kern_lwp.c revision 1.161 1 /* $NetBSD: kern_lwp.c,v 1.161 2011/07/30 17:01:04 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.161 2011/07/30 17:01:04 christos Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_sa.h"
219 #include "opt_dtrace.h"
220
221 #define _LWP_API_PRIVATE
222
223 #include <sys/param.h>
224 #include <sys/systm.h>
225 #include <sys/cpu.h>
226 #include <sys/pool.h>
227 #include <sys/proc.h>
228 #include <sys/sa.h>
229 #include <sys/savar.h>
230 #include <sys/syscallargs.h>
231 #include <sys/syscall_stats.h>
232 #include <sys/kauth.h>
233 #include <sys/pserialize.h>
234 #include <sys/sleepq.h>
235 #include <sys/lockdebug.h>
236 #include <sys/kmem.h>
237 #include <sys/pset.h>
238 #include <sys/intr.h>
239 #include <sys/lwpctl.h>
240 #include <sys/atomic.h>
241 #include <sys/filedesc.h>
242 #include <sys/dtrace_bsd.h>
243 #include <sys/sdt.h>
244 #include <sys/xcall.h>
245
246 #include <uvm/uvm_extern.h>
247 #include <uvm/uvm_object.h>
248
249 static pool_cache_t lwp_cache __read_mostly;
250 struct lwplist alllwp __cacheline_aligned;
251
252 static void lwp_dtor(void *, void *);
253
254 /* DTrace proc provider probes */
255 SDT_PROBE_DEFINE(proc,,,lwp_create,
256 "struct lwp *", NULL,
257 NULL, NULL, NULL, NULL,
258 NULL, NULL, NULL, NULL);
259 SDT_PROBE_DEFINE(proc,,,lwp_start,
260 "struct lwp *", NULL,
261 NULL, NULL, NULL, NULL,
262 NULL, NULL, NULL, NULL);
263 SDT_PROBE_DEFINE(proc,,,lwp_exit,
264 "struct lwp *", NULL,
265 NULL, NULL, NULL, NULL,
266 NULL, NULL, NULL, NULL);
267
268 struct turnstile turnstile0;
269 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
270 #ifdef LWP0_CPU_INFO
271 .l_cpu = LWP0_CPU_INFO,
272 #endif
273 #ifdef LWP0_MD_INITIALIZER
274 .l_md = LWP0_MD_INITIALIZER,
275 #endif
276 .l_proc = &proc0,
277 .l_lid = 1,
278 .l_flag = LW_SYSTEM,
279 .l_stat = LSONPROC,
280 .l_ts = &turnstile0,
281 .l_syncobj = &sched_syncobj,
282 .l_refcnt = 1,
283 .l_priority = PRI_USER + NPRI_USER - 1,
284 .l_inheritedprio = -1,
285 .l_class = SCHED_OTHER,
286 .l_psid = PS_NONE,
287 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
288 .l_name = __UNCONST("swapper"),
289 .l_fd = &filedesc0,
290 };
291
292 void
293 lwpinit(void)
294 {
295
296 LIST_INIT(&alllwp);
297 lwpinit_specificdata();
298 lwp_sys_init();
299 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
300 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
301 }
302
303 void
304 lwp0_init(void)
305 {
306 struct lwp *l = &lwp0;
307
308 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
309 KASSERT(l->l_lid == proc0.p_nlwpid);
310
311 LIST_INSERT_HEAD(&alllwp, l, l_list);
312
313 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
314 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
315 cv_init(&l->l_sigcv, "sigwait");
316
317 kauth_cred_hold(proc0.p_cred);
318 l->l_cred = proc0.p_cred;
319
320 lwp_initspecific(l);
321
322 SYSCALL_TIME_LWP_INIT(l);
323 }
324
325 static void
326 lwp_dtor(void *arg, void *obj)
327 {
328 lwp_t *l = obj;
329 uint64_t where;
330 (void)l;
331
332 /*
333 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
334 * calls will exit before memory of LWP is returned to the pool, where
335 * KVA of LWP structure might be freed and re-used for other purposes.
336 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
337 * callers, therefore cross-call to all CPUs will do the job. Also,
338 * the value of l->l_cpu must be still valid at this point.
339 */
340 KASSERT(l->l_cpu != NULL);
341 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
342 xc_wait(where);
343 }
344
345 /*
346 * Set an suspended.
347 *
348 * Must be called with p_lock held, and the LWP locked. Will unlock the
349 * LWP before return.
350 */
351 int
352 lwp_suspend(struct lwp *curl, struct lwp *t)
353 {
354 int error;
355
356 KASSERT(mutex_owned(t->l_proc->p_lock));
357 KASSERT(lwp_locked(t, NULL));
358
359 KASSERT(curl != t || curl->l_stat == LSONPROC);
360
361 /*
362 * If the current LWP has been told to exit, we must not suspend anyone
363 * else or deadlock could occur. We won't return to userspace.
364 */
365 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
366 lwp_unlock(t);
367 return (EDEADLK);
368 }
369
370 error = 0;
371
372 switch (t->l_stat) {
373 case LSRUN:
374 case LSONPROC:
375 t->l_flag |= LW_WSUSPEND;
376 lwp_need_userret(t);
377 lwp_unlock(t);
378 break;
379
380 case LSSLEEP:
381 t->l_flag |= LW_WSUSPEND;
382
383 /*
384 * Kick the LWP and try to get it to the kernel boundary
385 * so that it will release any locks that it holds.
386 * setrunnable() will release the lock.
387 */
388 if ((t->l_flag & LW_SINTR) != 0)
389 setrunnable(t);
390 else
391 lwp_unlock(t);
392 break;
393
394 case LSSUSPENDED:
395 lwp_unlock(t);
396 break;
397
398 case LSSTOP:
399 t->l_flag |= LW_WSUSPEND;
400 setrunnable(t);
401 break;
402
403 case LSIDL:
404 case LSZOMB:
405 error = EINTR; /* It's what Solaris does..... */
406 lwp_unlock(t);
407 break;
408 }
409
410 return (error);
411 }
412
413 /*
414 * Restart a suspended LWP.
