kern_lwp.c revision 1.154 1 /* $NetBSD: kern_lwp.c,v 1.154 2011/01/17 08:26:58 matt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.154 2011/01/17 08:26:58 matt Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_sa.h"
219 #include "opt_dtrace.h"
220
221 #define _LWP_API_PRIVATE
222
223 #include <sys/param.h>
224 #include <sys/systm.h>
225 #include <sys/cpu.h>
226 #include <sys/pool.h>
227 #include <sys/proc.h>
228 #include <sys/sa.h>
229 #include <sys/savar.h>
230 #include <sys/syscallargs.h>
231 #include <sys/syscall_stats.h>
232 #include <sys/kauth.h>
233 #include <sys/sleepq.h>
234 #include <sys/lockdebug.h>
235 #include <sys/kmem.h>
236 #include <sys/pset.h>
237 #include <sys/intr.h>
238 #include <sys/lwpctl.h>
239 #include <sys/atomic.h>
240 #include <sys/filedesc.h>
241 #include <sys/dtrace_bsd.h>
242 #include <sys/sdt.h>
243
244 #include <uvm/uvm_extern.h>
245 #include <uvm/uvm_object.h>
246
247 static pool_cache_t lwp_cache __read_mostly;
248 struct lwplist alllwp __cacheline_aligned;
249
250 /* DTrace proc provider probes */
251 SDT_PROBE_DEFINE(proc,,,lwp_create,
252 "struct lwp *", NULL,
253 NULL, NULL, NULL, NULL,
254 NULL, NULL, NULL, NULL);
255 SDT_PROBE_DEFINE(proc,,,lwp_start,
256 "struct lwp *", NULL,
257 NULL, NULL, NULL, NULL,
258 NULL, NULL, NULL, NULL);
259 SDT_PROBE_DEFINE(proc,,,lwp_exit,
260 "struct lwp *", NULL,
261 NULL, NULL, NULL, NULL,
262 NULL, NULL, NULL, NULL);
263
264 struct turnstile turnstile0;
265 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
266 #ifdef LWP0_CPU_INFO
267 .l_cpu = LWP0_CPU_INFO,
268 #endif
269 #ifdef LWP0_MD_INITIALIZER
270 .l_md = LWP0_MD_INITIALIZER,
271 #endif
272 .l_proc = &proc0,
273 .l_lid = 1,
274 .l_flag = LW_SYSTEM,
275 .l_stat = LSONPROC,
276 .l_ts = &turnstile0,
277 .l_syncobj = &sched_syncobj,
278 .l_refcnt = 1,
279 .l_priority = PRI_USER + NPRI_USER - 1,
280 .l_inheritedprio = -1,
281 .l_class = SCHED_OTHER,
282 .l_psid = PS_NONE,
283 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
284 .l_name = __UNCONST("swapper"),
285 .l_fd = &filedesc0,
286 };
287
288 void
289 lwpinit(void)
290 {
291
292 LIST_INIT(&alllwp);
293 lwpinit_specificdata();
294 lwp_sys_init();
295 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
296 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
297 }
298
299 void
300 lwp0_init(void)
301 {
302 struct lwp *l = &lwp0;
303
304 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
305 KASSERT(l->l_lid == proc0.p_nlwpid);
306
307 LIST_INSERT_HEAD(&alllwp, l, l_list);
308
309 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
310 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
311 cv_init(&l->l_sigcv, "sigwait");
312
313 kauth_cred_hold(proc0.p_cred);
314 l->l_cred = proc0.p_cred;
315
316 lwp_initspecific(l);
317
318 SYSCALL_TIME_LWP_INIT(l);
319 }
320
321 /*
322 * Set an suspended.
323 *
324 * Must be called with p_lock held, and the LWP locked. Will unlock the
325 * LWP before return.
326 */
327 int
328 lwp_suspend(struct lwp *curl, struct lwp *t)
329 {
330 int error;
331
332 KASSERT(mutex_owned(t->l_proc->p_lock));
333 KASSERT(lwp_locked(t, NULL));
334
335 KASSERT(curl != t || curl->l_stat == LSONPROC);
336
337 /*
338 * If the current LWP has been told to exit, we must not suspend anyone
339 * else or deadlock could occur. We won't return to userspace.
340 */
341 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
342 lwp_unlock(t);
343 return (EDEADLK);
344 }
345
346 error = 0;
347
348 switch (t->l_stat) {
349 case LSRUN:
350 case LSONPROC:
351 t->l_flag |= LW_WSUSPEND;
352 lwp_need_userret(t);
353 lwp_unlock(t);
354 break;
355
356 case LSSLEEP:
357 t->l_flag |= LW_WSUSPEND;
358
359 /*
360 * Kick the LWP and try to get it to the kernel boundary
361 * so that it will release any locks that it holds.
362 * setrunnable() will release the lock.
363 */
364 if ((t->l_flag & LW_SINTR) != 0)
365 setrunnable(t);
366 else
367 lwp_unlock(t);
368 break;
369
370 case LSSUSPENDED:
371 lwp_unlock(t);
372 break;
373
374 case LSSTOP:
375 t->l_flag |= LW_WSUSPEND;
376 setrunnable(t);
377 break;
378
379 case LSIDL:
380 case LSZOMB:
381 error = EINTR; /* It's what Solaris does..... */
382 lwp_unlock(t);
383 break;
384 }
385
386 return (error);
387 }
388
389 /*
390 * Restart a suspended LWP.
391 *
392 * Must be called with p_lock held, and the LWP locked. Will unlock the
393 * LWP before return.
