kern_lwp.c revision 1.157 1 /* $NetBSD: kern_lwp.c,v 1.157 2011/03/20 23:19:16 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.157 2011/03/20 23:19:16 rmind Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_sa.h"
219 #include "opt_dtrace.h"
220
221 #define _LWP_API_PRIVATE
222
223 #include <sys/param.h>
224 #include <sys/systm.h>
225 #include <sys/cpu.h>
226 #include <sys/pool.h>
227 #include <sys/proc.h>
228 #include <sys/sa.h>
229 #include <sys/savar.h>
230 #include <sys/syscallargs.h>
231 #include <sys/syscall_stats.h>
232 #include <sys/kauth.h>
233 #include <sys/sleepq.h>
234 #include <sys/lockdebug.h>
235 #include <sys/kmem.h>
236 #include <sys/pset.h>
237 #include <sys/intr.h>
238 #include <sys/lwpctl.h>
239 #include <sys/atomic.h>
240 #include <sys/filedesc.h>
241 #include <sys/dtrace_bsd.h>
242 #include <sys/sdt.h>
243 #include <sys/xcall.h>
244
245 #include <uvm/uvm_extern.h>
246 #include <uvm/uvm_object.h>
247
248 static pool_cache_t lwp_cache __read_mostly;
249 struct lwplist alllwp __cacheline_aligned;
250
251 static void lwp_dtor(void *, void *);
252
253 /* DTrace proc provider probes */
254 SDT_PROBE_DEFINE(proc,,,lwp_create,
255 "struct lwp *", NULL,
256 NULL, NULL, NULL, NULL,
257 NULL, NULL, NULL, NULL);
258 SDT_PROBE_DEFINE(proc,,,lwp_start,
259 "struct lwp *", NULL,
260 NULL, NULL, NULL, NULL,
261 NULL, NULL, NULL, NULL);
262 SDT_PROBE_DEFINE(proc,,,lwp_exit,
263 "struct lwp *", NULL,
264 NULL, NULL, NULL, NULL,
265 NULL, NULL, NULL, NULL);
266
267 struct turnstile turnstile0;
268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
269 #ifdef LWP0_CPU_INFO
270 .l_cpu = LWP0_CPU_INFO,
271 #endif
272 #ifdef LWP0_MD_INITIALIZER
273 .l_md = LWP0_MD_INITIALIZER,
274 #endif
275 .l_proc = &proc0,
276 .l_lid = 1,
277 .l_flag = LW_SYSTEM,
278 .l_stat = LSONPROC,
279 .l_ts = &turnstile0,
280 .l_syncobj = &sched_syncobj,
281 .l_refcnt = 1,
282 .l_priority = PRI_USER + NPRI_USER - 1,
283 .l_inheritedprio = -1,
284 .l_class = SCHED_OTHER,
285 .l_psid = PS_NONE,
286 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
287 .l_name = __UNCONST("swapper"),
288 .l_fd = &filedesc0,
289 };
290
291 void
292 lwpinit(void)
293 {
294
295 LIST_INIT(&alllwp);
296 lwpinit_specificdata();
297 lwp_sys_init();
298 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
299 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
300 }
301
302 void
303 lwp0_init(void)
304 {
305 struct lwp *l = &lwp0;
306
307 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
308 KASSERT(l->l_lid == proc0.p_nlwpid);
309
310 LIST_INSERT_HEAD(&alllwp, l, l_list);
311
312 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
313 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
314 cv_init(&l->l_sigcv, "sigwait");
315
316 kauth_cred_hold(proc0.p_cred);
317 l->l_cred = proc0.p_cred;
318
319 lwp_initspecific(l);
320
321 SYSCALL_TIME_LWP_INIT(l);
322 }
323
324 static void
325 lwp_dtor(void *arg, void *obj)
326 {
327 lwp_t *l = obj;
328 uint64_t where;
329 (void)l;
330
331 /*
332 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
333 * calls will exit before memory of LWP is returned to the pool, where
334 * KVA of LWP structure might be freed and re-used for other purposes.
335 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
336 * callers, therefore cross-call to all CPUs will do the job. Also,
337 * the value of l->l_cpu must be still valid at this point.
338 */
339 KASSERT(l->l_cpu != NULL);
340 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
341 xc_wait(where);
342 }
343
344 /*
345 * Set an suspended.
346 *
347 * Must be called with p_lock held, and the LWP locked. Will unlock the
348 * LWP before return.
349 */
350 int
351 lwp_suspend(struct lwp *curl, struct lwp *t)
352 {
353 int error;
354
355 KASSERT(mutex_owned(t->l_proc->p_lock));
356 KASSERT(lwp_locked(t, NULL));
357
358 KASSERT(curl != t || curl->l_stat == LSONPROC);
359
360 /*
361 * If the current LWP has been told to exit, we must not suspend anyone
362 * else or deadlock could occur. We won't return to userspace.
363 */
364 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
365 lwp_unlock(t);
366 return (EDEADLK);
367 }
368
369 error = 0;
370
371 switch (t->l_stat) {
372 case LSRUN:
373 case LSONPROC:
374 t->l_flag |= LW_WSUSPEND;
375 lwp_need_userret(t);
376 lwp_unlock(t);
377 break;
378
379 case LSSLEEP:
380 t->l_flag |= LW_WSUSPEND;
381
382 /*
383 * Kick the LWP and try to get it to the kernel boundary
384 * so that it will release any locks that it holds.
385 * setrunnable() will release the lock.
386 */
387 if ((t->l_flag & LW_SINTR) != 0)
388 setrunnable(t);
389 else
390 lwp_unlock(t);
391 break;
392
393 case LSSUSPENDED:
394 lwp_unlock(t);
395 break;
396
397 case LSSTOP:
398 t->l_flag |= LW_WSUSPEND;
399 setrunnable(t);
400 break;
401
402 case LSIDL:
403 case LSZOMB:
404 error = EINTR; /* It's what Solaris does..... */
405 lwp_unlock(t);
406 break;
407 }
408
409 return (error);
410 }
411
412 /*
413 * Restart a suspended LWP.
