Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.156
      1 /*	$NetBSD: kern_lwp.c,v 1.156 2011/02/21 20:23:28 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.
     64  *
     65  *	LSIDL
     66  *
     67  *		Idle: the LWP has been created but has not yet executed,
     68  *		or it has ceased executing a unit of work and is waiting
     69  *		to be started again.
     70  *
     71  *	LSSUSPENDED:
     72  *
     73  *		Suspended: the LWP has had its execution suspended by
     74  *		another LWP in the same process using the _lwp_suspend()
     75  *		system call.  User-level LWPs also enter the suspended
     76  *		state when the system is shutting down.
     77  *
     78  *	The second set represent a "statement of intent" on behalf of the
     79  *	LWP.  The LWP may in fact be executing on a processor, may be
     80  *	sleeping or idle. It is expected to take the necessary action to
     81  *	stop executing or become "running" again within a short timeframe.
     82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83  *	Importantly, it indicates that its state is tied to a CPU.
     84  *
     85  *	LSZOMB:
     86  *
     87  *		Dead or dying: the LWP has released most of its resources
     88  *		and is about to switch away into oblivion, or has already
     89  *		switched away.  When it switches away, its few remaining
     90  *		resources can be collected.
     91  *
     92  *	LSSLEEP:
     93  *
     94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95  *		has switched away or will switch away shortly to allow other
     96  *		LWPs to run on the CPU.
     97  *
     98  *	LSSTOP:
     99  *
    100  *		Stopped: the LWP has been stopped as a result of a job
    101  *		control signal, or as a result of the ptrace() interface.
    102  *
    103  *		Stopped LWPs may run briefly within the kernel to handle
    104  *		signals that they receive, but will not return to user space
    105  *		until their process' state is changed away from stopped.
    106  *
    107  *		Single LWPs within a process can not be set stopped
    108  *		selectively: all actions that can stop or continue LWPs
    109  *		occur at the process level.
    110  *
    111  * State transitions
    112  *
    113  *	Note that the LSSTOP state may only be set when returning to
    114  *	user space in userret(), or when sleeping interruptably.  The
    115  *	LSSUSPENDED state may only be set in userret().  Before setting
    116  *	those states, we try to ensure that the LWPs will release all
    117  *	locks that they hold, and at a minimum try to ensure that the
    118  *	LWP can be set runnable again by a signal.
    119  *
    120  *	LWPs may transition states in the following ways:
    121  *
    122  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123  *		    				    > SLEEP
    124  *		    				    > STOPPED
    125  *						    > SUSPENDED
    126  *						    > ZOMB
    127  *						    > IDL (special cases)
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *						    > ONPROC (special cases)
    136  *
    137  *	Some state transitions are only possible with kernel threads (eg
    138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139  *	free of unwanted side effects.
    140  *
    141  * Migration
    142  *
    143  *	Migration of threads from one CPU to another could be performed
    144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  *	functions.  The universal lwp_migrate() function should be used for
    146  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  *	of LWP may change, while it is not locked.
    148  *
    149  * Locking
    150  *
    151  *	The majority of fields in 'struct lwp' are covered by a single,
    152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153  *	each field are documented in sys/lwp.h.
    154  *
    155  *	State transitions must be made with the LWP's general lock held,
    156  *	and may cause the LWP's lock pointer to change.  Manipulation of
    157  *	the general lock is not performed directly, but through calls to
    158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    159  *	adaptive locks are not allowed to be released while the LWP's lock
    160  *	is being held (unlike for other spin-locks).
    161  *
    162  *	States and their associated locks:
    163  *
    164  *	LSONPROC, LSZOMB:
    165  *
    166  *		Always covered by spc_lwplock, which protects running LWPs.
    167  *		This is a per-CPU lock and matches lwp::l_cpu.
    168  *
    169  *	LSIDL, LSRUN:
    170  *
    171  *		Always covered by spc_mutex, which protects the run queues.
    172  *		This is a per-CPU lock and matches lwp::l_cpu.
    173  *
    174  *	LSSLEEP:
    175  *
    176  *		Covered by a lock associated with the sleep queue that the
    177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    178  *
    179  *	LSSTOP, LSSUSPENDED:
    180  *
    181  *		If the LWP was previously sleeping (l_wchan != NULL), then
    182  *		l_mutex references the sleep queue lock.  If the LWP was
    183  *		runnable or on the CPU when halted, or has been removed from
    184  *		the sleep queue since halted, then the lock is spc_lwplock.
    185  *
    186  *	The lock order is as follows:
    187  *
    188  *		spc::spc_lwplock ->
    189  *		    sleeptab::st_mutex ->
    190  *			tschain_t::tc_mutex ->
    191  *			    spc::spc_mutex
    192  *
    193  *	Each process has an scheduler state lock (proc::p_lock), and a
    194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195  *	so on.  When an LWP is to be entered into or removed from one of the
    196  *	following states, p_lock must be held and the process wide counters
    197  *	adjusted:
    198  *
    199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200  *
    201  *	(But not always for kernel threads.  There are some special cases
    202  *	as mentioned above.  See kern_softint.c.)
    203  *
    204  *	Note that an LWP is considered running or likely to run soon if in
    205  *	one of the following states.  This affects the value of p_nrlwps:
    206  *
    207  *		LSRUN, LSONPROC, LSSLEEP
    208  *
    209  *	p_lock does not need to be held when transitioning among these
    210  *	three states, hence p_lock is rarely taken for state transitions.
