kern_lwp.c revision 1.160 1 /* $NetBSD: kern_lwp.c,v 1.160 2011/07/26 13:03:57 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.160 2011/07/26 13:03:57 yamt Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_sa.h"
219 #include "opt_dtrace.h"
220
221 #define _LWP_API_PRIVATE
222
223 #include <sys/param.h>
224 #include <sys/systm.h>
225 #include <sys/cpu.h>
226 #include <sys/pool.h>
227 #include <sys/proc.h>
228 #include <sys/sa.h>
229 #include <sys/savar.h>
230 #include <sys/syscallargs.h>
231 #include <sys/syscall_stats.h>
232 #include <sys/kauth.h>
233 #include <sys/sleepq.h>
234 #include <sys/lockdebug.h>
235 #include <sys/kmem.h>
236 #include <sys/pset.h>
237 #include <sys/intr.h>
238 #include <sys/lwpctl.h>
239 #include <sys/atomic.h>
240 #include <sys/filedesc.h>
241 #include <sys/dtrace_bsd.h>
242 #include <sys/sdt.h>
243 #include <sys/xcall.h>
244
245 #include <uvm/uvm_extern.h>
246 #include <uvm/uvm_object.h>
247
248 static pool_cache_t lwp_cache __read_mostly;
249 struct lwplist alllwp __cacheline_aligned;
250
251 static void lwp_dtor(void *, void *);
252
253 /* DTrace proc provider probes */
254 SDT_PROBE_DEFINE(proc,,,lwp_create,
255 "struct lwp *", NULL,
256 NULL, NULL, NULL, NULL,
257 NULL, NULL, NULL, NULL);
258 SDT_PROBE_DEFINE(proc,,,lwp_start,
259 "struct lwp *", NULL,
260 NULL, NULL, NULL, NULL,
261 NULL, NULL, NULL, NULL);
262 SDT_PROBE_DEFINE(proc,,,lwp_exit,
263 "struct lwp *", NULL,
264 NULL, NULL, NULL, NULL,
265 NULL, NULL, NULL, NULL);
266
267 struct turnstile turnstile0;
268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
269 #ifdef LWP0_CPU_INFO
270 .l_cpu = LWP0_CPU_INFO,
271 #endif
272 #ifdef LWP0_MD_INITIALIZER
273 .l_md = LWP0_MD_INITIALIZER,
274 #endif
275 .l_proc = &proc0,
276 .l_lid = 1,
277 .l_flag = LW_SYSTEM,
278 .l_stat = LSONPROC,
279 .l_ts = &turnstile0,
280 .l_syncobj = &sched_syncobj,
281 .l_refcnt = 1,
282 .l_priority = PRI_USER + NPRI_USER - 1,
283 .l_inheritedprio = -1,
284 .l_class = SCHED_OTHER,
285 .l_psid = PS_NONE,
286 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
287 .l_name = __UNCONST("swapper"),
288 .l_fd = &filedesc0,
289 };
290
291 void
292 lwpinit(void)
293 {
294
295 LIST_INIT(&alllwp);
296 lwpinit_specificdata();
297 lwp_sys_init();
298 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
299 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
300 }
301
302 void
303 lwp0_init(void)
304 {
305 struct lwp *l = &lwp0;
306
307 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
308 KASSERT(l->l_lid == proc0.p_nlwpid);
309
310 LIST_INSERT_HEAD(&alllwp, l, l_list);
311
312 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
313 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
314 cv_init(&l->l_sigcv, "sigwait");
315
316 kauth_cred_hold(proc0.p_cred);
317 l->l_cred = proc0.p_cred;
318
319 lwp_initspecific(l);
320
321 SYSCALL_TIME_LWP_INIT(l);
322 }
323
324 static void
325 lwp_dtor(void *arg, void *obj)
326 {
327 lwp_t *l = obj;
328 uint64_t where;
329 (void)l;
330
331 /*
332 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
333 * calls will exit before memory of LWP is returned to the pool, where
334 * KVA of LWP structure might be freed and re-used for other purposes.
335 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
336 * callers, therefore cross-call to all CPUs will do the job. Also,
337 * the value of l->l_cpu must be still valid at this point.
338 */
339 KASSERT(l->l_cpu != NULL);
340 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
341 xc_wait(where);
342 }
343
344 /*
345 * Set an suspended.
346 *
347 * Must be called with p_lock held, and the LWP locked. Will unlock the
348 * LWP before return.
349 */
350 int
351 lwp_suspend(struct lwp *curl, struct lwp *t)
352 {
353 int error;
354
355 KASSERT(mutex_owned(t->l_proc->p_lock));
356 KASSERT(lwp_locked(t, NULL));
357
358 KASSERT(curl != t || curl->l_stat == LSONPROC);
359
360 /*
361 * If the current LWP has been told to exit, we must not suspend anyone
362 * else or deadlock could occur. We won't return to userspace.
363 */
364 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
365 lwp_unlock(t);
366 return (EDEADLK);
367 }
368
369 error = 0;
370
371 switch (t->l_stat) {
372 case LSRUN:
373 case LSONPROC:
374 t->l_flag |= LW_WSUSPEND;
375 lwp_need_userret(t);
376 lwp_unlock(t);
377 break;
378
379 case LSSLEEP:
380 t->l_flag |= LW_WSUSPEND;
381
382 /*
383 * Kick the LWP and try to get it to the kernel boundary
384 * so that it will release any locks that it holds.
385 * setrunnable() will release the lock.
386 */
387 if ((t->l_flag & LW_SINTR) != 0)
388 setrunnable(t);
389 else
390 lwp_unlock(t);
391 break;
392
393 case LSSUSPENDED:
394 lwp_unlock(t);
395 break;
396
397 case LSSTOP:
398 t->l_flag |= LW_WSUSPEND;
399 setrunnable(t);
400 break;
401
402 case LSIDL:
403 case LSZOMB:
404 error = EINTR; /* It's what Solaris does..... */
405 lwp_unlock(t);
406 break;
407 }
408
409 return (error);
410 }
411
412 /*
413 * Restart a suspended LWP.
414 *
415 * Must be called with p_lock held, and the LWP locked. Will unlock the
416 * LWP before return.