415 *
416 * Must be called with p_lock held, and the LWP locked. Will unlock the
417 * LWP before return.
418 */
419 void
420 lwp_continue(struct lwp *l)
421 {
422
423 KASSERT(mutex_owned(l->l_proc->p_lock));
424 KASSERT(lwp_locked(l, NULL));
425
426 /* If rebooting or not suspended, then just bail out. */
427 if ((l->l_flag & LW_WREBOOT) != 0) {
428 lwp_unlock(l);
429 return;
430 }
431
432 l->l_flag &= ~LW_WSUSPEND;
433
434 if (l->l_stat != LSSUSPENDED) {
435 lwp_unlock(l);
436 return;
437 }
438
439 /* setrunnable() will release the lock. */
440 setrunnable(l);
441 }
442
443 /*
444 * Restart a stopped LWP.
445 *
446 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
447 * LWP before return.
448 */
449 void
450 lwp_unstop(struct lwp *l)
451 {
452 struct proc *p = l->l_proc;
453
454 KASSERT(mutex_owned(proc_lock));
455 KASSERT(mutex_owned(p->p_lock));
456
457 lwp_lock(l);
458
459 /* If not stopped, then just bail out. */
460 if (l->l_stat != LSSTOP) {
461 lwp_unlock(l);
462 return;
463 }
464
465 p->p_stat = SACTIVE;
466 p->p_sflag &= ~PS_STOPPING;
467
468 if (!p->p_waited)
469 p->p_pptr->p_nstopchild--;
470
471 if (l->l_wchan == NULL) {
472 /* setrunnable() will release the lock. */
473 setrunnable(l);
474 } else {
475 l->l_stat = LSSLEEP;
476 p->p_nrlwps++;
477 lwp_unlock(l);
478 }
479 }
480
481 /*
482 * Wait for an LWP within the current process to exit. If 'lid' is
483 * non-zero, we are waiting for a specific LWP.
484 *
485 * Must be called with p->p_lock held.
486 */
487 int
488 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
489 {
490 struct proc *p = l->l_proc;
491 struct lwp *l2;
492 int nfound, error;
493 lwpid_t curlid;
494 bool exiting;
495
496 KASSERT(mutex_owned(p->p_lock));
497
498 p->p_nlwpwait++;
499 l->l_waitingfor = lid;
500 curlid = l->l_lid;
501 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
502
503 for (;;) {
504 /*
505 * Avoid a race between exit1() and sigexit(): if the
506 * process is dumping core, then we need to bail out: call
507 * into lwp_userret() where we will be suspended until the
508 * deed is done.
509 */
510 if ((p->p_sflag & PS_WCORE) != 0) {
511 mutex_exit(p->p_lock);
512 lwp_userret(l);
513 #ifdef DIAGNOSTIC
514 panic("lwp_wait1");
515 #endif
516 /* NOTREACHED */
517 }
518
519 /*
520 * First off, drain any detached LWP that is waiting to be
521 * reaped.
522 */
523 while ((l2 = p->p_zomblwp) != NULL) {
524 p->p_zomblwp = NULL;
525 lwp_free(l2, false, false);/* releases proc mutex */
526 mutex_enter(p->p_lock);
527 }
528
529 /*
530 * Now look for an LWP to collect. If the whole process is
531 * exiting, count detached LWPs as eligible to be collected,
532 * but don't drain them here.
533 */
534 nfound = 0;
535 error = 0;
536 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
537 /*
538 * If a specific wait and the target is waiting on
539 * us, then avoid deadlock. This also traps LWPs
540 * that try to wait on themselves.
541 *
542 * Note that this does not handle more complicated
543 * cycles, like: t1 -> t2 -> t3 -> t1. The process
544 * can still be killed so it is not a major problem.
545 */
546 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
547 error = EDEADLK;
548 break;
549 }
550 if (l2 == l)
551 continue;
552 if ((l2->l_prflag & LPR_DETACHED) != 0) {
553 nfound += exiting;
554 continue;
555 }
556 if (lid != 0) {
557 if (l2->l_lid != lid)
558 continue;
559 /*
560 * Mark this LWP as the first waiter, if there
561 * is no other.
562 */
563 if (l2->l_waiter == 0)
564 l2->l_waiter = curlid;
565 } else if (l2->l_waiter != 0) {
566 /*
567 * It already has a waiter - so don't
568 * collect it. If the waiter doesn't
569 * grab it we'll get another chance
570 * later.
571 */
572 nfound++;
573 continue;
574 }
575 nfound++;
576
577 /* No need to lock the LWP in order to see LSZOMB. */
578 if (l2->l_stat != LSZOMB)
579 continue;
580
581 /*
582 * We're no longer waiting. Reset the "first waiter"
583 * pointer on the target, in case it was us.
584 */
585 l->l_waitingfor = 0;
586 l2->l_waiter = 0;
587 p->p_nlwpwait--;
588 if (departed)
589 *departed = l2->l_lid;
590 sched_lwp_collect(l2);
591
592 /* lwp_free() releases the proc lock. */
593 lwp_free(l2, false, false);
594 mutex_enter(p->p_lock);
595 return 0;
596 }
597
598 if (error != 0)
599 break;
600 if (nfound == 0) {
601 error = ESRCH;
602 break;
603 }
604
605 /*
606 * The kernel is careful to ensure that it can not deadlock
607 * when exiting - just keep waiting.
608 */
609 if (exiting) {
610 KASSERT(p->p_nlwps > 1);
611 cv_wait(&p->p_lwpcv, p->p_lock);
612 continue;
613 }
614
615 /*
616 * If all other LWPs are waiting for exits or suspends
617 * and the supply of zombies and potential zombies is
618 * exhausted, then we are about to deadlock.
619 *
620 * If the process is exiting (and this LWP is not the one
621 * that is coordinating the exit) then bail out now.
622 */
623 if ((p->p_sflag & PS_WEXIT) != 0 ||
624 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
625 error = EDEADLK;
626 break;
627 }
628
629 /*
630 * Sit around and wait for something to happen. We'll be
631 * awoken if any of the conditions examined change: if an
632 * LWP exits, is collected, or is detached.
