Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.164.2.1
      1 /*	$NetBSD: kern_lwp.c,v 1.164.2.1 2012/04/17 00:08:24 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.
     64  *
     65  *	LSIDL
     66  *
     67  *		Idle: the LWP has been created but has not yet executed,
     68  *		or it has ceased executing a unit of work and is waiting
     69  *		to be started again.
     70  *
     71  *	LSSUSPENDED:
     72  *
     73  *		Suspended: the LWP has had its execution suspended by
     74  *		another LWP in the same process using the _lwp_suspend()
     75  *		system call.  User-level LWPs also enter the suspended
     76  *		state when the system is shutting down.
     77  *
     78  *	The second set represent a "statement of intent" on behalf of the
     79  *	LWP.  The LWP may in fact be executing on a processor, may be
     80  *	sleeping or idle. It is expected to take the necessary action to
     81  *	stop executing or become "running" again within a short timeframe.
     82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83  *	Importantly, it indicates that its state is tied to a CPU.
     84  *
     85  *	LSZOMB:
     86  *
     87  *		Dead or dying: the LWP has released most of its resources
     88  *		and is about to switch away into oblivion, or has already
     89  *		switched away.  When it switches away, its few remaining
     90  *		resources can be collected.
     91  *
     92  *	LSSLEEP:
     93  *
     94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95  *		has switched away or will switch away shortly to allow other
     96  *		LWPs to run on the CPU.
     97  *
     98  *	LSSTOP:
     99  *
    100  *		Stopped: the LWP has been stopped as a result of a job
    101  *		control signal, or as a result of the ptrace() interface.
    102  *
    103  *		Stopped LWPs may run briefly within the kernel to handle
    104  *		signals that they receive, but will not return to user space
    105  *		until their process' state is changed away from stopped.
    106  *
    107  *		Single LWPs within a process can not be set stopped
    108  *		selectively: all actions that can stop or continue LWPs
    109  *		occur at the process level.
    110  *
    111  * State transitions
    112  *
    113  *	Note that the LSSTOP state may only be set when returning to
    114  *	user space in userret(), or when sleeping interruptably.  The
    115  *	LSSUSPENDED state may only be set in userret().  Before setting
    116  *	those states, we try to ensure that the LWPs will release all
    117  *	locks that they hold, and at a minimum try to ensure that the
    118  *	LWP can be set runnable again by a signal.
    119  *
    120  *	LWPs may transition states in the following ways:
    121  *
    122  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123  *		    				    > SLEEP
    124  *		    				    > STOPPED
    125  *						    > SUSPENDED
    126  *						    > ZOMB
    127  *						    > IDL (special cases)
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *						    > ONPROC (special cases)
    136  *
    137  *	Some state transitions are only possible with kernel threads (eg
    138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139  *	free of unwanted side effects.
    140  *
    141  * Migration
    142  *
    143  *	Migration of threads from one CPU to another could be performed
    144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  *	functions.  The universal lwp_migrate() function should be used for
    146  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  *	of LWP may change, while it is not locked.
    148  *
    149  * Locking
    150  *
    151  *	The majority of fields in 'struct lwp' are covered by a single,
    152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153  *	each field are documented in sys/lwp.h.
    154  *
    155  *	State transitions must be made with the LWP's general lock held,
    156  *	and may cause the LWP's lock pointer to change.  Manipulation of
    157  *	the general lock is not performed directly, but through calls to
    158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    159  *	adaptive locks are not allowed to be released while the LWP's lock
    160  *	is being held (unlike for other spin-locks).
    161  *
    162  *	States and their associated locks:
    163  *
    164  *	LSONPROC, LSZOMB:
    165  *
    166  *		Always covered by spc_lwplock, which protects running LWPs.
    167  *		This is a per-CPU lock and matches lwp::l_cpu.
    168  *
    169  *	LSIDL, LSRUN:
    170  *
    171  *		Always covered by spc_mutex, which protects the run queues.
    172  *		This is a per-CPU lock and matches lwp::l_cpu.
    173  *
    174  *	LSSLEEP:
    175  *
    176  *		Covered by a lock associated with the sleep queue that the
    177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    178  *
    179  *	LSSTOP, LSSUSPENDED:
    180  *
    181  *		If the LWP was previously sleeping (l_wchan != NULL), then
    182  *		l_mutex references the sleep queue lock.  If the LWP was
    183  *		runnable or on the CPU when halted, or has been removed from
    184  *		the sleep queue since halted, then the lock is spc_lwplock.
    185  *
    186  *	The lock order is as follows:
    187  *
    188  *		spc::spc_lwplock ->
    189  *		    sleeptab::st_mutex ->
    190  *			tschain_t::tc_mutex ->
    191  *			    spc::spc_mutex
    192  *
    193  *	Each process has an scheduler state lock (proc::p_lock), and a
    194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195  *	so on.  When an LWP is to be entered into or removed from one of the
    196  *	following states, p_lock must be held and the process wide counters
    197  *	adjusted:
    198  *
    199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200  *
    201  *	(But not always for kernel threads.  There are some special cases
    202  *	as mentioned above.  See kern_softint.c.)
    203  *
    204  *	Note that an LWP is considered running or likely to run soon if in
    205  *	one of the following states.  This affects the value of p_nrlwps:
    206  *
    207  *		LSRUN, LSONPROC, LSSLEEP
    208  *
    209  *	p_lock does not need to be held when transitioning among these
    210  *	three states, hence p_lock is rarely taken for state transitions.