394 */
395 void
396 lwp_continue(struct lwp *l)
397 {
398
399 KASSERT(mutex_owned(l->l_proc->p_lock));
400 KASSERT(lwp_locked(l, NULL));
401
402 /* If rebooting or not suspended, then just bail out. */
403 if ((l->l_flag & LW_WREBOOT) != 0) {
404 lwp_unlock(l);
405 return;
406 }
407
408 l->l_flag &= ~LW_WSUSPEND;
409
410 if (l->l_stat != LSSUSPENDED) {
411 lwp_unlock(l);
412 return;
413 }
414
415 /* setrunnable() will release the lock. */
416 setrunnable(l);
417 }
418
419 /*
420 * Restart a stopped LWP.
421 *
422 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
423 * LWP before return.
424 */
425 void
426 lwp_unstop(struct lwp *l)
427 {
428 struct proc *p = l->l_proc;
429
430 KASSERT(mutex_owned(proc_lock));
431 KASSERT(mutex_owned(p->p_lock));
432
433 lwp_lock(l);
434
435 /* If not stopped, then just bail out. */
436 if (l->l_stat != LSSTOP) {
437 lwp_unlock(l);
438 return;
439 }
440
441 p->p_stat = SACTIVE;
442 p->p_sflag &= ~PS_STOPPING;
443
444 if (!p->p_waited)
445 p->p_pptr->p_nstopchild--;
446
447 if (l->l_wchan == NULL) {
448 /* setrunnable() will release the lock. */
449 setrunnable(l);
450 } else {
451 l->l_stat = LSSLEEP;
452 p->p_nrlwps++;
453 lwp_unlock(l);
454 }
455 }
456
457 /*
458 * Wait for an LWP within the current process to exit. If 'lid' is
459 * non-zero, we are waiting for a specific LWP.
460 *
461 * Must be called with p->p_lock held.
462 */
463 int
464 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
465 {
466 struct proc *p = l->l_proc;
467 struct lwp *l2;
468 int nfound, error;
469 lwpid_t curlid;
470 bool exiting;
471
472 KASSERT(mutex_owned(p->p_lock));
473
474 p->p_nlwpwait++;
475 l->l_waitingfor = lid;
476 curlid = l->l_lid;
477 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
478
479 for (;;) {
480 /*
481 * Avoid a race between exit1() and sigexit(): if the
482 * process is dumping core, then we need to bail out: call
483 * into lwp_userret() where we will be suspended until the
484 * deed is done.
485 */
486 if ((p->p_sflag & PS_WCORE) != 0) {
487 mutex_exit(p->p_lock);
488 lwp_userret(l);
489 #ifdef DIAGNOSTIC
490 panic("lwp_wait1");
491 #endif
492 /* NOTREACHED */
493 }
494
495 /*
496 * First off, drain any detached LWP that is waiting to be
497 * reaped.
498 */
499 while ((l2 = p->p_zomblwp) != NULL) {
500 p->p_zomblwp = NULL;
501 lwp_free(l2, false, false);/* releases proc mutex */
502 mutex_enter(p->p_lock);
503 }
504
505 /*
506 * Now look for an LWP to collect. If the whole process is
507 * exiting, count detached LWPs as eligible to be collected,
508 * but don't drain them here.
509 */
510 nfound = 0;
511 error = 0;
512 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
513 /*
514 * If a specific wait and the target is waiting on
515 * us, then avoid deadlock. This also traps LWPs
516 * that try to wait on themselves.
517 *
518 * Note that this does not handle more complicated
519 * cycles, like: t1 -> t2 -> t3 -> t1. The process
520 * can still be killed so it is not a major problem.
521 */
522 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
523 error = EDEADLK;
524 break;
525 }
526 if (l2 == l)
527 continue;
528 if ((l2->l_prflag & LPR_DETACHED) != 0) {
529 nfound += exiting;
530 continue;
531 }
532 if (lid != 0) {
533 if (l2->l_lid != lid)
534 continue;
535 /*
536 * Mark this LWP as the first waiter, if there
537 * is no other.
538 */
539 if (l2->l_waiter == 0)
540 l2->l_waiter = curlid;
541 } else if (l2->l_waiter != 0) {
542 /*
543 * It already has a waiter - so don't
544 * collect it. If the waiter doesn't
545 * grab it we'll get another chance
546 * later.
547 */
548 nfound++;
549 continue;
550 }
551 nfound++;
552
553 /* No need to lock the LWP in order to see LSZOMB. */
554 if (l2->l_stat != LSZOMB)
555 continue;
556
557 /*
558 * We're no longer waiting. Reset the "first waiter"
559 * pointer on the target, in case it was us.
560 */
561 l->l_waitingfor = 0;
562 l2->l_waiter = 0;
563 p->p_nlwpwait--;
564 if (departed)
565 *departed = l2->l_lid;
566 sched_lwp_collect(l2);
567
568 /* lwp_free() releases the proc lock. */
569 lwp_free(l2, false, false);
570 mutex_enter(p->p_lock);
571 return 0;
572 }
573
574 if (error != 0)
575 break;
576 if (nfound == 0) {
577 error = ESRCH;
578 break;
579 }
580
581 /*
582 * The kernel is careful to ensure that it can not deadlock
583 * when exiting - just keep waiting.
584 */
585 if (exiting) {
586 KASSERT(p->p_nlwps > 1);
587 cv_wait(&p->p_lwpcv, p->p_lock);
588 continue;
589 }
590
591 /*
592 * If all other LWPs are waiting for exits or suspends
593 * and the supply of zombies and potential zombies is
594 * exhausted, then we are about to deadlock.
595 *
596 * If the process is exiting (and this LWP is not the one
597 * that is coordinating the exit) then bail out now.
598 */
599 if ((p->p_sflag & PS_WEXIT) != 0 ||
600 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
601 error = EDEADLK;
602 break;
603 }
604
605 /*
606 * Sit around and wait for something to happen. We'll be
607 * awoken if any of the conditions examined change: if an
608 * LWP exits, is collected, or is detached.
609 */
610 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
611 break;
612 }
613
614 /*
615 * We didn't find any LWPs to collect, we may have received a
616 * signal, or some other condition has caused us to bail out.