417 */
418 void
419 lwp_continue(struct lwp *l)
420 {
421
422 KASSERT(mutex_owned(l->l_proc->p_lock));
423 KASSERT(lwp_locked(l, NULL));
424
425 /* If rebooting or not suspended, then just bail out. */
426 if ((l->l_flag & LW_WREBOOT) != 0) {
427 lwp_unlock(l);
428 return;
429 }
430
431 l->l_flag &= ~LW_WSUSPEND;
432
433 if (l->l_stat != LSSUSPENDED) {
434 lwp_unlock(l);
435 return;
436 }
437
438 /* setrunnable() will release the lock. */
439 setrunnable(l);
440 }
441
442 /*
443 * Restart a stopped LWP.
444 *
445 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
446 * LWP before return.
447 */
448 void
449 lwp_unstop(struct lwp *l)
450 {
451 struct proc *p = l->l_proc;
452
453 KASSERT(mutex_owned(proc_lock));
454 KASSERT(mutex_owned(p->p_lock));
455
456 lwp_lock(l);
457
458 /* If not stopped, then just bail out. */
459 if (l->l_stat != LSSTOP) {
460 lwp_unlock(l);
461 return;
462 }
463
464 p->p_stat = SACTIVE;
465 p->p_sflag &= ~PS_STOPPING;
466
467 if (!p->p_waited)
468 p->p_pptr->p_nstopchild--;
469
470 if (l->l_wchan == NULL) {
471 /* setrunnable() will release the lock. */
472 setrunnable(l);
473 } else {
474 l->l_stat = LSSLEEP;
475 p->p_nrlwps++;
476 lwp_unlock(l);
477 }
478 }
479
480 /*
481 * Wait for an LWP within the current process to exit. If 'lid' is
482 * non-zero, we are waiting for a specific LWP.
483 *
484 * Must be called with p->p_lock held.
485 */
486 int
487 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
488 {
489 struct proc *p = l->l_proc;
490 struct lwp *l2;
491 int nfound, error;
492 lwpid_t curlid;
493 bool exiting;
494
495 KASSERT(mutex_owned(p->p_lock));
496
497 p->p_nlwpwait++;
498 l->l_waitingfor = lid;
499 curlid = l->l_lid;
500 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
501
502 for (;;) {
503 /*
504 * Avoid a race between exit1() and sigexit(): if the
505 * process is dumping core, then we need to bail out: call
506 * into lwp_userret() where we will be suspended until the
507 * deed is done.
508 */
509 if ((p->p_sflag & PS_WCORE) != 0) {
510 mutex_exit(p->p_lock);
511 lwp_userret(l);
512 #ifdef DIAGNOSTIC
513 panic("lwp_wait1");
514 #endif
515 /* NOTREACHED */
516 }
517
518 /*
519 * First off, drain any detached LWP that is waiting to be
520 * reaped.
521 */
522 while ((l2 = p->p_zomblwp) != NULL) {
523 p->p_zomblwp = NULL;
524 lwp_free(l2, false, false);/* releases proc mutex */
525 mutex_enter(p->p_lock);
526 }
527
528 /*
529 * Now look for an LWP to collect. If the whole process is
530 * exiting, count detached LWPs as eligible to be collected,
531 * but don't drain them here.
532 */
533 nfound = 0;
534 error = 0;
535 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
536 /*
537 * If a specific wait and the target is waiting on
538 * us, then avoid deadlock. This also traps LWPs
539 * that try to wait on themselves.
540 *
541 * Note that this does not handle more complicated
542 * cycles, like: t1 -> t2 -> t3 -> t1. The process
543 * can still be killed so it is not a major problem.
544 */
545 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
546 error = EDEADLK;
547 break;
548 }
549 if (l2 == l)
550 continue;
551 if ((l2->l_prflag & LPR_DETACHED) != 0) {
552 nfound += exiting;
553 continue;
554 }
555 if (lid != 0) {
556 if (l2->l_lid != lid)
557 continue;
558 /*
559 * Mark this LWP as the first waiter, if there
560 * is no other.
561 */
562 if (l2->l_waiter == 0)
563 l2->l_waiter = curlid;
564 } else if (l2->l_waiter != 0) {
565 /*
566 * It already has a waiter - so don't
567 * collect it. If the waiter doesn't
568 * grab it we'll get another chance
569 * later.
570 */
571 nfound++;
572 continue;
573 }
574 nfound++;
575
576 /* No need to lock the LWP in order to see LSZOMB. */
577 if (l2->l_stat != LSZOMB)
578 continue;
579
580 /*
581 * We're no longer waiting. Reset the "first waiter"
582 * pointer on the target, in case it was us.
583 */
584 l->l_waitingfor = 0;
585 l2->l_waiter = 0;
586 p->p_nlwpwait--;
587 if (departed)
588 *departed = l2->l_lid;
589 sched_lwp_collect(l2);
590
591 /* lwp_free() releases the proc lock. */
592 lwp_free(l2, false, false);
593 mutex_enter(p->p_lock);
594 return 0;
595 }
596
597 if (error != 0)
598 break;
599 if (nfound == 0) {
600 error = ESRCH;
601 break;
602 }
603
604 /*
605 * The kernel is careful to ensure that it can not deadlock
606 * when exiting - just keep waiting.
607 */
608 if (exiting) {
609 KASSERT(p->p_nlwps > 1);
610 cv_wait(&p->p_lwpcv, p->p_lock);
611 continue;
612 }
613
614 /*
615 * If all other LWPs are waiting for exits or suspends
616 * and the supply of zombies and potential zombies is
617 * exhausted, then we are about to deadlock.
618 *
619 * If the process is exiting (and this LWP is not the one
620 * that is coordinating the exit) then bail out now.
621 */
622 if ((p->p_sflag & PS_WEXIT) != 0 ||
623 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
624 error = EDEADLK;
625 break;
626 }
627
628 /*
629 * Sit around and wait for something to happen. We'll be
630 * awoken if any of the conditions examined change: if an
631 * LWP exits, is collected, or is detached.