633 */
634 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
635 break;
636 }
637
638 /*
639 * We didn't find any LWPs to collect, we may have received a
640 * signal, or some other condition has caused us to bail out.
641 *
642 * If waiting on a specific LWP, clear the waiters marker: some
643 * other LWP may want it. Then, kick all the remaining waiters
644 * so that they can re-check for zombies and for deadlock.
645 */
646 if (lid != 0) {
647 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
648 if (l2->l_lid == lid) {
649 if (l2->l_waiter == curlid)
650 l2->l_waiter = 0;
651 break;
652 }
653 }
654 }
655 p->p_nlwpwait--;
656 l->l_waitingfor = 0;
657 cv_broadcast(&p->p_lwpcv);
658
659 return error;
660 }
661
662 /*
663 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
664 * The new LWP is created in state LSIDL and must be set running,
665 * suspended, or stopped by the caller.
666 */
667 int
668 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
669 void *stack, size_t stacksize, void (*func)(void *), void *arg,
670 lwp_t **rnewlwpp, int sclass)
671 {
672 struct lwp *l2, *isfree;
673 turnstile_t *ts;
674 lwpid_t lid;
675
676 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
677
678 /*
679 * First off, reap any detached LWP waiting to be collected.
680 * We can re-use its LWP structure and turnstile.
681 */
682 isfree = NULL;
683 if (p2->p_zomblwp != NULL) {
684 mutex_enter(p2->p_lock);
685 if ((isfree = p2->p_zomblwp) != NULL) {
686 p2->p_zomblwp = NULL;
687 lwp_free(isfree, true, false);/* releases proc mutex */
688 } else
689 mutex_exit(p2->p_lock);
690 }
691 if (isfree == NULL) {
692 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
693 memset(l2, 0, sizeof(*l2));
694 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
695 SLIST_INIT(&l2->l_pi_lenders);
696 } else {
697 l2 = isfree;
698 ts = l2->l_ts;
699 KASSERT(l2->l_inheritedprio == -1);
700 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
701 memset(l2, 0, sizeof(*l2));
702 l2->l_ts = ts;
703 }
704
705 l2->l_stat = LSIDL;
706 l2->l_proc = p2;
707 l2->l_refcnt = 1;
708 l2->l_class = sclass;
709
710 /*
711 * If vfork(), we want the LWP to run fast and on the same CPU
712 * as its parent, so that it can reuse the VM context and cache
713 * footprint on the local CPU.
714 */
715 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
716 l2->l_kpribase = PRI_KERNEL;
717 l2->l_priority = l1->l_priority;
718 l2->l_inheritedprio = -1;
719 l2->l_flag = 0;
720 l2->l_pflag = LP_MPSAFE;
721 TAILQ_INIT(&l2->l_ld_locks);
722
723 /*
724 * For vfork, borrow parent's lwpctl context if it exists.
725 * This also causes us to return via lwp_userret.
726 */
727 if (flags & LWP_VFORK && l1->l_lwpctl) {
728 l2->l_lwpctl = l1->l_lwpctl;
729 l2->l_flag |= LW_LWPCTL;
730 }
731
732 /*
733 * If not the first LWP in the process, grab a reference to the
734 * descriptor table.
735 */
736 l2->l_fd = p2->p_fd;
737 if (p2->p_nlwps != 0) {
738 KASSERT(l1->l_proc == p2);
739 fd_hold(l2);
740 } else {
741 KASSERT(l1->l_proc != p2);
742 }
743
744 if (p2->p_flag & PK_SYSTEM) {
745 /* Mark it as a system LWP. */
746 l2->l_flag |= LW_SYSTEM;
747 }
748
749 kpreempt_disable();
750 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
751 l2->l_cpu = l1->l_cpu;
752 kpreempt_enable();
753
754 kdtrace_thread_ctor(NULL, l2);
755 lwp_initspecific(l2);
756 sched_lwp_fork(l1, l2);
757 lwp_update_creds(l2);
758 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
759 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
760 cv_init(&l2->l_sigcv, "sigwait");
761 l2->l_syncobj = &sched_syncobj;
762
763 if (rnewlwpp != NULL)
764 *rnewlwpp = l2;
765
766 /*
767 * PCU state needs to be saved before calling uvm_lwp_fork() so that
768 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
769 */
770 pcu_save_all(l1);
771
772 uvm_lwp_setuarea(l2, uaddr);
773 uvm_lwp_fork(l1, l2, stack, stacksize, func,
774 (arg != NULL) ? arg : l2);
775
776 if ((flags & LWP_PIDLID) != 0) {
777 lid = proc_alloc_pid(p2);
778 l2->l_pflag |= LP_PIDLID;
779 } else {
780 lid = 0;
781 }
782
783 mutex_enter(p2->p_lock);
784
785 if ((flags & LWP_DETACHED) != 0) {
786 l2->l_prflag = LPR_DETACHED;
787 p2->p_ndlwps++;
788 } else
789 l2->l_prflag = 0;
790
791 l2->l_sigmask = l1->l_sigmask;
792 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
793 sigemptyset(&l2->l_sigpend.sp_set);
794
795 if (lid == 0) {
796 p2->p_nlwpid++;
797 if (p2->p_nlwpid == 0)
798 p2->p_nlwpid++;
799 lid = p2->p_nlwpid;
800 }
801 l2->l_lid = lid;
802 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
803 p2->p_nlwps++;
804 p2->p_nrlwps++;
805
806 if ((p2->p_flag & PK_SYSTEM) == 0) {
807 /* Inherit an affinity */
808 if (l1->l_flag & LW_AFFINITY) {
809 /*
810 * Note that we hold the state lock while inheriting
811 * the affinity to avoid race with sched_setaffinity().