    211  */
    212 
    213 #include <sys/cdefs.h>
    214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.156 2011/02/21 20:23:28 pooka Exp $");
    215 
    216 #include "opt_ddb.h"
    217 #include "opt_lockdebug.h"
    218 #include "opt_sa.h"
    219 #include "opt_dtrace.h"
    220 
    221 #define _LWP_API_PRIVATE
    222 
    223 #include <sys/param.h>
    224 #include <sys/systm.h>
    225 #include <sys/cpu.h>
    226 #include <sys/pool.h>
    227 #include <sys/proc.h>
    228 #include <sys/sa.h>
    229 #include <sys/savar.h>
    230 #include <sys/syscallargs.h>
    231 #include <sys/syscall_stats.h>
    232 #include <sys/kauth.h>
    233 #include <sys/sleepq.h>
    234 #include <sys/lockdebug.h>
    235 #include <sys/kmem.h>
    236 #include <sys/pset.h>
    237 #include <sys/intr.h>
    238 #include <sys/lwpctl.h>
    239 #include <sys/atomic.h>
    240 #include <sys/filedesc.h>
    241 #include <sys/dtrace_bsd.h>
    242 #include <sys/sdt.h>
    243 
    244 #include <uvm/uvm_extern.h>
    245 #include <uvm/uvm_object.h>
    246 
    247 static pool_cache_t	lwp_cache	__read_mostly;
    248 struct lwplist		alllwp		__cacheline_aligned;
    249 
    250 /* DTrace proc provider probes */
    251 SDT_PROBE_DEFINE(proc,,,lwp_create,
    252 	"struct lwp *", NULL,
    253 	NULL, NULL, NULL, NULL,
    254 	NULL, NULL, NULL, NULL);
    255 SDT_PROBE_DEFINE(proc,,,lwp_start,
    256 	"struct lwp *", NULL,
    257 	NULL, NULL, NULL, NULL,
    258 	NULL, NULL, NULL, NULL);
    259 SDT_PROBE_DEFINE(proc,,,lwp_exit,
    260 	"struct lwp *", NULL,
    261 	NULL, NULL, NULL, NULL,
    262 	NULL, NULL, NULL, NULL);
    263 
    264 struct turnstile turnstile0;
    265 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    266 #ifdef LWP0_CPU_INFO
    267 	.l_cpu = LWP0_CPU_INFO,
    268 #endif
    269 #ifdef LWP0_MD_INITIALIZER
    270 	.l_md = LWP0_MD_INITIALIZER,
    271 #endif
    272 	.l_proc = &proc0,
    273 	.l_lid = 1,
    274 	.l_flag = LW_SYSTEM,
    275 	.l_stat = LSONPROC,
    276 	.l_ts = &turnstile0,
    277 	.l_syncobj = &sched_syncobj,
    278 	.l_refcnt = 1,
    279 	.l_priority = PRI_USER + NPRI_USER - 1,
    280 	.l_inheritedprio = -1,
    281 	.l_class = SCHED_OTHER,
    282 	.l_psid = PS_NONE,
    283 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    284 	.l_name = __UNCONST("swapper"),
    285 	.l_fd = &filedesc0,
    286 };
    287 
    288 void
    289 lwpinit(void)
    290 {
    291 
    292 	LIST_INIT(&alllwp);
    293 	lwpinit_specificdata();
    294 	lwp_sys_init();
    295 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    296 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
    297 }
    298 
    299 void
    300 lwp0_init(void)
    301 {
    302 	struct lwp *l = &lwp0;
    303 
    304 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    305 	KASSERT(l->l_lid == proc0.p_nlwpid);
    306 
    307 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    308 
    309 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    310 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    311 	cv_init(&l->l_sigcv, "sigwait");
    312 
    313 	kauth_cred_hold(proc0.p_cred);
    314 	l->l_cred = proc0.p_cred;
    315 
    316 	lwp_initspecific(l);
    317 
    318 	SYSCALL_TIME_LWP_INIT(l);
    319 }
    320 
    321 /*
    322  * Set an suspended.
    323  *
    324  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    325  * LWP before return.
    326  */
    327 int
    328 lwp_suspend(struct lwp *curl, struct lwp *t)
    329 {
    330 	int error;
    331 
    332 	KASSERT(mutex_owned(t->l_proc->p_lock));
    333 	KASSERT(lwp_locked(t, NULL));
    334 
    335 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    336 
    337 	/*
    338 	 * If the current LWP has been told to exit, we must not suspend anyone
    339 	 * else or deadlock could occur.  We won't return to userspace.
    340 	 */
    341 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    342 		lwp_unlock(t);
    343 		return (EDEADLK);
    344 	}
    345 
    346 	error = 0;
    347 
    348 	switch (t->l_stat) {
    349 	case LSRUN:
    350 	case LSONPROC:
    351 		t->l_flag |= LW_WSUSPEND;
    352 		lwp_need_userret(t);
    353 		lwp_unlock(t);
    354 		break;
    355 
    356 	case LSSLEEP:
    357 		t->l_flag |= LW_WSUSPEND;
    358 
    359 		/*
    360 		 * Kick the LWP and try to get it to the kernel boundary
    361 		 * so that it will release any locks that it holds.
    362 		 * setrunnable() will release the lock.
    363 		 */
    364 		if ((t->l_flag & LW_SINTR) != 0)
    365 			setrunnable(t);
    366 		else
    367 			lwp_unlock(t);
    368 		break;
    369 
    370 	case LSSUSPENDED:
    371 		lwp_unlock(t);
    372 		break;
    373 
    374 	case LSSTOP:
    375 		t->l_flag |= LW_WSUSPEND;
    376 		setrunnable(t);
    377 		break;
    378 
    379 	case LSIDL:
    380 	case LSZOMB:
    381 		error = EINTR; /* It's what Solaris does..... */
    382 		lwp_unlock(t);
    383 		break;
    384 	}
    385 
    386 	return (error);
    387 }
    388 
    389 /*
    390  * Restart a suspended LWP.
    391  *
    392  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    393  * LWP before return.
    394  */
    395 void
    396 lwp_continue(struct lwp *l)
    397 {
    398 
    399 	KASSERT(mutex_owned(l->l_proc->p_lock));
    400 	KASSERT(lwp_locked(l, NULL));
    401 
    402 	/* If rebooting or not suspended, then just bail out. */
    403 	if ((l->l_flag & LW_WREBOOT) != 0) {
    404 		lwp_unlock(l);
    405 		return;
    406 	}
    407 
    408 	l->l_flag &= ~LW_WSUSPEND;
    409 
    410 	if (l->l_stat != LSSUSPENDED) {
    411 		lwp_unlock(l);
    412 		return;
    413 	}
    414 
    415 	/* setrunnable() will release the lock. */
    416 	setrunnable(l);
    417 }
    418 
    419 /*
    420  * Restart a stopped LWP.
    421  *
    422  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    423  * LWP before return.
    424  */
    425 void
    426 lwp_unstop(struct lwp *l)
    427 {
    428 	struct proc *p = l->l_proc;
    429 
    430 	KASSERT(mutex_owned(proc_lock));
    431 	KASSERT(mutex_owned(p->p_lock));
    432 
    433 	lwp_lock(l);
    434 
    435 	/* If not stopped, then just bail out. */
    436 	if (l->l_stat != LSSTOP) {
    437 		lwp_unlock(l);
    438 		return;
    439 	}
    440 
    441 	p->p_stat = SACTIVE;
    442 	p->p_sflag &= ~PS_STOPPING;
    443 
    444 	if (!p->p_waited)
    445 		p->p_pptr->p_nstopchild--;
    446 
    447 	if (l->l_wchan == NULL) {
    448 		/* setrunnable() will release the lock. */
    449 		setrunnable(l);
    450 	} else {
    451 		l->l_stat = LSSLEEP;
    452 		p->p_nrlwps++;
    453 		lwp_unlock(l);
    454 	}
    455 }
    456 
    457 /*
    458  * Wait for an LWP within the current process to exit.  If 'lid' is
    459  * non-zero, we are waiting for a specific LWP.
    460  *
    461  * Must be called with p->p_lock held.
    462  */
    463 int
    464 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    465 {
    466 	struct proc *p = l->l_proc;
    467 	struct lwp *l2;
    468 	int nfound, error;
    469 	lwpid_t curlid;
    470 	bool exiting;
    471 
    472 	KASSERT(mutex_owned(p->p_lock));
    473 
    474 	p->p_nlwpwait++;
    475 	l->l_waitingfor = lid;
    476 	curlid = l->l_lid;
    477 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    478 
    479 	for (;;) {
    480 		/*
    481 		 * Avoid a race between exit1() and sigexit(): if the
    482 		 * process is dumping core, then we need to bail out: call
    483 		 * into lwp_userret() where we will be suspended until the
    484 		 * deed is done.