632 */
633 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
634 break;
635 }
636
637 /*
638 * We didn't find any LWPs to collect, we may have received a
639 * signal, or some other condition has caused us to bail out.
640 *
641 * If waiting on a specific LWP, clear the waiters marker: some
642 * other LWP may want it. Then, kick all the remaining waiters
643 * so that they can re-check for zombies and for deadlock.
644 */
645 if (lid != 0) {
646 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
647 if (l2->l_lid == lid) {
648 if (l2->l_waiter == curlid)
649 l2->l_waiter = 0;
650 break;
651 }
652 }
653 }
654 p->p_nlwpwait--;
655 l->l_waitingfor = 0;
656 cv_broadcast(&p->p_lwpcv);
657
658 return error;
659 }
660
661 /*
662 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
663 * The new LWP is created in state LSIDL and must be set running,
664 * suspended, or stopped by the caller.
665 */
666 int
667 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
668 void *stack, size_t stacksize, void (*func)(void *), void *arg,
669 lwp_t **rnewlwpp, int sclass)
670 {
671 struct lwp *l2, *isfree;
672 turnstile_t *ts;
673 lwpid_t lid;
674
675 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
676
677 /*
678 * First off, reap any detached LWP waiting to be collected.
679 * We can re-use its LWP structure and turnstile.
680 */
681 isfree = NULL;
682 if (p2->p_zomblwp != NULL) {
683 mutex_enter(p2->p_lock);
684 if ((isfree = p2->p_zomblwp) != NULL) {
685 p2->p_zomblwp = NULL;
686 lwp_free(isfree, true, false);/* releases proc mutex */
687 } else
688 mutex_exit(p2->p_lock);
689 }
690 if (isfree == NULL) {
691 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
692 memset(l2, 0, sizeof(*l2));
693 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
694 SLIST_INIT(&l2->l_pi_lenders);
695 } else {
696 l2 = isfree;
697 ts = l2->l_ts;
698 KASSERT(l2->l_inheritedprio == -1);
699 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
700 memset(l2, 0, sizeof(*l2));
701 l2->l_ts = ts;
702 }
703
704 l2->l_stat = LSIDL;
705 l2->l_proc = p2;
706 l2->l_refcnt = 1;
707 l2->l_class = sclass;
708
709 /*
710 * If vfork(), we want the LWP to run fast and on the same CPU
711 * as its parent, so that it can reuse the VM context and cache
712 * footprint on the local CPU.
713 */
714 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
715 l2->l_kpribase = PRI_KERNEL;
716 l2->l_priority = l1->l_priority;
717 l2->l_inheritedprio = -1;
718 l2->l_flag = 0;
719 l2->l_pflag = LP_MPSAFE;
720 TAILQ_INIT(&l2->l_ld_locks);
721
722 /*
723 * For vfork, borrow parent's lwpctl context if it exists.
724 * This also causes us to return via lwp_userret.
725 */
726 if (flags & LWP_VFORK && l1->l_lwpctl) {
727 l2->l_lwpctl = l1->l_lwpctl;
728 l2->l_flag |= LW_LWPCTL;
729 }
730
731 /*
732 * If not the first LWP in the process, grab a reference to the
733 * descriptor table.
734 */
735 l2->l_fd = p2->p_fd;
736 if (p2->p_nlwps != 0) {
737 KASSERT(l1->l_proc == p2);
738 fd_hold(l2);
739 } else {
740 KASSERT(l1->l_proc != p2);
741 }
742
743 if (p2->p_flag & PK_SYSTEM) {
744 /* Mark it as a system LWP. */
745 l2->l_flag |= LW_SYSTEM;
746 }
747
748 kpreempt_disable();
749 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
750 l2->l_cpu = l1->l_cpu;
751 kpreempt_enable();
752
753 kdtrace_thread_ctor(NULL, l2);
754 lwp_initspecific(l2);
755 sched_lwp_fork(l1, l2);
756 lwp_update_creds(l2);
757 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
758 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
759 cv_init(&l2->l_sigcv, "sigwait");
760 l2->l_syncobj = &sched_syncobj;
761
762 if (rnewlwpp != NULL)
763 *rnewlwpp = l2;
764
765 /*
766 * PCU state needs to be saved before calling uvm_lwp_fork() so that
767 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
768 */
769 pcu_save_all(l1);
770
771 uvm_lwp_setuarea(l2, uaddr);
772 uvm_lwp_fork(l1, l2, stack, stacksize, func,
773 (arg != NULL) ? arg : l2);
774
775 if ((flags & LWP_PIDLID) != 0) {
776 lid = proc_alloc_pid(p2);
777 l2->l_pflag |= LP_PIDLID;
778 } else {
779 lid = 0;
780 }
781
782 mutex_enter(p2->p_lock);
783
784 if ((flags & LWP_DETACHED) != 0) {
785 l2->l_prflag = LPR_DETACHED;
786 p2->p_ndlwps++;
787 } else
788 l2->l_prflag = 0;
789
790 l2->l_sigmask = l1->l_sigmask;
791 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
792 sigemptyset(&l2->l_sigpend.sp_set);
793
794 if (lid == 0) {
795 p2->p_nlwpid++;
796 if (p2->p_nlwpid == 0)
797 p2->p_nlwpid++;
798 lid = p2->p_nlwpid;
799 }
800 l2->l_lid = lid;
801 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
802 p2->p_nlwps++;
803 p2->p_nrlwps++;
804
805 if ((p2->p_flag & PK_SYSTEM) == 0) {
806 /* Inherit an affinity */
807 if (l1->l_flag & LW_AFFINITY) {
808 /*
809 * Note that we hold the state lock while inheriting
810 * the affinity to avoid race with sched_setaffinity().
