kern_lwp.c revision 1.156 1 /* $NetBSD: kern_lwp.c,v 1.156 2011/02/21 20:23:28 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.156 2011/02/21 20:23:28 pooka Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_sa.h"
219 #include "opt_dtrace.h"
220
221 #define _LWP_API_PRIVATE
222
223 #include <sys/param.h>
224 #include <sys/systm.h>
225 #include <sys/cpu.h>
226 #include <sys/pool.h>
227 #include <sys/proc.h>
228 #include <sys/sa.h>
229 #include <sys/savar.h>
230 #include <sys/syscallargs.h>
231 #include <sys/syscall_stats.h>
232 #include <sys/kauth.h>
233 #include <sys/sleepq.h>
234 #include <sys/lockdebug.h>
235 #include <sys/kmem.h>
236 #include <sys/pset.h>
237 #include <sys/intr.h>
238 #include <sys/lwpctl.h>
239 #include <sys/atomic.h>
240 #include <sys/filedesc.h>
241 #include <sys/dtrace_bsd.h>
242 #include <sys/sdt.h>
243
244 #include <uvm/uvm_extern.h>
245 #include <uvm/uvm_object.h>
246
247 static pool_cache_t lwp_cache __read_mostly;
248 struct lwplist alllwp __cacheline_aligned;
249
250 /* DTrace proc provider probes */
251 SDT_PROBE_DEFINE(proc,,,lwp_create,
252 "struct lwp *", NULL,
253 NULL, NULL, NULL, NULL,
254 NULL, NULL, NULL, NULL);
255 SDT_PROBE_DEFINE(proc,,,lwp_start,
256 "struct lwp *", NULL,
257 NULL, NULL, NULL, NULL,
258 NULL, NULL, NULL, NULL);
259 SDT_PROBE_DEFINE(proc,,,lwp_exit,
260 "struct lwp *", NULL,
261 NULL, NULL, NULL, NULL,
262 NULL, NULL, NULL, NULL);
263
264 struct turnstile turnstile0;
265 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
266 #ifdef LWP0_CPU_INFO
267 .l_cpu = LWP0_CPU_INFO,
268 #endif
269 #ifdef LWP0_MD_INITIALIZER
270 .l_md = LWP0_MD_INITIALIZER,
271 #endif
272 .l_proc = &proc0,
273 .l_lid = 1,
274 .l_flag = LW_SYSTEM,
275 .l_stat = LSONPROC,
276 .l_ts = &turnstile0,
277 .l_syncobj = &sched_syncobj,
278 .l_refcnt = 1,
279 .l_priority = PRI_USER + NPRI_USER - 1,
280 .l_inheritedprio = -1,
281 .l_class = SCHED_OTHER,
282 .l_psid = PS_NONE,
283 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
284 .l_name = __UNCONST("swapper"),
285 .l_fd = &filedesc0,
286 };
287
288 void
289 lwpinit(void)
290 {
291
292 LIST_INIT(&alllwp);
293 lwpinit_specificdata();
294 lwp_sys_init();
295 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
296 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
297 }
298
299 void
300 lwp0_init(void)
301 {
302 struct lwp *l = &lwp0;
303
304 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
305 KASSERT(l->l_lid == proc0.p_nlwpid);
306
307 LIST_INSERT_HEAD(&alllwp, l, l_list);
308
309 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
310 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
311 cv_init(&l->l_sigcv, "sigwait");
312
313 kauth_cred_hold(proc0.p_cred);
314 l->l_cred = proc0.p_cred;
315
316 lwp_initspecific(l);
317
318 SYSCALL_TIME_LWP_INIT(l);
319 }
320
321 /*
322 * Set an suspended.
323 *
324 * Must be called with p_lock held, and the LWP locked. Will unlock the
325 * LWP before return.
326 */
327 int
328 lwp_suspend(struct lwp *curl, struct lwp *t)
329 {
330 int error;
331
332 KASSERT(mutex_owned(t->l_proc->p_lock));
333 KASSERT(lwp_locked(t, NULL));
334
335 KASSERT(curl != t || curl->l_stat == LSONPROC);
336
337 /*
338 * If the current LWP has been told to exit, we must not suspend anyone
339 * else or deadlock could occur. We won't return to userspace.
340 */
341 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
342 lwp_unlock(t);
343 return (EDEADLK);
344 }
345
346 error = 0;
347
348 switch (t->l_stat) {
349 case LSRUN:
350 case LSONPROC:
351 t->l_flag |= LW_WSUSPEND;
352 lwp_need_userret(t);
353 lwp_unlock(t);
354 break;
355
356 case LSSLEEP:
357 t->l_flag |= LW_WSUSPEND;
358
359 /*
360 * Kick the LWP and try to get it to the kernel boundary
361 * so that it will release any locks that it holds.
362 * setrunnable() will release the lock.
363 */
364 if ((t->l_flag & LW_SINTR) != 0)
365 setrunnable(t);
366 else
367 lwp_unlock(t);
368 break;
369
370 case LSSUSPENDED:
371 lwp_unlock(t);
372 break;
373
374 case LSSTOP:
375 t->l_flag |= LW_WSUSPEND;
376 setrunnable(t);
377 break;
378
379 case LSIDL:
380 case LSZOMB:
381 error = EINTR; /* It's what Solaris does..... */
382 lwp_unlock(t);
383 break;
384 }
385
386 return (error);
387 }
388
389 /*
390 * Restart a suspended LWP.
391 *
392 * Must be called with p_lock held, and the LWP locked. Will unlock the
393 * LWP before return.
394 */
395 void
396 lwp_continue(struct lwp *l)
397 {
398
399 KASSERT(mutex_owned(l->l_proc->p_lock));
400 KASSERT(lwp_locked(l, NULL));
401
402 /* If rebooting or not suspended, then just bail out. */
403 if ((l->l_flag & LW_WREBOOT) != 0) {
404 lwp_unlock(l);
405 return;
406 }
407
408 l->l_flag &= ~LW_WSUSPEND;
409
410 if (l->l_stat != LSSUSPENDED) {
411 lwp_unlock(l);
412 return;
413 }
414
415 /* setrunnable() will release the lock. */
416 setrunnable(l);
417 }
418
419 /*
420 * Restart a stopped LWP.