    485 		 */
    486 		if ((p->p_sflag & PS_WCORE) != 0) {
    487 			mutex_exit(p->p_lock);
    488 			lwp_userret(l);
    489 #ifdef DIAGNOSTIC
    490 			panic("lwp_wait1");
    491 #endif
    492 			/* NOTREACHED */
    493 		}
    494 
    495 		/*
    496 		 * First off, drain any detached LWP that is waiting to be
    497 		 * reaped.
    498 		 */
    499 		while ((l2 = p->p_zomblwp) != NULL) {
    500 			p->p_zomblwp = NULL;
    501 			lwp_free(l2, false, false);/* releases proc mutex */
    502 			mutex_enter(p->p_lock);
    503 		}
    504 
    505 		/*
    506 		 * Now look for an LWP to collect.  If the whole process is
    507 		 * exiting, count detached LWPs as eligible to be collected,
    508 		 * but don't drain them here.
    509 		 */
    510 		nfound = 0;
    511 		error = 0;
    512 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    513 			/*
    514 			 * If a specific wait and the target is waiting on
    515 			 * us, then avoid deadlock.  This also traps LWPs
    516 			 * that try to wait on themselves.
    517 			 *
    518 			 * Note that this does not handle more complicated
    519 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    520 			 * can still be killed so it is not a major problem.
    521 			 */
    522 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    523 				error = EDEADLK;
    524 				break;
    525 			}
    526 			if (l2 == l)
    527 				continue;
    528 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    529 				nfound += exiting;
    530 				continue;
    531 			}
    532 			if (lid != 0) {
    533 				if (l2->l_lid != lid)
    534 					continue;
    535 				/*
    536 				 * Mark this LWP as the first waiter, if there
    537 				 * is no other.
    538 				 */
    539 				if (l2->l_waiter == 0)
    540 					l2->l_waiter = curlid;
    541 			} else if (l2->l_waiter != 0) {
    542 				/*
    543 				 * It already has a waiter - so don't
    544 				 * collect it.  If the waiter doesn't
    545 				 * grab it we'll get another chance
    546 				 * later.
    547 				 */
    548 				nfound++;
    549 				continue;
    550 			}
    551 			nfound++;
    552 
    553 			/* No need to lock the LWP in order to see LSZOMB. */
    554 			if (l2->l_stat != LSZOMB)
    555 				continue;
    556 
    557 			/*
    558 			 * We're no longer waiting.  Reset the "first waiter"
    559 			 * pointer on the target, in case it was us.
    560 			 */
    561 			l->l_waitingfor = 0;
    562 			l2->l_waiter = 0;
    563 			p->p_nlwpwait--;
    564 			if (departed)
    565 				*departed = l2->l_lid;
    566 			sched_lwp_collect(l2);
    567 
    568 			/* lwp_free() releases the proc lock. */
    569 			lwp_free(l2, false, false);
    570 			mutex_enter(p->p_lock);
    571 			return 0;
    572 		}
    573 
    574 		if (error != 0)
    575 			break;
    576 		if (nfound == 0) {
    577 			error = ESRCH;
    578 			break;
    579 		}
    580 
    581 		/*
    582 		 * The kernel is careful to ensure that it can not deadlock
    583 		 * when exiting - just keep waiting.
    584 		 */
    585 		if (exiting) {
    586 			KASSERT(p->p_nlwps > 1);
    587 			cv_wait(&p->p_lwpcv, p->p_lock);
    588 			continue;
    589 		}
    590 
    591 		/*
    592 		 * If all other LWPs are waiting for exits or suspends
    593 		 * and the supply of zombies and potential zombies is
    594 		 * exhausted, then we are about to deadlock.
    595 		 *
    596 		 * If the process is exiting (and this LWP is not the one
    597 		 * that is coordinating the exit) then bail out now.
    598 		 */
    599 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    600 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    601 			error = EDEADLK;
    602 			break;
    603 		}
    604 
    605 		/*
    606 		 * Sit around and wait for something to happen.  We'll be
    607 		 * awoken if any of the conditions examined change: if an
    608 		 * LWP exits, is collected, or is detached.
    609 		 */
    610 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    611 			break;
    612 	}
    613 
    614 	/*
    615 	 * We didn't find any LWPs to collect, we may have received a
    616 	 * signal, or some other condition has caused us to bail out.
    617 	 *
    618 	 * If waiting on a specific LWP, clear the waiters marker: some
    619 	 * other LWP may want it.  Then, kick all the remaining waiters
    620 	 * so that they can re-check for zombies and for deadlock.
    621 	 */
    622 	if (lid != 0) {
    623 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    624 			if (l2->l_lid == lid) {
    625 				if (l2->l_waiter == curlid)
    626 					l2->l_waiter = 0;
    627 				break;
    628 			}
    629 		}
    630 	}
    631 	p->p_nlwpwait--;
    632 	l->l_waitingfor = 0;
    633 	cv_broadcast(&p->p_lwpcv);
    634 
    635 	return error;
    636 }
    637 
    638 /*
    639  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    640  * The new LWP is created in state LSIDL and must be set running,
    641  * suspended, or stopped by the caller.
    642  */
    643 int
    644 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    645 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    646 	   lwp_t **rnewlwpp, int sclass)
    647 {
    648 	struct lwp *l2, *isfree;
    649 	turnstile_t *ts;
    650 	lwpid_t lid;
    651 
    652 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    653 
    654 	/*
    655 	 * First off, reap any detached LWP waiting to be collected.
    656 	 * We can re-use its LWP structure and turnstile.
    657 	 */
    658 	isfree = NULL;
    659 	if (p2->p_zomblwp != NULL) {
    660 		mutex_enter(p2->p_lock);
    661 		if ((isfree = p2->p_zomblwp) != NULL) {
    662 			p2->p_zomblwp = NULL;
    663 			lwp_free(isfree, true, false);/* releases proc mutex */
    664 		} else
    665 			mutex_exit(p2->p_lock);
    666 	}
    667 	if (isfree == NULL) {
    668 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    669 		memset(l2, 0, sizeof(*l2));
    670 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    671 		SLIST_INIT(&l2->l_pi_lenders);
    672 	} else {
    673 		l2 = isfree;
    674 		ts = l2->l_ts;
    675 		KASSERT(l2->l_inheritedprio == -1);
    676 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    677 		memset(l2, 0, sizeof(*l2));
    678 		l2->l_ts = ts;
    679 	}
    680 
    681 	l2->l_stat = LSIDL;
    682 	l2->l_proc = p2;
    683 	l2->l_refcnt = 1;
    684 	l2->l_class = sclass;
    685 
    686 	/*
    687 	 * If vfork(), we want the LWP to run fast and on the same CPU
    688 	 * as its parent, so that it can reuse the VM context and cache
    689 	 * footprint on the local CPU.
    690 	 */
    691 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    692 	l2->l_kpribase = PRI_KERNEL;
    693 	l2->l_priority = l1->l_priority;
    694 	l2->l_inheritedprio = -1;
    695 	l2->l_flag = 0;
    696 	l2->l_pflag = LP_MPSAFE;
    697 	TAILQ_INIT(&l2->l_ld_locks);
    698 
    699 	/*
    700 	 * For vfork, borrow parent's lwpctl context if it exists.
    701 	 * This also causes us to return via lwp_userret.
    702 	 */
    703 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    704 		l2->l_lwpctl = l1->l_lwpctl;
    705 		l2->l_flag |= LW_LWPCTL;
    706 	}
    707 
    708 	/*
    709 	 * If not the first LWP in the process, grab a reference to the
    710 	 * descriptor table.
