWP.
1457 */
1458 void
1459 lwp_drainrefs(struct lwp *l)
1460 {
1461 struct proc *p = l->l_proc;
1462
1463 KASSERT(mutex_owned(p->p_lock));
1464 KASSERT(l->l_refcnt != 0);
1465
1466 l->l_refcnt--;
1467 while (l->l_refcnt != 0)
1468 cv_wait(&p->p_lwpcv, p->p_lock);
1469 }
1470
1471 /*
1472 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1473 * be held.
1474 */
1475 bool
1476 lwp_alive(lwp_t *l)
1477 {
1478
1479 KASSERT(mutex_owned(l->l_proc->p_lock));
1480
1481 switch (l->l_stat) {
1482 case LSSLEEP:
1483 case LSRUN:
1484 case LSONPROC:
1485 case LSSTOP:
1486 case LSSUSPENDED:
1487 return true;
1488 default:
1489 return false;
1490 }
1491 }
1492
1493 /*
1494 * Return first live LWP in the process.
1495 */
1496 lwp_t *
1497 lwp_find_first(proc_t *p)
1498 {
1499 lwp_t *l;
1500
1501 KASSERT(mutex_owned(p->p_lock));
1502
1503 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1504 if (lwp_alive(l)) {
1505 return l;
1506 }
1507 }
1508
1509 return NULL;
1510 }
1511
1512 /*
1513 * Allocate a new lwpctl structure for a user LWP.
1514 */
1515 int
1516 lwp_ctl_alloc(vaddr_t *uaddr)
1517 {
1518 lcproc_t *lp;
1519 u_int bit, i, offset;
1520 struct uvm_object *uao;
1521 int error;
1522 lcpage_t *lcp;
1523 proc_t *p;
1524 lwp_t *l;
1525
1526 l = curlwp;
1527 p = l->l_proc;
1528
1529 if (l->l_lcpage != NULL) {
1530 lcp = l->l_lcpage;
1531 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1532 return 0;
1533 }
1534
1535 /* First time around, allocate header structure for the process. */
1536 if ((lp = p->p_lwpctl) == NULL) {
1537 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1538 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1539 lp->lp_uao = NULL;
1540 TAILQ_INIT(&lp->lp_pages);
1541 mutex_enter(p->p_lock);
1542 if (p->p_lwpctl == NULL) {
1543 p->p_lwpctl = lp;
1544 mutex_exit(p->p_lock);
1545 } else {
1546 mutex_exit(p->p_lock);
1547 mutex_destroy(&lp->lp_lock);
1548 kmem_free(lp, sizeof(*lp));
1549 lp = p->p_lwpctl;
1550 }
1551 }
1552
1553 /*
1554 * Set up an anonymous memory region to hold the shared pages.
1555 * Map them into the process' address space. The user vmspace
1556 * gets the first reference on the UAO.
1557 */
1558 mutex_enter(&lp->lp_lock);
1559 if (lp->lp_uao == NULL) {
1560 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1561 lp->lp_cur = 0;
1562 lp->lp_max = LWPCTL_UAREA_SZ;
1563 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1564 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1565 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1566 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1567 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1568 if (error != 0) {
1569 uao_detach(lp->lp_uao);
1570 lp->lp_uao = NULL;
1571 mutex_exit(&lp->lp_lock);
1572 return error;
1573 }
1574 }
1575
1576 /* Get a free block and allocate for this LWP. */
1577 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1578 if (lcp->lcp_nfree != 0)
1579 break;
1580 }
1581 if (lcp == NULL) {
1582 /* Nothing available - try to set up a free page. */
1583 if (lp->lp_cur == lp->lp_max) {
1584 mutex_exit(&lp->lp_lock);
1585 return ENOMEM;
1586 }
1587 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1588 if (lcp == NULL) {
1589 mutex_exit(&lp->lp_lock);
1590 return ENOMEM;
1591 }
1592 /*
1593 * Wire the next page down in kernel space. Since this
1594 * is a new mapping, we must add a reference.