421 *
422 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
423 * LWP before return.
424 */
425 void
426 lwp_unstop(struct lwp *l)
427 {
428 struct proc *p = l->l_proc;
429
430 KASSERT(mutex_owned(proc_lock));
431 KASSERT(mutex_owned(p->p_lock));
432
433 lwp_lock(l);
434
435 /* If not stopped, then just bail out. */
436 if (l->l_stat != LSSTOP) {
437 lwp_unlock(l);
438 return;
439 }
440
441 p->p_stat = SACTIVE;
442 p->p_sflag &= ~PS_STOPPING;
443
444 if (!p->p_waited)
445 p->p_pptr->p_nstopchild--;
446
447 if (l->l_wchan == NULL) {
448 /* setrunnable() will release the lock. */
449 setrunnable(l);
450 } else {
451 l->l_stat = LSSLEEP;
452 p->p_nrlwps++;
453 lwp_unlock(l);
454 }
455 }
456
457 /*
458 * Wait for an LWP within the current process to exit. If 'lid' is
459 * non-zero, we are waiting for a specific LWP.
460 *
461 * Must be called with p->p_lock held.
462 */
463 int
464 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
465 {
466 struct proc *p = l->l_proc;
467 struct lwp *l2;
468 int nfound, error;
469 lwpid_t curlid;
470 bool exiting;
471
472 KASSERT(mutex_owned(p->p_lock));
473
474 p->p_nlwpwait++;
475 l->l_waitingfor = lid;
476 curlid = l->l_lid;
477 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
478
479 for (;;) {
480 /*
481 * Avoid a race between exit1() and sigexit(): if the
482 * process is dumping core, then we need to bail out: call
483 * into lwp_userret() where we will be suspended until the
484 * deed is done.
485 */
486 if ((p->p_sflag & PS_WCORE) != 0) {
487 mutex_exit(p->p_lock);
488 lwp_userret(l);
489 #ifdef DIAGNOSTIC
490 panic("lwp_wait1");
491 #endif
492 /* NOTREACHED */
493 }
494
495 /*
496 * First off, drain any detached LWP that is waiting to be
497 * reaped.
498 */
499 while ((l2 = p->p_zomblwp) != NULL) {
500 p->p_zomblwp = NULL;
501 lwp_free(l2, false, false);/* releases proc mutex */
502 mutex_enter(p->p_lock);
503 }
504
505 /*
506 * Now look for an LWP to collect. If the whole process is
507 * exiting, count detached LWPs as eligible to be collected,
508 * but don't drain them here.
509 */
510 nfound = 0;
511 error = 0;
512 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
513 /*
514 * If a specific wait and the target is waiting on
515 * us, then avoid deadlock. This also traps LWPs
516 * that try to wait on themselves.
517 *
518 * Note that this does not handle more complicated
519 * cycles, like: t1 -> t2 -> t3 -> t1. The process
520 * can still be killed so it is not a major problem.
521 */
522 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
523 error = EDEADLK;
524 break;
525 }
526 if (l2 == l)
527 continue;
528 if ((l2->l_prflag & LPR_DETACHED) != 0) {
529 nfound += exiting;
530 continue;
531 }
532 if (lid != 0) {
533 if (l2->l_lid != lid)
534 continue;
535 /*
536 * Mark this LWP as the first waiter, if there
537 * is no other.
538 */
539 if (l2->l_waiter == 0)
540 l2->l_waiter = curlid;
541 } else if (l2->l_waiter != 0) {
542 /*
543 * It already has a waiter - so don't
544 * collect it. If the waiter doesn't
545 * grab it we'll get another chance
546 * later.
547 */
548 nfound++;
549 continue;
550 }
551 nfound++;
552
553 /* No need to lock the LWP in order to see LSZOMB. */
554 if (l2->l_stat != LSZOMB)
555 continue;
556
557 /*
558 * We're no longer waiting. Reset the "first waiter"
559 * pointer on the target, in case it was us.
560 */
561 l->l_waitingfor = 0;
562 l2->l_waiter = 0;
563 p->p_nlwpwait--;
564 if (departed)
565 *departed = l2->l_lid;
566 sched_lwp_collect(l2);
567
568 /* lwp_free() releases the proc lock. */
569 lwp_free(l2, false, false);
570 mutex_enter(p->p_lock);
571 return 0;
572 }
573
574 if (error != 0)
575 break;
576 if (nfound == 0) {
577 error = ESRCH;
578 break;
579 }
580
581 /*
582 * The kernel is careful to ensure that it can not deadlock
583 * when exiting - just keep waiting.
584 */
585 if (exiting) {
586 KASSERT(p->p_nlwps > 1);
587 cv_wait(&p->p_lwpcv, p->p_lock);
588 continue;
589 }
590
591 /*
592 * If all other LWPs are waiting for exits or suspends
593 * and the supply of zombies and potential zombies is
594 * exhausted, then we are about to deadlock.
595 *
596 * If the process is exiting (and this LWP is not the one
597 * that is coordinating the exit) then bail out now.
598 */
599 if ((p->p_sflag & PS_WEXIT) != 0 ||
600 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
601 error = EDEADLK;
602 break;
603 }
604
605 /*
606 * Sit around and wait for something to happen. We'll be
607 * awoken if any of the conditions examined change: if an
608 * LWP exits, is collected, or is detached.
609 */
610 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
611 break;
612 }
613
614 /*
615 * We didn't find any LWPs to collect, we may have received a
616 * signal, or some other condition has caused us to bail out.
617 *
618 * If waiting on a specific LWP, clear the waiters marker: some
619 * other LWP may want it. Then, kick all the remaining waiters
620 * so that they can re-check for zombies and for deadlock.