414 *
415 * Must be called with p_lock held, and the LWP locked. Will unlock the
416 * LWP before return.
417 */
418 void
419 lwp_continue(struct lwp *l)
420 {
421
422 KASSERT(mutex_owned(l->l_proc->p_lock));
423 KASSERT(lwp_locked(l, NULL));
424
425 /* If rebooting or not suspended, then just bail out. */
426 if ((l->l_flag & LW_WREBOOT) != 0) {
427 lwp_unlock(l);
428 return;
429 }
430
431 l->l_flag &= ~LW_WSUSPEND;
432
433 if (l->l_stat != LSSUSPENDED) {
434 lwp_unlock(l);
435 return;
436 }
437
438 /* setrunnable() will release the lock. */
439 setrunnable(l);
440 }
441
442 /*
443 * Restart a stopped LWP.
444 *
445 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
446 * LWP before return.
447 */
448 void
449 lwp_unstop(struct lwp *l)
450 {
451 struct proc *p = l->l_proc;
452
453 KASSERT(mutex_owned(proc_lock));
454 KASSERT(mutex_owned(p->p_lock));
455
456 lwp_lock(l);
457
458 /* If not stopped, then just bail out. */
459 if (l->l_stat != LSSTOP) {
460 lwp_unlock(l);
461 return;
462 }
463
464 p->p_stat = SACTIVE;
465 p->p_sflag &= ~PS_STOPPING;
466
467 if (!p->p_waited)
468 p->p_pptr->p_nstopchild--;
469
470 if (l->l_wchan == NULL) {
471 /* setrunnable() will release the lock. */
472 setrunnable(l);
473 } else {
474 l->l_stat = LSSLEEP;
475 p->p_nrlwps++;
476 lwp_unlock(l);
477 }
478 }
479
480 /*
481 * Wait for an LWP within the current process to exit. If 'lid' is
482 * non-zero, we are waiting for a specific LWP.
483 *
484 * Must be called with p->p_lock held.
485 */
486 int
487 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
488 {
489 struct proc *p = l->l_proc;
490 struct lwp *l2;
491 int nfound, error;
492 lwpid_t curlid;
493 bool exiting;
494
495 KASSERT(mutex_owned(p->p_lock));
496
497 p->p_nlwpwait++;
498 l->l_waitingfor = lid;
499 curlid = l->l_lid;
500 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
501
502 for (;;) {
503 /*
504 * Avoid a race between exit1() and sigexit(): if the
505 * process is dumping core, then we need to bail out: call
506 * into lwp_userret() where we will be suspended until the
507 * deed is done.
508 */
509 if ((p->p_sflag & PS_WCORE) != 0) {
510 mutex_exit(p->p_lock);
511 lwp_userret(l);
512 #ifdef DIAGNOSTIC
513 panic("lwp_wait1");
514 #endif
515 /* NOTREACHED */
516 }
517
518 /*
519 * First off, drain any detached LWP that is waiting to be
520 * reaped.
521 */
522 while ((l2 = p->p_zomblwp) != NULL) {
523 p->p_zomblwp = NULL;
524 lwp_free(l2, false, false);/* releases proc mutex */
525 mutex_enter(p->p_lock);
526 }
527
528 /*
529 * Now look for an LWP to collect. If the whole process is
530 * exiting, count detached LWPs as eligible to be collected,
531 * but don't drain them here.
532 */
533 nfound = 0;
534 error = 0;
535 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
536 /*
537 * If a specific wait and the target is waiting on
538 * us, then avoid deadlock. This also traps LWPs
539 * that try to wait on themselves.
540 *
541 * Note that this does not handle more complicated
542 * cycles, like: t1 -> t2 -> t3 -> t1. The process
543 * can still be killed so it is not a major problem.
544 */
545 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
546 error = EDEADLK;
547 break;
548 }
549 if (l2 == l)
550 continue;
551 if ((l2->l_prflag & LPR_DETACHED) != 0) {
552 nfound += exiting;
553 continue;
554 }
555 if (lid != 0) {
556 if (l2->l_lid != lid)
557 continue;
558 /*
559 * Mark this LWP as the first waiter, if there
560 * is no other.
561 */
562 if (l2->l_waiter == 0)
563 l2->l_waiter = curlid;
564 } else if (l2->l_waiter != 0) {
565 /*
566 * It already has a waiter - so don't
567 * collect it. If the waiter doesn't
568 * grab it we'll get another chance
569 * later.
570 */
571 nfound++;
572 continue;
573 }
574 nfound++;
575
576 /* No need to lock the LWP in order to see LSZOMB. */
577 if (l2->l_stat != LSZOMB)
578 continue;
579
580 /*
581 * We're no longer waiting. Reset the "first waiter"
582 * pointer on the target, in case it was us.
583 */
584 l->l_waitingfor = 0;
585 l2->l_waiter = 0;
586 p->p_nlwpwait--;
587 if (departed)
588 *departed = l2->l_lid;
589 sched_lwp_collect(l2);
590
591 /* lwp_free() releases the proc lock. */
592 lwp_free(l2, false, false);
593 mutex_enter(p->p_lock);
594 return 0;
595 }
596
597 if (error != 0)
598 break;
599 if (nfound == 0) {
600 error = ESRCH;
601 break;
602 }
603
604 /*
605 * The kernel is careful to ensure that it can not deadlock
606 * when exiting - just keep waiting.
607 */
608 if (exiting) {
609 KASSERT(p->p_nlwps > 1);
610 cv_wait(&p->p_lwpcv, p->p_lock);
611 continue;
612 }
613
614 /*
615 * If all other LWPs are waiting for exits or suspends
616 * and the supply of zombies and potential zombies is
617 * exhausted, then we are about to deadlock.
618 *
619 * If the process is exiting (and this LWP is not the one
620 * that is coordinating the exit) then bail out now.
621 */
622 if ((p->p_sflag & PS_WEXIT) != 0 ||
623 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
624 error = EDEADLK;
625 break;
626 }
627
628 /*
629 * Sit around and wait for something to happen. We'll be
630 * awoken if any of the conditions examined change: if an
631 * LWP exits, is collected, or is detached.