    211  */
    212 
    213 #include <sys/cdefs.h>
    214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.164.2.1 2012/04/17 00:08:24 yamt Exp $");
    215 
    216 #include "opt_ddb.h"
    217 #include "opt_lockdebug.h"
    218 #include "opt_dtrace.h"
    219 
    220 #define _LWP_API_PRIVATE
    221 
    222 #include <sys/param.h>
    223 #include <sys/systm.h>
    224 #include <sys/cpu.h>
    225 #include <sys/pool.h>
    226 #include <sys/proc.h>
    227 #include <sys/syscallargs.h>
    228 #include <sys/syscall_stats.h>
    229 #include <sys/kauth.h>
    230 #include <sys/pserialize.h>
    231 #include <sys/sleepq.h>
    232 #include <sys/lockdebug.h>
    233 #include <sys/kmem.h>
    234 #include <sys/pset.h>
    235 #include <sys/intr.h>
    236 #include <sys/lwpctl.h>
    237 #include <sys/atomic.h>
    238 #include <sys/filedesc.h>
    239 #include <sys/dtrace_bsd.h>
    240 #include <sys/sdt.h>
    241 #include <sys/xcall.h>
    242 
    243 #include <uvm/uvm_extern.h>
    244 #include <uvm/uvm_object.h>
    245 
    246 static pool_cache_t	lwp_cache	__read_mostly;
    247 struct lwplist		alllwp		__cacheline_aligned;
    248 
    249 static void		lwp_dtor(void *, void *);
    250 
    251 /* DTrace proc provider probes */
    252 SDT_PROBE_DEFINE(proc,,,lwp_create,
    253 	"struct lwp *", NULL,
    254 	NULL, NULL, NULL, NULL,
    255 	NULL, NULL, NULL, NULL);
    256 SDT_PROBE_DEFINE(proc,,,lwp_start,
    257 	"struct lwp *", NULL,
    258 	NULL, NULL, NULL, NULL,
    259 	NULL, NULL, NULL, NULL);
    260 SDT_PROBE_DEFINE(proc,,,lwp_exit,
    261 	"struct lwp *", NULL,
    262 	NULL, NULL, NULL, NULL,
    263 	NULL, NULL, NULL, NULL);
    264 
    265 struct turnstile turnstile0;
    266 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    267 #ifdef LWP0_CPU_INFO
    268 	.l_cpu = LWP0_CPU_INFO,
    269 #endif
    270 #ifdef LWP0_MD_INITIALIZER
    271 	.l_md = LWP0_MD_INITIALIZER,
    272 #endif
    273 	.l_proc = &proc0,
    274 	.l_lid = 1,
    275 	.l_flag = LW_SYSTEM,
    276 	.l_stat = LSONPROC,
    277 	.l_ts = &turnstile0,
    278 	.l_syncobj = &sched_syncobj,
    279 	.l_refcnt = 1,
    280 	.l_priority = PRI_USER + NPRI_USER - 1,
    281 	.l_inheritedprio = -1,
    282 	.l_class = SCHED_OTHER,
    283 	.l_psid = PS_NONE,
    284 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    285 	.l_name = __UNCONST("swapper"),
    286 	.l_fd = &filedesc0,
    287 };
    288 
    289 void
    290 lwpinit(void)
    291 {
    292 
    293 	LIST_INIT(&alllwp);
    294 	lwpinit_specificdata();
    295 	lwp_sys_init();
    296 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    297 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
    298 }
    299 
    300 void
    301 lwp0_init(void)
    302 {
    303 	struct lwp *l = &lwp0;
    304 
    305 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    306 	KASSERT(l->l_lid == proc0.p_nlwpid);
    307 
    308 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    309 
    310 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    311 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    312 	cv_init(&l->l_sigcv, "sigwait");
    313 
    314 	kauth_cred_hold(proc0.p_cred);
    315 	l->l_cred = proc0.p_cred;
    316 
    317 	kdtrace_thread_ctor(NULL, l);
    318 	lwp_initspecific(l);
    319 
    320 	SYSCALL_TIME_LWP_INIT(l);
    321 }
    322 
    323 static void
    324 lwp_dtor(void *arg, void *obj)
    325 {
    326 	lwp_t *l = obj;
    327 	uint64_t where;
    328 	(void)l;
    329 
    330 	/*
    331 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    332 	 * calls will exit before memory of LWP is returned to the pool, where
    333 	 * KVA of LWP structure might be freed and re-used for other purposes.
    334 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    335 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
    336 	 * the value of l->l_cpu must be still valid at this point.
    337 	 */
    338 	KASSERT(l->l_cpu != NULL);
    339 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    340 	xc_wait(where);
    341 }
    342 
    343 /*
    344  * Set an suspended.
    345  *
    346  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    347  * LWP before return.
    348  */
    349 int
    350 lwp_suspend(struct lwp *curl, struct lwp *t)
    351 {
    352 	int error;
    353 
    354 	KASSERT(mutex_owned(t->l_proc->p_lock));
    355 	KASSERT(lwp_locked(t, NULL));
    356 
    357 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    358 
    359 	/*
    360 	 * If the current LWP has been told to exit, we must not suspend anyone
    361 	 * else or deadlock could occur.  We won't return to userspace.
    362 	 */
    363 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    364 		lwp_unlock(t);
    365 		return (EDEADLK);
    366 	}
    367 
    368 	error = 0;
    369 
    370 	switch (t->l_stat) {
    371 	case LSRUN:
    372 	case LSONPROC:
    373 		t->l_flag |= LW_WSUSPEND;
    374 		lwp_need_userret(t);
    375 		lwp_unlock(t);
    376 		break;
    377 
    378 	case LSSLEEP:
    379 		t->l_flag |= LW_WSUSPEND;
    380 
    381 		/*
    382 		 * Kick the LWP and try to get it to the kernel boundary
    383 		 * so that it will release any locks that it holds.
    384 		 * setrunnable() will release the lock.
    385 		 */
    386 		if ((t->l_flag & LW_SINTR) != 0)
    387 			setrunnable(t);
    388 		else
    389 			lwp_unlock(t);
    390 		break;
    391 
    392 	case LSSUSPENDED:
    393 		lwp_unlock(t);
    394 		break;
    395 
    396 	case LSSTOP:
    397 		t->l_flag |= LW_WSUSPEND;
    398 		setrunnable(t);
    399 		break;
    400 
    401 	case LSIDL:
    402 	case LSZOMB:
    403 		error = EINTR; /* It's what Solaris does..... */
    404 		lwp_unlock(t);
    405 		break;
    406 	}
    407 
    408 	return (error);
    409 }
    410 
    411 /*
    412  * Restart a suspended LWP.
    413  *
    414  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    415  * LWP before return.
    416  */
    417 void
    418 lwp_continue(struct lwp *l)
    419 {
    420 
    421 	KASSERT(mutex_owned(l->l_proc->p_lock));
    422 	KASSERT(lwp_locked(l, NULL));
    423 
    424 	/* If rebooting or not suspended, then just bail out. */
    425 	if ((l->l_flag & LW_WREBOOT) != 0) {
    426 		lwp_unlock(l);
    427 		return;
    428 	}
    429 
    430 	l->l_flag &= ~LW_WSUSPEND;
    431 
    432 	if (l->l_stat != LSSUSPENDED) {
    433 		lwp_unlock(l);
    434 		return;
    435 	}
    436 
    437 	/* setrunnable() will release the lock. */
    438 	setrunnable(l);
    439 }
    440 
    441 /*
    442  * Restart a stopped LWP.
    443  *
    444  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    445  * LWP before return.
    446  */
    447 void
    448 lwp_unstop(struct lwp *l)
    449 {
    450 	struct proc *p = l->l_proc;
    451 
    452 	KASSERT(mutex_owned(proc_lock));
    453 	KASSERT(mutex_owned(p->p_lock));
    454 
    455 	lwp_lock(l);
    456 
    457 	/* If not stopped, then just bail out. */
    458 	if (l->l_stat != LSSTOP) {
    459 		lwp_unlock(l);
    460 		return;
    461 	}
    462 
    463 	p->p_stat = SACTIVE;
    464 	p->p_sflag &= ~PS_STOPPING;
    465 
    466 	if (!p->p_waited)
    467 		p->p_pptr->p_nstopchild--;
    468 
    469 	if (l->l_wchan == NULL) {
    470 		/* setrunnable() will release the lock. */
    471 		setrunnable(l);
    472 	} else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
    473 		/* setrunnable() so we can receive the signal */
    474 		setrunnable(l);
    475 	} else {
    476 		l->l_stat = LSSLEEP;
    477 		p->p_nrlwps++;
    478 		lwp_unlock(l);
    479 	}
    480 }
    481 
    482 /*
    483  * Wait for an LWP within the current process to exit.  If 'lid' is
    484  * non-zero, we are waiting for a specific LWP.
    485  *
    486  * Must be called with p->p_lock held.
