kern_lwp.c revision 1.164.2.2 1 /* $NetBSD: kern_lwp.c,v 1.164.2.2 2012/10/30 17:22:29 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.164.2.2 2012/10/30 17:22:29 yamt Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219
220 #define _LWP_API_PRIVATE
221
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 #include <sys/xcall.h>
242 #include <sys/uidinfo.h>
243 #include <sys/sysctl.h>
244
245 #include <uvm/uvm_extern.h>
246 #include <uvm/uvm_object.h>
247
248 static pool_cache_t lwp_cache __read_mostly;
249 struct lwplist alllwp __cacheline_aligned;
250
251 static void lwp_dtor(void *, void *);
252
253 /* DTrace proc provider probes */
254 SDT_PROBE_DEFINE(proc,,,lwp_create,
255 "struct lwp *", NULL,
256 NULL, NULL, NULL, NULL,
257 NULL, NULL, NULL, NULL);
258 SDT_PROBE_DEFINE(proc,,,lwp_start,
259 "struct lwp *", NULL,
260 NULL, NULL, NULL, NULL,
261 NULL, NULL, NULL, NULL);
262 SDT_PROBE_DEFINE(proc,,,lwp_exit,
263 "struct lwp *", NULL,
264 NULL, NULL, NULL, NULL,
265 NULL, NULL, NULL, NULL);
266
267 struct turnstile turnstile0;
268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
269 #ifdef LWP0_CPU_INFO
270 .l_cpu = LWP0_CPU_INFO,
271 #endif
272 #ifdef LWP0_MD_INITIALIZER
273 .l_md = LWP0_MD_INITIALIZER,
274 #endif
275 .l_proc = &proc0,
276 .l_lid = 1,
277 .l_flag = LW_SYSTEM,
278 .l_stat = LSONPROC,
279 .l_ts = &turnstile0,
280 .l_syncobj = &sched_syncobj,
281 .l_refcnt = 1,
282 .l_priority = PRI_USER + NPRI_USER - 1,
283 .l_inheritedprio = -1,
284 .l_class = SCHED_OTHER,
285 .l_psid = PS_NONE,
286 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
287 .l_name = __UNCONST("swapper"),
288 .l_fd = &filedesc0,
289 };
290
291 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
292
293 /*
294 * sysctl helper routine for kern.maxlwp. Ensures that the new
295 * values are not too low or too high.
296 */
297 static int
298 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
299 {
300 int error, nmaxlwp;
301 struct sysctlnode node;
302
303 nmaxlwp = maxlwp;
304 node = *rnode;
305 node.sysctl_data = &nmaxlwp;
306 error = sysctl_lookup(SYSCTLFN_CALL(&node));
307 if (error || newp == NULL)
308 return error;
309
310 if (nmaxlwp < 0 || nmaxlwp >= 65536)
311 return EINVAL;
312 if (nmaxlwp > cpu_maxlwp())
313 return EINVAL;
314 maxlwp = nmaxlwp;
315
316 return 0;
317 }
318
319 static void
320 sysctl_kern_lwp_setup(void)
321 {
322 struct sysctllog *clog = NULL;
323
324 sysctl_createv(&clog, 0, NULL, NULL,
325 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
326 CTLTYPE_INT, "maxlwp",
327 SYSCTL_DESCR("Maximum number of simultaneous threads"),
328 sysctl_kern_maxlwp, 0, NULL, 0,
329 CTL_KERN, CTL_CREATE, CTL_EOL);
330 }
331
332 void
333 lwpinit(void)
334 {
335
336 LIST_INIT(&alllwp);
337 lwpinit_specificdata();
338 lwp_sys_init();
339 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
340 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
341
342 maxlwp = cpu_maxlwp();
343 sysctl_kern_lwp_setup();
344 }
345
346 void
347 lwp0_init(void)
348 {
349 struct lwp *l = &lwp0;
350
351 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
352 KASSERT(l->l_lid == proc0.p_nlwpid);
353
354 LIST_INSERT_HEAD(&alllwp, l, l_list);
355
356 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
357 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
358 cv_init(&l->l_sigcv, "sigwait");
359 cv_init(&l->l_waitcv, "vfork");
360
361 kauth_cred_hold(proc0.p_cred);
362 l->l_cred = proc0.p_cred;
363
364 kdtrace_thread_ctor(NULL, l);
365 lwp_initspecific(l);
366
367 SYSCALL_TIME_LWP_INIT(l);
368 }
369
370 static void
371 lwp_dtor(void *arg, void *obj)
372 {
373 lwp_t *l = obj;
374 uint64_t where;
375 (void)l;
376
377 /*
378 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
379 * calls will exit before memory of LWP is returned to the pool, where
380 * KVA of LWP structure might be freed and re-used for other purposes.