632 */
633 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
634 break;
635 }
636
637 /*
638 * We didn't find any LWPs to collect, we may have received a
639 * signal, or some other condition has caused us to bail out.
640 *
641 * If waiting on a specific LWP, clear the waiters marker: some
642 * other LWP may want it. Then, kick all the remaining waiters
643 * so that they can re-check for zombies and for deadlock.
644 */
645 if (lid != 0) {
646 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
647 if (l2->l_lid == lid) {
648 if (l2->l_waiter == curlid)
649 l2->l_waiter = 0;
650 break;
651 }
652 }
653 }
654 p->p_nlwpwait--;
655 l->l_waitingfor = 0;
656 cv_broadcast(&p->p_lwpcv);
657
658 return error;
659 }
660
661 /*
662 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
663 * The new LWP is created in state LSIDL and must be set running,
664 * suspended, or stopped by the caller.
665 */
666 int
667 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
668 void *stack, size_t stacksize, void (*func)(void *), void *arg,
669 lwp_t **rnewlwpp, int sclass)
670 {
671 struct lwp *l2, *isfree;
672 turnstile_t *ts;
673 lwpid_t lid;
674
675 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
676
677 /*
678 * First off, reap any detached LWP waiting to be collected.
679 * We can re-use its LWP structure and turnstile.
680 */
681 isfree = NULL;
682 if (p2->p_zomblwp != NULL) {
683 mutex_enter(p2->p_lock);
684 if ((isfree = p2->p_zomblwp) != NULL) {
685 p2->p_zomblwp = NULL;
686 lwp_free(isfree, true, false);/* releases proc mutex */
687 } else
688 mutex_exit(p2->p_lock);
689 }
690 if (isfree == NULL) {
691 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
692 memset(l2, 0, sizeof(*l2));
693 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
694 SLIST_INIT(&l2->l_pi_lenders);
695 } else {
696 l2 = isfree;
697 ts = l2->l_ts;
698 KASSERT(l2->l_inheritedprio == -1);
699 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
700 memset(l2, 0, sizeof(*l2));
701 l2->l_ts = ts;
702 }
703
704 l2->l_stat = LSIDL;
705 l2->l_proc = p2;
706 l2->l_refcnt = 1;
707 l2->l_class = sclass;
708
709 /*
710 * If vfork(), we want the LWP to run fast and on the same CPU
711 * as its parent, so that it can reuse the VM context and cache
712 * footprint on the local CPU.
713 */
714 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
715 l2->l_kpribase = PRI_KERNEL;
716 l2->l_priority = l1->l_priority;
717 l2->l_inheritedprio = -1;
718 l2->l_flag = 0;
719 l2->l_pflag = LP_MPSAFE;
720 TAILQ_INIT(&l2->l_ld_locks);
721
722 /*
723 * For vfork, borrow parent's lwpctl context if it exists.
724 * This also causes us to return via lwp_userret.
725 */
726 if (flags & LWP_VFORK && l1->l_lwpctl) {
727 l2->l_lwpctl = l1->l_lwpctl;
728 l2->l_flag |= LW_LWPCTL;
729 }
730
731 /*
732 * If not the first LWP in the process, grab a reference to the
733 * descriptor table.
734 */
735 l2->l_fd = p2->p_fd;
736 if (p2->p_nlwps != 0) {
737 KASSERT(l1->l_proc == p2);
738 fd_hold(l2);
739 } else {
740 KASSERT(l1->l_proc != p2);
741 }
742
743 if (p2->p_flag & PK_SYSTEM) {
744 /* Mark it as a system LWP. */
745 l2->l_flag |= LW_SYSTEM;
746 }
747
748 kpreempt_disable();
749 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
750 l2->l_cpu = l1->l_cpu;
751 kpreempt_enable();
752
753 kdtrace_thread_ctor(NULL, l2);
754 lwp_initspecific(l2);
755 sched_lwp_fork(l1, l2);
756 lwp_update_creds(l2);
757 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
758 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
759 cv_init(&l2->l_sigcv, "sigwait");
760 l2->l_syncobj = &sched_syncobj;
761
762 if (rnewlwpp != NULL)
763 *rnewlwpp = l2;
764
765 uvm_lwp_setuarea(l2, uaddr);
766 uvm_lwp_fork(l1, l2, stack, stacksize, func,
767 (arg != NULL) ? arg : l2);
768
769 if ((flags & LWP_PIDLID) != 0) {
770 lid = proc_alloc_pid(p2);
771 l2->l_pflag |= LP_PIDLID;
772 } else {
773 lid = 0;
774 }
775
776 mutex_enter(p2->p_lock);
777
778 if ((flags & LWP_DETACHED) != 0) {
779 l2->l_prflag = LPR_DETACHED;
780 p2->p_ndlwps++;
781 } else
782 l2->l_prflag = 0;
783
784 l2->l_sigmask = l1->l_sigmask;
785 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
786 sigemptyset(&l2->l_sigpend.sp_set);
787
788 if (lid == 0) {
789 p2->p_nlwpid++;
790 if (p2->p_nlwpid == 0)
791 p2->p_nlwpid++;
792 lid = p2->p_nlwpid;
793 }
794 l2->l_lid = lid;
795 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
796 p2->p_nlwps++;
797 p2->p_nrlwps++;
798
799 if ((p2->p_flag & PK_SYSTEM) == 0) {
800 /* Inherit an affinity */
801 if (l1->l_flag & LW_AFFINITY) {
802 /*
803 * Note that we hold the state lock while inheriting
804 * the affinity to avoid race with sched_setaffinity().