    711 	 */
    712 	l2->l_fd = p2->p_fd;
    713 	if (p2->p_nlwps != 0) {
    714 		KASSERT(l1->l_proc == p2);
    715 		fd_hold(l2);
    716 	} else {
    717 		KASSERT(l1->l_proc != p2);
    718 	}
    719 
    720 	if (p2->p_flag & PK_SYSTEM) {
    721 		/* Mark it as a system LWP. */
    722 		l2->l_flag |= LW_SYSTEM;
    723 	}
    724 
    725 	kpreempt_disable();
    726 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    727 	l2->l_cpu = l1->l_cpu;
    728 	kpreempt_enable();
    729 
    730 	kdtrace_thread_ctor(NULL, l2);
    731 	lwp_initspecific(l2);
    732 	sched_lwp_fork(l1, l2);
    733 	lwp_update_creds(l2);
    734 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    735 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    736 	cv_init(&l2->l_sigcv, "sigwait");
    737 	l2->l_syncobj = &sched_syncobj;
    738 
    739 	if (rnewlwpp != NULL)
    740 		*rnewlwpp = l2;
    741 
    742 	uvm_lwp_setuarea(l2, uaddr);
    743 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    744 	    (arg != NULL) ? arg : l2);
    745 
    746 	if ((flags & LWP_PIDLID) != 0) {
    747 		lid = proc_alloc_pid(p2);
    748 		l2->l_pflag |= LP_PIDLID;
    749 	} else {
    750 		lid = 0;
    751 	}
    752 
    753 	mutex_enter(p2->p_lock);
    754 
    755 	if ((flags & LWP_DETACHED) != 0) {
    756 		l2->l_prflag = LPR_DETACHED;
    757 		p2->p_ndlwps++;
    758 	} else
    759 		l2->l_prflag = 0;
    760 
    761 	l2->l_sigmask = l1->l_sigmask;
    762 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    763 	sigemptyset(&l2->l_sigpend.sp_set);
    764 
    765 	if (lid == 0) {
    766 		p2->p_nlwpid++;
    767 		if (p2->p_nlwpid == 0)
    768 			p2->p_nlwpid++;
    769 		lid = p2->p_nlwpid;
    770 	}
    771 	l2->l_lid = lid;
    772 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    773 	p2->p_nlwps++;
    774 	p2->p_nrlwps++;
    775 
    776 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    777 		/* Inherit an affinity */
    778 		if (l1->l_flag & LW_AFFINITY) {
    779 			/*
    780 			 * Note that we hold the state lock while inheriting
    781 			 * the affinity to avoid race with sched_setaffinity().
    782 			 */
    783 			lwp_lock(l1);
    784 			if (l1->l_flag & LW_AFFINITY) {
    785 				kcpuset_use(l1->l_affinity);
    786 				l2->l_affinity = l1->l_affinity;
    787 				l2->l_flag |= LW_AFFINITY;
    788 			}
    789 			lwp_unlock(l1);
    790 		}
    791 		lwp_lock(l2);
    792 		/* Inherit a processor-set */
    793 		l2->l_psid = l1->l_psid;
    794 		/* Look for a CPU to start */
    795 		l2->l_cpu = sched_takecpu(l2);
    796 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    797 	}
    798 	mutex_exit(p2->p_lock);
    799 
    800 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
    801 
    802 	mutex_enter(proc_lock);
    803 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    804 	mutex_exit(proc_lock);
    805 
    806 	SYSCALL_TIME_LWP_INIT(l2);
    807 
    808 	if (p2->p_emul->e_lwp_fork)
    809 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    810 
    811 	return (0);
    812 }
    813 
    814 /*
    815  * Called by MD code when a new LWP begins execution.  Must be called
    816  * with the previous LWP locked (so at splsched), or if there is no
    817  * previous LWP, at splsched.
    818  */
    819 void
    820 lwp_startup(struct lwp *prev, struct lwp *new)
    821 {
    822 
    823 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
    824 
    825 	KASSERT(kpreempt_disabled());
    826 	if (prev != NULL) {
    827 		/*
    828 		 * Normalize the count of the spin-mutexes, it was
    829 		 * increased in mi_switch().  Unmark the state of
    830 		 * context switch - it is finished for previous LWP.
    831 		 */
    832 		curcpu()->ci_mtx_count++;
    833 		membar_exit();
    834 		prev->l_ctxswtch = 0;
    835 	}
    836 	KPREEMPT_DISABLE(new);
    837 	spl0();
    838 	pmap_activate(new);
    839 	LOCKDEBUG_BARRIER(NULL, 0);
    840 	KPREEMPT_ENABLE(new);
    841 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    842 		KERNEL_LOCK(1, new);
    843 	}
    844 }
    845 
    846 /*
    847  * Exit an LWP.
    848  */
    849 void
    850 lwp_exit(struct lwp *l)
    851 {
    852 	struct proc *p = l->l_proc;
    853 	struct lwp *l2;
    854 	bool current;
    855 
    856 	current = (l == curlwp);
    857 
    858 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    859 	KASSERT(p == curproc);
    860 
    861 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
    862 
    863 	/*
    864 	 * Verify that we hold no locks other than the kernel lock.
    865 	 */
    866 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    867 
    868 	/*
    869 	 * If we are the last live LWP in a process, we need to exit the
    870 	 * entire process.  We do so with an exit status of zero, because
    871 	 * it's a "controlled" exit, and because that's what Solaris does.
    872 	 *
    873 	 * We are not quite a zombie yet, but for accounting purposes we
    874 	 * must increment the count of zombies here.
    875 	 *
    876 	 * Note: the last LWP's specificdata will be deleted here.
    877 	 */
    878 	mutex_enter(p->p_lock);
    879 	if (p->p_nlwps - p->p_nzlwps == 1) {
    880 		KASSERT(current == true);
    881 		/* XXXSMP kernel_lock not held */
    882 		exit1(l, 0);
    883 		/* NOTREACHED */
    884 	}
    885 	p->p_nzlwps++;
    886 	mutex_exit(p->p_lock);
    887 
    888 	if (p->p_emul->e_lwp_exit)
    889 		(*p->p_emul->e_lwp_exit)(l);
    890 
    891 	/* Drop filedesc reference. */
    892 	fd_free();
    893 
    894 	/* Delete the specificdata while it's still safe to sleep. */
    895 	lwp_finispecific(l);
    896 
    897 	/*
    898 	 * Release our cached credentials.
    899 	 */
    900 	kauth_cred_free(l->l_cred);
    901 	callout_destroy(&l->l_timeout_ch);
    902 
    903 	/*
    904 	 * Remove the LWP from the global list.
    905 	 * Free its LID from the PID namespace if needed.
    906 	 */
    907 	mutex_enter(proc_lock);
    908 	LIST_REMOVE(l, l_list);
    909 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
    910 		proc_free_pid(l->l_lid);
    911 	}
    912 	mutex_exit(proc_lock);
    913 
    914 	/*
    915 	 * Get rid of all references to the LWP that others (e.g. procfs)
    916 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    917 	 * mark it waiting for collection in the proc structure.  Note that
    918 	 * before we can do that, we need to free any other dead, deatched
    919 	 * LWP waiting to meet its maker.