811 */
812 lwp_lock(l1);
813 if (l1->l_flag & LW_AFFINITY) {
814 kcpuset_use(l1->l_affinity);
815 l2->l_affinity = l1->l_affinity;
816 l2->l_flag |= LW_AFFINITY;
817 }
818 lwp_unlock(l1);
819 }
820 lwp_lock(l2);
821 /* Inherit a processor-set */
822 l2->l_psid = l1->l_psid;
823 /* Look for a CPU to start */
824 l2->l_cpu = sched_takecpu(l2);
825 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
826 }
827 mutex_exit(p2->p_lock);
828
829 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
830
831 mutex_enter(proc_lock);
832 LIST_INSERT_HEAD(&alllwp, l2, l_list);
833 mutex_exit(proc_lock);
834
835 SYSCALL_TIME_LWP_INIT(l2);
836
837 if (p2->p_emul->e_lwp_fork)
838 (*p2->p_emul->e_lwp_fork)(l1, l2);
839
840 return (0);
841 }
842
843 /*
844 * Called by MD code when a new LWP begins execution. Must be called
845 * with the previous LWP locked (so at splsched), or if there is no
846 * previous LWP, at splsched.
847 */
848 void
849 lwp_startup(struct lwp *prev, struct lwp *new)
850 {
851
852 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
853
854 KASSERT(kpreempt_disabled());
855 if (prev != NULL) {
856 /*
857 * Normalize the count of the spin-mutexes, it was
858 * increased in mi_switch(). Unmark the state of
859 * context switch - it is finished for previous LWP.
860 */
861 curcpu()->ci_mtx_count++;
862 membar_exit();
863 prev->l_ctxswtch = 0;
864 }
865 KPREEMPT_DISABLE(new);
866 spl0();
867 pmap_activate(new);
868 LOCKDEBUG_BARRIER(NULL, 0);
869 KPREEMPT_ENABLE(new);
870 if ((new->l_pflag & LP_MPSAFE) == 0) {
871 KERNEL_LOCK(1, new);
872 }
873 }
874
875 /*
876 * Exit an LWP.
877 */
878 void
879 lwp_exit(struct lwp *l)
880 {
881 struct proc *p = l->l_proc;
882 struct lwp *l2;
883 bool current;
884
885 current = (l == curlwp);
886
887 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
888 KASSERT(p == curproc);
889
890 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
891
892 /*
893 * Verify that we hold no locks other than the kernel lock.
894 */
895 LOCKDEBUG_BARRIER(&kernel_lock, 0);
896
897 /*
898 * If we are the last live LWP in a process, we need to exit the
899 * entire process. We do so with an exit status of zero, because
900 * it's a "controlled" exit, and because that's what Solaris does.
901 *
902 * We are not quite a zombie yet, but for accounting purposes we
903 * must increment the count of zombies here.
904 *
905 * Note: the last LWP's specificdata will be deleted here.
906 */
907 mutex_enter(p->p_lock);
908 if (p->p_nlwps - p->p_nzlwps == 1) {
909 KASSERT(current == true);
910 /* XXXSMP kernel_lock not held */
911 exit1(l, 0);
912 /* NOTREACHED */
913 }
914 p->p_nzlwps++;
915 mutex_exit(p->p_lock);
916
917 if (p->p_emul->e_lwp_exit)
918 (*p->p_emul->e_lwp_exit)(l);
919
920 /* Drop filedesc reference. */
921 fd_free();
922
923 /* Delete the specificdata while it's still safe to sleep. */
924 lwp_finispecific(l);
925
926 /*
927 * Release our cached credentials.
928 */
929 kauth_cred_free(l->l_cred);
930 callout_destroy(&l->l_timeout_ch);
931
932 /*
933 * Remove the LWP from the global list.
934 * Free its LID from the PID namespace if needed.
935 */
936 mutex_enter(proc_lock);
937 LIST_REMOVE(l, l_list);
938 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
939 proc_free_pid(l->l_lid);
940 }
941 mutex_exit(proc_lock);
942
943 /*
944 * Get rid of all references to the LWP that others (e.g. procfs)
945 * may have, and mark the LWP as a zombie. If the LWP is detached,
946 * mark it waiting for collection in the proc structure. Note that
947 * before we can do that, we need to free any other dead, deatched
948 * LWP waiting to meet its maker.
949 */
950 mutex_enter(p->p_lock);
951 lwp_drainrefs(l);
952
953 if ((l->l_prflag & LPR_DETACHED) != 0) {
954 while ((l2 = p->p_zomblwp) != NULL) {
955 p->p_zomblwp = NULL;
956 lwp_free(l2, false, false);/* releases proc mutex */
957 mutex_enter(p->p_lock);
958 l->l_refcnt++;
959 lwp_drainrefs(l);
960 }
961 p->p_zomblwp = l;
962 }
963
964 /*
965 * If we find a pending signal for the process and we have been
966 * asked to check for signals, then we lose: arrange to have
967 * all other LWPs in the process check for signals.
968 */
969 if ((l->l_flag & LW_PENDSIG) != 0 &&
970 firstsig(&p->p_sigpend.sp_set) != 0) {
971 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
972 lwp_lock(l2);
973 l2->l_flag |= LW_PENDSIG;
974 lwp_unlock(l2);
975 }
976 }
977
978 /*
979 * Release any PCU resources before becoming a zombie.
980 */
981 pcu_discard_all(l);
982
983 lwp_lock(l);
984 l->l_stat = LSZOMB;
985 if (l->l_name != NULL)
986 strcpy(l->l_name, "(zombie)");
987 if (l->l_flag & LW_AFFINITY) {
988 l->l_flag &= ~LW_AFFINITY;
989 } else {
990 KASSERT(l->l_affinity == NULL);
991 }
992 lwp_unlock(l);
993 p->p_nrlwps--;
994 cv_broadcast(&p->p_lwpcv);
995 if (l->l_lwpctl != NULL)
996 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
997 mutex_exit(p->p_lock);
998
999 /* Safe without lock since LWP is in zombie state */
1000 if (l->l_affinity) {
1001 kcpuset_unuse(l->l_affinity, NULL);
1002 l->l_affinity = NULL;
1003 }
1004
1005 /*
1006 * We can no longer block. At this point, lwp_free() may already
1007 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1008 *
1009 * Free MD LWP resources.
1010 */
1011 cpu_lwp_free(l, 0);
1012
1013 if (current) {
1014 pmap_deactivate(l);
1015
1016 /*
1017 * Release the kernel lock, and switch away into
1018 * oblivion.