812 */
813 lwp_lock(l1);
814 if (l1->l_flag & LW_AFFINITY) {
815 kcpuset_use(l1->l_affinity);
816 l2->l_affinity = l1->l_affinity;
817 l2->l_flag |= LW_AFFINITY;
818 }
819 lwp_unlock(l1);
820 }
821 lwp_lock(l2);
822 /* Inherit a processor-set */
823 l2->l_psid = l1->l_psid;
824 /* Look for a CPU to start */
825 l2->l_cpu = sched_takecpu(l2);
826 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
827 }
828 mutex_exit(p2->p_lock);
829
830 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
831
832 mutex_enter(proc_lock);
833 LIST_INSERT_HEAD(&alllwp, l2, l_list);
834 mutex_exit(proc_lock);
835
836 SYSCALL_TIME_LWP_INIT(l2);
837
838 if (p2->p_emul->e_lwp_fork)
839 (*p2->p_emul->e_lwp_fork)(l1, l2);
840
841 return (0);
842 }
843
844 /*
845 * Called by MD code when a new LWP begins execution. Must be called
846 * with the previous LWP locked (so at splsched), or if there is no
847 * previous LWP, at splsched.
848 */
849 void
850 lwp_startup(struct lwp *prev, struct lwp *new)
851 {
852
853 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
854
855 KASSERT(kpreempt_disabled());
856 if (prev != NULL) {
857 /*
858 * Normalize the count of the spin-mutexes, it was
859 * increased in mi_switch(). Unmark the state of
860 * context switch - it is finished for previous LWP.
861 */
862 curcpu()->ci_mtx_count++;
863 membar_exit();
864 prev->l_ctxswtch = 0;
865 }
866 KPREEMPT_DISABLE(new);
867 spl0();
868 pmap_activate(new);
869
870 /* Note trip through cpu_switchto(). */
871 pserialize_switchpoint();
872
873 LOCKDEBUG_BARRIER(NULL, 0);
874 KPREEMPT_ENABLE(new);
875 if ((new->l_pflag & LP_MPSAFE) == 0) {
876 KERNEL_LOCK(1, new);
877 }
878 }
879
880 /*
881 * Exit an LWP.
882 */
883 void
884 lwp_exit(struct lwp *l)
885 {
886 struct proc *p = l->l_proc;
887 struct lwp *l2;
888 bool current;
889
890 current = (l == curlwp);
891
892 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
893 KASSERT(p == curproc);
894
895 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
896
897 /*
898 * Verify that we hold no locks other than the kernel lock.
899 */
900 LOCKDEBUG_BARRIER(&kernel_lock, 0);
901
902 /*
903 * If we are the last live LWP in a process, we need to exit the
904 * entire process. We do so with an exit status of zero, because
905 * it's a "controlled" exit, and because that's what Solaris does.
906 *
907 * We are not quite a zombie yet, but for accounting purposes we
908 * must increment the count of zombies here.
909 *
910 * Note: the last LWP's specificdata will be deleted here.
911 */
912 mutex_enter(p->p_lock);
913 if (p->p_nlwps - p->p_nzlwps == 1) {
914 KASSERT(current == true);
915 /* XXXSMP kernel_lock not held */
916 exit1(l, 0);
917 /* NOTREACHED */
918 }
919 p->p_nzlwps++;
920 mutex_exit(p->p_lock);
921
922 if (p->p_emul->e_lwp_exit)
923 (*p->p_emul->e_lwp_exit)(l);
924
925 /* Drop filedesc reference. */
926 fd_free();
927
928 /* Delete the specificdata while it's still safe to sleep. */
929 lwp_finispecific(l);
930
931 /*
932 * Release our cached credentials.
933 */
934 kauth_cred_free(l->l_cred);
935 callout_destroy(&l->l_timeout_ch);
936
937 /*
938 * Remove the LWP from the global list.
939 * Free its LID from the PID namespace if needed.
940 */
941 mutex_enter(proc_lock);
942 LIST_REMOVE(l, l_list);
943 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
944 proc_free_pid(l->l_lid);
945 }
946 mutex_exit(proc_lock);
947
948 /*
949 * Get rid of all references to the LWP that others (e.g. procfs)
950 * may have, and mark the LWP as a zombie. If the LWP is detached,
951 * mark it waiting for collection in the proc structure. Note that
952 * before we can do that, we need to free any other dead, deatched
953 * LWP waiting to meet its maker.
954 */
955 mutex_enter(p->p_lock);
956 lwp_drainrefs(l);
957
958 if ((l->l_prflag & LPR_DETACHED) != 0) {
959 while ((l2 = p->p_zomblwp) != NULL) {
960 p->p_zomblwp = NULL;
961 lwp_free(l2, false, false);/* releases proc mutex */
962 mutex_enter(p->p_lock);
963 l->l_refcnt++;
964 lwp_drainrefs(l);
965 }
966 p->p_zomblwp = l;
967 }
968
969 /*
970 * If we find a pending signal for the process and we have been
971 * asked to check for signals, then we lose: arrange to have
972 * all other LWPs in the process check for signals.
973 */
974 if ((l->l_flag & LW_PENDSIG) != 0 &&
975 firstsig(&p->p_sigpend.sp_set) != 0) {
976 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
977 lwp_lock(l2);
978 l2->l_flag |= LW_PENDSIG;
979 lwp_unlock(l2);
980 }
981 }
982
983 /*
984 * Release any PCU resources before becoming a zombie.
985 */
986 pcu_discard_all(l);
987
988 lwp_lock(l);
989 l->l_stat = LSZOMB;
990 if (l->l_name != NULL)
991 strcpy(l->l_name, "(zombie)");
992 if (l->l_flag & LW_AFFINITY) {
993 l->l_flag &= ~LW_AFFINITY;
994 } else {
995 KASSERT(l->l_affinity == NULL);
996 }
997 lwp_unlock(l);
998 p->p_nrlwps--;
999 cv_broadcast(&p->p_lwpcv);
1000 if (l->l_lwpctl != NULL)
1001 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1002 mutex_exit(p->p_lock);
1003
1004 /* Safe without lock since LWP is in zombie state */
1005 if (l->l_affinity) {
1006 kcpuset_unuse(l->l_affinity, NULL);
1007 l->l_affinity = NULL;
1008 }
1009
1010 /*
1011 * We can no longer block. At this point, lwp_free() may already
1012 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1013 *
1014 * Free MD LWP resources.
1015 */
1016 cpu_lwp_free(l, 0);
1017
1018 if (current) {
1019 pmap_deactivate(l);
1020
1021 /*
1022 * Release the kernel lock, and switch away into
1023 * oblivion.