    920 	 */
    921 	mutex_enter(p->p_lock);
    922 	lwp_drainrefs(l);
    923 
    924 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    925 		while ((l2 = p->p_zomblwp) != NULL) {
    926 			p->p_zomblwp = NULL;
    927 			lwp_free(l2, false, false);/* releases proc mutex */
    928 			mutex_enter(p->p_lock);
    929 			l->l_refcnt++;
    930 			lwp_drainrefs(l);
    931 		}
    932 		p->p_zomblwp = l;
    933 	}
    934 
    935 	/*
    936 	 * If we find a pending signal for the process and we have been
    937 	 * asked to check for signals, then we lose: arrange to have
    938 	 * all other LWPs in the process check for signals.
    939 	 */
    940 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    941 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    942 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    943 			lwp_lock(l2);
    944 			l2->l_flag |= LW_PENDSIG;
    945 			lwp_unlock(l2);
    946 		}
    947 	}
    948 
    949 	lwp_lock(l);
    950 	l->l_stat = LSZOMB;
    951 	if (l->l_name != NULL)
    952 		strcpy(l->l_name, "(zombie)");
    953 	if (l->l_flag & LW_AFFINITY) {
    954 		l->l_flag &= ~LW_AFFINITY;
    955 	} else {
    956 		KASSERT(l->l_affinity == NULL);
    957 	}
    958 	lwp_unlock(l);
    959 	p->p_nrlwps--;
    960 	cv_broadcast(&p->p_lwpcv);
    961 	if (l->l_lwpctl != NULL)
    962 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    963 	mutex_exit(p->p_lock);
    964 
    965 	/* Safe without lock since LWP is in zombie state */
    966 	if (l->l_affinity) {
    967 		kcpuset_unuse(l->l_affinity, NULL);
    968 		l->l_affinity = NULL;
    969 	}
    970 
    971 	/*
    972 	 * We can no longer block.  At this point, lwp_free() may already
    973 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    974 	 *
    975 	 * Free MD LWP resources.
    976 	 */
    977 	cpu_lwp_free(l, 0);
    978 
    979 	if (current) {
    980 		pmap_deactivate(l);
    981 
    982 		/*
    983 		 * Release the kernel lock, and switch away into
    984 		 * oblivion.
    985 		 */
    986 #ifdef notyet
    987 		/* XXXSMP hold in lwp_userret() */
    988 		KERNEL_UNLOCK_LAST(l);
    989 #else
    990 		KERNEL_UNLOCK_ALL(l, NULL);
    991 #endif
    992 		lwp_exit_switchaway(l);
    993 	}
    994 }
    995 
    996 /*
    997  * Free a dead LWP's remaining resources.
    998  *
    999  * XXXLWP limits.
   1000  */
   1001 void
   1002 lwp_free(struct lwp *l, bool recycle, bool last)
   1003 {
   1004 	struct proc *p = l->l_proc;
   1005 	struct rusage *ru;
   1006 	ksiginfoq_t kq;
   1007 
   1008 	KASSERT(l != curlwp);
   1009 
   1010 	/*
   1011 	 * If this was not the last LWP in the process, then adjust
   1012 	 * counters and unlock.
   1013 	 */
   1014 	if (!last) {
   1015 		/*
   1016 		 * Add the LWP's run time to the process' base value.
   1017 		 * This needs to co-incide with coming off p_lwps.
   1018 		 */
   1019 		bintime_add(&p->p_rtime, &l->l_rtime);
   1020 		p->p_pctcpu += l->l_pctcpu;
   1021 		ru = &p->p_stats->p_ru;
   1022 		ruadd(ru, &l->l_ru);
   1023 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1024 		ru->ru_nivcsw += l->l_nivcsw;
   1025 		LIST_REMOVE(l, l_sibling);
   1026 		p->p_nlwps--;
   1027 		p->p_nzlwps--;
   1028 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1029 			p->p_ndlwps--;
   1030 
   1031 		/*
   1032 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1033 		 * deadlock.
   1034 		 */
   1035 		cv_broadcast(&p->p_lwpcv);
   1036 		mutex_exit(p->p_lock);
   1037 	}
   1038 
   1039 #ifdef MULTIPROCESSOR
   1040 	/*
   1041 	 * In the unlikely event that the LWP is still on the CPU,
   1042 	 * then spin until it has switched away.  We need to release
   1043 	 * all locks to avoid deadlock against interrupt handlers on
   1044 	 * the target CPU.
   1045 	 */
   1046 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
   1047 		int count;
   1048 		(void)count; /* XXXgcc */
   1049 		KERNEL_UNLOCK_ALL(curlwp, &count);
   1050 		while ((l->l_pflag & LP_RUNNING) != 0 ||
   1051 		    l->l_cpu->ci_curlwp == l)
   1052 			SPINLOCK_BACKOFF_HOOK;
   1053 		KERNEL_LOCK(count, curlwp);
   1054 	}
   1055 #endif
   1056 
   1057 	/*
   1058 	 * Destroy the LWP's remaining signal information.
   1059 	 */
   1060 	ksiginfo_queue_init(&kq);
   1061 	sigclear(&l->l_sigpend, NULL, &kq);
   1062 	ksiginfo_queue_drain(&kq);
   1063 	cv_destroy(&l->l_sigcv);
   1064 
   1065 	/*
   1066 	 * Free the LWP's turnstile and the LWP structure itself unless the
   1067 	 * caller wants to recycle them.  Also, free the scheduler specific
   1068 	 * data.
   1069 	 *
   1070 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1071 	 * so if it comes up just drop it quietly and move on.
   1072 	 *
   1073 	 * We don't recycle the VM resources at this time.
   1074 	 */
   1075 	if (l->l_lwpctl != NULL)
   1076 		lwp_ctl_free(l);
   1077 
   1078 	if (!recycle && l->l_ts != &turnstile0)
   1079 		pool_cache_put(turnstile_cache, l->l_ts);
   1080 	if (l->l_name != NULL)
   1081 		kmem_free(l->l_name, MAXCOMLEN);
   1082 
   1083 	cpu_lwp_free2(l);
   1084 	uvm_lwp_exit(l);
   1085 
   1086 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1087 	KASSERT(l->l_inheritedprio == -1);
   1088 	KASSERT(l->l_blcnt == 0);
   1089 	kdtrace_thread_dtor(NULL, l);
   1090 	if (!recycle)
   1091 		pool_cache_put(lwp_cache, l);
   1092 }
   1093 
   1094 /*
   1095  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1096  */
   1097 void
   1098 lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1099 {
   1100 	struct schedstate_percpu *tspc;
   1101 	int lstat = l->l_stat;
   1102 
   1103 	KASSERT(lwp_locked(l, NULL));
   1104 	KASSERT(tci != NULL);
   1105 
   1106 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1107 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1108 		lstat = LSONPROC;
   1109 	}
   1110 
   1111 	/*
   1112 	 * The destination CPU could be changed while previous migration
   1113 	 * was not finished.