    487  */
    488 int
    489 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    490 {
    491 	struct proc *p = l->l_proc;
    492 	struct lwp *l2;
    493 	int nfound, error;
    494 	lwpid_t curlid;
    495 	bool exiting;
    496 
    497 	KASSERT(mutex_owned(p->p_lock));
    498 
    499 	p->p_nlwpwait++;
    500 	l->l_waitingfor = lid;
    501 	curlid = l->l_lid;
    502 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    503 
    504 	for (;;) {
    505 		/*
    506 		 * Avoid a race between exit1() and sigexit(): if the
    507 		 * process is dumping core, then we need to bail out: call
    508 		 * into lwp_userret() where we will be suspended until the
    509 		 * deed is done.
    510 		 */
    511 		if ((p->p_sflag & PS_WCORE) != 0) {
    512 			mutex_exit(p->p_lock);
    513 			lwp_userret(l);
    514 #ifdef DIAGNOSTIC
    515 			panic("lwp_wait1");
    516 #endif
    517 			/* NOTREACHED */
    518 		}
    519 
    520 		/*
    521 		 * First off, drain any detached LWP that is waiting to be
    522 		 * reaped.
    523 		 */
    524 		while ((l2 = p->p_zomblwp) != NULL) {
    525 			p->p_zomblwp = NULL;
    526 			lwp_free(l2, false, false);/* releases proc mutex */
    527 			mutex_enter(p->p_lock);
    528 		}
    529 
    530 		/*
    531 		 * Now look for an LWP to collect.  If the whole process is
    532 		 * exiting, count detached LWPs as eligible to be collected,
    533 		 * but don't drain them here.
    534 		 */
    535 		nfound = 0;
    536 		error = 0;
    537 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    538 			/*
    539 			 * If a specific wait and the target is waiting on
    540 			 * us, then avoid deadlock.  This also traps LWPs
    541 			 * that try to wait on themselves.
    542 			 *
    543 			 * Note that this does not handle more complicated
    544 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    545 			 * can still be killed so it is not a major problem.
    546 			 */
    547 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    548 				error = EDEADLK;
    549 				break;
    550 			}
    551 			if (l2 == l)
    552 				continue;
    553 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    554 				nfound += exiting;
    555 				continue;
    556 			}
    557 			if (lid != 0) {
    558 				if (l2->l_lid != lid)
    559 					continue;
    560 				/*
    561 				 * Mark this LWP as the first waiter, if there
    562 				 * is no other.
    563 				 */
    564 				if (l2->l_waiter == 0)
    565 					l2->l_waiter = curlid;
    566 			} else if (l2->l_waiter != 0) {
    567 				/*
    568 				 * It already has a waiter - so don't
    569 				 * collect it.  If the waiter doesn't
    570 				 * grab it we'll get another chance
    571 				 * later.
    572 				 */
    573 				nfound++;
    574 				continue;
    575 			}
    576 			nfound++;
    577 
    578 			/* No need to lock the LWP in order to see LSZOMB. */
    579 			if (l2->l_stat != LSZOMB)
    580 				continue;
    581 
    582 			/*
    583 			 * We're no longer waiting.  Reset the "first waiter"
    584 			 * pointer on the target, in case it was us.
    585 			 */
    586 			l->l_waitingfor = 0;
    587 			l2->l_waiter = 0;
    588 			p->p_nlwpwait--;
    589 			if (departed)
    590 				*departed = l2->l_lid;
    591 			sched_lwp_collect(l2);
    592 
    593 			/* lwp_free() releases the proc lock. */
    594 			lwp_free(l2, false, false);
    595 			mutex_enter(p->p_lock);
    596 			return 0;
    597 		}
    598 
    599 		if (error != 0)
    600 			break;
    601 		if (nfound == 0) {
    602 			error = ESRCH;
    603 			break;
    604 		}
    605 
    606 		/*
    607 		 * The kernel is careful to ensure that it can not deadlock
    608 		 * when exiting - just keep waiting.
    609 		 */
    610 		if (exiting) {
    611 			KASSERT(p->p_nlwps > 1);
    612 			cv_wait(&p->p_lwpcv, p->p_lock);
    613 			continue;
    614 		}
    615 
    616 		/*
    617 		 * If all other LWPs are waiting for exits or suspends
    618 		 * and the supply of zombies and potential zombies is
    619 		 * exhausted, then we are about to deadlock.
    620 		 *
    621 		 * If the process is exiting (and this LWP is not the one
    622 		 * that is coordinating the exit) then bail out now.
    623 		 */
    624 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    625 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    626 			error = EDEADLK;
    627 			break;
    628 		}
    629 
    630 		/*
    631 		 * Sit around and wait for something to happen.  We'll be
    632 		 * awoken if any of the conditions examined change: if an
    633 		 * LWP exits, is collected, or is detached.
    634 		 */
    635 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    636 			break;
    637 	}
    638 
    639 	/*
    640 	 * We didn't find any LWPs to collect, we may have received a
    641 	 * signal, or some other condition has caused us to bail out.
    642 	 *
    643 	 * If waiting on a specific LWP, clear the waiters marker: some
    644 	 * other LWP may want it.  Then, kick all the remaining waiters
    645 	 * so that they can re-check for zombies and for deadlock.
    646 	 */
    647 	if (lid != 0) {
    648 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    649 			if (l2->l_lid == lid) {
    650 				if (l2->l_waiter == curlid)
    651 					l2->l_waiter = 0;
    652 				break;
    653 			}
    654 		}
    655 	}
    656 	p->p_nlwpwait--;
    657 	l->l_waitingfor = 0;
    658 	cv_broadcast(&p->p_lwpcv);
    659 
    660 	return error;
    661 }
    662 
    663 /*
    664  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    665  * The new LWP is created in state LSIDL and must be set running,
    666  * suspended, or stopped by the caller.
    667  */
    668 int
    669 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    670 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    671 	   lwp_t **rnewlwpp, int sclass)
    672 {
    673 	struct lwp *l2, *isfree;
    674 	turnstile_t *ts;
    675 	lwpid_t lid;
    676 
    677 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    678 
    679 	/*
    680 	 * First off, reap any detached LWP waiting to be collected.
    681 	 * We can re-use its LWP structure and turnstile.
    682 	 */
    683 	isfree = NULL;
    684 	if (p2->p_zomblwp != NULL) {
    685 		mutex_enter(p2->p_lock);
    686 		if ((isfree = p2->p_zomblwp) != NULL) {
    687 			p2->p_zomblwp = NULL;
    688 			lwp_free(isfree, true, false);/* releases proc mutex */
    689 		} else
    690 			mutex_exit(p2->p_lock);
    691 	}
    692 	if (isfree == NULL) {
    693 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    694 		memset(l2, 0, sizeof(*l2));
    695 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    696 		SLIST_INIT(&l2->l_pi_lenders);
    697 	} else {
    698 		l2 = isfree;
    699 		ts = l2->l_ts;
    700 		KASSERT(l2->l_inheritedprio == -1);
    701 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    702 		memset(l2, 0, sizeof(*l2));
    703 		l2->l_ts = ts;
    704 	}
    705 
    706 	l2->l_stat = LSIDL;
    707 	l2->l_proc = p2;
    708 	l2->l_refcnt = 1;
    709 	l2->l_class = sclass;
    710 
    711 	/*
    712 	 * If vfork(), we want the LWP to run fast and on the same CPU
    713 	 * as its parent, so that it can reuse the VM context and cache
    714 	 * footprint on the local CPU.