1024 */
1025 #ifdef notyet
1026 /* XXXSMP hold in lwp_userret() */
1027 KERNEL_UNLOCK_LAST(l);
1028 #else
1029 KERNEL_UNLOCK_ALL(l, NULL);
1030 #endif
1031 lwp_exit_switchaway(l);
1032 }
1033 }
1034
1035 /*
1036 * Free a dead LWP's remaining resources.
1037 *
1038 * XXXLWP limits.
1039 */
1040 void
1041 lwp_free(struct lwp *l, bool recycle, bool last)
1042 {
1043 struct proc *p = l->l_proc;
1044 struct rusage *ru;
1045 ksiginfoq_t kq;
1046
1047 KASSERT(l != curlwp);
1048 KASSERT(last || mutex_owned(p->p_lock));
1049
1050 /*
1051 * If this was not the last LWP in the process, then adjust
1052 * counters and unlock.
1053 */
1054 if (!last) {
1055 /*
1056 * Add the LWP's run time to the process' base value.
1057 * This needs to co-incide with coming off p_lwps.
1058 */
1059 bintime_add(&p->p_rtime, &l->l_rtime);
1060 p->p_pctcpu += l->l_pctcpu;
1061 ru = &p->p_stats->p_ru;
1062 ruadd(ru, &l->l_ru);
1063 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1064 ru->ru_nivcsw += l->l_nivcsw;
1065 LIST_REMOVE(l, l_sibling);
1066 p->p_nlwps--;
1067 p->p_nzlwps--;
1068 if ((l->l_prflag & LPR_DETACHED) != 0)
1069 p->p_ndlwps--;
1070
1071 /*
1072 * Have any LWPs sleeping in lwp_wait() recheck for
1073 * deadlock.
1074 */
1075 cv_broadcast(&p->p_lwpcv);
1076 mutex_exit(p->p_lock);
1077 }
1078
1079 #ifdef MULTIPROCESSOR
1080 /*
1081 * In the unlikely event that the LWP is still on the CPU,
1082 * then spin until it has switched away. We need to release
1083 * all locks to avoid deadlock against interrupt handlers on
1084 * the target CPU.
1085 */
1086 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1087 int count;
1088 (void)count; /* XXXgcc */
1089 KERNEL_UNLOCK_ALL(curlwp, &count);
1090 while ((l->l_pflag & LP_RUNNING) != 0 ||
1091 l->l_cpu->ci_curlwp == l)
1092 SPINLOCK_BACKOFF_HOOK;
1093 KERNEL_LOCK(count, curlwp);
1094 }
1095 #endif
1096
1097 /*
1098 * Destroy the LWP's remaining signal information.
1099 */
1100 ksiginfo_queue_init(&kq);
1101 sigclear(&l->l_sigpend, NULL, &kq);
1102 ksiginfo_queue_drain(&kq);
1103 cv_destroy(&l->l_sigcv);
1104
1105 /*
1106 * Free the LWP's turnstile and the LWP structure itself unless the
1107 * caller wants to recycle them. Also, free the scheduler specific
1108 * data.
1109 *
1110 * We can't return turnstile0 to the pool (it didn't come from it),
1111 * so if it comes up just drop it quietly and move on.
1112 *
1113 * We don't recycle the VM resources at this time.
1114 */
1115 if (l->l_lwpctl != NULL)
1116 lwp_ctl_free(l);
1117
1118 if (!recycle && l->l_ts != &turnstile0)
1119 pool_cache_put(turnstile_cache, l->l_ts);
1120 if (l->l_name != NULL)
1121 kmem_free(l->l_name, MAXCOMLEN);
1122
1123 cpu_lwp_free2(l);
1124 uvm_lwp_exit(l);
1125
1126 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1127 KASSERT(l->l_inheritedprio == -1);
1128 KASSERT(l->l_blcnt == 0);
1129 kdtrace_thread_dtor(NULL, l);
1130 if (!recycle)
1131 pool_cache_put(lwp_cache, l);
1132 }
1133
1134 /*
1135 * Migrate the LWP to the another CPU. Unlocks the LWP.
1136 */
1137 void
1138 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1139 {
1140 struct schedstate_percpu *tspc;
1141 int lstat = l->l_stat;
1142
1143 KASSERT(lwp_locked(l, NULL));
1144 KASSERT(tci != NULL);
1145
1146 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1147 if ((l->l_pflag & LP_RUNNING) != 0) {
1148 lstat = LSONPROC;
1149 }
1150
1151 /*
1152 * The destination CPU could be changed while previous migration
1153 * was not finished.
1154 */
1155 if (l->l_target_cpu != NULL) {
1156 l->l_target_cpu = tci;
1157 lwp_unlock(l);
1158 return;
1159 }
1160
1161 /* Nothing to do if trying to migrate to the same CPU */
1162 if (l->l_cpu == tci) {
1163 lwp_unlock(l);
1164 return;
1165 }
1166
1167 KASSERT(l->l_target_cpu == NULL);
1168 tspc = &tci->ci_schedstate;
1169 switch (lstat) {
1170 case LSRUN:
1171 l->l_target_cpu = tci;
1172 break;
1173 case LSIDL:
1174 l->l_cpu = tci;
1175 lwp_unlock_to(l, tspc->spc_mutex);
1176 return;
1177 case LSSLEEP:
1178 l->l_cpu = tci;
1179 break;
1180 case LSSTOP:
1181 case LSSUSPENDED:
1182 l->l_cpu = tci;
1183 if (l->l_wchan == NULL) {
1184 lwp_unlock_to(l, tspc->spc_lwplock);
1185 return;
1186 }
1187 break;
1188 case LSONPROC:
1189 l->l_target_cpu = tci;
1190 spc_lock(l->l_cpu);
1191 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1192 spc_unlock(l->l_cpu);
1193 break;
1194 }
1195 lwp_unlock(l);
1196 }
1197
1198 /*
1199 * Find the LWP in the process. Arguments may be zero, in such case,
1200 * the calling process and first LWP in the list will be used.
1201 * On success - returns proc locked.