805 */
806 lwp_lock(l1);
807 if (l1->l_flag & LW_AFFINITY) {
808 kcpuset_use(l1->l_affinity);
809 l2->l_affinity = l1->l_affinity;
810 l2->l_flag |= LW_AFFINITY;
811 }
812 lwp_unlock(l1);
813 }
814 lwp_lock(l2);
815 /* Inherit a processor-set */
816 l2->l_psid = l1->l_psid;
817 /* Look for a CPU to start */
818 l2->l_cpu = sched_takecpu(l2);
819 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
820 }
821 mutex_exit(p2->p_lock);
822
823 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
824
825 mutex_enter(proc_lock);
826 LIST_INSERT_HEAD(&alllwp, l2, l_list);
827 mutex_exit(proc_lock);
828
829 SYSCALL_TIME_LWP_INIT(l2);
830
831 if (p2->p_emul->e_lwp_fork)
832 (*p2->p_emul->e_lwp_fork)(l1, l2);
833
834 return (0);
835 }
836
837 /*
838 * Called by MD code when a new LWP begins execution. Must be called
839 * with the previous LWP locked (so at splsched), or if there is no
840 * previous LWP, at splsched.
841 */
842 void
843 lwp_startup(struct lwp *prev, struct lwp *new)
844 {
845
846 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
847
848 KASSERT(kpreempt_disabled());
849 if (prev != NULL) {
850 /*
851 * Normalize the count of the spin-mutexes, it was
852 * increased in mi_switch(). Unmark the state of
853 * context switch - it is finished for previous LWP.
854 */
855 curcpu()->ci_mtx_count++;
856 membar_exit();
857 prev->l_ctxswtch = 0;
858 }
859 KPREEMPT_DISABLE(new);
860 spl0();
861 pmap_activate(new);
862 LOCKDEBUG_BARRIER(NULL, 0);
863 KPREEMPT_ENABLE(new);
864 if ((new->l_pflag & LP_MPSAFE) == 0) {
865 KERNEL_LOCK(1, new);
866 }
867 }
868
869 /*
870 * Exit an LWP.
871 */
872 void
873 lwp_exit(struct lwp *l)
874 {
875 struct proc *p = l->l_proc;
876 struct lwp *l2;
877 bool current;
878
879 current = (l == curlwp);
880
881 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
882 KASSERT(p == curproc);
883
884 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
885
886 /*
887 * Verify that we hold no locks other than the kernel lock.
888 */
889 LOCKDEBUG_BARRIER(&kernel_lock, 0);
890
891 /*
892 * If we are the last live LWP in a process, we need to exit the
893 * entire process. We do so with an exit status of zero, because
894 * it's a "controlled" exit, and because that's what Solaris does.
895 *
896 * We are not quite a zombie yet, but for accounting purposes we
897 * must increment the count of zombies here.
898 *
899 * Note: the last LWP's specificdata will be deleted here.
900 */
901 mutex_enter(p->p_lock);
902 if (p->p_nlwps - p->p_nzlwps == 1) {
903 KASSERT(current == true);
904 /* XXXSMP kernel_lock not held */
905 exit1(l, 0);
906 /* NOTREACHED */
907 }
908 p->p_nzlwps++;
909 mutex_exit(p->p_lock);
910
911 if (p->p_emul->e_lwp_exit)
912 (*p->p_emul->e_lwp_exit)(l);
913
914 /* Drop filedesc reference. */
915 fd_free();
916
917 /* Delete the specificdata while it's still safe to sleep. */
918 lwp_finispecific(l);
919
920 /*
921 * Release our cached credentials.
922 */
923 kauth_cred_free(l->l_cred);
924 callout_destroy(&l->l_timeout_ch);
925
926 /*
927 * Remove the LWP from the global list.
928 * Free its LID from the PID namespace if needed.
929 */
930 mutex_enter(proc_lock);
931 LIST_REMOVE(l, l_list);
932 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
933 proc_free_pid(l->l_lid);
934 }
935 mutex_exit(proc_lock);
936
937 /*
938 * Get rid of all references to the LWP that others (e.g. procfs)
939 * may have, and mark the LWP as a zombie. If the LWP is detached,
940 * mark it waiting for collection in the proc structure. Note that
941 * before we can do that, we need to free any other dead, deatched
942 * LWP waiting to meet its maker.
943 */
944 mutex_enter(p->p_lock);
945 lwp_drainrefs(l);
946
947 if ((l->l_prflag & LPR_DETACHED) != 0) {
948 while ((l2 = p->p_zomblwp) != NULL) {
949 p->p_zomblwp = NULL;
950 lwp_free(l2, false, false);/* releases proc mutex */
951 mutex_enter(p->p_lock);
952 l->l_refcnt++;
953 lwp_drainrefs(l);
954 }
955 p->p_zomblwp = l;
956 }
957
958 /*
959 * If we find a pending signal for the process and we have been
960 * asked to check for signals, then we lose: arrange to have
961 * all other LWPs in the process check for signals.
962 */
963 if ((l->l_flag & LW_PENDSIG) != 0 &&
964 firstsig(&p->p_sigpend.sp_set) != 0) {
965 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
966 lwp_lock(l2);
967 l2->l_flag |= LW_PENDSIG;
968 lwp_unlock(l2);
969 }
970 }
971
972 lwp_lock(l);
973 l->l_stat = LSZOMB;
974 if (l->l_name != NULL)
975 strcpy(l->l_name, "(zombie)");
976 if (l->l_flag & LW_AFFINITY) {
977 l->l_flag &= ~LW_AFFINITY;
978 } else {
979 KASSERT(l->l_affinity == NULL);
980 }
981 lwp_unlock(l);
982 p->p_nrlwps--;
983 cv_broadcast(&p->p_lwpcv);
984 if (l->l_lwpctl != NULL)
985 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
986 mutex_exit(p->p_lock);
987
988 /* Safe without lock since LWP is in zombie state */
989 if (l->l_affinity) {
990 kcpuset_unuse(l->l_affinity, NULL);
991 l->l_affinity = NULL;
992 }
993
994 /*
995 * We can no longer block. At this point, lwp_free() may already
996 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
997 *
998 * Free MD LWP resources.
999 */
1000 cpu_lwp_free(l, 0);
1001
1002 if (current) {
1003 pmap_deactivate(l);
1004
1005 /*
1006 * Release the kernel lock, and switch away into
1007 * oblivion.