1019 */
1020 #ifdef notyet
1021 /* XXXSMP hold in lwp_userret() */
1022 KERNEL_UNLOCK_LAST(l);
1023 #else
1024 KERNEL_UNLOCK_ALL(l, NULL);
1025 #endif
1026 lwp_exit_switchaway(l);
1027 }
1028 }
1029
1030 /*
1031 * Free a dead LWP's remaining resources.
1032 *
1033 * XXXLWP limits.
1034 */
1035 void
1036 lwp_free(struct lwp *l, bool recycle, bool last)
1037 {
1038 struct proc *p = l->l_proc;
1039 struct rusage *ru;
1040 ksiginfoq_t kq;
1041
1042 KASSERT(l != curlwp);
1043 KASSERT(last || mutex_owned(p->p_lock));
1044
1045 /*
1046 * If this was not the last LWP in the process, then adjust
1047 * counters and unlock.
1048 */
1049 if (!last) {
1050 /*
1051 * Add the LWP's run time to the process' base value.
1052 * This needs to co-incide with coming off p_lwps.
1053 */
1054 bintime_add(&p->p_rtime, &l->l_rtime);
1055 p->p_pctcpu += l->l_pctcpu;
1056 ru = &p->p_stats->p_ru;
1057 ruadd(ru, &l->l_ru);
1058 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1059 ru->ru_nivcsw += l->l_nivcsw;
1060 LIST_REMOVE(l, l_sibling);
1061 p->p_nlwps--;
1062 p->p_nzlwps--;
1063 if ((l->l_prflag & LPR_DETACHED) != 0)
1064 p->p_ndlwps--;
1065
1066 /*
1067 * Have any LWPs sleeping in lwp_wait() recheck for
1068 * deadlock.
1069 */
1070 cv_broadcast(&p->p_lwpcv);
1071 mutex_exit(p->p_lock);
1072 }
1073
1074 #ifdef MULTIPROCESSOR
1075 /*
1076 * In the unlikely event that the LWP is still on the CPU,
1077 * then spin until it has switched away. We need to release
1078 * all locks to avoid deadlock against interrupt handlers on
1079 * the target CPU.
1080 */
1081 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1082 int count;
1083 (void)count; /* XXXgcc */
1084 KERNEL_UNLOCK_ALL(curlwp, &count);
1085 while ((l->l_pflag & LP_RUNNING) != 0 ||
1086 l->l_cpu->ci_curlwp == l)
1087 SPINLOCK_BACKOFF_HOOK;
1088 KERNEL_LOCK(count, curlwp);
1089 }
1090 #endif
1091
1092 /*
1093 * Destroy the LWP's remaining signal information.
1094 */
1095 ksiginfo_queue_init(&kq);
1096 sigclear(&l->l_sigpend, NULL, &kq);
1097 ksiginfo_queue_drain(&kq);
1098 cv_destroy(&l->l_sigcv);
1099
1100 /*
1101 * Free the LWP's turnstile and the LWP structure itself unless the
1102 * caller wants to recycle them. Also, free the scheduler specific
1103 * data.
1104 *
1105 * We can't return turnstile0 to the pool (it didn't come from it),
1106 * so if it comes up just drop it quietly and move on.
1107 *
1108 * We don't recycle the VM resources at this time.
1109 */
1110 if (l->l_lwpctl != NULL)
1111 lwp_ctl_free(l);
1112
1113 if (!recycle && l->l_ts != &turnstile0)
1114 pool_cache_put(turnstile_cache, l->l_ts);
1115 if (l->l_name != NULL)
1116 kmem_free(l->l_name, MAXCOMLEN);
1117
1118 cpu_lwp_free2(l);
1119 uvm_lwp_exit(l);
1120
1121 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1122 KASSERT(l->l_inheritedprio == -1);
1123 KASSERT(l->l_blcnt == 0);
1124 kdtrace_thread_dtor(NULL, l);
1125 if (!recycle)
1126 pool_cache_put(lwp_cache, l);
1127 }
1128
1129 /*
1130 * Migrate the LWP to the another CPU. Unlocks the LWP.
1131 */
1132 void
1133 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1134 {
1135 struct schedstate_percpu *tspc;
1136 int lstat = l->l_stat;
1137
1138 KASSERT(lwp_locked(l, NULL));
1139 KASSERT(tci != NULL);
1140
1141 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1142 if ((l->l_pflag & LP_RUNNING) != 0) {
1143 lstat = LSONPROC;
1144 }
1145
1146 /*
1147 * The destination CPU could be changed while previous migration
1148 * was not finished.
1149 */
1150 if (l->l_target_cpu != NULL) {
1151 l->l_target_cpu = tci;
1152 lwp_unlock(l);
1153 return;
1154 }
1155
1156 /* Nothing to do if trying to migrate to the same CPU */
1157 if (l->l_cpu == tci) {
1158 lwp_unlock(l);
1159 return;
1160 }
1161
1162 KASSERT(l->l_target_cpu == NULL);
1163 tspc = &tci->ci_schedstate;
1164 switch (lstat) {
1165 case LSRUN:
1166 l->l_target_cpu = tci;
1167 break;
1168 case LSIDL:
1169 l->l_cpu = tci;
1170 lwp_unlock_to(l, tspc->spc_mutex);
1171 return;
1172 case LSSLEEP:
1173 l->l_cpu = tci;
1174 break;
1175 case LSSTOP:
1176 case LSSUSPENDED:
1177 l->l_cpu = tci;
1178 if (l->l_wchan == NULL) {
1179 lwp_unlock_to(l, tspc->spc_lwplock);
1180 return;
1181 }
1182 break;
1183 case LSONPROC:
1184 l->l_target_cpu = tci;
1185 spc_lock(l->l_cpu);
1186 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1187 spc_unlock(l->l_cpu);
1188 break;
1189 }
1190 lwp_unlock(l);
1191 }
1192
1193 /*
1194 * Find the LWP in the process. Arguments may be zero, in such case,
1195 * the calling process and first LWP in the list will be used.
1196 * On success - returns proc locked.