621 */
622 if (lid != 0) {
623 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
624 if (l2->l_lid == lid) {
625 if (l2->l_waiter == curlid)
626 l2->l_waiter = 0;
627 break;
628 }
629 }
630 }
631 p->p_nlwpwait--;
632 l->l_waitingfor = 0;
633 cv_broadcast(&p->p_lwpcv);
634
635 return error;
636 }
637
638 /*
639 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
640 * The new LWP is created in state LSIDL and must be set running,
641 * suspended, or stopped by the caller.
642 */
643 int
644 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
645 void *stack, size_t stacksize, void (*func)(void *), void *arg,
646 lwp_t **rnewlwpp, int sclass)
647 {
648 struct lwp *l2, *isfree;
649 turnstile_t *ts;
650 lwpid_t lid;
651
652 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
653
654 /*
655 * First off, reap any detached LWP waiting to be collected.
656 * We can re-use its LWP structure and turnstile.
657 */
658 isfree = NULL;
659 if (p2->p_zomblwp != NULL) {
660 mutex_enter(p2->p_lock);
661 if ((isfree = p2->p_zomblwp) != NULL) {
662 p2->p_zomblwp = NULL;
663 lwp_free(isfree, true, false);/* releases proc mutex */
664 } else
665 mutex_exit(p2->p_lock);
666 }
667 if (isfree == NULL) {
668 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
669 memset(l2, 0, sizeof(*l2));
670 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
671 SLIST_INIT(&l2->l_pi_lenders);
672 } else {
673 l2 = isfree;
674 ts = l2->l_ts;
675 KASSERT(l2->l_inheritedprio == -1);
676 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
677 memset(l2, 0, sizeof(*l2));
678 l2->l_ts = ts;
679 }
680
681 l2->l_stat = LSIDL;
682 l2->l_proc = p2;
683 l2->l_refcnt = 1;
684 l2->l_class = sclass;
685
686 /*
687 * If vfork(), we want the LWP to run fast and on the same CPU
688 * as its parent, so that it can reuse the VM context and cache
689 * footprint on the local CPU.
690 */
691 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
692 l2->l_kpribase = PRI_KERNEL;
693 l2->l_priority = l1->l_priority;
694 l2->l_inheritedprio = -1;
695 l2->l_flag = 0;
696 l2->l_pflag = LP_MPSAFE;
697 TAILQ_INIT(&l2->l_ld_locks);
698
699 /*
700 * For vfork, borrow parent's lwpctl context if it exists.
701 * This also causes us to return via lwp_userret.
702 */
703 if (flags & LWP_VFORK && l1->l_lwpctl) {
704 l2->l_lwpctl = l1->l_lwpctl;
705 l2->l_flag |= LW_LWPCTL;
706 }
707
708 /*
709 * If not the first LWP in the process, grab a reference to the
710 * descriptor table.
711 */
712 l2->l_fd = p2->p_fd;
713 if (p2->p_nlwps != 0) {
714 KASSERT(l1->l_proc == p2);
715 fd_hold(l2);
716 } else {
717 KASSERT(l1->l_proc != p2);
718 }
719
720 if (p2->p_flag & PK_SYSTEM) {
721 /* Mark it as a system LWP. */
722 l2->l_flag |= LW_SYSTEM;
723 }
724
725 kpreempt_disable();
726 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
727 l2->l_cpu = l1->l_cpu;
728 kpreempt_enable();
729
730 kdtrace_thread_ctor(NULL, l2);
731 lwp_initspecific(l2);
732 sched_lwp_fork(l1, l2);
733 lwp_update_creds(l2);
734 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
735 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
736 cv_init(&l2->l_sigcv, "sigwait");
737 l2->l_syncobj = &sched_syncobj;
738
739 if (rnewlwpp != NULL)
740 *rnewlwpp = l2;
741
742 uvm_lwp_setuarea(l2, uaddr);
743 uvm_lwp_fork(l1, l2, stack, stacksize, func,
744 (arg != NULL) ? arg : l2);
745
746 if ((flags & LWP_PIDLID) != 0) {
747 lid = proc_alloc_pid(p2);
748 l2->l_pflag |= LP_PIDLID;
749 } else {
750 lid = 0;
751 }
752
753 mutex_enter(p2->p_lock);
754
755 if ((flags & LWP_DETACHED) != 0) {
756 l2->l_prflag = LPR_DETACHED;
757 p2->p_ndlwps++;
758 } else
759 l2->l_prflag = 0;
760
761 l2->l_sigmask = l1->l_sigmask;
762 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
763 sigemptyset(&l2->l_sigpend.sp_set);
764
765 if (lid == 0) {
766 p2->p_nlwpid++;
767 if (p2->p_nlwpid == 0)
768 p2->p_nlwpid++;
769 lid = p2->p_nlwpid;
770 }
771 l2->l_lid = lid;
772 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
773 p2->p_nlwps++;
774 p2->p_nrlwps++;
775
776 if ((p2->p_flag & PK_SYSTEM) == 0) {
777 /* Inherit an affinity */
778 if (l1->l_flag & LW_AFFINITY) {
779 /*
780 * Note that we hold the state lock while inheriting
781 * the affinity to avoid race with sched_setaffinity().
782 */
783 lwp_lock(l1);
784 if (l1->l_flag & LW_AFFINITY) {
785 kcpuset_use(l1->l_affinity);
786 l2->l_affinity = l1->l_affinity;
787 l2->l_flag |= LW_AFFINITY;
788 }
789 lwp_unlock(l1);
790 }
791 lwp_lock(l2);
792 /* Inherit a processor-set */
793 l2->l_psid = l1->l_psid;
794 /* Look for a CPU to start */
795 l2->l_cpu = sched_takecpu(l2);
796 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
797 }
798 mutex_exit(p2->p_lock);
799
800 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
801
802 mutex_enter(proc_lock);
803 LIST_INSERT_HEAD(&alllwp, l2, l_list);
804 mutex_exit(proc_lock);
805
806 SYSCALL_TIME_LWP_INIT(l2);
807
808 if (p2->p_emul->e_lwp_fork)
809 (*p2->p_emul->e_lwp_fork)(l1, l2);
810
811 return (0);
812 }
813
814 /*
815 * Called by MD code when a new LWP begins execution. Must be called
816 * with the previous LWP locked (so at splsched), or if there is no
817 * previous LWP, at splsched.