1595 */
1596 uao = lp->lp_uao;
1597 (*uao->pgops->pgo_reference)(uao);
1598 lcp->lcp_kaddr = vm_map_min(kernel_map);
1599 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1600 uao, lp->lp_cur, PAGE_SIZE,
1601 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1602 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1603 if (error != 0) {
1604 mutex_exit(&lp->lp_lock);
1605 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1606 (*uao->pgops->pgo_detach)(uao);
1607 return error;
1608 }
1609 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1610 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1611 if (error != 0) {
1612 mutex_exit(&lp->lp_lock);
1613 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1614 lcp->lcp_kaddr + PAGE_SIZE);
1615 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1616 return error;
1617 }
1618 /* Prepare the page descriptor and link into the list. */
1619 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1620 lp->lp_cur += PAGE_SIZE;
1621 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1622 lcp->lcp_rotor = 0;
1623 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1624 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1625 }
1626 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1627 if (++i >= LWPCTL_BITMAP_ENTRIES)
1628 i = 0;
1629 }
1630 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1631 lcp->lcp_bitmap[i] ^= (1 << bit);
1632 lcp->lcp_rotor = i;
1633 lcp->lcp_nfree--;
1634 l->l_lcpage = lcp;
1635 offset = (i << 5) + bit;
1636 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1637 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1638 mutex_exit(&lp->lp_lock);
1639
1640 KPREEMPT_DISABLE(l);
1641 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1642 KPREEMPT_ENABLE(l);
1643
1644 return 0;
1645 }
1646
1647 /*
1648 * Free an lwpctl structure back to the per-process list.
1649 */
1650 void
1651 lwp_ctl_free(lwp_t *l)
1652 {
1653 lcproc_t *lp;
1654 lcpage_t *lcp;
1655 u_int map, offset;
1656
1657 lp = l->l_proc->p_lwpctl;
1658 KASSERT(lp != NULL);
1659
1660 lcp = l->l_lcpage;
1661 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1662 KASSERT(offset < LWPCTL_PER_PAGE);
1663
1664 mutex_enter(&lp->lp_lock);
1665 lcp->lcp_nfree++;
1666 map = offset >> 5;
1667 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1668 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1669 lcp->lcp_rotor = map;
1670 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1671 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1672 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1673 }
1674 mutex_exit(&lp->lp_lock);
1675 }
1676
1677 /*
1678 * Process is exiting; tear down lwpctl state. This can only be safely
1679 * called by the last LWP in the process.
1680 */
1681 void
1682 lwp_ctl_exit(void)
1683 {
1684 lcpage_t *lcp, *next;
1685 lcproc_t *lp;
1686 proc_t *p;
1687 lwp_t *l;
1688
1689 l = curlwp;
1690 l->l_lwpctl = NULL;
1691 l->l_lcpage = NULL;
1692 p = l->l_proc;
1693 lp = p->p_lwpctl;
1694
1695 KASSERT(lp != NULL);
1696 KASSERT(p->p_nlwps == 1);
1697
1698 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1699 next = TAILQ_NEXT(lcp, lcp_chain);
1700 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1701 lcp->lcp_kaddr + PAGE_SIZE);
1702 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1703 }
1704
1705 if (lp->lp_uao != NULL) {
1706 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1707 lp->lp_uva + LWPCTL_UAREA_SZ);
1708 }
1709
1710 mutex_destroy(&lp->lp_lock);
1711 kmem_free(lp, sizeof(*lp));
1712 p->p_lwpctl = NULL;
1713 }
1714
1715 /*
1716 * Return the current LWP's "preemption counter". Used to detect
1717 * preemption across operations that can tolerate preemption without
1718 * crashing, but which may generate incorrect results if preempted.
1719 */
1720 uint64_t
1721 lwp_pctr(void)
1722 {
1723
1724 return curlwp->l_ncsw;
1725 }
1726
1727 /*
1728 * Set an LWP's private data pointer.
1729 */
1730 int
1731 lwp_setprivate(struct lwp *l, void *ptr)
1732 {
1733 int error = 0;
1734
1735 l->l_private = ptr;
1736 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1737 error = cpu_lwp_setprivate(l, ptr);
1738 #endif
1739 return error;
1740 }
1741
1742 #if defined(DDB)
1743 #include <machine/pcb.h>
1744
1745 void
1746 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1747 {
1748 lwp_t *l;
1749
1750 LIST_FOREACH(l, &alllwp, l_list) {
1751 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1752
1753 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1754 continue;
1755 }
1756 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1757 (void *)addr, (void *)stack,
1758 (size_t)(addr - stack), l);
1759 }
1760 }
1761 #endif /* defined(DDB) */
1762