617 *
618 * If waiting on a specific LWP, clear the waiters marker: some
619 * other LWP may want it. Then, kick all the remaining waiters
620 * so that they can re-check for zombies and for deadlock.
621 */
622 if (lid != 0) {
623 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
624 if (l2->l_lid == lid) {
625 if (l2->l_waiter == curlid)
626 l2->l_waiter = 0;
627 break;
628 }
629 }
630 }
631 p->p_nlwpwait--;
632 l->l_waitingfor = 0;
633 cv_broadcast(&p->p_lwpcv);
634
635 return error;
636 }
637
638 /*
639 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
640 * The new LWP is created in state LSIDL and must be set running,
641 * suspended, or stopped by the caller.
642 */
643 int
644 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
645 void *stack, size_t stacksize, void (*func)(void *), void *arg,
646 lwp_t **rnewlwpp, int sclass)
647 {
648 struct lwp *l2, *isfree;
649 turnstile_t *ts;
650 lwpid_t lid;
651
652 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
653
654 /*
655 * First off, reap any detached LWP waiting to be collected.
656 * We can re-use its LWP structure and turnstile.
657 */
658 isfree = NULL;
659 if (p2->p_zomblwp != NULL) {
660 mutex_enter(p2->p_lock);
661 if ((isfree = p2->p_zomblwp) != NULL) {
662 p2->p_zomblwp = NULL;
663 lwp_free(isfree, true, false);/* releases proc mutex */
664 } else
665 mutex_exit(p2->p_lock);
666 }
667 if (isfree == NULL) {
668 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
669 memset(l2, 0, sizeof(*l2));
670 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
671 SLIST_INIT(&l2->l_pi_lenders);
672 } else {
673 l2 = isfree;
674 ts = l2->l_ts;
675 KASSERT(l2->l_inheritedprio == -1);
676 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
677 memset(l2, 0, sizeof(*l2));
678 l2->l_ts = ts;
679 }
680
681 l2->l_stat = LSIDL;
682 l2->l_proc = p2;
683 l2->l_refcnt = 1;
684 l2->l_class = sclass;
685
686 /*
687 * If vfork(), we want the LWP to run fast and on the same CPU
688 * as its parent, so that it can reuse the VM context and cache
689 * footprint on the local CPU.
690 */
691 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
692 l2->l_kpribase = PRI_KERNEL;
693 l2->l_priority = l1->l_priority;
694 l2->l_inheritedprio = -1;
695 l2->l_flag = 0;
696 l2->l_pflag = LP_MPSAFE;
697 TAILQ_INIT(&l2->l_ld_locks);
698
699 /*
700 * If not the first LWP in the process, grab a reference to the
701 * descriptor table.
702 */
703 l2->l_fd = p2->p_fd;
704 if (p2->p_nlwps != 0) {
705 KASSERT(l1->l_proc == p2);
706 fd_hold(l2);
707 } else {
708 KASSERT(l1->l_proc != p2);
709 }
710
711 if (p2->p_flag & PK_SYSTEM) {
712 /* Mark it as a system LWP. */
713 l2->l_flag |= LW_SYSTEM;
714 }
715
716 kpreempt_disable();
717 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
718 l2->l_cpu = l1->l_cpu;
719 kpreempt_enable();
720
721 kdtrace_thread_ctor(NULL, l2);
722 lwp_initspecific(l2);
723 sched_lwp_fork(l1, l2);
724 lwp_update_creds(l2);
725 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
726 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
727 cv_init(&l2->l_sigcv, "sigwait");
728 l2->l_syncobj = &sched_syncobj;
729
730 if (rnewlwpp != NULL)
731 *rnewlwpp = l2;
732
733 uvm_lwp_setuarea(l2, uaddr);
734 uvm_lwp_fork(l1, l2, stack, stacksize, func,
735 (arg != NULL) ? arg : l2);
736
737 if ((flags & LWP_PIDLID) != 0) {
738 lid = proc_alloc_pid(p2);
739 l2->l_pflag |= LP_PIDLID;
740 } else {
741 lid = 0;
742 }
743
744 mutex_enter(p2->p_lock);
745
746 if ((flags & LWP_DETACHED) != 0) {
747 l2->l_prflag = LPR_DETACHED;
748 p2->p_ndlwps++;
749 } else
750 l2->l_prflag = 0;
751
752 l2->l_sigmask = l1->l_sigmask;
753 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
754 sigemptyset(&l2->l_sigpend.sp_set);
755
756 if (lid == 0) {
757 p2->p_nlwpid++;
758 if (p2->p_nlwpid == 0)
759 p2->p_nlwpid++;
760 lid = p2->p_nlwpid;
761 }
762 l2->l_lid = lid;
763 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
764 p2->p_nlwps++;
765 p2->p_nrlwps++;
766
767 if ((p2->p_flag & PK_SYSTEM) == 0) {
768 /* Inherit an affinity */
769 if (l1->l_flag & LW_AFFINITY) {
770 /*
771 * Note that we hold the state lock while inheriting
772 * the affinity to avoid race with sched_setaffinity().
773 */
774 lwp_lock(l1);
775 if (l1->l_flag & LW_AFFINITY) {
776 kcpuset_use(l1->l_affinity);
777 l2->l_affinity = l1->l_affinity;
778 l2->l_flag |= LW_AFFINITY;
779 }
780 lwp_unlock(l1);
781 }
782 lwp_lock(l2);
783 /* Inherit a processor-set */
784 l2->l_psid = l1->l_psid;
785 /* Look for a CPU to start */
786 l2->l_cpu = sched_takecpu(l2);
787 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
788 }
789 mutex_exit(p2->p_lock);
790
791 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
792
793 mutex_enter(proc_lock);
794 LIST_INSERT_HEAD(&alllwp, l2, l_list);
795 mutex_exit(proc_lock);
796
797 SYSCALL_TIME_LWP_INIT(l2);
798
799 if (p2->p_emul->e_lwp_fork)
800 (*p2->p_emul->e_lwp_fork)(l1, l2);
801
802 return (0);
803 }
804
805 /*
806 * Called by MD code when a new LWP begins execution. Must be called
807 * with the previous LWP locked (so at splsched), or if there is no
808 * previous LWP, at splsched.