   1114 	 */
   1115 	if (l->l_target_cpu != NULL) {
   1116 		l->l_target_cpu = tci;
   1117 		lwp_unlock(l);
   1118 		return;
   1119 	}
   1120 
   1121 	/* Nothing to do if trying to migrate to the same CPU */
   1122 	if (l->l_cpu == tci) {
   1123 		lwp_unlock(l);
   1124 		return;
   1125 	}
   1126 
   1127 	KASSERT(l->l_target_cpu == NULL);
   1128 	tspc = &tci->ci_schedstate;
   1129 	switch (lstat) {
   1130 	case LSRUN:
   1131 		l->l_target_cpu = tci;
   1132 		break;
   1133 	case LSIDL:
   1134 		l->l_cpu = tci;
   1135 		lwp_unlock_to(l, tspc->spc_mutex);
   1136 		return;
   1137 	case LSSLEEP:
   1138 		l->l_cpu = tci;
   1139 		break;
   1140 	case LSSTOP:
   1141 	case LSSUSPENDED:
   1142 		l->l_cpu = tci;
   1143 		if (l->l_wchan == NULL) {
   1144 			lwp_unlock_to(l, tspc->spc_lwplock);
   1145 			return;
   1146 		}
   1147 		break;
   1148 	case LSONPROC:
   1149 		l->l_target_cpu = tci;
   1150 		spc_lock(l->l_cpu);
   1151 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1152 		spc_unlock(l->l_cpu);
   1153 		break;
   1154 	}
   1155 	lwp_unlock(l);
   1156 }
   1157 
   1158 /*
   1159  * Find the LWP in the process.  Arguments may be zero, in such case,
   1160  * the calling process and first LWP in the list will be used.
   1161  * On success - returns proc locked.
   1162  */
   1163 struct lwp *
   1164 lwp_find2(pid_t pid, lwpid_t lid)
   1165 {
   1166 	proc_t *p;
   1167 	lwp_t *l;
   1168 
   1169 	/* Find the process. */
   1170 	if (pid != 0) {
   1171 		mutex_enter(proc_lock);
   1172 		p = proc_find(pid);
   1173 		if (p == NULL) {
   1174 			mutex_exit(proc_lock);
   1175 			return NULL;
   1176 		}
   1177 		mutex_enter(p->p_lock);
   1178 		mutex_exit(proc_lock);
   1179 	} else {
   1180 		p = curlwp->l_proc;
   1181 		mutex_enter(p->p_lock);
   1182 	}
   1183 	/* Find the thread. */
   1184 	if (lid != 0) {
   1185 		l = lwp_find(p, lid);
   1186 	} else {
   1187 		l = LIST_FIRST(&p->p_lwps);
   1188 	}
   1189 	if (l == NULL) {
   1190 		mutex_exit(p->p_lock);
   1191 	}
   1192 	return l;
   1193 }
   1194 
   1195 /*
   1196  * Look up a live LWP within the specified process, and return it locked.
   1197  *
   1198  * Must be called with p->p_lock held.
   1199  */
   1200 struct lwp *
   1201 lwp_find(struct proc *p, lwpid_t id)
   1202 {
   1203 	struct lwp *l;
   1204 
   1205 	KASSERT(mutex_owned(p->p_lock));
   1206 
   1207 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1208 		if (l->l_lid == id)
   1209 			break;
   1210 	}
   1211 
   1212 	/*
   1213 	 * No need to lock - all of these conditions will
   1214 	 * be visible with the process level mutex held.
   1215 	 */
   1216 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1217 		l = NULL;
   1218 
   1219 	return l;
   1220 }
   1221 
   1222 /*
   1223  * Update an LWP's cached credentials to mirror the process' master copy.
   1224  *
   1225  * This happens early in the syscall path, on user trap, and on LWP
   1226  * creation.  A long-running LWP can also voluntarily choose to update
   1227  * it's credentials by calling this routine.  This may be called from
   1228  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1229  */
   1230 void
   1231 lwp_update_creds(struct lwp *l)
   1232 {
   1233 	kauth_cred_t oc;
   1234 	struct proc *p;
   1235 
   1236 	p = l->l_proc;
   1237 	oc = l->l_cred;
   1238 
   1239 	mutex_enter(p->p_lock);
   1240 	kauth_cred_hold(p->p_cred);
   1241 	l->l_cred = p->p_cred;
   1242 	l->l_prflag &= ~LPR_CRMOD;
   1243 	mutex_exit(p->p_lock);
   1244 	if (oc != NULL)
   1245 		kauth_cred_free(oc);
   1246 }
   1247 
   1248 /*
   1249  * Verify that an LWP is locked, and optionally verify that the lock matches
   1250  * one we specify.
   1251  */
   1252 int
   1253 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1254 {
   1255 	kmutex_t *cur = l->l_mutex;
   1256 
   1257 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1258 }
   1259 
   1260 /*
   1261  * Lend a new mutex to an LWP.  The old mutex must be held.
   1262  */
   1263 void
   1264 lwp_setlock(struct lwp *l, kmutex_t *new)
   1265 {
   1266 
   1267 	KASSERT(mutex_owned(l->l_mutex));
   1268 
   1269 	membar_exit();
   1270 	l->l_mutex = new;
   1271 }
   1272 
   1273 /*
   1274  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1275  * must be held.
   1276  */
   1277 void
   1278 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1279 {
   1280 	kmutex_t *old;
   1281 
   1282 	KASSERT(lwp_locked(l, NULL));
   1283 
   1284 	old = l->l_mutex;
   1285 	membar_exit();
   1286 	l->l_mutex = new;
   1287 	mutex_spin_exit(old);
   1288 }
   1289 
   1290 int
   1291 lwp_trylock(struct lwp *l)
   1292 {
   1293 	kmutex_t *old;
   1294 
   1295 	for (;;) {
   1296 		if (!mutex_tryenter(old = l->l_mutex))
   1297 			return 0;
   1298 		if (__predict_true(l->l_mutex == old))
   1299 			return 1;
   1300 		mutex_spin_exit(old);
   1301 	}
   1302 }
   1303 
   1304 void
   1305 lwp_unsleep(lwp_t *l, bool cleanup)
   1306 {
   1307 
   1308 	KASSERT(mutex_owned(l->l_mutex));
   1309 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1310 }
   1311 
   1312 /*
   1313  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1314  * set.
   1315  */
   1316 void
   1317 lwp_userret(struct lwp *l)
   1318 {
   1319 	struct proc *p;
   1320 	int sig;
   1321 
   1322 	KASSERT(l == curlwp);
   1323 	KASSERT(l->l_stat == LSONPROC);
   1324 	p = l->l_proc;
   1325 
   1326 #ifndef __HAVE_FAST_SOFTINTS
   1327 	/* Run pending soft interrupts. */
   1328 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1329 		softint_overlay();
   1330 #endif
   1331 
   1332 #ifdef KERN_SA
   1333 	/* Generate UNBLOCKED upcall if needed */
   1334 	if (l->l_flag & LW_SA_BLOCKING) {
   1335 		sa_unblock_userret(l);
   1336 		/* NOTREACHED */
   1337 	}
   1338 #endif
   1339 
   1340 	/*
   1341 	 * It should be safe to do this read unlocked on a multiprocessor
   1342 	 * system..
   1343 	 *
   1344 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
   1345 	 * consider it now.
   1346 	 */
   1347 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
   1348 		/*
   1349 		 * Process pending signals first, unless the process
   1350 		 * is dumping core or exiting, where we will instead
   1351 		 * enter the LW_WSUSPEND case below.