1008 */
1009 #ifdef notyet
1010 /* XXXSMP hold in lwp_userret() */
1011 KERNEL_UNLOCK_LAST(l);
1012 #else
1013 KERNEL_UNLOCK_ALL(l, NULL);
1014 #endif
1015 lwp_exit_switchaway(l);
1016 }
1017 }
1018
1019 /*
1020 * Free a dead LWP's remaining resources.
1021 *
1022 * XXXLWP limits.
1023 */
1024 void
1025 lwp_free(struct lwp *l, bool recycle, bool last)
1026 {
1027 struct proc *p = l->l_proc;
1028 struct rusage *ru;
1029 ksiginfoq_t kq;
1030
1031 KASSERT(l != curlwp);
1032
1033 /*
1034 * If this was not the last LWP in the process, then adjust
1035 * counters and unlock.
1036 */
1037 if (!last) {
1038 /*
1039 * Add the LWP's run time to the process' base value.
1040 * This needs to co-incide with coming off p_lwps.
1041 */
1042 bintime_add(&p->p_rtime, &l->l_rtime);
1043 p->p_pctcpu += l->l_pctcpu;
1044 ru = &p->p_stats->p_ru;
1045 ruadd(ru, &l->l_ru);
1046 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1047 ru->ru_nivcsw += l->l_nivcsw;
1048 LIST_REMOVE(l, l_sibling);
1049 p->p_nlwps--;
1050 p->p_nzlwps--;
1051 if ((l->l_prflag & LPR_DETACHED) != 0)
1052 p->p_ndlwps--;
1053
1054 /*
1055 * Have any LWPs sleeping in lwp_wait() recheck for
1056 * deadlock.
1057 */
1058 cv_broadcast(&p->p_lwpcv);
1059 mutex_exit(p->p_lock);
1060 }
1061
1062 #ifdef MULTIPROCESSOR
1063 /*
1064 * In the unlikely event that the LWP is still on the CPU,
1065 * then spin until it has switched away. We need to release
1066 * all locks to avoid deadlock against interrupt handlers on
1067 * the target CPU.
1068 */
1069 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1070 int count;
1071 (void)count; /* XXXgcc */
1072 KERNEL_UNLOCK_ALL(curlwp, &count);
1073 while ((l->l_pflag & LP_RUNNING) != 0 ||
1074 l->l_cpu->ci_curlwp == l)
1075 SPINLOCK_BACKOFF_HOOK;
1076 KERNEL_LOCK(count, curlwp);
1077 }
1078 #endif
1079
1080 /*
1081 * Destroy the LWP's remaining signal information.
1082 */
1083 ksiginfo_queue_init(&kq);
1084 sigclear(&l->l_sigpend, NULL, &kq);
1085 ksiginfo_queue_drain(&kq);
1086 cv_destroy(&l->l_sigcv);
1087
1088 /*
1089 * Free the LWP's turnstile and the LWP structure itself unless the
1090 * caller wants to recycle them. Also, free the scheduler specific
1091 * data.
1092 *
1093 * We can't return turnstile0 to the pool (it didn't come from it),
1094 * so if it comes up just drop it quietly and move on.
1095 *
1096 * We don't recycle the VM resources at this time.
1097 */
1098 if (l->l_lwpctl != NULL)
1099 lwp_ctl_free(l);
1100
1101 if (!recycle && l->l_ts != &turnstile0)
1102 pool_cache_put(turnstile_cache, l->l_ts);
1103 if (l->l_name != NULL)
1104 kmem_free(l->l_name, MAXCOMLEN);
1105
1106 cpu_lwp_free2(l);
1107 uvm_lwp_exit(l);
1108
1109 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1110 KASSERT(l->l_inheritedprio == -1);
1111 KASSERT(l->l_blcnt == 0);
1112 kdtrace_thread_dtor(NULL, l);
1113 if (!recycle)
1114 pool_cache_put(lwp_cache, l);
1115 }
1116
1117 /*
1118 * Migrate the LWP to the another CPU. Unlocks the LWP.
1119 */
1120 void
1121 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1122 {
1123 struct schedstate_percpu *tspc;
1124 int lstat = l->l_stat;
1125
1126 KASSERT(lwp_locked(l, NULL));
1127 KASSERT(tci != NULL);
1128
1129 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1130 if ((l->l_pflag & LP_RUNNING) != 0) {
1131 lstat = LSONPROC;
1132 }
1133
1134 /*
1135 * The destination CPU could be changed while previous migration
1136 * was not finished.
1137 */
1138 if (l->l_target_cpu != NULL) {
1139 l->l_target_cpu = tci;
1140 lwp_unlock(l);
1141 return;
1142 }
1143
1144 /* Nothing to do if trying to migrate to the same CPU */
1145 if (l->l_cpu == tci) {
1146 lwp_unlock(l);
1147 return;
1148 }
1149
1150 KASSERT(l->l_target_cpu == NULL);
1151 tspc = &tci->ci_schedstate;
1152 switch (lstat) {
1153 case LSRUN:
1154 l->l_target_cpu = tci;
1155 break;
1156 case LSIDL:
1157 l->l_cpu = tci;
1158 lwp_unlock_to(l, tspc->spc_mutex);
1159 return;
1160 case LSSLEEP:
1161 l->l_cpu = tci;
1162 break;
1163 case LSSTOP:
1164 case LSSUSPENDED:
1165 l->l_cpu = tci;
1166 if (l->l_wchan == NULL) {
1167 lwp_unlock_to(l, tspc->spc_lwplock);
1168 return;
1169 }
1170 break;
1171 case LSONPROC:
1172 l->l_target_cpu = tci;
1173 spc_lock(l->l_cpu);
1174 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1175 spc_unlock(l->l_cpu);
1176 break;
1177 }
1178 lwp_unlock(l);
1179 }
1180
1181 /*
1182 * Find the LWP in the process. Arguments may be zero, in such case,
1183 * the calling process and first LWP in the list will be used.
1184 * On success - returns proc locked.