809 */
810 void
811 lwp_startup(struct lwp *prev, struct lwp *new)
812 {
813
814 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
815
816 KASSERT(kpreempt_disabled());
817 if (prev != NULL) {
818 /*
819 * Normalize the count of the spin-mutexes, it was
820 * increased in mi_switch(). Unmark the state of
821 * context switch - it is finished for previous LWP.
822 */
823 curcpu()->ci_mtx_count++;
824 membar_exit();
825 prev->l_ctxswtch = 0;
826 }
827 KPREEMPT_DISABLE(new);
828 spl0();
829 pmap_activate(new);
830 LOCKDEBUG_BARRIER(NULL, 0);
831 KPREEMPT_ENABLE(new);
832 if ((new->l_pflag & LP_MPSAFE) == 0) {
833 KERNEL_LOCK(1, new);
834 }
835 }
836
837 /*
838 * Exit an LWP.
839 */
840 void
841 lwp_exit(struct lwp *l)
842 {
843 struct proc *p = l->l_proc;
844 struct lwp *l2;
845 bool current;
846
847 current = (l == curlwp);
848
849 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
850 KASSERT(p == curproc);
851
852 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
853
854 /*
855 * Verify that we hold no locks other than the kernel lock.
856 */
857 LOCKDEBUG_BARRIER(&kernel_lock, 0);
858
859 /*
860 * If we are the last live LWP in a process, we need to exit the
861 * entire process. We do so with an exit status of zero, because
862 * it's a "controlled" exit, and because that's what Solaris does.
863 *
864 * We are not quite a zombie yet, but for accounting purposes we
865 * must increment the count of zombies here.
866 *
867 * Note: the last LWP's specificdata will be deleted here.
868 */
869 mutex_enter(p->p_lock);
870 if (p->p_nlwps - p->p_nzlwps == 1) {
871 KASSERT(current == true);
872 /* XXXSMP kernel_lock not held */
873 exit1(l, 0);
874 /* NOTREACHED */
875 }
876 p->p_nzlwps++;
877 mutex_exit(p->p_lock);
878
879 if (p->p_emul->e_lwp_exit)
880 (*p->p_emul->e_lwp_exit)(l);
881
882 /* Drop filedesc reference. */
883 fd_free();
884
885 /* Delete the specificdata while it's still safe to sleep. */
886 lwp_finispecific(l);
887
888 /*
889 * Release our cached credentials.
890 */
891 kauth_cred_free(l->l_cred);
892 callout_destroy(&l->l_timeout_ch);
893
894 /*
895 * Remove the LWP from the global list.
896 * Free its LID from the PID namespace if needed.
897 */
898 mutex_enter(proc_lock);
899 LIST_REMOVE(l, l_list);
900 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
901 proc_free_pid(l->l_lid);
902 }
903 mutex_exit(proc_lock);
904
905 /*
906 * Get rid of all references to the LWP that others (e.g. procfs)
907 * may have, and mark the LWP as a zombie. If the LWP is detached,
908 * mark it waiting for collection in the proc structure. Note that
909 * before we can do that, we need to free any other dead, deatched
910 * LWP waiting to meet its maker.
911 */
912 mutex_enter(p->p_lock);
913 lwp_drainrefs(l);
914
915 if ((l->l_prflag & LPR_DETACHED) != 0) {
916 while ((l2 = p->p_zomblwp) != NULL) {
917 p->p_zomblwp = NULL;
918 lwp_free(l2, false, false);/* releases proc mutex */
919 mutex_enter(p->p_lock);
920 l->l_refcnt++;
921 lwp_drainrefs(l);
922 }
923 p->p_zomblwp = l;
924 }
925
926 /*
927 * If we find a pending signal for the process and we have been
928 * asked to check for signals, then we lose: arrange to have
929 * all other LWPs in the process check for signals.
930 */
931 if ((l->l_flag & LW_PENDSIG) != 0 &&
932 firstsig(&p->p_sigpend.sp_set) != 0) {
933 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
934 lwp_lock(l2);
935 l2->l_flag |= LW_PENDSIG;
936 lwp_unlock(l2);
937 }
938 }
939
940 lwp_lock(l);
941 l->l_stat = LSZOMB;
942 if (l->l_name != NULL)
943 strcpy(l->l_name, "(zombie)");
944 if (l->l_flag & LW_AFFINITY) {
945 l->l_flag &= ~LW_AFFINITY;
946 } else {
947 KASSERT(l->l_affinity == NULL);
948 }
949 lwp_unlock(l);
950 p->p_nrlwps--;
951 cv_broadcast(&p->p_lwpcv);
952 if (l->l_lwpctl != NULL)
953 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
954 mutex_exit(p->p_lock);
955
956 /* Safe without lock since LWP is in zombie state */
957 if (l->l_affinity) {
958 kcpuset_unuse(l->l_affinity, NULL);
959 l->l_affinity = NULL;
960 }
961
962 /*
963 * We can no longer block. At this point, lwp_free() may already
964 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
965 *
966 * Free MD LWP resources.
967 */
968 cpu_lwp_free(l, 0);
969
970 if (current) {
971 pmap_deactivate(l);
972
973 /*
974 * Release the kernel lock, and switch away into
975 * oblivion.
976 */
977 #ifdef notyet
978 /* XXXSMP hold in lwp_userret() */
979 KERNEL_UNLOCK_LAST(l);
980 #else
981 KERNEL_UNLOCK_ALL(l, NULL);
982 #endif
983 lwp_exit_switchaway(l);
984 }
985 }
986
987 /*
988 * Free a dead LWP's remaining resources.