818 */
819 void
820 lwp_startup(struct lwp *prev, struct lwp *new)
821 {
822
823 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
824
825 KASSERT(kpreempt_disabled());
826 if (prev != NULL) {
827 /*
828 * Normalize the count of the spin-mutexes, it was
829 * increased in mi_switch(). Unmark the state of
830 * context switch - it is finished for previous LWP.
831 */
832 curcpu()->ci_mtx_count++;
833 membar_exit();
834 prev->l_ctxswtch = 0;
835 }
836 KPREEMPT_DISABLE(new);
837 spl0();
838 pmap_activate(new);
839 LOCKDEBUG_BARRIER(NULL, 0);
840 KPREEMPT_ENABLE(new);
841 if ((new->l_pflag & LP_MPSAFE) == 0) {
842 KERNEL_LOCK(1, new);
843 }
844 }
845
846 /*
847 * Exit an LWP.
848 */
849 void
850 lwp_exit(struct lwp *l)
851 {
852 struct proc *p = l->l_proc;
853 struct lwp *l2;
854 bool current;
855
856 current = (l == curlwp);
857
858 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
859 KASSERT(p == curproc);
860
861 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
862
863 /*
864 * Verify that we hold no locks other than the kernel lock.
865 */
866 LOCKDEBUG_BARRIER(&kernel_lock, 0);
867
868 /*
869 * If we are the last live LWP in a process, we need to exit the
870 * entire process. We do so with an exit status of zero, because
871 * it's a "controlled" exit, and because that's what Solaris does.
872 *
873 * We are not quite a zombie yet, but for accounting purposes we
874 * must increment the count of zombies here.
875 *
876 * Note: the last LWP's specificdata will be deleted here.
877 */
878 mutex_enter(p->p_lock);
879 if (p->p_nlwps - p->p_nzlwps == 1) {
880 KASSERT(current == true);
881 /* XXXSMP kernel_lock not held */
882 exit1(l, 0);
883 /* NOTREACHED */
884 }
885 p->p_nzlwps++;
886 mutex_exit(p->p_lock);
887
888 if (p->p_emul->e_lwp_exit)
889 (*p->p_emul->e_lwp_exit)(l);
890
891 /* Drop filedesc reference. */
892 fd_free();
893
894 /* Delete the specificdata while it's still safe to sleep. */
895 lwp_finispecific(l);
896
897 /*
898 * Release our cached credentials.
899 */
900 kauth_cred_free(l->l_cred);
901 callout_destroy(&l->l_timeout_ch);
902
903 /*
904 * Remove the LWP from the global list.
905 * Free its LID from the PID namespace if needed.
906 */
907 mutex_enter(proc_lock);
908 LIST_REMOVE(l, l_list);
909 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
910 proc_free_pid(l->l_lid);
911 }
912 mutex_exit(proc_lock);
913
914 /*
915 * Get rid of all references to the LWP that others (e.g. procfs)
916 * may have, and mark the LWP as a zombie. If the LWP is detached,
917 * mark it waiting for collection in the proc structure. Note that
918 * before we can do that, we need to free any other dead, deatched
919 * LWP waiting to meet its maker.
920 */
921 mutex_enter(p->p_lock);
922 lwp_drainrefs(l);
923
924 if ((l->l_prflag & LPR_DETACHED) != 0) {
925 while ((l2 = p->p_zomblwp) != NULL) {
926 p->p_zomblwp = NULL;
927 lwp_free(l2, false, false);/* releases proc mutex */
928 mutex_enter(p->p_lock);
929 l->l_refcnt++;
930 lwp_drainrefs(l);
931 }
932 p->p_zomblwp = l;
933 }
934
935 /*
936 * If we find a pending signal for the process and we have been
937 * asked to check for signals, then we lose: arrange to have
938 * all other LWPs in the process check for signals.
939 */
940 if ((l->l_flag & LW_PENDSIG) != 0 &&
941 firstsig(&p->p_sigpend.sp_set) != 0) {
942 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
943 lwp_lock(l2);
944 l2->l_flag |= LW_PENDSIG;
945 lwp_unlock(l2);
946 }
947 }
948
949 lwp_lock(l);
950 l->l_stat = LSZOMB;
951 if (l->l_name != NULL)
952 strcpy(l->l_name, "(zombie)");
953 if (l->l_flag & LW_AFFINITY) {
954 l->l_flag &= ~LW_AFFINITY;
955 } else {
956 KASSERT(l->l_affinity == NULL);
957 }
958 lwp_unlock(l);
959 p->p_nrlwps--;
960 cv_broadcast(&p->p_lwpcv);
961 if (l->l_lwpctl != NULL)
962 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
963 mutex_exit(p->p_lock);
964
965 /* Safe without lock since LWP is in zombie state */
966 if (l->l_affinity) {
967 kcpuset_unuse(l->l_affinity, NULL);
968 l->l_affinity = NULL;
969 }
970
971 /*
972 * We can no longer block. At this point, lwp_free() may already
973 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
974 *
975 * Free MD LWP resources.
976 */
977 cpu_lwp_free(l, 0);
978
979 if (current) {
980 pmap_deactivate(l);
981
982 /*
983 * Release the kernel lock, and switch away into
984 * oblivion.
985 */
986 #ifdef notyet
987 /* XXXSMP hold in lwp_userret() */
988 KERNEL_UNLOCK_LAST(l);
989 #else
990 KERNEL_UNLOCK_ALL(l, NULL);
991 #endif
992 lwp_exit_switchaway(l);
993 }
994 }
995
996 /*
997 * Free a dead LWP's remaining resources.
998 *
999 * XXXLWP limits.