381 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
382 * callers, therefore cross-call to all CPUs will do the job. Also,
383 * the value of l->l_cpu must be still valid at this point.
384 */
385 KASSERT(l->l_cpu != NULL);
386 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
387 xc_wait(where);
388 }
389
390 /*
391 * Set an suspended.
392 *
393 * Must be called with p_lock held, and the LWP locked. Will unlock the
394 * LWP before return.
395 */
396 int
397 lwp_suspend(struct lwp *curl, struct lwp *t)
398 {
399 int error;
400
401 KASSERT(mutex_owned(t->l_proc->p_lock));
402 KASSERT(lwp_locked(t, NULL));
403
404 KASSERT(curl != t || curl->l_stat == LSONPROC);
405
406 /*
407 * If the current LWP has been told to exit, we must not suspend anyone
408 * else or deadlock could occur. We won't return to userspace.
409 */
410 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
411 lwp_unlock(t);
412 return (EDEADLK);
413 }
414
415 error = 0;
416
417 switch (t->l_stat) {
418 case LSRUN:
419 case LSONPROC:
420 t->l_flag |= LW_WSUSPEND;
421 lwp_need_userret(t);
422 lwp_unlock(t);
423 break;
424
425 case LSSLEEP:
426 t->l_flag |= LW_WSUSPEND;
427
428 /*
429 * Kick the LWP and try to get it to the kernel boundary
430 * so that it will release any locks that it holds.
431 * setrunnable() will release the lock.
432 */
433 if ((t->l_flag & LW_SINTR) != 0)
434 setrunnable(t);
435 else
436 lwp_unlock(t);
437 break;
438
439 case LSSUSPENDED:
440 lwp_unlock(t);
441 break;
442
443 case LSSTOP:
444 t->l_flag |= LW_WSUSPEND;
445 setrunnable(t);
446 break;
447
448 case LSIDL:
449 case LSZOMB:
450 error = EINTR; /* It's what Solaris does..... */
451 lwp_unlock(t);
452 break;
453 }
454
455 return (error);
456 }
457
458 /*
459 * Restart a suspended LWP.
460 *
461 * Must be called with p_lock held, and the LWP locked. Will unlock the
462 * LWP before return.
463 */
464 void
465 lwp_continue(struct lwp *l)
466 {
467
468 KASSERT(mutex_owned(l->l_proc->p_lock));
469 KASSERT(lwp_locked(l, NULL));
470
471 /* If rebooting or not suspended, then just bail out. */
472 if ((l->l_flag & LW_WREBOOT) != 0) {
473 lwp_unlock(l);
474 return;
475 }
476
477 l->l_flag &= ~LW_WSUSPEND;
478
479 if (l->l_stat != LSSUSPENDED) {
480 lwp_unlock(l);
481 return;
482 }
483
484 /* setrunnable() will release the lock. */
485 setrunnable(l);
486 }
487
488 /*
489 * Restart a stopped LWP.
490 *
491 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
492 * LWP before return.