    715 	 */
    716 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    717 	l2->l_kpribase = PRI_KERNEL;
    718 	l2->l_priority = l1->l_priority;
    719 	l2->l_inheritedprio = -1;
    720 	l2->l_flag = 0;
    721 	l2->l_pflag = LP_MPSAFE;
    722 	TAILQ_INIT(&l2->l_ld_locks);
    723 
    724 	/*
    725 	 * For vfork, borrow parent's lwpctl context if it exists.
    726 	 * This also causes us to return via lwp_userret.
    727 	 */
    728 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    729 		l2->l_lwpctl = l1->l_lwpctl;
    730 		l2->l_flag |= LW_LWPCTL;
    731 	}
    732 
    733 	/*
    734 	 * If not the first LWP in the process, grab a reference to the
    735 	 * descriptor table.
    736 	 */
    737 	l2->l_fd = p2->p_fd;
    738 	if (p2->p_nlwps != 0) {
    739 		KASSERT(l1->l_proc == p2);
    740 		fd_hold(l2);
    741 	} else {
    742 		KASSERT(l1->l_proc != p2);
    743 	}
    744 
    745 	if (p2->p_flag & PK_SYSTEM) {
    746 		/* Mark it as a system LWP. */
    747 		l2->l_flag |= LW_SYSTEM;
    748 	}
    749 
    750 	kpreempt_disable();
    751 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    752 	l2->l_cpu = l1->l_cpu;
    753 	kpreempt_enable();
    754 
    755 	kdtrace_thread_ctor(NULL, l2);
    756 	lwp_initspecific(l2);
    757 	sched_lwp_fork(l1, l2);
    758 	lwp_update_creds(l2);
    759 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    760 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    761 	cv_init(&l2->l_sigcv, "sigwait");
    762 	l2->l_syncobj = &sched_syncobj;
    763 
    764 	if (rnewlwpp != NULL)
    765 		*rnewlwpp = l2;
    766 
    767 	/*
    768 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    769 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    770 	 */
    771 	pcu_save_all(l1);
    772 
    773 	uvm_lwp_setuarea(l2, uaddr);
    774 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    775 	    (arg != NULL) ? arg : l2);
    776 
    777 	if ((flags & LWP_PIDLID) != 0) {
    778 		lid = proc_alloc_pid(p2);
    779 		l2->l_pflag |= LP_PIDLID;
    780 	} else {
    781 		lid = 0;
    782 	}
    783 
    784 	mutex_enter(p2->p_lock);
    785 
    786 	if ((flags & LWP_DETACHED) != 0) {
    787 		l2->l_prflag = LPR_DETACHED;
    788 		p2->p_ndlwps++;
    789 	} else
    790 		l2->l_prflag = 0;
    791 
    792 	l2->l_sigstk = l1->l_sigstk;
    793 	l2->l_sigmask = l1->l_sigmask;
    794 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    795 	sigemptyset(&l2->l_sigpend.sp_set);
    796 
    797 	if (lid == 0) {
    798 		p2->p_nlwpid++;
    799 		if (p2->p_nlwpid == 0)
    800 			p2->p_nlwpid++;
    801 		lid = p2->p_nlwpid;
    802 	}
    803 	l2->l_lid = lid;
    804 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    805 	p2->p_nlwps++;
    806 	p2->p_nrlwps++;
    807 
    808 	KASSERT(l2->l_affinity == NULL);
    809 
    810 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    811 		/* Inherit the affinity mask. */
    812 		if (l1->l_affinity) {
    813 			/*
    814 			 * Note that we hold the state lock while inheriting
    815 			 * the affinity to avoid race with sched_setaffinity().
    816 			 */
    817 			lwp_lock(l1);
    818 			if (l1->l_affinity) {
    819 				kcpuset_use(l1->l_affinity);
    820 				l2->l_affinity = l1->l_affinity;
    821 			}
    822 			lwp_unlock(l1);
    823 		}
    824 		lwp_lock(l2);
    825 		/* Inherit a processor-set */
    826 		l2->l_psid = l1->l_psid;
    827 		/* Look for a CPU to start */
    828 		l2->l_cpu = sched_takecpu(l2);
    829 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    830 	}
    831 	mutex_exit(p2->p_lock);
    832 
    833 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
    834 
    835 	mutex_enter(proc_lock);
    836 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    837 	mutex_exit(proc_lock);
    838 
    839 	SYSCALL_TIME_LWP_INIT(l2);
    840 
    841 	if (p2->p_emul->e_lwp_fork)
    842 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    843 
    844 	return (0);
    845 }
    846 
    847 /*
    848  * Called by MD code when a new LWP begins execution.  Must be called
    849  * with the previous LWP locked (so at splsched), or if there is no
    850  * previous LWP, at splsched.
    851  */
    852 void
    853 lwp_startup(struct lwp *prev, struct lwp *new)
    854 {
    855 
    856 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
    857 
    858 	KASSERT(kpreempt_disabled());
    859 	if (prev != NULL) {
    860 		/*
    861 		 * Normalize the count of the spin-mutexes, it was
    862 		 * increased in mi_switch().  Unmark the state of
    863 		 * context switch - it is finished for previous LWP.
    864 		 */
    865 		curcpu()->ci_mtx_count++;
    866 		membar_exit();
    867 		prev->l_ctxswtch = 0;
    868 	}
    869 	KPREEMPT_DISABLE(new);
    870 	spl0();
    871 	if (__predict_true(new->l_proc->p_vmspace))
    872 		pmap_activate(new);
    873 
    874 	/* Note trip through cpu_switchto(). */
    875 	pserialize_switchpoint();
    876 
    877 	LOCKDEBUG_BARRIER(NULL, 0);
    878 	KPREEMPT_ENABLE(new);
    879 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    880 		KERNEL_LOCK(1, new);
    881 	}
    882 }
    883 
    884 /*
    885  * Exit an LWP.
    886  */
    887 void
    888 lwp_exit(struct lwp *l)
    889 {
    890 	struct proc *p = l->l_proc;
    891 	struct lwp *l2;
    892 	bool current;
    893 
    894 	current = (l == curlwp);
    895 
    896 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    897 	KASSERT(p == curproc);
    898 
    899 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
    900 
    901 	/*
    902 	 * Verify that we hold no locks other than the kernel lock.
    903 	 */
    904 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    905 
    906 	/*
    907 	 * If we are the last live LWP in a process, we need to exit the
    908 	 * entire process.  We do so with an exit status of zero, because
    909 	 * it's a "controlled" exit, and because that's what Solaris does.
    910 	 *
    911 	 * We are not quite a zombie yet, but for accounting purposes we
    912 	 * must increment the count of zombies here.
    913 	 *
    914 	 * Note: the last LWP's specificdata will be deleted here.
    915 	 */
    916 	mutex_enter(p->p_lock);
    917 	if (p->p_nlwps - p->p_nzlwps == 1) {
    918 		KASSERT(current == true);
    919 		/* XXXSMP kernel_lock not held */
    920 		exit1(l, 0);
    921 		/* NOTREACHED */
    922 	}
    923 	p->p_nzlwps++;
    924 	mutex_exit(p->p_lock);
    925 
    926 	if (p->p_emul->e_lwp_exit)
    927 		(*p->p_emul->e_lwp_exit)(l);
    928 
    929 	/* Drop filedesc reference. */
    930 	fd_free();
    931 
    932 	/* Delete the specificdata while it's still safe to sleep. */
    933 	lwp_finispecific(l);
    934 
    935 	/*
    936 	 * Release our cached credentials.