1197 */
1198 struct lwp *
1199 lwp_find2(pid_t pid, lwpid_t lid)
1200 {
1201 proc_t *p;
1202 lwp_t *l;
1203
1204 /* Find the process. */
1205 if (pid != 0) {
1206 mutex_enter(proc_lock);
1207 p = proc_find(pid);
1208 if (p == NULL) {
1209 mutex_exit(proc_lock);
1210 return NULL;
1211 }
1212 mutex_enter(p->p_lock);
1213 mutex_exit(proc_lock);
1214 } else {
1215 p = curlwp->l_proc;
1216 mutex_enter(p->p_lock);
1217 }
1218 /* Find the thread. */
1219 if (lid != 0) {
1220 l = lwp_find(p, lid);
1221 } else {
1222 l = LIST_FIRST(&p->p_lwps);
1223 }
1224 if (l == NULL) {
1225 mutex_exit(p->p_lock);
1226 }
1227 return l;
1228 }
1229
1230 /*
1231 * Look up a live LWP within the specified process, and return it locked.
1232 *
1233 * Must be called with p->p_lock held.
1234 */
1235 struct lwp *
1236 lwp_find(struct proc *p, lwpid_t id)
1237 {
1238 struct lwp *l;
1239
1240 KASSERT(mutex_owned(p->p_lock));
1241
1242 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1243 if (l->l_lid == id)
1244 break;
1245 }
1246
1247 /*
1248 * No need to lock - all of these conditions will
1249 * be visible with the process level mutex held.
1250 */
1251 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1252 l = NULL;
1253
1254 return l;
1255 }
1256
1257 /*
1258 * Update an LWP's cached credentials to mirror the process' master copy.
1259 *
1260 * This happens early in the syscall path, on user trap, and on LWP
1261 * creation. A long-running LWP can also voluntarily choose to update
1262 * it's credentials by calling this routine. This may be called from
1263 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1264 */
1265 void
1266 lwp_update_creds(struct lwp *l)
1267 {
1268 kauth_cred_t oc;
1269 struct proc *p;
1270
1271 p = l->l_proc;
1272 oc = l->l_cred;
1273
1274 mutex_enter(p->p_lock);
1275 kauth_cred_hold(p->p_cred);
1276 l->l_cred = p->p_cred;
1277 l->l_prflag &= ~LPR_CRMOD;
1278 mutex_exit(p->p_lock);
1279 if (oc != NULL)
1280 kauth_cred_free(oc);
1281 }
1282
1283 /*
1284 * Verify that an LWP is locked, and optionally verify that the lock matches
1285 * one we specify.
1286 */
1287 int
1288 lwp_locked(struct lwp *l, kmutex_t *mtx)
1289 {
1290 kmutex_t *cur = l->l_mutex;
1291
1292 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1293 }
1294
1295 /*
1296 * Lend a new mutex to an LWP. The old mutex must be held.
1297 */
1298 void
1299 lwp_setlock(struct lwp *l, kmutex_t *new)
1300 {
1301
1302 KASSERT(mutex_owned(l->l_mutex));
1303
1304 membar_exit();
1305 l->l_mutex = new;
1306 }
1307
1308 /*
1309 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1310 * must be held.
1311 */
1312 void
1313 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1314 {
1315 kmutex_t *old;
1316
1317 KASSERT(lwp_locked(l, NULL));
1318
1319 old = l->l_mutex;
1320 membar_exit();
1321 l->l_mutex = new;
1322 mutex_spin_exit(old);
1323 }
1324
1325 int
1326 lwp_trylock(struct lwp *l)
1327 {
1328 kmutex_t *old;
1329
1330 for (;;) {
1331 if (!mutex_tryenter(old = l->l_mutex))
1332 return 0;
1333 if (__predict_true(l->l_mutex == old))
1334 return 1;
1335 mutex_spin_exit(old);
1336 }
1337 }
1338
1339 void
1340 lwp_unsleep(lwp_t *l, bool cleanup)
1341 {
1342
1343 KASSERT(mutex_owned(l->l_mutex));
1344 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1345 }
1346
1347 /*
1348 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1349 * set.
1350 */
1351 void
1352 lwp_userret(struct lwp *l)
1353 {
1354 struct proc *p;
1355 int sig;
1356
1357 KASSERT(l == curlwp);
1358 KASSERT(l->l_stat == LSONPROC);
1359 p = l->l_proc;
1360
1361 #ifndef __HAVE_FAST_SOFTINTS
1362 /* Run pending soft interrupts. */
1363 if (l->l_cpu->ci_data.cpu_softints != 0)
1364 softint_overlay();
1365 #endif
1366
1367 #ifdef KERN_SA
1368 /* Generate UNBLOCKED upcall if needed */
1369 if (l->l_flag & LW_SA_BLOCKING) {
1370 sa_unblock_userret(l);
1371 /* NOTREACHED */
1372 }
1373 #endif
1374
1375 /*
1376 * It should be safe to do this read unlocked on a multiprocessor
1377 * system..
1378 *
1379 * LW_SA_UPCALL will be handled after the while() loop, so don't
1380 * consider it now.
1381 */
1382 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1383 /*
1384 * Process pending signals first, unless the process
1385 * is dumping core or exiting, where we will instead
1386 * enter the LW_WSUSPEND case below.
1387 */
1388 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1389 LW_PENDSIG) {
1390 mutex_enter(p->p_lock);
1391 while ((sig = issignal(l)) != 0)
1392 postsig(sig);
1393 mutex_exit(p->p_lock);
1394 }
1395
1396 /*
1397 * Core-dump or suspend pending.
1398 *
1399 * In case of core dump, suspend ourselves, so that the kernel
1400 * stack and therefore the userland registers saved in the
1401 * trapframe are around for coredump() to write them out.
1402 * We also need to save any PCU resources that we have so that
1403 * they accessible for coredump(). We issue a wakeup on
1404 * p->p_lwpcv so that sigexit() will write the core file out
1405 * once all other LWPs are suspended.