989 *
990 * XXXLWP limits.
991 */
992 void
993 lwp_free(struct lwp *l, bool recycle, bool last)
994 {
995 struct proc *p = l->l_proc;
996 struct rusage *ru;
997 ksiginfoq_t kq;
998
999 KASSERT(l != curlwp);
1000
1001 /*
1002 * If this was not the last LWP in the process, then adjust
1003 * counters and unlock.
1004 */
1005 if (!last) {
1006 /*
1007 * Add the LWP's run time to the process' base value.
1008 * This needs to co-incide with coming off p_lwps.
1009 */
1010 bintime_add(&p->p_rtime, &l->l_rtime);
1011 p->p_pctcpu += l->l_pctcpu;
1012 ru = &p->p_stats->p_ru;
1013 ruadd(ru, &l->l_ru);
1014 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1015 ru->ru_nivcsw += l->l_nivcsw;
1016 LIST_REMOVE(l, l_sibling);
1017 p->p_nlwps--;
1018 p->p_nzlwps--;
1019 if ((l->l_prflag & LPR_DETACHED) != 0)
1020 p->p_ndlwps--;
1021
1022 /*
1023 * Have any LWPs sleeping in lwp_wait() recheck for
1024 * deadlock.
1025 */
1026 cv_broadcast(&p->p_lwpcv);
1027 mutex_exit(p->p_lock);
1028 }
1029
1030 #ifdef MULTIPROCESSOR
1031 /*
1032 * In the unlikely event that the LWP is still on the CPU,
1033 * then spin until it has switched away. We need to release
1034 * all locks to avoid deadlock against interrupt handlers on
1035 * the target CPU.
1036 */
1037 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1038 int count;
1039 (void)count; /* XXXgcc */
1040 KERNEL_UNLOCK_ALL(curlwp, &count);
1041 while ((l->l_pflag & LP_RUNNING) != 0 ||
1042 l->l_cpu->ci_curlwp == l)
1043 SPINLOCK_BACKOFF_HOOK;
1044 KERNEL_LOCK(count, curlwp);
1045 }
1046 #endif
1047
1048 /*
1049 * Destroy the LWP's remaining signal information.
1050 */
1051 ksiginfo_queue_init(&kq);
1052 sigclear(&l->l_sigpend, NULL, &kq);
1053 ksiginfo_queue_drain(&kq);
1054 cv_destroy(&l->l_sigcv);
1055
1056 /*
1057 * Free the LWP's turnstile and the LWP structure itself unless the
1058 * caller wants to recycle them. Also, free the scheduler specific
1059 * data.
1060 *
1061 * We can't return turnstile0 to the pool (it didn't come from it),
1062 * so if it comes up just drop it quietly and move on.
1063 *
1064 * We don't recycle the VM resources at this time.
1065 */
1066 if (l->l_lwpctl != NULL)
1067 lwp_ctl_free(l);
1068
1069 if (!recycle && l->l_ts != &turnstile0)
1070 pool_cache_put(turnstile_cache, l->l_ts);
1071 if (l->l_name != NULL)
1072 kmem_free(l->l_name, MAXCOMLEN);
1073
1074 cpu_lwp_free2(l);
1075 uvm_lwp_exit(l);
1076
1077 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1078 KASSERT(l->l_inheritedprio == -1);
1079 kdtrace_thread_dtor(NULL, l);
1080 if (!recycle)
1081 pool_cache_put(lwp_cache, l);
1082 }
1083
1084 /*
1085 * Migrate the LWP to the another CPU. Unlocks the LWP.
1086 */
1087 void
1088 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1089 {
1090 struct schedstate_percpu *tspc;
1091 int lstat = l->l_stat;
1092
1093 KASSERT(lwp_locked(l, NULL));
1094 KASSERT(tci != NULL);
1095
1096 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1097 if ((l->l_pflag & LP_RUNNING) != 0) {
1098 lstat = LSONPROC;
1099 }
1100
1101 /*
1102 * The destination CPU could be changed while previous migration
1103 * was not finished.
1104 */
1105 if (l->l_target_cpu != NULL) {
1106 l->l_target_cpu = tci;
1107 lwp_unlock(l);
1108 return;
1109 }
1110
1111 /* Nothing to do if trying to migrate to the same CPU */
1112 if (l->l_cpu == tci) {
1113 lwp_unlock(l);
1114 return;
1115 }
1116
1117 KASSERT(l->l_target_cpu == NULL);
1118 tspc = &tci->ci_schedstate;
1119 switch (lstat) {
1120 case LSRUN:
1121 l->l_target_cpu = tci;
1122 break;
1123 case LSIDL:
1124 l->l_cpu = tci;
1125 lwp_unlock_to(l, tspc->spc_mutex);
1126 return;
1127 case LSSLEEP:
1128 l->l_cpu = tci;
1129 break;
1130 case LSSTOP:
1131 case LSSUSPENDED:
1132 l->l_cpu = tci;
1133 if (l->l_wchan == NULL) {
1134 lwp_unlock_to(l, tspc->spc_lwplock);
1135 return;
1136 }
1137 break;
1138 case LSONPROC:
1139 l->l_target_cpu = tci;
1140 spc_lock(l->l_cpu);
1141 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1142 spc_unlock(l->l_cpu);
1143 break;
1144 }
1145 lwp_unlock(l);
1146 }
1147
1148 /*
1149 * Find the LWP in the process. Arguments may be zero, in such case,
1150 * the calling process and first LWP in the list will be used.
1151 * On success - returns proc locked.