    937 	 */
    938 	kauth_cred_free(l->l_cred);
    939 	callout_destroy(&l->l_timeout_ch);
    940 
    941 	/*
    942 	 * Remove the LWP from the global list.
    943 	 * Free its LID from the PID namespace if needed.
    944 	 */
    945 	mutex_enter(proc_lock);
    946 	LIST_REMOVE(l, l_list);
    947 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
    948 		proc_free_pid(l->l_lid);
    949 	}
    950 	mutex_exit(proc_lock);
    951 
    952 	/*
    953 	 * Get rid of all references to the LWP that others (e.g. procfs)
    954 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    955 	 * mark it waiting for collection in the proc structure.  Note that
    956 	 * before we can do that, we need to free any other dead, deatched
    957 	 * LWP waiting to meet its maker.
    958 	 */
    959 	mutex_enter(p->p_lock);
    960 	lwp_drainrefs(l);
    961 
    962 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    963 		while ((l2 = p->p_zomblwp) != NULL) {
    964 			p->p_zomblwp = NULL;
    965 			lwp_free(l2, false, false);/* releases proc mutex */
    966 			mutex_enter(p->p_lock);
    967 			l->l_refcnt++;
    968 			lwp_drainrefs(l);
    969 		}
    970 		p->p_zomblwp = l;
    971 	}
    972 
    973 	/*
    974 	 * If we find a pending signal for the process and we have been
    975 	 * asked to check for signals, then we lose: arrange to have
    976 	 * all other LWPs in the process check for signals.
    977 	 */
    978 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    979 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    980 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    981 			lwp_lock(l2);
    982 			l2->l_flag |= LW_PENDSIG;
    983 			lwp_unlock(l2);
    984 		}
    985 	}
    986 
    987 	/*
    988 	 * Release any PCU resources before becoming a zombie.
    989 	 */
    990 	pcu_discard_all(l);
    991 
    992 	lwp_lock(l);
    993 	l->l_stat = LSZOMB;
    994 	if (l->l_name != NULL) {
    995 		strcpy(l->l_name, "(zombie)");
    996 	}
    997 	lwp_unlock(l);
    998 	p->p_nrlwps--;
    999 	cv_broadcast(&p->p_lwpcv);
   1000 	if (l->l_lwpctl != NULL)
   1001 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
   1002 	mutex_exit(p->p_lock);
   1003 
   1004 	/*
   1005 	 * We can no longer block.  At this point, lwp_free() may already
   1006 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1007 	 *
   1008 	 * Free MD LWP resources.
   1009 	 */
   1010 	cpu_lwp_free(l, 0);
   1011 
   1012 	if (current) {
   1013 		pmap_deactivate(l);
   1014 
   1015 		/*
   1016 		 * Release the kernel lock, and switch away into
   1017 		 * oblivion.
   1018 		 */
   1019 #ifdef notyet
   1020 		/* XXXSMP hold in lwp_userret() */
   1021 		KERNEL_UNLOCK_LAST(l);
   1022 #else
   1023 		KERNEL_UNLOCK_ALL(l, NULL);
   1024 #endif
   1025 		lwp_exit_switchaway(l);
   1026 	}
   1027 }
   1028 
   1029 /*
   1030  * Free a dead LWP's remaining resources.
   1031  *
   1032  * XXXLWP limits.
   1033  */
   1034 void
   1035 lwp_free(struct lwp *l, bool recycle, bool last)
   1036 {
   1037 	struct proc *p = l->l_proc;
   1038 	struct rusage *ru;
   1039 	ksiginfoq_t kq;
   1040 
   1041 	KASSERT(l != curlwp);
   1042 	KASSERT(last || mutex_owned(p->p_lock));
   1043 
   1044 	/*
   1045 	 * If this was not the last LWP in the process, then adjust
   1046 	 * counters and unlock.
   1047 	 */
   1048 	if (!last) {
   1049 		/*
   1050 		 * Add the LWP's run time to the process' base value.
   1051 		 * This needs to co-incide with coming off p_lwps.
   1052 		 */
   1053 		bintime_add(&p->p_rtime, &l->l_rtime);
   1054 		p->p_pctcpu += l->l_pctcpu;
   1055 		ru = &p->p_stats->p_ru;
   1056 		ruadd(ru, &l->l_ru);
   1057 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1058 		ru->ru_nivcsw += l->l_nivcsw;
   1059 		LIST_REMOVE(l, l_sibling);
   1060 		p->p_nlwps--;
   1061 		p->p_nzlwps--;
   1062 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1063 			p->p_ndlwps--;
   1064 
   1065 		/*
   1066 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1067 		 * deadlock.
   1068 		 */
   1069 		cv_broadcast(&p->p_lwpcv);
   1070 		mutex_exit(p->p_lock);
   1071 	}
   1072 
   1073 #ifdef MULTIPROCESSOR
   1074 	/*
   1075 	 * In the unlikely event that the LWP is still on the CPU,
   1076 	 * then spin until it has switched away.  We need to release
   1077 	 * all locks to avoid deadlock against interrupt handlers on
   1078 	 * the target CPU.
   1079 	 */
   1080 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
   1081 		int count;
   1082 		(void)count; /* XXXgcc */
   1083 		KERNEL_UNLOCK_ALL(curlwp, &count);
   1084 		while ((l->l_pflag & LP_RUNNING) != 0 ||
   1085 		    l->l_cpu->ci_curlwp == l)
   1086 			SPINLOCK_BACKOFF_HOOK;
   1087 		KERNEL_LOCK(count, curlwp);
   1088 	}
   1089 #endif
   1090 
   1091 	/*
   1092 	 * Destroy the LWP's remaining signal information.
   1093 	 */
   1094 	ksiginfo_queue_init(&kq);
   1095 	sigclear(&l->l_sigpend, NULL, &kq);
   1096 	ksiginfo_queue_drain(&kq);
   1097 	cv_destroy(&l->l_sigcv);
   1098 
   1099 	/*
   1100 	 * Free lwpctl structure and affinity.
   1101 	 */
   1102 	if (l->l_lwpctl) {
   1103 		lwp_ctl_free(l);
   1104 	}
   1105 	if (l->l_affinity) {
   1106 		kcpuset_unuse(l->l_affinity, NULL);
   1107 		l->l_affinity = NULL;
   1108 	}
   1109 
   1110 	/*
   1111 	 * Free the LWP's turnstile and the LWP structure itself unless the
   1112 	 * caller wants to recycle them.  Also, free the scheduler specific
   1113 	 * data.
   1114 	 *
   1115 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1116 	 * so if it comes up just drop it quietly and move on.
   1117 	 *
   1118 	 * We don't recycle the VM resources at this time.