1000 */
1001 void
1002 lwp_free(struct lwp *l, bool recycle, bool last)
1003 {
1004 struct proc *p = l->l_proc;
1005 struct rusage *ru;
1006 ksiginfoq_t kq;
1007
1008 KASSERT(l != curlwp);
1009
1010 /*
1011 * If this was not the last LWP in the process, then adjust
1012 * counters and unlock.
1013 */
1014 if (!last) {
1015 /*
1016 * Add the LWP's run time to the process' base value.
1017 * This needs to co-incide with coming off p_lwps.
1018 */
1019 bintime_add(&p->p_rtime, &l->l_rtime);
1020 p->p_pctcpu += l->l_pctcpu;
1021 ru = &p->p_stats->p_ru;
1022 ruadd(ru, &l->l_ru);
1023 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1024 ru->ru_nivcsw += l->l_nivcsw;
1025 LIST_REMOVE(l, l_sibling);
1026 p->p_nlwps--;
1027 p->p_nzlwps--;
1028 if ((l->l_prflag & LPR_DETACHED) != 0)
1029 p->p_ndlwps--;
1030
1031 /*
1032 * Have any LWPs sleeping in lwp_wait() recheck for
1033 * deadlock.
1034 */
1035 cv_broadcast(&p->p_lwpcv);
1036 mutex_exit(p->p_lock);
1037 }
1038
1039 #ifdef MULTIPROCESSOR
1040 /*
1041 * In the unlikely event that the LWP is still on the CPU,
1042 * then spin until it has switched away. We need to release
1043 * all locks to avoid deadlock against interrupt handlers on
1044 * the target CPU.
1045 */
1046 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1047 int count;
1048 (void)count; /* XXXgcc */
1049 KERNEL_UNLOCK_ALL(curlwp, &count);
1050 while ((l->l_pflag & LP_RUNNING) != 0 ||
1051 l->l_cpu->ci_curlwp == l)
1052 SPINLOCK_BACKOFF_HOOK;
1053 KERNEL_LOCK(count, curlwp);
1054 }
1055 #endif
1056
1057 /*
1058 * Destroy the LWP's remaining signal information.
1059 */
1060 ksiginfo_queue_init(&kq);
1061 sigclear(&l->l_sigpend, NULL, &kq);
1062 ksiginfo_queue_drain(&kq);
1063 cv_destroy(&l->l_sigcv);
1064
1065 /*
1066 * Free the LWP's turnstile and the LWP structure itself unless the
1067 * caller wants to recycle them. Also, free the scheduler specific
1068 * data.
1069 *
1070 * We can't return turnstile0 to the pool (it didn't come from it),
1071 * so if it comes up just drop it quietly and move on.
1072 *
1073 * We don't recycle the VM resources at this time.
1074 */
1075 if (l->l_lwpctl != NULL)
1076 lwp_ctl_free(l);
1077
1078 if (!recycle && l->l_ts != &turnstile0)
1079 pool_cache_put(turnstile_cache, l->l_ts);
1080 if (l->l_name != NULL)
1081 kmem_free(l->l_name, MAXCOMLEN);
1082
1083 cpu_lwp_free2(l);
1084 uvm_lwp_exit(l);
1085
1086 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1087 KASSERT(l->l_inheritedprio == -1);
1088 KASSERT(l->l_blcnt == 0);
1089 kdtrace_thread_dtor(NULL, l);
1090 if (!recycle)
1091 pool_cache_put(lwp_cache, l);
1092 }
1093
1094 /*
1095 * Migrate the LWP to the another CPU. Unlocks the LWP.
1096 */
1097 void
1098 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1099 {
1100 struct schedstate_percpu *tspc;
1101 int lstat = l->l_stat;
1102
1103 KASSERT(lwp_locked(l, NULL));
1104 KASSERT(tci != NULL);
1105
1106 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1107 if ((l->l_pflag & LP_RUNNING) != 0) {
1108 lstat = LSONPROC;
1109 }
1110
1111 /*
1112 * The destination CPU could be changed while previous migration
1113 * was not finished.
1114 */
1115 if (l->l_target_cpu != NULL) {
1116 l->l_target_cpu = tci;
1117 lwp_unlock(l);
1118 return;
1119 }
1120
1121 /* Nothing to do if trying to migrate to the same CPU */
1122 if (l->l_cpu == tci) {
1123 lwp_unlock(l);
1124 return;
1125 }
1126
1127 KASSERT(l->l_target_cpu == NULL);
1128 tspc = &tci->ci_schedstate;
1129 switch (lstat) {
1130 case LSRUN:
1131 l->l_target_cpu = tci;
1132 break;
1133 case LSIDL:
1134 l->l_cpu = tci;
1135 lwp_unlock_to(l, tspc->spc_mutex);
1136 return;
1137 case LSSLEEP:
1138 l->l_cpu = tci;
1139 break;
1140 case LSSTOP:
1141 case LSSUSPENDED:
1142 l->l_cpu = tci;
1143 if (l->l_wchan == NULL) {
1144 lwp_unlock_to(l, tspc->spc_lwplock);
1145 return;
1146 }
1147 break;
1148 case LSONPROC:
1149 l->l_target_cpu = tci;
1150 spc_lock(l->l_cpu);
1151 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1152 spc_unlock(l->l_cpu);
1153 break;
1154 }
1155 lwp_unlock(l);
1156 }
1157
1158 /*
1159 * Find the LWP in the process. Arguments may be zero, in such case,
1160 * the calling process and first LWP in the list will be used.
1161 * On success - returns proc locked.