1152 */
1153 struct lwp *
1154 lwp_find2(pid_t pid, lwpid_t lid)
1155 {
1156 proc_t *p;
1157 lwp_t *l;
1158
1159 /* Find the process. */
1160 if (pid != 0) {
1161 mutex_enter(proc_lock);
1162 p = proc_find(pid);
1163 if (p == NULL) {
1164 mutex_exit(proc_lock);
1165 return NULL;
1166 }
1167 mutex_enter(p->p_lock);
1168 mutex_exit(proc_lock);
1169 } else {
1170 p = curlwp->l_proc;
1171 mutex_enter(p->p_lock);
1172 }
1173 /* Find the thread. */
1174 if (lid != 0) {
1175 l = lwp_find(p, lid);
1176 } else {
1177 l = LIST_FIRST(&p->p_lwps);
1178 }
1179 if (l == NULL) {
1180 mutex_exit(p->p_lock);
1181 }
1182 return l;
1183 }
1184
1185 /*
1186 * Look up a live LWP within the specified process, and return it locked.
1187 *
1188 * Must be called with p->p_lock held.
1189 */
1190 struct lwp *
1191 lwp_find(struct proc *p, lwpid_t id)
1192 {
1193 struct lwp *l;
1194
1195 KASSERT(mutex_owned(p->p_lock));
1196
1197 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1198 if (l->l_lid == id)
1199 break;
1200 }
1201
1202 /*
1203 * No need to lock - all of these conditions will
1204 * be visible with the process level mutex held.
1205 */
1206 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1207 l = NULL;
1208
1209 return l;
1210 }
1211
1212 /*
1213 * Update an LWP's cached credentials to mirror the process' master copy.
1214 *
1215 * This happens early in the syscall path, on user trap, and on LWP
1216 * creation. A long-running LWP can also voluntarily choose to update
1217 * it's credentials by calling this routine. This may be called from
1218 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1219 */
1220 void
1221 lwp_update_creds(struct lwp *l)
1222 {
1223 kauth_cred_t oc;
1224 struct proc *p;
1225
1226 p = l->l_proc;
1227 oc = l->l_cred;
1228
1229 mutex_enter(p->p_lock);
1230 kauth_cred_hold(p->p_cred);
1231 l->l_cred = p->p_cred;
1232 l->l_prflag &= ~LPR_CRMOD;
1233 mutex_exit(p->p_lock);
1234 if (oc != NULL)
1235 kauth_cred_free(oc);
1236 }
1237
1238 /*
1239 * Verify that an LWP is locked, and optionally verify that the lock matches
1240 * one we specify.
1241 */
1242 int
1243 lwp_locked(struct lwp *l, kmutex_t *mtx)
1244 {
1245 kmutex_t *cur = l->l_mutex;
1246
1247 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1248 }
1249
1250 /*
1251 * Lend a new mutex to an LWP. The old mutex must be held.
1252 */
1253 void
1254 lwp_setlock(struct lwp *l, kmutex_t *new)
1255 {
1256
1257 KASSERT(mutex_owned(l->l_mutex));
1258
1259 membar_exit();
1260 l->l_mutex = new;
1261 }
1262
1263 /*
1264 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1265 * must be held.
1266 */
1267 void
1268 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1269 {
1270 kmutex_t *old;
1271
1272 KASSERT(lwp_locked(l, NULL));
1273
1274 old = l->l_mutex;
1275 membar_exit();
1276 l->l_mutex = new;
1277 mutex_spin_exit(old);
1278 }
1279
1280 int
1281 lwp_trylock(struct lwp *l)
1282 {
1283 kmutex_t *old;
1284
1285 for (;;) {
1286 if (!mutex_tryenter(old = l->l_mutex))
1287 return 0;
1288 if (__predict_true(l->l_mutex == old))
1289 return 1;
1290 mutex_spin_exit(old);
1291 }
1292 }
1293
1294 void
1295 lwp_unsleep(lwp_t *l, bool cleanup)
1296 {
1297
1298 KASSERT(mutex_owned(l->l_mutex));
1299 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1300 }
1301
1302 /*
1303 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1304 * set.
1305 */
1306 void
1307 lwp_userret(struct lwp *l)
1308 {
1309 struct proc *p;
1310 int sig;
1311
1312 KASSERT(l == curlwp);
1313 KASSERT(l->l_stat == LSONPROC);
1314 p = l->l_proc;
1315
1316 #ifndef __HAVE_FAST_SOFTINTS
1317 /* Run pending soft interrupts. */
1318 if (l->l_cpu->ci_data.cpu_softints != 0)
1319 softint_overlay();
1320 #endif
1321
1322 #ifdef KERN_SA
1323 /* Generate UNBLOCKED upcall if needed */
1324 if (l->l_flag & LW_SA_BLOCKING) {
1325 sa_unblock_userret(l);
1326 /* NOTREACHED */
1327 }
1328 #endif
1329
1330 /*
1331 * It should be safe to do this read unlocked on a multiprocessor
1332 * system..
1333 *
1334 * LW_SA_UPCALL will be handled after the while() loop, so don't
1335 * consider it now.
1336 */
1337 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1338 /*
1339 * Process pending signals first, unless the process
1340 * is dumping core or exiting, where we will instead
1341 * enter the LW_WSUSPEND case below.
1342 */
1343 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1344 LW_PENDSIG) {
1345 mutex_enter(p->p_lock);
1346 while ((sig = issignal(l)) != 0)
1347 postsig(sig);
1348 mutex_exit(p->p_lock);
1349 }
1350
1351 /*
1352 * Core-dump or suspend pending.
1353 *
1354 * In case of core dump, suspend ourselves, so that the
1355 * kernel stack and therefore the userland registers saved
1356 * in the trapframe are around for coredump() to write them
1357 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1358 * will write the core file out once all other LWPs are
1359 * suspended.