1406 */
1407 if ((l->l_flag & LW_WSUSPEND) != 0) {
1408 pcu_save_all(l);
1409 mutex_enter(p->p_lock);
1410 p->p_nrlwps--;
1411 cv_broadcast(&p->p_lwpcv);
1412 lwp_lock(l);
1413 l->l_stat = LSSUSPENDED;
1414 lwp_unlock(l);
1415 mutex_exit(p->p_lock);
1416 lwp_lock(l);
1417 mi_switch(l);
1418 }
1419
1420 /* Process is exiting. */
1421 if ((l->l_flag & LW_WEXIT) != 0) {
1422 lwp_exit(l);
1423 KASSERT(0);
1424 /* NOTREACHED */
1425 }
1426
1427 /* update lwpctl processor (for vfork child_return) */
1428 if (l->l_flag & LW_LWPCTL) {
1429 lwp_lock(l);
1430 KASSERT(kpreempt_disabled());
1431 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1432 l->l_lwpctl->lc_pctr++;
1433 l->l_flag &= ~LW_LWPCTL;
1434 lwp_unlock(l);
1435 }
1436 }
1437
1438 #ifdef KERN_SA
1439 /*
1440 * Timer events are handled specially. We only try once to deliver
1441 * pending timer upcalls; if if fails, we can try again on the next
1442 * loop around. If we need to re-enter lwp_userret(), MD code will
1443 * bounce us back here through the trap path after we return.
1444 */
1445 if (p->p_timerpend)
1446 timerupcall(l);
1447 if (l->l_flag & LW_SA_UPCALL)
1448 sa_upcall_userret(l);
1449 #endif /* KERN_SA */
1450 }
1451
1452 /*
1453 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1454 */
1455 void
1456 lwp_need_userret(struct lwp *l)
1457 {
1458 KASSERT(lwp_locked(l, NULL));
1459
1460 /*
1461 * Since the tests in lwp_userret() are done unlocked, make sure
1462 * that the condition will be seen before forcing the LWP to enter
1463 * kernel mode.
1464 */
1465 membar_producer();
1466 cpu_signotify(l);
1467 }
1468
1469 /*
1470 * Add one reference to an LWP. This will prevent the LWP from
1471 * exiting, thus keep the lwp structure and PCB around to inspect.
1472 */
1473 void
1474 lwp_addref(struct lwp *l)
1475 {
1476
1477 KASSERT(mutex_owned(l->l_proc->p_lock));
1478 KASSERT(l->l_stat != LSZOMB);
1479 KASSERT(l->l_refcnt != 0);
1480
1481 l->l_refcnt++;
1482 }
1483
1484 /*
1485 * Remove one reference to an LWP. If this is the last reference,
1486 * then we must finalize the LWP's death.
1487 */
1488 void
1489 lwp_delref(struct lwp *l)
1490 {
1491 struct proc *p = l->l_proc;
1492
1493 mutex_enter(p->p_lock);
1494 lwp_delref2(l);
1495 mutex_exit(p->p_lock);
1496 }
1497
1498 /*
1499 * Remove one reference to an LWP. If this is the last reference,
1500 * then we must finalize the LWP's death. The proc mutex is held
1501 * on entry.
1502 */
1503 void
1504 lwp_delref2(struct lwp *l)
1505 {
1506 struct proc *p = l->l_proc;
1507
1508 KASSERT(mutex_owned(p->p_lock));
1509 KASSERT(l->l_stat != LSZOMB);
1510 KASSERT(l->l_refcnt > 0);
1511 if (--l->l_refcnt == 0)
1512 cv_broadcast(&p->p_lwpcv);
1513 }
1514
1515 /*
1516 * Drain all references to the current LWP.
1517 */
1518 void
1519 lwp_drainrefs(struct lwp *l)
1520 {
1521 struct proc *p = l->l_proc;
1522
1523 KASSERT(mutex_owned(p->p_lock));
1524 KASSERT(l->l_refcnt != 0);
1525
1526 l->l_refcnt--;
1527 while (l->l_refcnt != 0)
1528 cv_wait(&p->p_lwpcv, p->p_lock);
1529 }
1530
1531 /*
1532 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1533 * be held.
1534 */
1535 bool
1536 lwp_alive(lwp_t *l)
1537 {
1538
1539 KASSERT(mutex_owned(l->l_proc->p_lock));
1540
1541 switch (l->l_stat) {
1542 case LSSLEEP:
1543 case LSRUN:
1544 case LSONPROC:
1545 case LSSTOP:
1546 case LSSUSPENDED:
1547 return true;
1548 default:
1549 return false;
1550 }
1551 }
1552
1553 /*
1554 * Return first live LWP in the process.
1555 */
1556 lwp_t *
1557 lwp_find_first(proc_t *p)
1558 {
1559 lwp_t *l;
1560
1561 KASSERT(mutex_owned(p->p_lock));
1562
1563 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1564 if (lwp_alive(l)) {
1565 return l;
1566 }
1567 }
1568
1569 return NULL;
1570 }
1571
1572 /*
1573 * Allocate a new lwpctl structure for a user LWP.
1574 */
1575 int
1576 lwp_ctl_alloc(vaddr_t *uaddr)
1577 {
1578 lcproc_t *lp;
1579 u_int bit, i, offset;
1580 struct uvm_object *uao;
1581 int error;
1582 lcpage_t *lcp;
1583 proc_t *p;
1584 lwp_t *l;
1585
1586 l = curlwp;
1587 p = l->l_proc;
1588
1589 /* don't allow a vforked process to create lwp ctls */
1590 if (p->p_lflag & PL_PPWAIT)
1591 return EBUSY;
1592
1593 if (l->l_lcpage != NULL) {
1594 lcp = l->l_lcpage;
1595 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1596 return 0;
1597 }
1598
1599 /* First time around, allocate header structure for the process. */
1600 if ((lp = p->p_lwpctl) == NULL) {
1601 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1602 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1603 lp->lp_uao = NULL;
1604 TAILQ_INIT(&lp->lp_pages);
1605 mutex_enter(p->p_lock);
1606 if (p->p_lwpctl == NULL) {
1607 p->p_lwpctl = lp;
1608 mutex_exit(p->p_lock);
1609 } else {
1610 mutex_exit(p->p_lock);
1611 mutex_destroy(&lp->lp_lock);
1612 kmem_free(lp, sizeof(*lp));
1613 lp = p->p_lwpctl;
1614 }
1615 }
1616
1617 /*
1618 * Set up an anonymous memory region to hold the shared pages.