1185 */
1186 struct lwp *
1187 lwp_find2(pid_t pid, lwpid_t lid)
1188 {
1189 proc_t *p;
1190 lwp_t *l;
1191
1192 /* Find the process. */
1193 if (pid != 0) {
1194 mutex_enter(proc_lock);
1195 p = proc_find(pid);
1196 if (p == NULL) {
1197 mutex_exit(proc_lock);
1198 return NULL;
1199 }
1200 mutex_enter(p->p_lock);
1201 mutex_exit(proc_lock);
1202 } else {
1203 p = curlwp->l_proc;
1204 mutex_enter(p->p_lock);
1205 }
1206 /* Find the thread. */
1207 if (lid != 0) {
1208 l = lwp_find(p, lid);
1209 } else {
1210 l = LIST_FIRST(&p->p_lwps);
1211 }
1212 if (l == NULL) {
1213 mutex_exit(p->p_lock);
1214 }
1215 return l;
1216 }
1217
1218 /*
1219 * Look up a live LWP within the specified process, and return it locked.
1220 *
1221 * Must be called with p->p_lock held.
1222 */
1223 struct lwp *
1224 lwp_find(struct proc *p, lwpid_t id)
1225 {
1226 struct lwp *l;
1227
1228 KASSERT(mutex_owned(p->p_lock));
1229
1230 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1231 if (l->l_lid == id)
1232 break;
1233 }
1234
1235 /*
1236 * No need to lock - all of these conditions will
1237 * be visible with the process level mutex held.
1238 */
1239 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1240 l = NULL;
1241
1242 return l;
1243 }
1244
1245 /*
1246 * Update an LWP's cached credentials to mirror the process' master copy.
1247 *
1248 * This happens early in the syscall path, on user trap, and on LWP
1249 * creation. A long-running LWP can also voluntarily choose to update
1250 * it's credentials by calling this routine. This may be called from
1251 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1252 */
1253 void
1254 lwp_update_creds(struct lwp *l)
1255 {
1256 kauth_cred_t oc;
1257 struct proc *p;
1258
1259 p = l->l_proc;
1260 oc = l->l_cred;
1261
1262 mutex_enter(p->p_lock);
1263 kauth_cred_hold(p->p_cred);
1264 l->l_cred = p->p_cred;
1265 l->l_prflag &= ~LPR_CRMOD;
1266 mutex_exit(p->p_lock);
1267 if (oc != NULL)
1268 kauth_cred_free(oc);
1269 }
1270
1271 /*
1272 * Verify that an LWP is locked, and optionally verify that the lock matches
1273 * one we specify.
1274 */
1275 int
1276 lwp_locked(struct lwp *l, kmutex_t *mtx)
1277 {
1278 kmutex_t *cur = l->l_mutex;
1279
1280 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1281 }
1282
1283 /*
1284 * Lend a new mutex to an LWP. The old mutex must be held.
1285 */
1286 void
1287 lwp_setlock(struct lwp *l, kmutex_t *new)
1288 {
1289
1290 KASSERT(mutex_owned(l->l_mutex));
1291
1292 membar_exit();
1293 l->l_mutex = new;
1294 }
1295
1296 /*
1297 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1298 * must be held.
1299 */
1300 void
1301 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1302 {
1303 kmutex_t *old;
1304
1305 KASSERT(lwp_locked(l, NULL));
1306
1307 old = l->l_mutex;
1308 membar_exit();
1309 l->l_mutex = new;
1310 mutex_spin_exit(old);
1311 }
1312
1313 int
1314 lwp_trylock(struct lwp *l)
1315 {
1316 kmutex_t *old;
1317
1318 for (;;) {
1319 if (!mutex_tryenter(old = l->l_mutex))
1320 return 0;
1321 if (__predict_true(l->l_mutex == old))
1322 return 1;
1323 mutex_spin_exit(old);
1324 }
1325 }
1326
1327 void
1328 lwp_unsleep(lwp_t *l, bool cleanup)
1329 {
1330
1331 KASSERT(mutex_owned(l->l_mutex));
1332 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1333 }
1334
1335 /*
1336 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1337 * set.
1338 */
1339 void
1340 lwp_userret(struct lwp *l)
1341 {
1342 struct proc *p;
1343 int sig;
1344
1345 KASSERT(l == curlwp);
1346 KASSERT(l->l_stat == LSONPROC);
1347 p = l->l_proc;
1348
1349 #ifndef __HAVE_FAST_SOFTINTS
1350 /* Run pending soft interrupts. */
1351 if (l->l_cpu->ci_data.cpu_softints != 0)
1352 softint_overlay();
1353 #endif
1354
1355 #ifdef KERN_SA
1356 /* Generate UNBLOCKED upcall if needed */
1357 if (l->l_flag & LW_SA_BLOCKING) {
1358 sa_unblock_userret(l);
1359 /* NOTREACHED */
1360 }
1361 #endif
1362
1363 /*
1364 * It should be safe to do this read unlocked on a multiprocessor
1365 * system..
1366 *
1367 * LW_SA_UPCALL will be handled after the while() loop, so don't
1368 * consider it now.
1369 */
1370 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1371 /*
1372 * Process pending signals first, unless the process
1373 * is dumping core or exiting, where we will instead
1374 * enter the LW_WSUSPEND case below.
1375 */
1376 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1377 LW_PENDSIG) {
1378 mutex_enter(p->p_lock);
1379 while ((sig = issignal(l)) != 0)
1380 postsig(sig);
1381 mutex_exit(p->p_lock);
1382 }
1383
1384 /*
1385 * Core-dump or suspend pending.
1386 *
1387 * In case of core dump, suspend ourselves, so that the
1388 * kernel stack and therefore the userland registers saved
1389 * in the trapframe are around for coredump() to write them
1390 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1391 * will write the core file out once all other LWPs are
1392 * suspended.