1360 */
1361 if ((l->l_flag & LW_WSUSPEND) != 0) {
1362 mutex_enter(p->p_lock);
1363 p->p_nrlwps--;
1364 cv_broadcast(&p->p_lwpcv);
1365 lwp_lock(l);
1366 l->l_stat = LSSUSPENDED;
1367 lwp_unlock(l);
1368 mutex_exit(p->p_lock);
1369 lwp_lock(l);
1370 mi_switch(l);
1371 }
1372
1373 /* Process is exiting. */
1374 if ((l->l_flag & LW_WEXIT) != 0) {
1375 lwp_exit(l);
1376 KASSERT(0);
1377 /* NOTREACHED */
1378 }
1379 }
1380
1381 #ifdef KERN_SA
1382 /*
1383 * Timer events are handled specially. We only try once to deliver
1384 * pending timer upcalls; if if fails, we can try again on the next
1385 * loop around. If we need to re-enter lwp_userret(), MD code will
1386 * bounce us back here through the trap path after we return.
1387 */
1388 if (p->p_timerpend)
1389 timerupcall(l);
1390 if (l->l_flag & LW_SA_UPCALL)
1391 sa_upcall_userret(l);
1392 #endif /* KERN_SA */
1393 }
1394
1395 /*
1396 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1397 */
1398 void
1399 lwp_need_userret(struct lwp *l)
1400 {
1401 KASSERT(lwp_locked(l, NULL));
1402
1403 /*
1404 * Since the tests in lwp_userret() are done unlocked, make sure
1405 * that the condition will be seen before forcing the LWP to enter
1406 * kernel mode.
1407 */
1408 membar_producer();
1409 cpu_signotify(l);
1410 }
1411
1412 /*
1413 * Add one reference to an LWP. This will prevent the LWP from
1414 * exiting, thus keep the lwp structure and PCB around to inspect.
1415 */
1416 void
1417 lwp_addref(struct lwp *l)
1418 {
1419
1420 KASSERT(mutex_owned(l->l_proc->p_lock));
1421 KASSERT(l->l_stat != LSZOMB);
1422 KASSERT(l->l_refcnt != 0);
1423
1424 l->l_refcnt++;
1425 }
1426
1427 /*
1428 * Remove one reference to an LWP. If this is the last reference,
1429 * then we must finalize the LWP's death.
1430 */
1431 void
1432 lwp_delref(struct lwp *l)
1433 {
1434 struct proc *p = l->l_proc;
1435
1436 mutex_enter(p->p_lock);
1437 lwp_delref2(l);
1438 mutex_exit(p->p_lock);
1439 }
1440
1441 /*
1442 * Remove one reference to an LWP. If this is the last reference,
1443 * then we must finalize the LWP's death. The proc mutex is held
1444 * on entry.
1445 */
1446 void
1447 lwp_delref2(struct lwp *l)
1448 {
1449 struct proc *p = l->l_proc;
1450
1451 KASSERT(mutex_owned(p->p_lock));
1452 KASSERT(l->l_stat != LSZOMB);
1453 KASSERT(l->l_refcnt > 0);
1454 if (--l->l_refcnt == 0)
1455 cv_broadcast(&p->p_lwpcv);
1456 }
1457
1458 /*
1459 * Drain all references to the current LWP.
1460 */
1461 void
1462 lwp_drainrefs(struct lwp *l)
1463 {
1464 struct proc *p = l->l_proc;
1465
1466 KASSERT(mutex_owned(p->p_lock));
1467 KASSERT(l->l_refcnt != 0);
1468
1469 l->l_refcnt--;
1470 while (l->l_refcnt != 0)
1471 cv_wait(&p->p_lwpcv, p->p_lock);
1472 }
1473
1474 /*
1475 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1476 * be held.
1477 */
1478 bool
1479 lwp_alive(lwp_t *l)
1480 {
1481
1482 KASSERT(mutex_owned(l->l_proc->p_lock));
1483
1484 switch (l->l_stat) {
1485 case LSSLEEP:
1486 case LSRUN:
1487 case LSONPROC:
1488 case LSSTOP:
1489 case LSSUSPENDED:
1490 return true;
1491 default:
1492 return false;
1493 }
1494 }
1495
1496 /*
1497 * Return first live LWP in the process.
1498 */
1499 lwp_t *
1500 lwp_find_first(proc_t *p)
1501 {
1502 lwp_t *l;
1503
1504 KASSERT(mutex_owned(p->p_lock));
1505
1506 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1507 if (lwp_alive(l)) {
1508 return l;
1509 }
1510 }
1511
1512 return NULL;
1513 }
1514
1515 /*
1516 * Allocate a new lwpctl structure for a user LWP.
1517 */
1518 int
1519 lwp_ctl_alloc(vaddr_t *uaddr)
1520 {
1521 lcproc_t *lp;
1522 u_int bit, i, offset;
1523 struct uvm_object *uao;
1524 int error;
1525 lcpage_t *lcp;
1526 proc_t *p;
1527 lwp_t *l;
1528
1529 l = curlwp;
1530 p = l->l_proc;
1531
1532 if (l->l_lcpage != NULL) {
1533 lcp = l->l_lcpage;
1534 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1535 return 0;
1536 }
1537
1538 /* First time around, allocate header structure for the process. */
1539 if ((lp = p->p_lwpctl) == NULL) {
1540 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1541 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1542 lp->lp_uao = NULL;
1543 TAILQ_INIT(&lp->lp_pages);
1544 mutex_enter(p->p_lock);
1545 if (p->p_lwpctl == NULL) {
1546 p->p_lwpctl = lp;
1547 mutex_exit(p->p_lock);
1548 } else {
1549 mutex_exit(p->p_lock);
1550 mutex_destroy(&lp->lp_lock);
1551 kmem_free(lp, sizeof(*lp));
1552 lp = p->p_lwpctl;
1553 }
1554 }
1555
1556 /*
1557 * Set up an anonymous memory region to hold the shared pages.
1558 * Map them into the process' address space. The user vmspace
1559 * gets the first reference on the UAO.