493 */
494 void
495 lwp_unstop(struct lwp *l)
496 {
497 struct proc *p = l->l_proc;
498
499 KASSERT(mutex_owned(proc_lock));
500 KASSERT(mutex_owned(p->p_lock));
501
502 lwp_lock(l);
503
504 /* If not stopped, then just bail out. */
505 if (l->l_stat != LSSTOP) {
506 lwp_unlock(l);
507 return;
508 }
509
510 p->p_stat = SACTIVE;
511 p->p_sflag &= ~PS_STOPPING;
512
513 if (!p->p_waited)
514 p->p_pptr->p_nstopchild--;
515
516 if (l->l_wchan == NULL) {
517 /* setrunnable() will release the lock. */
518 setrunnable(l);
519 } else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
520 /* setrunnable() so we can receive the signal */
521 setrunnable(l);
522 } else {
523 l->l_stat = LSSLEEP;
524 p->p_nrlwps++;
525 lwp_unlock(l);
526 }
527 }
528
529 /*
530 * Wait for an LWP within the current process to exit. If 'lid' is
531 * non-zero, we are waiting for a specific LWP.
532 *
533 * Must be called with p->p_lock held.
534 */
535 int
536 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
537 {
538 const lwpid_t curlid = l->l_lid;
539 proc_t *p = l->l_proc;
540 lwp_t *l2;
541 int error;
542
543 KASSERT(mutex_owned(p->p_lock));
544
545 p->p_nlwpwait++;
546 l->l_waitingfor = lid;
547
548 for (;;) {
549 int nfound;
550
551 /*
552 * Avoid a race between exit1() and sigexit(): if the
553 * process is dumping core, then we need to bail out: call
554 * into lwp_userret() where we will be suspended until the
555 * deed is done.
556 */
557 if ((p->p_sflag & PS_WCORE) != 0) {
558 mutex_exit(p->p_lock);
559 lwp_userret(l);
560 KASSERT(false);
561 }
562
563 /*
564 * First off, drain any detached LWP that is waiting to be
565 * reaped.
566 */
567 while ((l2 = p->p_zomblwp) != NULL) {
568 p->p_zomblwp = NULL;
569 lwp_free(l2, false, false);/* releases proc mutex */
570 mutex_enter(p->p_lock);
571 }
572
573 /*
574 * Now look for an LWP to collect. If the whole process is
575 * exiting, count detached LWPs as eligible to be collected,
576 * but don't drain them here.
577 */
578 nfound = 0;
579 error = 0;
580 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
581 /*
582 * If a specific wait and the target is waiting on
583 * us, then avoid deadlock. This also traps LWPs
584 * that try to wait on themselves.
585 *
586 * Note that this does not handle more complicated
587 * cycles, like: t1 -> t2 -> t3 -> t1. The process
588 * can still be killed so it is not a major problem.
589 */
590 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
591 error = EDEADLK;
592 break;
593 }
594 if (l2 == l)
595 continue;
596 if ((l2->l_prflag & LPR_DETACHED) != 0) {
597 nfound += exiting;
598 continue;
599 }
600 if (lid != 0) {
601 if (l2->l_lid != lid)
602 continue;
603 /*
604 * Mark this LWP as the first waiter, if there
605 * is no other.
606 */
607 if (l2->l_waiter == 0)
608 l2->l_waiter = curlid;
609 } else if (l2->l_waiter != 0) {
610 /*
611 * It already has a waiter - so don't
612 * collect it. If the waiter doesn't
613 * grab it we'll get another chance
614 * later.
615 */
616 nfound++;
617 continue;
618 }
619 nfound++;
620
621 /* No need to lock the LWP in order to see LSZOMB. */
622 if (l2->l_stat != LSZOMB)
623 continue;
624
625 /*
626 * We're no longer waiting. Reset the "first waiter"
627 * pointer on the target, in case it was us.
628 */
629 l->l_waitingfor = 0;
630 l2->l_waiter = 0;
631 p->p_nlwpwait--;
632 if (departed)
633 *departed = l2->l_lid;
634 sched_lwp_collect(l2);
635
636 /* lwp_free() releases the proc lock. */
637 lwp_free(l2, false, false);
638 mutex_enter(p->p_lock);
639 return 0;
640 }
641
642 if (error != 0)
643 break;
644 if (nfound == 0) {
645 error = ESRCH;
646 break;
647 }
648
649 /*
650 * Note: since the lock will be dropped, need to restart on
651 * wakeup to run all LWPs again, e.g. there may be new LWPs.