   1119 	 */
   1120 
   1121 	if (!recycle && l->l_ts != &turnstile0)
   1122 		pool_cache_put(turnstile_cache, l->l_ts);
   1123 	if (l->l_name != NULL)
   1124 		kmem_free(l->l_name, MAXCOMLEN);
   1125 
   1126 	cpu_lwp_free2(l);
   1127 	uvm_lwp_exit(l);
   1128 
   1129 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1130 	KASSERT(l->l_inheritedprio == -1);
   1131 	KASSERT(l->l_blcnt == 0);
   1132 	kdtrace_thread_dtor(NULL, l);
   1133 	if (!recycle)
   1134 		pool_cache_put(lwp_cache, l);
   1135 }
   1136 
   1137 /*
   1138  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1139  */
   1140 void
   1141 lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1142 {
   1143 	struct schedstate_percpu *tspc;
   1144 	int lstat = l->l_stat;
   1145 
   1146 	KASSERT(lwp_locked(l, NULL));
   1147 	KASSERT(tci != NULL);
   1148 
   1149 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1150 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1151 		lstat = LSONPROC;
   1152 	}
   1153 
   1154 	/*
   1155 	 * The destination CPU could be changed while previous migration
   1156 	 * was not finished.
   1157 	 */
   1158 	if (l->l_target_cpu != NULL) {
   1159 		l->l_target_cpu = tci;
   1160 		lwp_unlock(l);
   1161 		return;
   1162 	}
   1163 
   1164 	/* Nothing to do if trying to migrate to the same CPU */
   1165 	if (l->l_cpu == tci) {
   1166 		lwp_unlock(l);
   1167 		return;
   1168 	}
   1169 
   1170 	KASSERT(l->l_target_cpu == NULL);
   1171 	tspc = &tci->ci_schedstate;
   1172 	switch (lstat) {
   1173 	case LSRUN:
   1174 		l->l_target_cpu = tci;
   1175 		break;
   1176 	case LSIDL:
   1177 		l->l_cpu = tci;
   1178 		lwp_unlock_to(l, tspc->spc_mutex);
   1179 		return;
   1180 	case LSSLEEP:
   1181 		l->l_cpu = tci;
   1182 		break;
   1183 	case LSSTOP:
   1184 	case LSSUSPENDED:
   1185 		l->l_cpu = tci;
   1186 		if (l->l_wchan == NULL) {
   1187 			lwp_unlock_to(l, tspc->spc_lwplock);
   1188 			return;
   1189 		}
   1190 		break;
   1191 	case LSONPROC:
   1192 		l->l_target_cpu = tci;
   1193 		spc_lock(l->l_cpu);
   1194 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1195 		spc_unlock(l->l_cpu);
   1196 		break;
   1197 	}
   1198 	lwp_unlock(l);
   1199 }
   1200 
   1201 /*
   1202  * Find the LWP in the process.  Arguments may be zero, in such case,
   1203  * the calling process and first LWP in the list will be used.
   1204  * On success - returns proc locked.
   1205  */
   1206 struct lwp *
   1207 lwp_find2(pid_t pid, lwpid_t lid)
   1208 {
   1209 	proc_t *p;
   1210 	lwp_t *l;
   1211 
   1212 	/* Find the process. */
   1213 	if (pid != 0) {
   1214 		mutex_enter(proc_lock);
   1215 		p = proc_find(pid);
   1216 		if (p == NULL) {
   1217 			mutex_exit(proc_lock);
   1218 			return NULL;
   1219 		}
   1220 		mutex_enter(p->p_lock);
   1221 		mutex_exit(proc_lock);
   1222 	} else {
   1223 		p = curlwp->l_proc;
   1224 		mutex_enter(p->p_lock);
   1225 	}
   1226 	/* Find the thread. */
   1227 	if (lid != 0) {
   1228 		l = lwp_find(p, lid);
   1229 	} else {
   1230 		l = LIST_FIRST(&p->p_lwps);
   1231 	}
   1232 	if (l == NULL) {
   1233 		mutex_exit(p->p_lock);
   1234 	}
   1235 	return l;
   1236 }
   1237 
   1238 /*
   1239  * Look up a live LWP within the specified process.
   1240  *
   1241  * Must be called with p->p_lock held.
   1242  */
   1243 struct lwp *
   1244 lwp_find(struct proc *p, lwpid_t id)
   1245 {
   1246 	struct lwp *l;
   1247 
   1248 	KASSERT(mutex_owned(p->p_lock));
   1249 
   1250 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1251 		if (l->l_lid == id)
   1252 			break;
   1253 	}
   1254 
   1255 	/*
   1256 	 * No need to lock - all of these conditions will
   1257 	 * be visible with the process level mutex held.
   1258 	 */
   1259 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1260 		l = NULL;
   1261 
   1262 	return l;
   1263 }
   1264 
   1265 /*
   1266  * Update an LWP's cached credentials to mirror the process' master copy.
   1267  *
   1268  * This happens early in the syscall path, on user trap, and on LWP
   1269  * creation.  A long-running LWP can also voluntarily choose to update
   1270  * it's credentials by calling this routine.  This may be called from
   1271  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1272  */
   1273 void
   1274 lwp_update_creds(struct lwp *l)
   1275 {
   1276 	kauth_cred_t oc;
   1277 	struct proc *p;
   1278 
   1279 	p = l->l_proc;
   1280 	oc = l->l_cred;
   1281 
   1282 	mutex_enter(p->p_lock);
   1283 	kauth_cred_hold(p->p_cred);
   1284 	l->l_cred = p->p_cred;
   1285 	l->l_prflag &= ~LPR_CRMOD;
   1286 	mutex_exit(p->p_lock);
   1287 	if (oc != NULL)
   1288 		kauth_cred_free(oc);
   1289 }
   1290 
   1291 /*
   1292  * Verify that an LWP is locked, and optionally verify that the lock matches
   1293  * one we specify.
   1294  */
   1295 int
   1296 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1297 {
   1298 	kmutex_t *cur = l->l_mutex;
   1299 
   1300 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1301 }
   1302 
   1303 /*
   1304  * Lend a new mutex to an LWP.  The old mutex must be held.
   1305  */
   1306 void
   1307 lwp_setlock(struct lwp *l, kmutex_t *new)
   1308 {
   1309 
   1310 	KASSERT(mutex_owned(l->l_mutex));
   1311 
   1312 	membar_exit();
   1313 	l->l_mutex = new;
   1314 }
   1315 
   1316 /*
   1317  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1318  * must be held.
   1319  */
   1320 void
   1321 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1322 {
   1323 	kmutex_t *old;
   1324 
   1325 	KASSERT(lwp_locked(l, NULL));
   1326 
   1327 	old = l->l_mutex;
   1328 	membar_exit();
   1329 	l->l_mutex = new;
   1330 	mutex_spin_exit(old);
   1331 }
   1332 
   1333 int
   1334 lwp_trylock(struct lwp *l)
   1335 {
   1336 	kmutex_t *old;
   1337 
   1338 	for (;;) {
   1339 		if (!mutex_tryenter(old = l->l_mutex))
   1340 			return 0;
   1341 		if (__predict_true(l->l_mutex == old))
   1342 			return 1;
   1343 		mutex_spin_exit(old);
   1344 	}
   1345 }
   1346 
   1347 void
   1348 lwp_unsleep(lwp_t *l, bool cleanup)
   1349 {
   1350 
   1351 	KASSERT(mutex_owned(l->l_mutex));
   1352 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1353 }
   1354 
   1355 /*
   1356  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1357  * set.
   1358  */
   1359 void
   1360 lwp_userret(struct lwp *l)
   1361 {
   1362 	struct proc *p;
   1363 	int sig;
   1364 
   1365 	KASSERT(l == curlwp);
   1366 	KASSERT(l->l_stat == LSONPROC);
   1367 	p = l->l_proc;
   1368 
   1369 #ifndef __HAVE_FAST_SOFTINTS
   1370 	/* Run pending soft interrupts. */
   1371 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1372 		softint_overlay();
   1373 #endif
   1374 
   1375 	/*
   1376 	 * It is safe to do this read unlocked on a MP system..