1393 */
1394 if ((l->l_flag & LW_WSUSPEND) != 0) {
1395 mutex_enter(p->p_lock);
1396 p->p_nrlwps--;
1397 cv_broadcast(&p->p_lwpcv);
1398 lwp_lock(l);
1399 l->l_stat = LSSUSPENDED;
1400 lwp_unlock(l);
1401 mutex_exit(p->p_lock);
1402 lwp_lock(l);
1403 mi_switch(l);
1404 }
1405
1406 /* Process is exiting. */
1407 if ((l->l_flag & LW_WEXIT) != 0) {
1408 lwp_exit(l);
1409 KASSERT(0);
1410 /* NOTREACHED */
1411 }
1412
1413 /* update lwpctl processor (for vfork child_return) */
1414 if (l->l_flag & LW_LWPCTL) {
1415 lwp_lock(l);
1416 KASSERT(kpreempt_disabled());
1417 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1418 l->l_lwpctl->lc_pctr++;
1419 l->l_flag &= ~LW_LWPCTL;
1420 lwp_unlock(l);
1421 }
1422 }
1423
1424 #ifdef KERN_SA
1425 /*
1426 * Timer events are handled specially. We only try once to deliver
1427 * pending timer upcalls; if if fails, we can try again on the next
1428 * loop around. If we need to re-enter lwp_userret(), MD code will
1429 * bounce us back here through the trap path after we return.
1430 */
1431 if (p->p_timerpend)
1432 timerupcall(l);
1433 if (l->l_flag & LW_SA_UPCALL)
1434 sa_upcall_userret(l);
1435 #endif /* KERN_SA */
1436 }
1437
1438 /*
1439 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1440 */
1441 void
1442 lwp_need_userret(struct lwp *l)
1443 {
1444 KASSERT(lwp_locked(l, NULL));
1445
1446 /*
1447 * Since the tests in lwp_userret() are done unlocked, make sure
1448 * that the condition will be seen before forcing the LWP to enter
1449 * kernel mode.
1450 */
1451 membar_producer();
1452 cpu_signotify(l);
1453 }
1454
1455 /*
1456 * Add one reference to an LWP. This will prevent the LWP from
1457 * exiting, thus keep the lwp structure and PCB around to inspect.
1458 */
1459 void
1460 lwp_addref(struct lwp *l)
1461 {
1462
1463 KASSERT(mutex_owned(l->l_proc->p_lock));
1464 KASSERT(l->l_stat != LSZOMB);
1465 KASSERT(l->l_refcnt != 0);
1466
1467 l->l_refcnt++;
1468 }
1469
1470 /*
1471 * Remove one reference to an LWP. If this is the last reference,
1472 * then we must finalize the LWP's death.
1473 */
1474 void
1475 lwp_delref(struct lwp *l)
1476 {
1477 struct proc *p = l->l_proc;
1478
1479 mutex_enter(p->p_lock);
1480 lwp_delref2(l);
1481 mutex_exit(p->p_lock);
1482 }
1483
1484 /*
1485 * Remove one reference to an LWP. If this is the last reference,
1486 * then we must finalize the LWP's death. The proc mutex is held
1487 * on entry.
1488 */
1489 void
1490 lwp_delref2(struct lwp *l)
1491 {
1492 struct proc *p = l->l_proc;
1493
1494 KASSERT(mutex_owned(p->p_lock));
1495 KASSERT(l->l_stat != LSZOMB);
1496 KASSERT(l->l_refcnt > 0);
1497 if (--l->l_refcnt == 0)
1498 cv_broadcast(&p->p_lwpcv);
1499 }
1500
1501 /*
1502 * Drain all references to the current LWP.
1503 */
1504 void
1505 lwp_drainrefs(struct lwp *l)
1506 {
1507 struct proc *p = l->l_proc;
1508
1509 KASSERT(mutex_owned(p->p_lock));
1510 KASSERT(l->l_refcnt != 0);
1511
1512 l->l_refcnt--;
1513 while (l->l_refcnt != 0)
1514 cv_wait(&p->p_lwpcv, p->p_lock);
1515 }
1516
1517 /*
1518 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1519 * be held.
1520 */
1521 bool
1522 lwp_alive(lwp_t *l)
1523 {
1524
1525 KASSERT(mutex_owned(l->l_proc->p_lock));
1526
1527 switch (l->l_stat) {
1528 case LSSLEEP:
1529 case LSRUN:
1530 case LSONPROC:
1531 case LSSTOP:
1532 case LSSUSPENDED:
1533 return true;
1534 default:
1535 return false;
1536 }
1537 }
1538
1539 /*
1540 * Return first live LWP in the process.
1541 */
1542 lwp_t *
1543 lwp_find_first(proc_t *p)
1544 {
1545 lwp_t *l;
1546
1547 KASSERT(mutex_owned(p->p_lock));
1548
1549 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1550 if (lwp_alive(l)) {
1551 return l;
1552 }
1553 }
1554
1555 return NULL;
1556 }
1557
1558 /*
1559 * Allocate a new lwpctl structure for a user LWP.
1560 */
1561 int
1562 lwp_ctl_alloc(vaddr_t *uaddr)
1563 {
1564 lcproc_t *lp;
1565 u_int bit, i, offset;
1566 struct uvm_object *uao;
1567 int error;
1568 lcpage_t *lcp;
1569 proc_t *p;
1570 lwp_t *l;
1571
1572 l = curlwp;
1573 p = l->l_proc;
1574
1575 /* don't allow a vforked process to create lwp ctls */
1576 if (p->p_lflag & PL_PPWAIT)
1577 return EBUSY;
1578
1579 if (l->l_lcpage != NULL) {
1580 lcp = l->l_lcpage;
1581 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1582 return 0;
1583 }
1584
1585 /* First time around, allocate header structure for the process. */
1586 if ((lp = p->p_lwpctl) == NULL) {
1587 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1588 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1589 lp->lp_uao = NULL;
1590 TAILQ_INIT(&lp->lp_pages);
1591 mutex_enter(p->p_lock);
1592 if (p->p_lwpctl == NULL) {
1593 p->p_lwpctl = lp;
1594 mutex_exit(p->p_lock);
1595 } else {
1596 mutex_exit(p->p_lock);
1597 mutex_destroy(&lp->lp_lock);
1598 kmem_free(lp, sizeof(*lp));
1599 lp = p->p_lwpctl;
1600 }
1601 }
1602
1603 /*
1604 * Set up an anonymous memory region to hold the shared pages.
1605 * Map them into the process' address space. The user vmspace
1606 * gets the first reference on the UAO.