1560 */
1561 mutex_enter(&lp->lp_lock);
1562 if (lp->lp_uao == NULL) {
1563 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1564 lp->lp_cur = 0;
1565 lp->lp_max = LWPCTL_UAREA_SZ;
1566 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1567 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1568 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1569 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1570 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1571 if (error != 0) {
1572 uao_detach(lp->lp_uao);
1573 lp->lp_uao = NULL;
1574 mutex_exit(&lp->lp_lock);
1575 return error;
1576 }
1577 }
1578
1579 /* Get a free block and allocate for this LWP. */
1580 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1581 if (lcp->lcp_nfree != 0)
1582 break;
1583 }
1584 if (lcp == NULL) {
1585 /* Nothing available - try to set up a free page. */
1586 if (lp->lp_cur == lp->lp_max) {
1587 mutex_exit(&lp->lp_lock);
1588 return ENOMEM;
1589 }
1590 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1591 if (lcp == NULL) {
1592 mutex_exit(&lp->lp_lock);
1593 return ENOMEM;
1594 }
1595 /*
1596 * Wire the next page down in kernel space. Since this
1597 * is a new mapping, we must add a reference.
1598 */
1599 uao = lp->lp_uao;
1600 (*uao->pgops->pgo_reference)(uao);
1601 lcp->lcp_kaddr = vm_map_min(kernel_map);
1602 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1603 uao, lp->lp_cur, PAGE_SIZE,
1604 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1605 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1606 if (error != 0) {
1607 mutex_exit(&lp->lp_lock);
1608 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1609 (*uao->pgops->pgo_detach)(uao);
1610 return error;
1611 }
1612 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1613 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1614 if (error != 0) {
1615 mutex_exit(&lp->lp_lock);
1616 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1617 lcp->lcp_kaddr + PAGE_SIZE);
1618 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1619 return error;
1620 }
1621 /* Prepare the page descriptor and link into the list. */
1622 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1623 lp->lp_cur += PAGE_SIZE;
1624 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1625 lcp->lcp_rotor = 0;
1626 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1627 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1628 }
1629 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1630 if (++i >= LWPCTL_BITMAP_ENTRIES)
1631 i = 0;
1632 }
1633 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1634 lcp->lcp_bitmap[i] ^= (1 << bit);
1635 lcp->lcp_rotor = i;
1636 lcp->lcp_nfree--;
1637 l->l_lcpage = lcp;
1638 offset = (i << 5) + bit;
1639 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1640 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1641 mutex_exit(&lp->lp_lock);
1642
1643 KPREEMPT_DISABLE(l);
1644 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1645 KPREEMPT_ENABLE(l);
1646
1647 return 0;
1648 }
1649
1650 /*
1651 * Free an lwpctl structure back to the per-process list.
1652 */
1653 void
1654 lwp_ctl_free(lwp_t *l)
1655 {
1656 lcproc_t *lp;
1657 lcpage_t *lcp;
1658 u_int map, offset;
1659
1660 lp = l->l_proc->p_lwpctl;
1661 KASSERT(lp != NULL);
1662
1663 lcp = l->l_lcpage;
1664 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1665 KASSERT(offset < LWPCTL_PER_PAGE);
1666
1667 mutex_enter(&lp->lp_lock);
1668 lcp->lcp_nfree++;
1669 map = offset >> 5;
1670 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1671 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1672 lcp->lcp_rotor = map;
1673 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1674 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1675 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1676 }
1677 mutex_exit(&lp->lp_lock);
1678 }
1679
1680 /*
1681 * Process is exiting; tear down lwpctl state. This can only be safely
1682 * called by the last LWP in the process.
1683 */
1684 void
1685 lwp_ctl_exit(void)
1686 {
1687 lcpage_t *lcp, *next;
1688 lcproc_t *lp;
1689 proc_t *p;
1690 lwp_t *l;
1691
1692 l = curlwp;
1693 l->l_lwpctl = NULL;
1694 l->l_lcpage = NULL;
1695 p = l->l_proc;
1696 lp = p->p_lwpctl;
1697
1698 KASSERT(lp != NULL);
1699 KASSERT(p->p_nlwps == 1);
1700
1701 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1702 next = TAILQ_NEXT(lcp, lcp_chain);
1703 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1704 lcp->lcp_kaddr + PAGE_SIZE);
1705 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1706 }
1707
1708 if (lp->lp_uao != NULL) {
1709 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1710 lp->lp_uva + LWPCTL_UAREA_SZ);
1711 }
1712
1713 mutex_destroy(&lp->lp_lock);
1714 kmem_free(lp, sizeof(*lp));
1715 p->p_lwpctl = NULL;
1716 }
1717
1718 /*
1719 * Return the current LWP's "preemption counter". Used to detect
1720 * preemption across operations that can tolerate preemption without
1721 * crashing, but which may generate incorrect results if preempted.
1722 */
1723 uint64_t
1724 lwp_pctr(void)
1725 {
1726
1727 return curlwp->l_ncsw;
1728 }
1729
1730 /*
1731 * Set an LWP's private data pointer.
1732 */
1733 int
1734 lwp_setprivate(struct lwp *l, void *ptr)
1735 {
1736 int error = 0;
1737
1738 l->l_private = ptr;
1739 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1740 error = cpu_lwp_setprivate(l, ptr);
1741 #endif
1742 return error;
1743 }
1744
1745 #if defined(DDB)
1746 #include <machine/pcb.h>
1747
1748 void
1749 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1750 {
1751 lwp_t *l;
1752
1753 LIST_FOREACH(l, &alllwp, l_list) {
1754 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1755
1756 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1757 continue;
1758 }
1759 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1760 (void *)addr, (void *)stack,
1761 (size_t)(addr - stack), l);
1762 }
1763 }
1764 #endif /* defined(DDB) */
1765