1202 */
1203 struct lwp *
1204 lwp_find2(pid_t pid, lwpid_t lid)
1205 {
1206 proc_t *p;
1207 lwp_t *l;
1208
1209 /* Find the process. */
1210 if (pid != 0) {
1211 mutex_enter(proc_lock);
1212 p = proc_find(pid);
1213 if (p == NULL) {
1214 mutex_exit(proc_lock);
1215 return NULL;
1216 }
1217 mutex_enter(p->p_lock);
1218 mutex_exit(proc_lock);
1219 } else {
1220 p = curlwp->l_proc;
1221 mutex_enter(p->p_lock);
1222 }
1223 /* Find the thread. */
1224 if (lid != 0) {
1225 l = lwp_find(p, lid);
1226 } else {
1227 l = LIST_FIRST(&p->p_lwps);
1228 }
1229 if (l == NULL) {
1230 mutex_exit(p->p_lock);
1231 }
1232 return l;
1233 }
1234
1235 /*
1236 * Look up a live LWP within the specified process, and return it locked.
1237 *
1238 * Must be called with p->p_lock held.
1239 */
1240 struct lwp *
1241 lwp_find(struct proc *p, lwpid_t id)
1242 {
1243 struct lwp *l;
1244
1245 KASSERT(mutex_owned(p->p_lock));
1246
1247 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1248 if (l->l_lid == id)
1249 break;
1250 }
1251
1252 /*
1253 * No need to lock - all of these conditions will
1254 * be visible with the process level mutex held.
1255 */
1256 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1257 l = NULL;
1258
1259 return l;
1260 }
1261
1262 /*
1263 * Update an LWP's cached credentials to mirror the process' master copy.
1264 *
1265 * This happens early in the syscall path, on user trap, and on LWP
1266 * creation. A long-running LWP can also voluntarily choose to update
1267 * it's credentials by calling this routine. This may be called from
1268 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1269 */
1270 void
1271 lwp_update_creds(struct lwp *l)
1272 {
1273 kauth_cred_t oc;
1274 struct proc *p;
1275
1276 p = l->l_proc;
1277 oc = l->l_cred;
1278
1279 mutex_enter(p->p_lock);
1280 kauth_cred_hold(p->p_cred);
1281 l->l_cred = p->p_cred;
1282 l->l_prflag &= ~LPR_CRMOD;
1283 mutex_exit(p->p_lock);
1284 if (oc != NULL)
1285 kauth_cred_free(oc);
1286 }
1287
1288 /*
1289 * Verify that an LWP is locked, and optionally verify that the lock matches
1290 * one we specify.
1291 */
1292 int
1293 lwp_locked(struct lwp *l, kmutex_t *mtx)
1294 {
1295 kmutex_t *cur = l->l_mutex;
1296
1297 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1298 }
1299
1300 /*
1301 * Lend a new mutex to an LWP. The old mutex must be held.
1302 */
1303 void
1304 lwp_setlock(struct lwp *l, kmutex_t *new)
1305 {
1306
1307 KASSERT(mutex_owned(l->l_mutex));
1308
1309 membar_exit();
1310 l->l_mutex = new;
1311 }
1312
1313 /*
1314 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1315 * must be held.
1316 */
1317 void
1318 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1319 {
1320 kmutex_t *old;
1321
1322 KASSERT(lwp_locked(l, NULL));
1323
1324 old = l->l_mutex;
1325 membar_exit();
1326 l->l_mutex = new;
1327 mutex_spin_exit(old);
1328 }
1329
1330 int
1331 lwp_trylock(struct lwp *l)
1332 {
1333 kmutex_t *old;
1334
1335 for (;;) {
1336 if (!mutex_tryenter(old = l->l_mutex))
1337 return 0;
1338 if (__predict_true(l->l_mutex == old))
1339 return 1;
1340 mutex_spin_exit(old);
1341 }
1342 }
1343
1344 void
1345 lwp_unsleep(lwp_t *l, bool cleanup)
1346 {
1347
1348 KASSERT(mutex_owned(l->l_mutex));
1349 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1350 }
1351
1352 /*
1353 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1354 * set.
1355 */
1356 void
1357 lwp_userret(struct lwp *l)
1358 {
1359 struct proc *p;
1360 int sig;
1361
1362 KASSERT(l == curlwp);
1363 KASSERT(l->l_stat == LSONPROC);
1364 p = l->l_proc;
1365
1366 #ifndef __HAVE_FAST_SOFTINTS
1367 /* Run pending soft interrupts. */
1368 if (l->l_cpu->ci_data.cpu_softints != 0)
1369 softint_overlay();
1370 #endif
1371
1372 #ifdef KERN_SA
1373 /* Generate UNBLOCKED upcall if needed */
1374 if (l->l_flag & LW_SA_BLOCKING) {
1375 sa_unblock_userret(l);
1376 /* NOTREACHED */
1377 }
1378 #endif
1379
1380 /*
1381 * It should be safe to do this read unlocked on a multiprocessor
1382 * system..
1383 *
1384 * LW_SA_UPCALL will be handled after the while() loop, so don't
1385 * consider it now.
1386 */
1387 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1388 /*
1389 * Process pending signals first, unless the process
1390 * is dumping core or exiting, where we will instead
1391 * enter the LW_WSUSPEND case below.
1392 */
1393 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1394 LW_PENDSIG) {
1395 mutex_enter(p->p_lock);
1396 while ((sig = issignal(l)) != 0)
1397 postsig(sig);
1398 mutex_exit(p->p_lock);
1399 }
1400
1401 /*
1402 * Core-dump or suspend pending.
1403 *
1404 * In case of core dump, suspend ourselves, so that the kernel
1405 * stack and therefore the userland registers saved in the
1406 * trapframe are around for coredump() to write them out.
1407 * We also need to save any PCU resources that we have so that
1408 * they accessible for coredump(). We issue a wakeup on
1409 * p->p_lwpcv so that sigexit() will write the core file out
1410 * once all other LWPs are suspended.