652 */
653 if (exiting) {
654 KASSERT(p->p_nlwps > 1);
655 cv_wait(&p->p_lwpcv, p->p_lock);
656 error = EAGAIN;
657 break;
658 }
659
660 /*
661 * If all other LWPs are waiting for exits or suspends
662 * and the supply of zombies and potential zombies is
663 * exhausted, then we are about to deadlock.
664 *
665 * If the process is exiting (and this LWP is not the one
666 * that is coordinating the exit) then bail out now.
667 */
668 if ((p->p_sflag & PS_WEXIT) != 0 ||
669 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
670 error = EDEADLK;
671 break;
672 }
673
674 /*
675 * Sit around and wait for something to happen. We'll be
676 * awoken if any of the conditions examined change: if an
677 * LWP exits, is collected, or is detached.
678 */
679 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
680 break;
681 }
682
683 /*
684 * We didn't find any LWPs to collect, we may have received a
685 * signal, or some other condition has caused us to bail out.
686 *
687 * If waiting on a specific LWP, clear the waiters marker: some
688 * other LWP may want it. Then, kick all the remaining waiters
689 * so that they can re-check for zombies and for deadlock.
690 */
691 if (lid != 0) {
692 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
693 if (l2->l_lid == lid) {
694 if (l2->l_waiter == curlid)
695 l2->l_waiter = 0;
696 break;
697 }
698 }
699 }
700 p->p_nlwpwait--;
701 l->l_waitingfor = 0;
702 cv_broadcast(&p->p_lwpcv);
703
704 return error;
705 }
706
707 /*
708 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
709 * The new LWP is created in state LSIDL and must be set running,
710 * suspended, or stopped by the caller.
711 */
712 int
713 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
714 void *stack, size_t stacksize, void (*func)(void *), void *arg,
715 lwp_t **rnewlwpp, int sclass)
716 {
717 struct lwp *l2, *isfree;
718 turnstile_t *ts;
719 lwpid_t lid;
720
721 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
722
723 /*
724 * Enforce limits, excluding the first lwp and kthreads.
725 */
726 if (p2->p_nlwps != 0 && p2 != &proc0) {
727 uid_t uid = kauth_cred_getuid(l1->l_cred);
728 int count = chglwpcnt(uid, 1);
729 if (__predict_false(count >
730 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
731 if (kauth_authorize_process(l1->l_cred,
732 KAUTH_PROCESS_RLIMIT, p2,
733 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
734 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
735 != 0) {
736 (void)chglwpcnt(uid, -1);
737 return EAGAIN;
738 }
739 }
740 }
741
742 /*
743 * First off, reap any detached LWP waiting to be collected.
744 * We can re-use its LWP structure and turnstile.
745 */
746 isfree = NULL;
747 if (p2->p_zomblwp != NULL) {
748 mutex_enter(p2->p_lock);
749 if ((isfree = p2->p_zomblwp) != NULL) {
750 p2->p_zomblwp = NULL;
751 lwp_free(isfree, true, false);/* releases proc mutex */
752 } else
753 mutex_exit(p2->p_lock);
754 }
755 if (isfree == NULL) {
756 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
757 memset(l2, 0, sizeof(*l2));
758 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
759 SLIST_INIT(&l2->l_pi_lenders);
760 } else {
761 l2 = isfree;
762 ts = l2->l_ts;
763 KASSERT(l2->l_inheritedprio == -1);
764 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
765 memset(l2, 0, sizeof(*l2));
766 l2->l_ts = ts;
767 }
768
769 l2->l_stat = LSIDL;
770 l2->l_proc = p2;
771 l2->l_refcnt = 1;
772 l2->l_class = sclass;
773
774 /*
775 * If vfork(), we want the LWP to run fast and on the same CPU
776 * as its parent, so that it can reuse the VM context and cache
777 * footprint on the local CPU.