1162 */
1163 struct lwp *
1164 lwp_find2(pid_t pid, lwpid_t lid)
1165 {
1166 proc_t *p;
1167 lwp_t *l;
1168
1169 /* Find the process. */
1170 if (pid != 0) {
1171 mutex_enter(proc_lock);
1172 p = proc_find(pid);
1173 if (p == NULL) {
1174 mutex_exit(proc_lock);
1175 return NULL;
1176 }
1177 mutex_enter(p->p_lock);
1178 mutex_exit(proc_lock);
1179 } else {
1180 p = curlwp->l_proc;
1181 mutex_enter(p->p_lock);
1182 }
1183 /* Find the thread. */
1184 if (lid != 0) {
1185 l = lwp_find(p, lid);
1186 } else {
1187 l = LIST_FIRST(&p->p_lwps);
1188 }
1189 if (l == NULL) {
1190 mutex_exit(p->p_lock);
1191 }
1192 return l;
1193 }
1194
1195 /*
1196 * Look up a live LWP within the specified process, and return it locked.
1197 *
1198 * Must be called with p->p_lock held.
1199 */
1200 struct lwp *
1201 lwp_find(struct proc *p, lwpid_t id)
1202 {
1203 struct lwp *l;
1204
1205 KASSERT(mutex_owned(p->p_lock));
1206
1207 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1208 if (l->l_lid == id)
1209 break;
1210 }
1211
1212 /*
1213 * No need to lock - all of these conditions will
1214 * be visible with the process level mutex held.
1215 */
1216 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1217 l = NULL;
1218
1219 return l;
1220 }
1221
1222 /*
1223 * Update an LWP's cached credentials to mirror the process' master copy.
1224 *
1225 * This happens early in the syscall path, on user trap, and on LWP
1226 * creation. A long-running LWP can also voluntarily choose to update
1227 * it's credentials by calling this routine. This may be called from
1228 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1229 */
1230 void
1231 lwp_update_creds(struct lwp *l)
1232 {
1233 kauth_cred_t oc;
1234 struct proc *p;
1235
1236 p = l->l_proc;
1237 oc = l->l_cred;
1238
1239 mutex_enter(p->p_lock);
1240 kauth_cred_hold(p->p_cred);
1241 l->l_cred = p->p_cred;
1242 l->l_prflag &= ~LPR_CRMOD;
1243 mutex_exit(p->p_lock);
1244 if (oc != NULL)
1245 kauth_cred_free(oc);
1246 }
1247
1248 /*
1249 * Verify that an LWP is locked, and optionally verify that the lock matches
1250 * one we specify.
1251 */
1252 int
1253 lwp_locked(struct lwp *l, kmutex_t *mtx)
1254 {
1255 kmutex_t *cur = l->l_mutex;
1256
1257 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1258 }
1259
1260 /*
1261 * Lend a new mutex to an LWP. The old mutex must be held.
1262 */
1263 void
1264 lwp_setlock(struct lwp *l, kmutex_t *new)
1265 {
1266
1267 KASSERT(mutex_owned(l->l_mutex));
1268
1269 membar_exit();
1270 l->l_mutex = new;
1271 }
1272
1273 /*
1274 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1275 * must be held.
1276 */
1277 void
1278 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1279 {
1280 kmutex_t *old;
1281
1282 KASSERT(lwp_locked(l, NULL));
1283
1284 old = l->l_mutex;
1285 membar_exit();
1286 l->l_mutex = new;
1287 mutex_spin_exit(old);
1288 }
1289
1290 int
1291 lwp_trylock(struct lwp *l)
1292 {
1293 kmutex_t *old;
1294
1295 for (;;) {
1296 if (!mutex_tryenter(old = l->l_mutex))
1297 return 0;
1298 if (__predict_true(l->l_mutex == old))
1299 return 1;
1300 mutex_spin_exit(old);
1301 }
1302 }
1303
1304 void
1305 lwp_unsleep(lwp_t *l, bool cleanup)
1306 {
1307
1308 KASSERT(mutex_owned(l->l_mutex));
1309 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1310 }
1311
1312 /*
1313 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1314 * set.
1315 */
1316 void
1317 lwp_userret(struct lwp *l)
1318 {
1319 struct proc *p;
1320 int sig;
1321
1322 KASSERT(l == curlwp);
1323 KASSERT(l->l_stat == LSONPROC);
1324 p = l->l_proc;
1325
1326 #ifndef __HAVE_FAST_SOFTINTS
1327 /* Run pending soft interrupts. */
1328 if (l->l_cpu->ci_data.cpu_softints != 0)
1329 softint_overlay();
1330 #endif
1331
1332 #ifdef KERN_SA
1333 /* Generate UNBLOCKED upcall if needed */
1334 if (l->l_flag & LW_SA_BLOCKING) {
1335 sa_unblock_userret(l);
1336 /* NOTREACHED */
1337 }
1338 #endif
1339
1340 /*
1341 * It should be safe to do this read unlocked on a multiprocessor
1342 * system..
1343 *
1344 * LW_SA_UPCALL will be handled after the while() loop, so don't
1345 * consider it now.
1346 */
1347 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1348 /*
1349 * Process pending signals first, unless the process
1350 * is dumping core or exiting, where we will instead
1351 * enter the LW_WSUSPEND case below.
1352 */
1353 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1354 LW_PENDSIG) {
1355 mutex_enter(p->p_lock);
1356 while ((sig = issignal(l)) != 0)
1357 postsig(sig);
1358 mutex_exit(p->p_lock);
1359 }
1360
1361 /*
1362 * Core-dump or suspend pending.
1363 *
1364 * In case of core dump, suspend ourselves, so that the
1365 * kernel stack and therefore the userland registers saved
1366 * in the trapframe are around for coredump() to write them
1367 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1368 * will write the core file out once all other LWPs are
1369 * suspended.