1411 */
1412 if ((l->l_flag & LW_WSUSPEND) != 0) {
1413 pcu_save_all(l);
1414 mutex_enter(p->p_lock);
1415 p->p_nrlwps--;
1416 cv_broadcast(&p->p_lwpcv);
1417 lwp_lock(l);
1418 l->l_stat = LSSUSPENDED;
1419 lwp_unlock(l);
1420 mutex_exit(p->p_lock);
1421 lwp_lock(l);
1422 mi_switch(l);
1423 }
1424
1425 /* Process is exiting. */
1426 if ((l->l_flag & LW_WEXIT) != 0) {
1427 lwp_exit(l);
1428 KASSERT(0);
1429 /* NOTREACHED */
1430 }
1431
1432 /* update lwpctl processor (for vfork child_return) */
1433 if (l->l_flag & LW_LWPCTL) {
1434 lwp_lock(l);
1435 KASSERT(kpreempt_disabled());
1436 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1437 l->l_lwpctl->lc_pctr++;
1438 l->l_flag &= ~LW_LWPCTL;
1439 lwp_unlock(l);
1440 }
1441 }
1442
1443 #ifdef KERN_SA
1444 /*
1445 * Timer events are handled specially. We only try once to deliver
1446 * pending timer upcalls; if if fails, we can try again on the next
1447 * loop around. If we need to re-enter lwp_userret(), MD code will
1448 * bounce us back here through the trap path after we return.
1449 */
1450 if (p->p_timerpend)
1451 timerupcall(l);
1452 if (l->l_flag & LW_SA_UPCALL)
1453 sa_upcall_userret(l);
1454 #endif /* KERN_SA */
1455 }
1456
1457 /*
1458 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1459 */
1460 void
1461 lwp_need_userret(struct lwp *l)
1462 {
1463 KASSERT(lwp_locked(l, NULL));
1464
1465 /*
1466 * Since the tests in lwp_userret() are done unlocked, make sure
1467 * that the condition will be seen before forcing the LWP to enter
1468 * kernel mode.
1469 */
1470 membar_producer();
1471 cpu_signotify(l);
1472 }
1473
1474 /*
1475 * Add one reference to an LWP. This will prevent the LWP from
1476 * exiting, thus keep the lwp structure and PCB around to inspect.
1477 */
1478 void
1479 lwp_addref(struct lwp *l)
1480 {
1481
1482 KASSERT(mutex_owned(l->l_proc->p_lock));
1483 KASSERT(l->l_stat != LSZOMB);
1484 KASSERT(l->l_refcnt != 0);
1485
1486 l->l_refcnt++;
1487 }
1488
1489 /*
1490 * Remove one reference to an LWP. If this is the last reference,
1491 * then we must finalize the LWP's death.
1492 */
1493 void
1494 lwp_delref(struct lwp *l)
1495 {
1496 struct proc *p = l->l_proc;
1497
1498 mutex_enter(p->p_lock);
1499 lwp_delref2(l);
1500 mutex_exit(p->p_lock);
1501 }
1502
1503 /*
1504 * Remove one reference to an LWP. If this is the last reference,
1505 * then we must finalize the LWP's death. The proc mutex is held
1506 * on entry.
1507 */
1508 void
1509 lwp_delref2(struct lwp *l)
1510 {
1511 struct proc *p = l->l_proc;
1512
1513 KASSERT(mutex_owned(p->p_lock));
1514 KASSERT(l->l_stat != LSZOMB);
1515 KASSERT(l->l_refcnt > 0);
1516 if (--l->l_refcnt == 0)
1517 cv_broadcast(&p->p_lwpcv);
1518 }
1519
1520 /*
1521 * Drain all references to the current LWP.
1522 */
1523 void
1524 lwp_drainrefs(struct lwp *l)
1525 {
1526 struct proc *p = l->l_proc;
1527
1528 KASSERT(mutex_owned(p->p_lock));
1529 KASSERT(l->l_refcnt != 0);
1530
1531 l->l_refcnt--;
1532 while (l->l_refcnt != 0)
1533 cv_wait(&p->p_lwpcv, p->p_lock);
1534 }
1535
1536 /*
1537 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1538 * be held.
1539 */
1540 bool
1541 lwp_alive(lwp_t *l)
1542 {
1543
1544 KASSERT(mutex_owned(l->l_proc->p_lock));
1545
1546 switch (l->l_stat) {
1547 case LSSLEEP:
1548 case LSRUN:
1549 case LSONPROC:
1550 case LSSTOP:
1551 case LSSUSPENDED:
1552 return true;
1553 default:
1554 return false;
1555 }
1556 }
1557
1558 /*
1559 * Return first live LWP in the process.
1560 */
1561 lwp_t *
1562 lwp_find_first(proc_t *p)
1563 {
1564 lwp_t *l;
1565
1566 KASSERT(mutex_owned(p->p_lock));
1567
1568 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1569 if (lwp_alive(l)) {
1570 return l;
1571 }
1572 }
1573
1574 return NULL;
1575 }
1576
1577 /*
1578 * Allocate a new lwpctl structure for a user LWP.
1579 */
1580 int
1581 lwp_ctl_alloc(vaddr_t *uaddr)
1582 {
1583 lcproc_t *lp;
1584 u_int bit, i, offset;
1585 struct uvm_object *uao;
1586 int error;
1587 lcpage_t *lcp;
1588 proc_t *p;
1589 lwp_t *l;
1590
1591 l = curlwp;
1592 p = l->l_proc;
1593
1594 /* don't allow a vforked process to create lwp ctls */
1595 if (p->p_lflag & PL_PPWAIT)
1596 return EBUSY;
1597
1598 if (l->l_lcpage != NULL) {
1599 lcp = l->l_lcpage;
1600 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1601 return 0;
1602 }
1603
1604 /* First time around, allocate header structure for the process. */
1605 if ((lp = p->p_lwpctl) == NULL) {
1606 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1607 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1608 lp->lp_uao = NULL;
1609 TAILQ_INIT(&lp->lp_pages);
1610 mutex_enter(p->p_lock);
1611 if (p->p_lwpctl == NULL) {
1612 p->p_lwpctl = lp;
1613 mutex_exit(p->p_lock);
1614 } else {
1615 mutex_exit(p->p_lock);
1616 mutex_destroy(&lp->lp_lock);
1617 kmem_free(lp, sizeof(*lp));
1618 lp = p->p_lwpctl;
1619 }
1620 }
1621
1622 /*
1623 * Set up an anonymous memory region to hold the shared pages.