   1352 		 */
   1353 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1354 		    LW_PENDSIG) {
   1355 			mutex_enter(p->p_lock);
   1356 			while ((sig = issignal(l)) != 0)
   1357 				postsig(sig);
   1358 			mutex_exit(p->p_lock);
   1359 		}
   1360 
   1361 		/*
   1362 		 * Core-dump or suspend pending.
   1363 		 *
   1364 		 * In case of core dump, suspend ourselves, so that the
   1365 		 * kernel stack and therefore the userland registers saved
   1366 		 * in the trapframe are around for coredump() to write them
   1367 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1368 		 * will write the core file out once all other LWPs are
   1369 		 * suspended.
   1370 		 */
   1371 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1372 			mutex_enter(p->p_lock);
   1373 			p->p_nrlwps--;
   1374 			cv_broadcast(&p->p_lwpcv);
   1375 			lwp_lock(l);
   1376 			l->l_stat = LSSUSPENDED;
   1377 			lwp_unlock(l);
   1378 			mutex_exit(p->p_lock);
   1379 			lwp_lock(l);
   1380 			mi_switch(l);
   1381 		}
   1382 
   1383 		/* Process is exiting. */
   1384 		if ((l->l_flag & LW_WEXIT) != 0) {
   1385 			lwp_exit(l);
   1386 			KASSERT(0);
   1387 			/* NOTREACHED */
   1388 		}
   1389 
   1390 		/* update lwpctl processor (for vfork child_return) */
   1391 		if (l->l_flag & LW_LWPCTL) {
   1392 			lwp_lock(l);
   1393 			KASSERT(kpreempt_disabled());
   1394 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1395 			l->l_lwpctl->lc_pctr++;
   1396 			l->l_flag &= ~LW_LWPCTL;
   1397 			lwp_unlock(l);
   1398 		}
   1399 	}
   1400 
   1401 #ifdef KERN_SA
   1402 	/*
   1403 	 * Timer events are handled specially.  We only try once to deliver
   1404 	 * pending timer upcalls; if if fails, we can try again on the next
   1405 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
   1406 	 * bounce us back here through the trap path after we return.
   1407 	 */
   1408 	if (p->p_timerpend)
   1409 		timerupcall(l);
   1410 	if (l->l_flag & LW_SA_UPCALL)
   1411 		sa_upcall_userret(l);
   1412 #endif /* KERN_SA */
   1413 }
   1414 
   1415 /*
   1416  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1417  */
   1418 void
   1419 lwp_need_userret(struct lwp *l)
   1420 {
   1421 	KASSERT(lwp_locked(l, NULL));
   1422 
   1423 	/*
   1424 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1425 	 * that the condition will be seen before forcing the LWP to enter
   1426 	 * kernel mode.
   1427 	 */
   1428 	membar_producer();
   1429 	cpu_signotify(l);
   1430 }
   1431 
   1432 /*
   1433  * Add one reference to an LWP.  This will prevent the LWP from
   1434  * exiting, thus keep the lwp structure and PCB around to inspect.
   1435  */
   1436 void
   1437 lwp_addref(struct lwp *l)
   1438 {
   1439 
   1440 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1441 	KASSERT(l->l_stat != LSZOMB);
   1442 	KASSERT(l->l_refcnt != 0);
   1443 
   1444 	l->l_refcnt++;
   1445 }
   1446 
   1447 /*
   1448  * Remove one reference to an LWP.  If this is the last reference,
   1449  * then we must finalize the LWP's death.
   1450  */
   1451 void
   1452 lwp_delref(struct lwp *l)
   1453 {
   1454 	struct proc *p = l->l_proc;
   1455 
   1456 	mutex_enter(p->p_lock);
   1457 	lwp_delref2(l);
   1458 	mutex_exit(p->p_lock);
   1459 }
   1460 
   1461 /*
   1462  * Remove one reference to an LWP.  If this is the last reference,
   1463  * then we must finalize the LWP's death.  The proc mutex is held
   1464  * on entry.
   1465  */
   1466 void
   1467 lwp_delref2(struct lwp *l)
   1468 {
   1469 	struct proc *p = l->l_proc;
   1470 
   1471 	KASSERT(mutex_owned(p->p_lock));
   1472 	KASSERT(l->l_stat != LSZOMB);
   1473 	KASSERT(l->l_refcnt > 0);
   1474 	if (--l->l_refcnt == 0)
   1475 		cv_broadcast(&p->p_lwpcv);
   1476 }
   1477 
   1478 /*
   1479  * Drain all references to the current LWP.
   1480  */
   1481 void
   1482 lwp_drainrefs(struct lwp *l)
   1483 {
   1484 	struct proc *p = l->l_proc;
   1485 
   1486 	KASSERT(mutex_owned(p->p_lock));
   1487 	KASSERT(l->l_refcnt != 0);
   1488 
   1489 	l->l_refcnt--;
   1490 	while (l->l_refcnt != 0)
   1491 		cv_wait(&p->p_lwpcv, p->p_lock);
   1492 }
   1493 
   1494 /*
   1495  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1496  * be held.
   1497  */
   1498 bool
   1499 lwp_alive(lwp_t *l)
   1500 {
   1501 
   1502 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1503 
   1504 	switch (l->l_stat) {
   1505 	case LSSLEEP:
   1506 	case LSRUN:
   1507 	case LSONPROC:
   1508 	case LSSTOP:
   1509 	case LSSUSPENDED:
   1510 		return true;
   1511 	default:
   1512 		return false;
   1513 	}
   1514 }
   1515 
   1516 /*
   1517  * Return first live LWP in the process.
   1518  */
   1519 lwp_t *
   1520 lwp_find_first(proc_t *p)
   1521 {
   1522 	lwp_t *l;
   1523 
   1524 	KASSERT(mutex_owned(p->p_lock));
   1525 
   1526 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1527 		if (lwp_alive(l)) {
   1528 			return l;
   1529 		}
   1530 	}
   1531 
   1532 	return NULL;
   1533 }
   1534 
   1535 /*
   1536  * Allocate a new lwpctl structure for a user LWP.
   1537  */
   1538 int
   1539 lwp_ctl_alloc(vaddr_t *uaddr)
   1540 {
   1541 	lcproc_t *lp;
   1542 	u_int bit, i, offset;
   1543 	struct uvm_object *uao;
   1544 	int error;
   1545 	lcpage_t *lcp;
   1546 	proc_t *p;
   1547 	lwp_t *l;
   1548 
   1549 	l = curlwp;
   1550 	p = l->l_proc;
   1551 
   1552 	/* don't allow a vforked process to create lwp ctls */
   1553 	if (p->p_lflag & PL_PPWAIT)
   1554 		return EBUSY;
   1555 
   1556 	if (l->l_lcpage != NULL) {
   1557 		lcp = l->l_lcpage;
   1558 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1559 		return 0;
   1560 	}
   1561 
   1562 	/* First time around, allocate header structure for the process. */
   1563 	if ((lp = p->p_lwpctl) == NULL) {
   1564 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1565 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1566 		lp->lp_uao = NULL;
   1567 		TAILQ_INIT(&lp->lp_pages);
   1568 		mutex_enter(p->p_lock);
   1569 		if (p->p_lwpctl == NULL) {
   1570 			p->p_lwpctl = lp;
   1571 			mutex_exit(p->p_lock);
   1572 		} else {
   1573 			mutex_exit(p->p_lock);
   1574 			mutex_destroy(&lp->lp_lock);
   1575 			kmem_free(lp, sizeof(*lp));
   1576 			lp = p->p_lwpctl;
   1577 		}
   1578 	}
   1579 
   1580  	/*
   1581  	 * Set up an anonymous memory region to hold the shared pages.