1370 */
1371 if ((l->l_flag & LW_WSUSPEND) != 0) {
1372 mutex_enter(p->p_lock);
1373 p->p_nrlwps--;
1374 cv_broadcast(&p->p_lwpcv);
1375 lwp_lock(l);
1376 l->l_stat = LSSUSPENDED;
1377 lwp_unlock(l);
1378 mutex_exit(p->p_lock);
1379 lwp_lock(l);
1380 mi_switch(l);
1381 }
1382
1383 /* Process is exiting. */
1384 if ((l->l_flag & LW_WEXIT) != 0) {
1385 lwp_exit(l);
1386 KASSERT(0);
1387 /* NOTREACHED */
1388 }
1389
1390 /* update lwpctl processor (for vfork child_return) */
1391 if (l->l_flag & LW_LWPCTL) {
1392 lwp_lock(l);
1393 KASSERT(kpreempt_disabled());
1394 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1395 l->l_lwpctl->lc_pctr++;
1396 l->l_flag &= ~LW_LWPCTL;
1397 lwp_unlock(l);
1398 }
1399 }
1400
1401 #ifdef KERN_SA
1402 /*
1403 * Timer events are handled specially. We only try once to deliver
1404 * pending timer upcalls; if if fails, we can try again on the next
1405 * loop around. If we need to re-enter lwp_userret(), MD code will
1406 * bounce us back here through the trap path after we return.
1407 */
1408 if (p->p_timerpend)
1409 timerupcall(l);
1410 if (l->l_flag & LW_SA_UPCALL)
1411 sa_upcall_userret(l);
1412 #endif /* KERN_SA */
1413 }
1414
1415 /*
1416 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1417 */
1418 void
1419 lwp_need_userret(struct lwp *l)
1420 {
1421 KASSERT(lwp_locked(l, NULL));
1422
1423 /*
1424 * Since the tests in lwp_userret() are done unlocked, make sure
1425 * that the condition will be seen before forcing the LWP to enter
1426 * kernel mode.
1427 */
1428 membar_producer();
1429 cpu_signotify(l);
1430 }
1431
1432 /*
1433 * Add one reference to an LWP. This will prevent the LWP from
1434 * exiting, thus keep the lwp structure and PCB around to inspect.
1435 */
1436 void
1437 lwp_addref(struct lwp *l)
1438 {
1439
1440 KASSERT(mutex_owned(l->l_proc->p_lock));
1441 KASSERT(l->l_stat != LSZOMB);
1442 KASSERT(l->l_refcnt != 0);
1443
1444 l->l_refcnt++;
1445 }
1446
1447 /*
1448 * Remove one reference to an LWP. If this is the last reference,
1449 * then we must finalize the LWP's death.
1450 */
1451 void
1452 lwp_delref(struct lwp *l)
1453 {
1454 struct proc *p = l->l_proc;
1455
1456 mutex_enter(p->p_lock);
1457 lwp_delref2(l);
1458 mutex_exit(p->p_lock);
1459 }
1460
1461 /*
1462 * Remove one reference to an LWP. If this is the last reference,
1463 * then we must finalize the LWP's death. The proc mutex is held
1464 * on entry.
1465 */
1466 void
1467 lwp_delref2(struct lwp *l)
1468 {
1469 struct proc *p = l->l_proc;
1470
1471 KASSERT(mutex_owned(p->p_lock));
1472 KASSERT(l->l_stat != LSZOMB);
1473 KASSERT(l->l_refcnt > 0);
1474 if (--l->l_refcnt == 0)
1475 cv_broadcast(&p->p_lwpcv);
1476 }
1477
1478 /*
1479 * Drain all references to the current LWP.
1480 */
1481 void
1482 lwp_drainrefs(struct lwp *l)
1483 {
1484 struct proc *p = l->l_proc;
1485
1486 KASSERT(mutex_owned(p->p_lock));
1487 KASSERT(l->l_refcnt != 0);
1488
1489 l->l_refcnt--;
1490 while (l->l_refcnt != 0)
1491 cv_wait(&p->p_lwpcv, p->p_lock);
1492 }
1493
1494 /*
1495 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1496 * be held.
1497 */
1498 bool
1499 lwp_alive(lwp_t *l)
1500 {
1501
1502 KASSERT(mutex_owned(l->l_proc->p_lock));
1503
1504 switch (l->l_stat) {
1505 case LSSLEEP:
1506 case LSRUN:
1507 case LSONPROC:
1508 case LSSTOP:
1509 case LSSUSPENDED:
1510 return true;
1511 default:
1512 return false;
1513 }
1514 }
1515
1516 /*
1517 * Return first live LWP in the process.
1518 */
1519 lwp_t *
1520 lwp_find_first(proc_t *p)
1521 {
1522 lwp_t *l;
1523
1524 KASSERT(mutex_owned(p->p_lock));
1525
1526 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1527 if (lwp_alive(l)) {
1528 return l;
1529 }
1530 }
1531
1532 return NULL;
1533 }
1534
1535 /*
1536 * Allocate a new lwpctl structure for a user LWP.
1537 */
1538 int
1539 lwp_ctl_alloc(vaddr_t *uaddr)
1540 {
1541 lcproc_t *lp;
1542 u_int bit, i, offset;
1543 struct uvm_object *uao;
1544 int error;
1545 lcpage_t *lcp;
1546 proc_t *p;
1547 lwp_t *l;
1548
1549 l = curlwp;
1550 p = l->l_proc;
1551
1552 /* don't allow a vforked process to create lwp ctls */
1553 if (p->p_lflag & PL_PPWAIT)
1554 return EBUSY;
1555
1556 if (l->l_lcpage != NULL) {
1557 lcp = l->l_lcpage;
1558 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1559 return 0;
1560 }
1561
1562 /* First time around, allocate header structure for the process. */
1563 if ((lp = p->p_lwpctl) == NULL) {
1564 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1565 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1566 lp->lp_uao = NULL;
1567 TAILQ_INIT(&lp->lp_pages);
1568 mutex_enter(p->p_lock);
1569 if (p->p_lwpctl == NULL) {
1570 p->p_lwpctl = lp;
1571 mutex_exit(p->p_lock);
1572 } else {
1573 mutex_exit(p->p_lock);
1574 mutex_destroy(&lp->lp_lock);
1575 kmem_free(lp, sizeof(*lp));
1576 lp = p->p_lwpctl;
1577 }
1578 }
1579
1580 /*
1581 * Set up an anonymous memory region to hold the shared pages.
1582 * Map them into the process' address space. The user vmspace
1583 * gets the first reference on the UAO.