1624 * Map them into the process' address space. The user vmspace
1625 * gets the first reference on the UAO.
1626 */
1627 mutex_enter(&lp->lp_lock);
1628 if (lp->lp_uao == NULL) {
1629 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1630 lp->lp_cur = 0;
1631 lp->lp_max = LWPCTL_UAREA_SZ;
1632 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1633 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1634 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1635 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1636 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1637 if (error != 0) {
1638 uao_detach(lp->lp_uao);
1639 lp->lp_uao = NULL;
1640 mutex_exit(&lp->lp_lock);
1641 return error;
1642 }
1643 }
1644
1645 /* Get a free block and allocate for this LWP. */
1646 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1647 if (lcp->lcp_nfree != 0)
1648 break;
1649 }
1650 if (lcp == NULL) {
1651 /* Nothing available - try to set up a free page. */
1652 if (lp->lp_cur == lp->lp_max) {
1653 mutex_exit(&lp->lp_lock);
1654 return ENOMEM;
1655 }
1656 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1657 if (lcp == NULL) {
1658 mutex_exit(&lp->lp_lock);
1659 return ENOMEM;
1660 }
1661 /*
1662 * Wire the next page down in kernel space. Since this
1663 * is a new mapping, we must add a reference.
1664 */
1665 uao = lp->lp_uao;
1666 (*uao->pgops->pgo_reference)(uao);
1667 lcp->lcp_kaddr = vm_map_min(kernel_map);
1668 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1669 uao, lp->lp_cur, PAGE_SIZE,
1670 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1671 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1672 if (error != 0) {
1673 mutex_exit(&lp->lp_lock);
1674 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1675 (*uao->pgops->pgo_detach)(uao);
1676 return error;
1677 }
1678 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1679 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1680 if (error != 0) {
1681 mutex_exit(&lp->lp_lock);
1682 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1683 lcp->lcp_kaddr + PAGE_SIZE);
1684 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1685 return error;
1686 }
1687 /* Prepare the page descriptor and link into the list. */
1688 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1689 lp->lp_cur += PAGE_SIZE;
1690 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1691 lcp->lcp_rotor = 0;
1692 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1693 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1694 }
1695 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1696 if (++i >= LWPCTL_BITMAP_ENTRIES)
1697 i = 0;
1698 }
1699 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1700 lcp->lcp_bitmap[i] ^= (1 << bit);
1701 lcp->lcp_rotor = i;
1702 lcp->lcp_nfree--;
1703 l->l_lcpage = lcp;
1704 offset = (i << 5) + bit;
1705 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1706 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1707 mutex_exit(&lp->lp_lock);
1708
1709 KPREEMPT_DISABLE(l);
1710 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1711 KPREEMPT_ENABLE(l);
1712
1713 return 0;
1714 }
1715
1716 /*
1717 * Free an lwpctl structure back to the per-process list.
1718 */
1719 void
1720 lwp_ctl_free(lwp_t *l)
1721 {
1722 struct proc *p = l->l_proc;
1723 lcproc_t *lp;
1724 lcpage_t *lcp;
1725 u_int map, offset;
1726
1727 /* don't free a lwp context we borrowed for vfork */
1728 if (p->p_lflag & PL_PPWAIT) {
1729 l->l_lwpctl = NULL;
1730 return;
1731 }
1732
1733 lp = p->p_lwpctl;
1734 KASSERT(lp != NULL);
1735
1736 lcp = l->l_lcpage;
1737 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1738 KASSERT(offset < LWPCTL_PER_PAGE);
1739
1740 mutex_enter(&lp->lp_lock);
1741 lcp->lcp_nfree++;
1742 map = offset >> 5;
1743 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1744 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1745 lcp->lcp_rotor = map;
1746 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1747 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1748 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1749 }
1750 mutex_exit(&lp->lp_lock);
1751 }
1752
1753 /*
1754 * Process is exiting; tear down lwpctl state. This can only be safely
1755 * called by the last LWP in the process.
1756 */
1757 void
1758 lwp_ctl_exit(void)
1759 {
1760 lcpage_t *lcp, *next;
1761 lcproc_t *lp;
1762 proc_t *p;
1763 lwp_t *l;
1764
1765 l = curlwp;
1766 l->l_lwpctl = NULL;
1767 l->l_lcpage = NULL;
1768 p = l->l_proc;
1769 lp = p->p_lwpctl;
1770
1771 KASSERT(lp != NULL);
1772 KASSERT(p->p_nlwps == 1);
1773
1774 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1775 next = TAILQ_NEXT(lcp, lcp_chain);
1776 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1777 lcp->lcp_kaddr + PAGE_SIZE);
1778 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1779 }
1780
1781 if (lp->lp_uao != NULL) {
1782 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1783 lp->lp_uva + LWPCTL_UAREA_SZ);
1784 }
1785
1786 mutex_destroy(&lp->lp_lock);
1787 kmem_free(lp, sizeof(*lp));
1788 p->p_lwpctl = NULL;
1789 }
1790
1791 /*
1792 * Return the current LWP's "preemption counter". Used to detect
1793 * preemption across operations that can tolerate preemption without
1794 * crashing, but which may generate incorrect results if preempted.
1795 */
1796 uint64_t
1797 lwp_pctr(void)
1798 {
1799
1800 return curlwp->l_ncsw;
1801 }
1802
1803 /*
1804 * Set an LWP's private data pointer.
1805 */
1806 int
1807 lwp_setprivate(struct lwp *l, void *ptr)
1808 {
1809 int error = 0;
1810
1811 l->l_private = ptr;
1812 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1813 error = cpu_lwp_setprivate(l, ptr);
1814 #endif
1815 return error;
1816 }
1817
1818 #if defined(DDB)
1819 #include <machine/pcb.h>
1820
1821 void
1822 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1823 {
1824 lwp_t *l;
1825
1826 LIST_FOREACH(l, &alllwp, l_list) {
1827 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1828
1829 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1830 continue;
1831 }
1832 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1833 (void *)addr, (void *)stack,
1834 (size_t)(addr - stack), l);
1835 }
1836 }
1837 #endif /* defined(DDB) */
1838