   1377 	 */
   1378 	while ((l->l_flag & LW_USERRET) != 0) {
   1379 		/*
   1380 		 * Process pending signals first, unless the process
   1381 		 * is dumping core or exiting, where we will instead
   1382 		 * enter the LW_WSUSPEND case below.
   1383 		 */
   1384 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1385 		    LW_PENDSIG) {
   1386 			mutex_enter(p->p_lock);
   1387 			while ((sig = issignal(l)) != 0)
   1388 				postsig(sig);
   1389 			mutex_exit(p->p_lock);
   1390 		}
   1391 
   1392 		/*
   1393 		 * Core-dump or suspend pending.
   1394 		 *
   1395 		 * In case of core dump, suspend ourselves, so that the kernel
   1396 		 * stack and therefore the userland registers saved in the
   1397 		 * trapframe are around for coredump() to write them out.
   1398 		 * We also need to save any PCU resources that we have so that
   1399 		 * they accessible for coredump().  We issue a wakeup on
   1400 		 * p->p_lwpcv so that sigexit() will write the core file out
   1401 		 * once all other LWPs are suspended.
   1402 		 */
   1403 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1404 			pcu_save_all(l);
   1405 			mutex_enter(p->p_lock);
   1406 			p->p_nrlwps--;
   1407 			cv_broadcast(&p->p_lwpcv);
   1408 			lwp_lock(l);
   1409 			l->l_stat = LSSUSPENDED;
   1410 			lwp_unlock(l);
   1411 			mutex_exit(p->p_lock);
   1412 			lwp_lock(l);
   1413 			mi_switch(l);
   1414 		}
   1415 
   1416 		/* Process is exiting. */
   1417 		if ((l->l_flag & LW_WEXIT) != 0) {
   1418 			lwp_exit(l);
   1419 			KASSERT(0);
   1420 			/* NOTREACHED */
   1421 		}
   1422 
   1423 		/* update lwpctl processor (for vfork child_return) */
   1424 		if (l->l_flag & LW_LWPCTL) {
   1425 			lwp_lock(l);
   1426 			KASSERT(kpreempt_disabled());
   1427 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1428 			l->l_lwpctl->lc_pctr++;
   1429 			l->l_flag &= ~LW_LWPCTL;
   1430 			lwp_unlock(l);
   1431 		}
   1432 	}
   1433 }
   1434 
   1435 /*
   1436  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1437  */
   1438 void
   1439 lwp_need_userret(struct lwp *l)
   1440 {
   1441 	KASSERT(lwp_locked(l, NULL));
   1442 
   1443 	/*
   1444 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1445 	 * that the condition will be seen before forcing the LWP to enter
   1446 	 * kernel mode.
   1447 	 */
   1448 	membar_producer();
   1449 	cpu_signotify(l);
   1450 }
   1451 
   1452 /*
   1453  * Add one reference to an LWP.  This will prevent the LWP from
   1454  * exiting, thus keep the lwp structure and PCB around to inspect.
   1455  */
   1456 void
   1457 lwp_addref(struct lwp *l)
   1458 {
   1459 
   1460 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1461 	KASSERT(l->l_stat != LSZOMB);
   1462 	KASSERT(l->l_refcnt != 0);
   1463 
   1464 	l->l_refcnt++;
   1465 }
   1466 
   1467 /*
   1468  * Remove one reference to an LWP.  If this is the last reference,
   1469  * then we must finalize the LWP's death.
   1470  */
   1471 void
   1472 lwp_delref(struct lwp *l)
   1473 {
   1474 	struct proc *p = l->l_proc;
   1475 
   1476 	mutex_enter(p->p_lock);
   1477 	lwp_delref2(l);
   1478 	mutex_exit(p->p_lock);
   1479 }
   1480 
   1481 /*
   1482  * Remove one reference to an LWP.  If this is the last reference,
   1483  * then we must finalize the LWP's death.  The proc mutex is held
   1484  * on entry.
   1485  */
   1486 void
   1487 lwp_delref2(struct lwp *l)
   1488 {
   1489 	struct proc *p = l->l_proc;
   1490 
   1491 	KASSERT(mutex_owned(p->p_lock));
   1492 	KASSERT(l->l_stat != LSZOMB);
   1493 	KASSERT(l->l_refcnt > 0);
   1494 	if (--l->l_refcnt == 0)
   1495 		cv_broadcast(&p->p_lwpcv);
   1496 }
   1497 
   1498 /*
   1499  * Drain all references to the current LWP.
   1500  */
   1501 void
   1502 lwp_drainrefs(struct lwp *l)
   1503 {
   1504 	struct proc *p = l->l_proc;
   1505 
   1506 	KASSERT(mutex_owned(p->p_lock));
   1507 	KASSERT(l->l_refcnt != 0);
   1508 
   1509 	l->l_refcnt--;
   1510 	while (l->l_refcnt != 0)
   1511 		cv_wait(&p->p_lwpcv, p->p_lock);
   1512 }
   1513 
   1514 /*
   1515  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1516  * be held.
   1517  */
   1518 bool
   1519 lwp_alive(lwp_t *l)
   1520 {
   1521 
   1522 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1523 
   1524 	switch (l->l_stat) {
   1525 	case LSSLEEP:
   1526 	case LSRUN:
   1527 	case LSONPROC:
   1528 	case LSSTOP:
   1529 	case LSSUSPENDED:
   1530 		return true;
   1531 	default:
   1532 		return false;
   1533 	}
   1534 }
   1535 
   1536 /*
   1537  * Return first live LWP in the process.
   1538  */
   1539 lwp_t *
   1540 lwp_find_first(proc_t *p)
   1541 {
   1542 	lwp_t *l;
   1543 
   1544 	KASSERT(mutex_owned(p->p_lock));
   1545 
   1546 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1547 		if (lwp_alive(l)) {
   1548 			return l;
   1549 		}
   1550 	}
   1551 
   1552 	return NULL;
   1553 }
   1554 
   1555 /*
   1556  * Allocate a new lwpctl structure for a user LWP.
   1557  */
   1558 int
   1559 lwp_ctl_alloc(vaddr_t *uaddr)
   1560 {
   1561 	lcproc_t *lp;
   1562 	u_int bit, i, offset;
   1563 	struct uvm_object *uao;
   1564 	int error;
   1565 	lcpage_t *lcp;
   1566 	proc_t *p;
   1567 	lwp_t *l;
   1568 
   1569 	l = curlwp;
   1570 	p = l->l_proc;
   1571 
   1572 	/* don't allow a vforked process to create lwp ctls */
   1573 	if (p->p_lflag & PL_PPWAIT)
   1574 		return EBUSY;
   1575 
   1576 	if (l->l_lcpage != NULL) {
   1577 		lcp = l->l_lcpage;
   1578 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1579 		return 0;
   1580 	}
   1581 
   1582 	/* First time around, allocate header structure for the process. */
   1583 	if ((lp = p->p_lwpctl) == NULL) {
   1584 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1585 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1586 		lp->lp_uao = NULL;
   1587 		TAILQ_INIT(&lp->lp_pages);
   1588 		mutex_enter(p->p_lock);
   1589 		if (p->p_lwpctl == NULL) {
   1590 			p->p_lwpctl = lp;
   1591 			mutex_exit(p->p_lock);
   1592 		} else {
   1593 			mutex_exit(p->p_lock);
   1594 			mutex_destroy(&lp->lp_lock);
   1595 			kmem_free(lp, sizeof(*lp));
   1596 			lp = p->p_lwpctl;
   1597 		}
   1598 	}
   1599 
   1600  	/*
   1601  	 * Set up an anonymous memory region to hold the shared pages.