   1582  	 * Map them into the process' address space.  The user vmspace
   1583  	 * gets the first reference on the UAO.
   1584  	 */
   1585 	mutex_enter(&lp->lp_lock);
   1586 	if (lp->lp_uao == NULL) {
   1587 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1588 		lp->lp_cur = 0;
   1589 		lp->lp_max = LWPCTL_UAREA_SZ;
   1590 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1591 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1592 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1593 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1594 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1595 		if (error != 0) {
   1596 			uao_detach(lp->lp_uao);
   1597 			lp->lp_uao = NULL;
   1598 			mutex_exit(&lp->lp_lock);
   1599 			return error;
   1600 		}
   1601 	}
   1602 
   1603 	/* Get a free block and allocate for this LWP. */
   1604 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1605 		if (lcp->lcp_nfree != 0)
   1606 			break;
   1607 	}
   1608 	if (lcp == NULL) {
   1609 		/* Nothing available - try to set up a free page. */
   1610 		if (lp->lp_cur == lp->lp_max) {
   1611 			mutex_exit(&lp->lp_lock);
   1612 			return ENOMEM;
   1613 		}
   1614 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1615 		if (lcp == NULL) {
   1616 			mutex_exit(&lp->lp_lock);
   1617 			return ENOMEM;
   1618 		}
   1619 		/*
   1620 		 * Wire the next page down in kernel space.  Since this
   1621 		 * is a new mapping, we must add a reference.
   1622 		 */
   1623 		uao = lp->lp_uao;
   1624 		(*uao->pgops->pgo_reference)(uao);
   1625 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1626 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1627 		    uao, lp->lp_cur, PAGE_SIZE,
   1628 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1629 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1630 		if (error != 0) {
   1631 			mutex_exit(&lp->lp_lock);
   1632 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1633 			(*uao->pgops->pgo_detach)(uao);
   1634 			return error;
   1635 		}
   1636 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1637 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1638 		if (error != 0) {
   1639 			mutex_exit(&lp->lp_lock);
   1640 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1641 			    lcp->lcp_kaddr + PAGE_SIZE);
   1642 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1643 			return error;
   1644 		}
   1645 		/* Prepare the page descriptor and link into the list. */
   1646 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1647 		lp->lp_cur += PAGE_SIZE;
   1648 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1649 		lcp->lcp_rotor = 0;
   1650 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1651 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1652 	}
   1653 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1654 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1655 			i = 0;
   1656 	}
   1657 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1658 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1659 	lcp->lcp_rotor = i;
   1660 	lcp->lcp_nfree--;
   1661 	l->l_lcpage = lcp;
   1662 	offset = (i << 5) + bit;
   1663 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1664 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1665 	mutex_exit(&lp->lp_lock);
   1666 
   1667 	KPREEMPT_DISABLE(l);
   1668 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1669 	KPREEMPT_ENABLE(l);
   1670 
   1671 	return 0;
   1672 }
   1673 
   1674 /*
   1675  * Free an lwpctl structure back to the per-process list.
   1676  */
   1677 void
   1678 lwp_ctl_free(lwp_t *l)
   1679 {
   1680 	struct proc *p = l->l_proc;
   1681 	lcproc_t *lp;
   1682 	lcpage_t *lcp;
   1683 	u_int map, offset;
   1684 
   1685 	/* don't free a lwp context we borrowed for vfork */
   1686 	if (p->p_lflag & PL_PPWAIT) {
   1687 		l->l_lwpctl = NULL;
   1688 		return;
   1689 	}
   1690 
   1691 	lp = p->p_lwpctl;
   1692 	KASSERT(lp != NULL);
   1693 
   1694 	lcp = l->l_lcpage;
   1695 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1696 	KASSERT(offset < LWPCTL_PER_PAGE);
   1697 
   1698 	mutex_enter(&lp->lp_lock);
   1699 	lcp->lcp_nfree++;
   1700 	map = offset >> 5;
   1701 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1702 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1703 		lcp->lcp_rotor = map;
   1704 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1705 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1706 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1707 	}
   1708 	mutex_exit(&lp->lp_lock);
   1709 }
   1710 
   1711 /*
   1712  * Process is exiting; tear down lwpctl state.  This can only be safely
   1713  * called by the last LWP in the process.
   1714  */
   1715 void
   1716 lwp_ctl_exit(void)
   1717 {
   1718 	lcpage_t *lcp, *next;
   1719 	lcproc_t *lp;
   1720 	proc_t *p;
   1721 	lwp_t *l;
   1722 
   1723 	l = curlwp;
   1724 	l->l_lwpctl = NULL;
   1725 	l->l_lcpage = NULL;
   1726 	p = l->l_proc;
   1727 	lp = p->p_lwpctl;
   1728 
   1729 	KASSERT(lp != NULL);
   1730 	KASSERT(p->p_nlwps == 1);
   1731 
   1732 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1733 		next = TAILQ_NEXT(lcp, lcp_chain);
   1734 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1735 		    lcp->lcp_kaddr + PAGE_SIZE);
   1736 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1737 	}
   1738 
   1739 	if (lp->lp_uao != NULL) {
   1740 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1741 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1742 	}
   1743 
   1744 	mutex_destroy(&lp->lp_lock);
   1745 	kmem_free(lp, sizeof(*lp));
   1746 	p->p_lwpctl = NULL;
   1747 }
   1748 
   1749 /*
   1750  * Return the current LWP's "preemption counter".  Used to detect
   1751  * preemption across operations that can tolerate preemption without
   1752  * crashing, but which may generate incorrect results if preempted.
   1753  */
   1754 uint64_t
   1755 lwp_pctr(void)
   1756 {
   1757 
   1758 	return curlwp->l_ncsw;
   1759 }
   1760 
   1761 /*
   1762  * Set an LWP's private data pointer.
   1763  */
   1764 int
   1765 lwp_setprivate(struct lwp *l, void *ptr)
   1766 {
   1767 	int error = 0;
   1768 
   1769 	l->l_private = ptr;
   1770 #ifdef __HAVE_CPU_LWP_SETPRIVATE
   1771 	error = cpu_lwp_setprivate(l, ptr);
   1772 #endif
   1773 	return error;
   1774 }
   1775 
   1776 #if defined(DDB)
   1777 #include <machine/pcb.h>
   1778 
   1779 void
   1780 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1781 {
   1782 	lwp_t *l;
   1783 
   1784 	LIST_FOREACH(l, &alllwp, l_list) {
   1785 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1786 
   1787 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1788 			continue;
   1789 		}
   1790 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1791 		    (void *)addr, (void *)stack,
   1792 		    (size_t)(addr - stack), l);
   1793 	}
   1794 }
   1795 #endif /* defined(DDB) */
   1796