1584 */
1585 mutex_enter(&lp->lp_lock);
1586 if (lp->lp_uao == NULL) {
1587 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1588 lp->lp_cur = 0;
1589 lp->lp_max = LWPCTL_UAREA_SZ;
1590 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1591 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1592 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1593 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1594 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1595 if (error != 0) {
1596 uao_detach(lp->lp_uao);
1597 lp->lp_uao = NULL;
1598 mutex_exit(&lp->lp_lock);
1599 return error;
1600 }
1601 }
1602
1603 /* Get a free block and allocate for this LWP. */
1604 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1605 if (lcp->lcp_nfree != 0)
1606 break;
1607 }
1608 if (lcp == NULL) {
1609 /* Nothing available - try to set up a free page. */
1610 if (lp->lp_cur == lp->lp_max) {
1611 mutex_exit(&lp->lp_lock);
1612 return ENOMEM;
1613 }
1614 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1615 if (lcp == NULL) {
1616 mutex_exit(&lp->lp_lock);
1617 return ENOMEM;
1618 }
1619 /*
1620 * Wire the next page down in kernel space. Since this
1621 * is a new mapping, we must add a reference.
1622 */
1623 uao = lp->lp_uao;
1624 (*uao->pgops->pgo_reference)(uao);
1625 lcp->lcp_kaddr = vm_map_min(kernel_map);
1626 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1627 uao, lp->lp_cur, PAGE_SIZE,
1628 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1629 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1630 if (error != 0) {
1631 mutex_exit(&lp->lp_lock);
1632 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1633 (*uao->pgops->pgo_detach)(uao);
1634 return error;
1635 }
1636 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1637 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1638 if (error != 0) {
1639 mutex_exit(&lp->lp_lock);
1640 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1641 lcp->lcp_kaddr + PAGE_SIZE);
1642 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1643 return error;
1644 }
1645 /* Prepare the page descriptor and link into the list. */
1646 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1647 lp->lp_cur += PAGE_SIZE;
1648 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1649 lcp->lcp_rotor = 0;
1650 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1651 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1652 }
1653 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1654 if (++i >= LWPCTL_BITMAP_ENTRIES)
1655 i = 0;
1656 }
1657 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1658 lcp->lcp_bitmap[i] ^= (1 << bit);
1659 lcp->lcp_rotor = i;
1660 lcp->lcp_nfree--;
1661 l->l_lcpage = lcp;
1662 offset = (i << 5) + bit;
1663 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1664 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1665 mutex_exit(&lp->lp_lock);
1666
1667 KPREEMPT_DISABLE(l);
1668 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1669 KPREEMPT_ENABLE(l);
1670
1671 return 0;
1672 }
1673
1674 /*
1675 * Free an lwpctl structure back to the per-process list.
1676 */
1677 void
1678 lwp_ctl_free(lwp_t *l)
1679 {
1680 struct proc *p = l->l_proc;
1681 lcproc_t *lp;
1682 lcpage_t *lcp;
1683 u_int map, offset;
1684
1685 /* don't free a lwp context we borrowed for vfork */
1686 if (p->p_lflag & PL_PPWAIT) {
1687 l->l_lwpctl = NULL;
1688 return;
1689 }
1690
1691 lp = p->p_lwpctl;
1692 KASSERT(lp != NULL);
1693
1694 lcp = l->l_lcpage;
1695 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1696 KASSERT(offset < LWPCTL_PER_PAGE);
1697
1698 mutex_enter(&lp->lp_lock);
1699 lcp->lcp_nfree++;
1700 map = offset >> 5;
1701 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1702 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1703 lcp->lcp_rotor = map;
1704 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1705 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1706 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1707 }
1708 mutex_exit(&lp->lp_lock);
1709 }
1710
1711 /*
1712 * Process is exiting; tear down lwpctl state. This can only be safely
1713 * called by the last LWP in the process.
1714 */
1715 void
1716 lwp_ctl_exit(void)
1717 {
1718 lcpage_t *lcp, *next;
1719 lcproc_t *lp;
1720 proc_t *p;
1721 lwp_t *l;
1722
1723 l = curlwp;
1724 l->l_lwpctl = NULL;
1725 l->l_lcpage = NULL;
1726 p = l->l_proc;
1727 lp = p->p_lwpctl;
1728
1729 KASSERT(lp != NULL);
1730 KASSERT(p->p_nlwps == 1);
1731
1732 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1733 next = TAILQ_NEXT(lcp, lcp_chain);
1734 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1735 lcp->lcp_kaddr + PAGE_SIZE);
1736 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1737 }
1738
1739 if (lp->lp_uao != NULL) {
1740 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1741 lp->lp_uva + LWPCTL_UAREA_SZ);
1742 }
1743
1744 mutex_destroy(&lp->lp_lock);
1745 kmem_free(lp, sizeof(*lp));
1746 p->p_lwpctl = NULL;
1747 }
1748
1749 /*
1750 * Return the current LWP's "preemption counter". Used to detect
1751 * preemption across operations that can tolerate preemption without
1752 * crashing, but which may generate incorrect results if preempted.
1753 */
1754 uint64_t
1755 lwp_pctr(void)
1756 {
1757
1758 return curlwp->l_ncsw;
1759 }
1760
1761 /*
1762 * Set an LWP's private data pointer.
1763 */
1764 int
1765 lwp_setprivate(struct lwp *l, void *ptr)
1766 {
1767 int error = 0;
1768
1769 l->l_private = ptr;
1770 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1771 error = cpu_lwp_setprivate(l, ptr);
1772 #endif
1773 return error;
1774 }
1775
1776 #if defined(DDB)
1777 #include <machine/pcb.h>
1778
1779 void
1780 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1781 {
1782 lwp_t *l;
1783
1784 LIST_FOREACH(l, &alllwp, l_list) {
1785 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1786
1787 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1788 continue;
1789 }
1790 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1791 (void *)addr, (void *)stack,
1792 (size_t)(addr - stack), l);
1793 }
1794 }
1795 #endif /* defined(DDB) */
1796