   1602  	 * Map them into the process' address space.  The user vmspace
   1603  	 * gets the first reference on the UAO.
   1604  	 */
   1605 	mutex_enter(&lp->lp_lock);
   1606 	if (lp->lp_uao == NULL) {
   1607 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1608 		lp->lp_cur = 0;
   1609 		lp->lp_max = LWPCTL_UAREA_SZ;
   1610 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1611 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1612 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1613 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1614 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1615 		if (error != 0) {
   1616 			uao_detach(lp->lp_uao);
   1617 			lp->lp_uao = NULL;
   1618 			mutex_exit(&lp->lp_lock);
   1619 			return error;
   1620 		}
   1621 	}
   1622 
   1623 	/* Get a free block and allocate for this LWP. */
   1624 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1625 		if (lcp->lcp_nfree != 0)
   1626 			break;
   1627 	}
   1628 	if (lcp == NULL) {
   1629 		/* Nothing available - try to set up a free page. */
   1630 		if (lp->lp_cur == lp->lp_max) {
   1631 			mutex_exit(&lp->lp_lock);
   1632 			return ENOMEM;
   1633 		}
   1634 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1635 		if (lcp == NULL) {
   1636 			mutex_exit(&lp->lp_lock);
   1637 			return ENOMEM;
   1638 		}
   1639 		/*
   1640 		 * Wire the next page down in kernel space.  Since this
   1641 		 * is a new mapping, we must add a reference.
   1642 		 */
   1643 		uao = lp->lp_uao;
   1644 		(*uao->pgops->pgo_reference)(uao);
   1645 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1646 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1647 		    uao, lp->lp_cur, PAGE_SIZE,
   1648 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1649 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1650 		if (error != 0) {
   1651 			mutex_exit(&lp->lp_lock);
   1652 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1653 			(*uao->pgops->pgo_detach)(uao);
   1654 			return error;
   1655 		}
   1656 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1657 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1658 		if (error != 0) {
   1659 			mutex_exit(&lp->lp_lock);
   1660 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1661 			    lcp->lcp_kaddr + PAGE_SIZE);
   1662 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1663 			return error;
   1664 		}
   1665 		/* Prepare the page descriptor and link into the list. */
   1666 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1667 		lp->lp_cur += PAGE_SIZE;
   1668 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1669 		lcp->lcp_rotor = 0;
   1670 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1671 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1672 	}
   1673 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1674 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1675 			i = 0;
   1676 	}
   1677 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1678 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1679 	lcp->lcp_rotor = i;
   1680 	lcp->lcp_nfree--;
   1681 	l->l_lcpage = lcp;
   1682 	offset = (i << 5) + bit;
   1683 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1684 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1685 	mutex_exit(&lp->lp_lock);
   1686 
   1687 	KPREEMPT_DISABLE(l);
   1688 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1689 	KPREEMPT_ENABLE(l);
   1690 
   1691 	return 0;
   1692 }
   1693 
   1694 /*
   1695  * Free an lwpctl structure back to the per-process list.
   1696  */
   1697 void
   1698 lwp_ctl_free(lwp_t *l)
   1699 {
   1700 	struct proc *p = l->l_proc;
   1701 	lcproc_t *lp;
   1702 	lcpage_t *lcp;
   1703 	u_int map, offset;
   1704 
   1705 	/* don't free a lwp context we borrowed for vfork */
   1706 	if (p->p_lflag & PL_PPWAIT) {
   1707 		l->l_lwpctl = NULL;
   1708 		return;
   1709 	}
   1710 
   1711 	lp = p->p_lwpctl;
   1712 	KASSERT(lp != NULL);
   1713 
   1714 	lcp = l->l_lcpage;
   1715 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1716 	KASSERT(offset < LWPCTL_PER_PAGE);
   1717 
   1718 	mutex_enter(&lp->lp_lock);
   1719 	lcp->lcp_nfree++;
   1720 	map = offset >> 5;
   1721 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1722 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1723 		lcp->lcp_rotor = map;
   1724 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1725 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1726 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1727 	}
   1728 	mutex_exit(&lp->lp_lock);
   1729 }
   1730 
   1731 /*
   1732  * Process is exiting; tear down lwpctl state.  This can only be safely
   1733  * called by the last LWP in the process.
   1734  */
   1735 void
   1736 lwp_ctl_exit(void)
   1737 {
   1738 	lcpage_t *lcp, *next;
   1739 	lcproc_t *lp;
   1740 	proc_t *p;
   1741 	lwp_t *l;
   1742 
   1743 	l = curlwp;
   1744 	l->l_lwpctl = NULL;
   1745 	l->l_lcpage = NULL;
   1746 	p = l->l_proc;
   1747 	lp = p->p_lwpctl;
   1748 
   1749 	KASSERT(lp != NULL);
   1750 	KASSERT(p->p_nlwps == 1);
   1751 
   1752 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1753 		next = TAILQ_NEXT(lcp, lcp_chain);
   1754 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1755 		    lcp->lcp_kaddr + PAGE_SIZE);
   1756 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1757 	}
   1758 
   1759 	if (lp->lp_uao != NULL) {
   1760 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1761 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1762 	}
   1763 
   1764 	mutex_destroy(&lp->lp_lock);
   1765 	kmem_free(lp, sizeof(*lp));
   1766 	p->p_lwpctl = NULL;
   1767 }
   1768 
   1769 /*
   1770  * Return the current LWP's "preemption counter".  Used to detect
   1771  * preemption across operations that can tolerate preemption without
   1772  * crashing, but which may generate incorrect results if preempted.
   1773  */
   1774 uint64_t
   1775 lwp_pctr(void)
   1776 {
   1777 
   1778 	return curlwp->l_ncsw;
   1779 }
   1780 
   1781 /*
   1782  * Set an LWP's private data pointer.
   1783  */
   1784 int
   1785 lwp_setprivate(struct lwp *l, void *ptr)
   1786 {
   1787 	int error = 0;
   1788 
   1789 	l->l_private = ptr;
   1790 #ifdef __HAVE_CPU_LWP_SETPRIVATE
   1791 	error = cpu_lwp_setprivate(l, ptr);
   1792 #endif
   1793 	return error;
   1794 }
   1795 
   1796 #if defined(DDB)
   1797 #include <machine/pcb.h>
   1798 
   1799 void
   1800 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1801 {
   1802 	lwp_t *l;
   1803 
   1804 	LIST_FOREACH(l, &alllwp, l_list) {
   1805 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1806 
   1807 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1808 			continue;
   1809 		}
   1810 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1811 		    (void *)addr, (void *)stack,
   1812 		    (size_t)(addr - stack), l);
   1813 	}
   1814 }
   1815 #endif /* defined(DDB) */
   1816