1619 * Map them into the process' address space. The user vmspace
1620 * gets the first reference on the UAO.
1621 */
1622 mutex_enter(&lp->lp_lock);
1623 if (lp->lp_uao == NULL) {
1624 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1625 lp->lp_cur = 0;
1626 lp->lp_max = LWPCTL_UAREA_SZ;
1627 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1628 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1629 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1630 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1631 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1632 if (error != 0) {
1633 uao_detach(lp->lp_uao);
1634 lp->lp_uao = NULL;
1635 mutex_exit(&lp->lp_lock);
1636 return error;
1637 }
1638 }
1639
1640 /* Get a free block and allocate for this LWP. */
1641 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1642 if (lcp->lcp_nfree != 0)
1643 break;
1644 }
1645 if (lcp == NULL) {
1646 /* Nothing available - try to set up a free page. */
1647 if (lp->lp_cur == lp->lp_max) {
1648 mutex_exit(&lp->lp_lock);
1649 return ENOMEM;
1650 }
1651 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1652 if (lcp == NULL) {
1653 mutex_exit(&lp->lp_lock);
1654 return ENOMEM;
1655 }
1656 /*
1657 * Wire the next page down in kernel space. Since this
1658 * is a new mapping, we must add a reference.
1659 */
1660 uao = lp->lp_uao;
1661 (*uao->pgops->pgo_reference)(uao);
1662 lcp->lcp_kaddr = vm_map_min(kernel_map);
1663 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1664 uao, lp->lp_cur, PAGE_SIZE,
1665 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1666 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1667 if (error != 0) {
1668 mutex_exit(&lp->lp_lock);
1669 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1670 (*uao->pgops->pgo_detach)(uao);
1671 return error;
1672 }
1673 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1674 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1675 if (error != 0) {
1676 mutex_exit(&lp->lp_lock);
1677 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1678 lcp->lcp_kaddr + PAGE_SIZE);
1679 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1680 return error;
1681 }
1682 /* Prepare the page descriptor and link into the list. */
1683 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1684 lp->lp_cur += PAGE_SIZE;
1685 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1686 lcp->lcp_rotor = 0;
1687 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1688 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1689 }
1690 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1691 if (++i >= LWPCTL_BITMAP_ENTRIES)
1692 i = 0;
1693 }
1694 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1695 lcp->lcp_bitmap[i] ^= (1 << bit);
1696 lcp->lcp_rotor = i;
1697 lcp->lcp_nfree--;
1698 l->l_lcpage = lcp;
1699 offset = (i << 5) + bit;
1700 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1701 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1702 mutex_exit(&lp->lp_lock);
1703
1704 KPREEMPT_DISABLE(l);
1705 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1706 KPREEMPT_ENABLE(l);
1707
1708 return 0;
1709 }
1710
1711 /*
1712 * Free an lwpctl structure back to the per-process list.
1713 */
1714 void
1715 lwp_ctl_free(lwp_t *l)
1716 {
1717 struct proc *p = l->l_proc;
1718 lcproc_t *lp;
1719 lcpage_t *lcp;
1720 u_int map, offset;
1721
1722 /* don't free a lwp context we borrowed for vfork */
1723 if (p->p_lflag & PL_PPWAIT) {
1724 l->l_lwpctl = NULL;
1725 return;
1726 }
1727
1728 lp = p->p_lwpctl;
1729 KASSERT(lp != NULL);
1730
1731 lcp = l->l_lcpage;
1732 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1733 KASSERT(offset < LWPCTL_PER_PAGE);
1734
1735 mutex_enter(&lp->lp_lock);
1736 lcp->lcp_nfree++;
1737 map = offset >> 5;
1738 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1739 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1740 lcp->lcp_rotor = map;
1741 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1742 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1743 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1744 }
1745 mutex_exit(&lp->lp_lock);
1746 }
1747
1748 /*
1749 * Process is exiting; tear down lwpctl state. This can only be safely
1750 * called by the last LWP in the process.
1751 */
1752 void
1753 lwp_ctl_exit(void)
1754 {
1755 lcpage_t *lcp, *next;
1756 lcproc_t *lp;
1757 proc_t *p;
1758 lwp_t *l;
1759
1760 l = curlwp;
1761 l->l_lwpctl = NULL;
1762 l->l_lcpage = NULL;
1763 p = l->l_proc;
1764 lp = p->p_lwpctl;
1765
1766 KASSERT(lp != NULL);
1767 KASSERT(p->p_nlwps == 1);
1768
1769 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1770 next = TAILQ_NEXT(lcp, lcp_chain);
1771 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1772 lcp->lcp_kaddr + PAGE_SIZE);
1773 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1774 }
1775
1776 if (lp->lp_uao != NULL) {
1777 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1778 lp->lp_uva + LWPCTL_UAREA_SZ);
1779 }
1780
1781 mutex_destroy(&lp->lp_lock);
1782 kmem_free(lp, sizeof(*lp));
1783 p->p_lwpctl = NULL;
1784 }
1785
1786 /*
1787 * Return the current LWP's "preemption counter". Used to detect
1788 * preemption across operations that can tolerate preemption without
1789 * crashing, but which may generate incorrect results if preempted.
1790 */
1791 uint64_t
1792 lwp_pctr(void)
1793 {
1794
1795 return curlwp->l_ncsw;
1796 }
1797
1798 /*
1799 * Set an LWP's private data pointer.
1800 */
1801 int
1802 lwp_setprivate(struct lwp *l, void *ptr)
1803 {
1804 int error = 0;
1805
1806 l->l_private = ptr;
1807 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1808 error = cpu_lwp_setprivate(l, ptr);
1809 #endif
1810 return error;
1811 }
1812
1813 #if defined(DDB)
1814 #include <machine/pcb.h>
1815
1816 void
1817 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1818 {
1819 lwp_t *l;
1820
1821 LIST_FOREACH(l, &alllwp, l_list) {
1822 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1823
1824 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1825 continue;
1826 }
1827 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1828 (void *)addr, (void *)stack,
1829 (size_t)(addr - stack), l);
1830 }
1831 }
1832 #endif /* defined(DDB) */
1833