1607 */
1608 mutex_enter(&lp->lp_lock);
1609 if (lp->lp_uao == NULL) {
1610 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1611 lp->lp_cur = 0;
1612 lp->lp_max = LWPCTL_UAREA_SZ;
1613 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1614 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1615 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1616 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1617 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1618 if (error != 0) {
1619 uao_detach(lp->lp_uao);
1620 lp->lp_uao = NULL;
1621 mutex_exit(&lp->lp_lock);
1622 return error;
1623 }
1624 }
1625
1626 /* Get a free block and allocate for this LWP. */
1627 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1628 if (lcp->lcp_nfree != 0)
1629 break;
1630 }
1631 if (lcp == NULL) {
1632 /* Nothing available - try to set up a free page. */
1633 if (lp->lp_cur == lp->lp_max) {
1634 mutex_exit(&lp->lp_lock);
1635 return ENOMEM;
1636 }
1637 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1638 if (lcp == NULL) {
1639 mutex_exit(&lp->lp_lock);
1640 return ENOMEM;
1641 }
1642 /*
1643 * Wire the next page down in kernel space. Since this
1644 * is a new mapping, we must add a reference.
1645 */
1646 uao = lp->lp_uao;
1647 (*uao->pgops->pgo_reference)(uao);
1648 lcp->lcp_kaddr = vm_map_min(kernel_map);
1649 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1650 uao, lp->lp_cur, PAGE_SIZE,
1651 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1652 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1653 if (error != 0) {
1654 mutex_exit(&lp->lp_lock);
1655 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1656 (*uao->pgops->pgo_detach)(uao);
1657 return error;
1658 }
1659 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1660 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1661 if (error != 0) {
1662 mutex_exit(&lp->lp_lock);
1663 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1664 lcp->lcp_kaddr + PAGE_SIZE);
1665 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1666 return error;
1667 }
1668 /* Prepare the page descriptor and link into the list. */
1669 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1670 lp->lp_cur += PAGE_SIZE;
1671 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1672 lcp->lcp_rotor = 0;
1673 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1674 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1675 }
1676 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1677 if (++i >= LWPCTL_BITMAP_ENTRIES)
1678 i = 0;
1679 }
1680 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1681 lcp->lcp_bitmap[i] ^= (1 << bit);
1682 lcp->lcp_rotor = i;
1683 lcp->lcp_nfree--;
1684 l->l_lcpage = lcp;
1685 offset = (i << 5) + bit;
1686 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1687 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1688 mutex_exit(&lp->lp_lock);
1689
1690 KPREEMPT_DISABLE(l);
1691 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1692 KPREEMPT_ENABLE(l);
1693
1694 return 0;
1695 }
1696
1697 /*
1698 * Free an lwpctl structure back to the per-process list.
1699 */
1700 void
1701 lwp_ctl_free(lwp_t *l)
1702 {
1703 struct proc *p = l->l_proc;
1704 lcproc_t *lp;
1705 lcpage_t *lcp;
1706 u_int map, offset;
1707
1708 /* don't free a lwp context we borrowed for vfork */
1709 if (p->p_lflag & PL_PPWAIT) {
1710 l->l_lwpctl = NULL;
1711 return;
1712 }
1713
1714 lp = p->p_lwpctl;
1715 KASSERT(lp != NULL);
1716
1717 lcp = l->l_lcpage;
1718 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1719 KASSERT(offset < LWPCTL_PER_PAGE);
1720
1721 mutex_enter(&lp->lp_lock);
1722 lcp->lcp_nfree++;
1723 map = offset >> 5;
1724 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1725 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1726 lcp->lcp_rotor = map;
1727 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1728 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1729 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1730 }
1731 mutex_exit(&lp->lp_lock);
1732 }
1733
1734 /*
1735 * Process is exiting; tear down lwpctl state. This can only be safely
1736 * called by the last LWP in the process.
1737 */
1738 void
1739 lwp_ctl_exit(void)
1740 {
1741 lcpage_t *lcp, *next;
1742 lcproc_t *lp;
1743 proc_t *p;
1744 lwp_t *l;
1745
1746 l = curlwp;
1747 l->l_lwpctl = NULL;
1748 l->l_lcpage = NULL;
1749 p = l->l_proc;
1750 lp = p->p_lwpctl;
1751
1752 KASSERT(lp != NULL);
1753 KASSERT(p->p_nlwps == 1);
1754
1755 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1756 next = TAILQ_NEXT(lcp, lcp_chain);
1757 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1758 lcp->lcp_kaddr + PAGE_SIZE);
1759 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1760 }
1761
1762 if (lp->lp_uao != NULL) {
1763 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1764 lp->lp_uva + LWPCTL_UAREA_SZ);
1765 }
1766
1767 mutex_destroy(&lp->lp_lock);
1768 kmem_free(lp, sizeof(*lp));
1769 p->p_lwpctl = NULL;
1770 }
1771
1772 /*
1773 * Return the current LWP's "preemption counter". Used to detect
1774 * preemption across operations that can tolerate preemption without
1775 * crashing, but which may generate incorrect results if preempted.
1776 */
1777 uint64_t
1778 lwp_pctr(void)
1779 {
1780
1781 return curlwp->l_ncsw;
1782 }
1783
1784 /*
1785 * Set an LWP's private data pointer.
1786 */
1787 int
1788 lwp_setprivate(struct lwp *l, void *ptr)
1789 {
1790 int error = 0;
1791
1792 l->l_private = ptr;
1793 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1794 error = cpu_lwp_setprivate(l, ptr);
1795 #endif
1796 return error;
1797 }
1798
1799 #if defined(DDB)
1800 #include <machine/pcb.h>
1801
1802 void
1803 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1804 {
1805 lwp_t *l;
1806
1807 LIST_FOREACH(l, &alllwp, l_list) {
1808 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1809
1810 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1811 continue;
1812 }
1813 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1814 (void *)addr, (void *)stack,
1815 (size_t)(addr - stack), l);
1816 }
1817 }
1818 #endif /* defined(DDB) */
1819