778 */
779 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
780 l2->l_kpribase = PRI_KERNEL;
781 l2->l_priority = l1->l_priority;
782 l2->l_inheritedprio = -1;
783 l2->l_flag = 0;
784 l2->l_pflag = LP_MPSAFE;
785 TAILQ_INIT(&l2->l_ld_locks);
786
787 /*
788 * For vfork, borrow parent's lwpctl context if it exists.
789 * This also causes us to return via lwp_userret.
790 */
791 if (flags & LWP_VFORK && l1->l_lwpctl) {
792 l2->l_lwpctl = l1->l_lwpctl;
793 l2->l_flag |= LW_LWPCTL;
794 }
795
796 /*
797 * If not the first LWP in the process, grab a reference to the
798 * descriptor table.
799 */
800 l2->l_fd = p2->p_fd;
801 if (p2->p_nlwps != 0) {
802 KASSERT(l1->l_proc == p2);
803 fd_hold(l2);
804 } else {
805 KASSERT(l1->l_proc != p2);
806 }
807
808 if (p2->p_flag & PK_SYSTEM) {
809 /* Mark it as a system LWP. */
810 l2->l_flag |= LW_SYSTEM;
811 }
812
813 kpreempt_disable();
814 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
815 l2->l_cpu = l1->l_cpu;
816 kpreempt_enable();
817
818 kdtrace_thread_ctor(NULL, l2);
819 lwp_initspecific(l2);
820 sched_lwp_fork(l1, l2);
821 lwp_update_creds(l2);
822 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
823 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
824 cv_init(&l2->l_sigcv, "sigwait");
825 cv_init(&l2->l_waitcv, "vfork");
826 l2->l_syncobj = &sched_syncobj;
827
828 if (rnewlwpp != NULL)
829 *rnewlwpp = l2;
830
831 /*
832 * PCU state needs to be saved before calling uvm_lwp_fork() so that
833 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
834 */
835 pcu_save_all(l1);
836
837 uvm_lwp_setuarea(l2, uaddr);
838 uvm_lwp_fork(l1, l2, stack, stacksize, func,
839 (arg != NULL) ? arg : l2);
840
841 if ((flags & LWP_PIDLID) != 0) {
842 lid = proc_alloc_pid(p2);
843 l2->l_pflag |= LP_PIDLID;
844 } else {
845 lid = 0;
846 }
847
848 mutex_enter(p2->p_lock);
849
850 if ((flags & LWP_DETACHED) != 0) {
851 l2->l_prflag = LPR_DETACHED;
852 p2->p_ndlwps++;
853 } else
854 l2->l_prflag = 0;
855
856 l2->l_sigstk = l1->l_sigstk;
857 l2->l_sigmask = l1->l_sigmask;
858 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
859 sigemptyset(&l2->l_sigpend.sp_set);
860
861 if (lid == 0) {
862 p2->p_nlwpid++;
863 if (p2->p_nlwpid == 0)
864 p2->p_nlwpid++;
865 lid = p2->p_nlwpid;
866 }
867 l2->l_lid = lid;
868 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
869 p2->p_nlwps++;
870 p2->p_nrlwps++;
871
872 KASSERT(l2->l_affinity == NULL);
873
874 if ((p2->p_flag & PK_SYSTEM) == 0) {
875 /* Inherit the affinity mask. */
876 if (l1->l_affinity) {
877 /*
878 * Note that we hold the state lock while inheriting
879 * the affinity to avoid race with sched_setaffinity().
880 */
881 lwp_lock(l1);
882 if (l1->l_affinity) {
883 kcpuset_use(l1->l_affinity);
884 l2->l_affinity = l1->l_affinity;
885 }
886 lwp_unlock(l1);
887 }
888 lwp_lock(l2);
889 /* Inherit a processor-set */
890 l2->l_psid = l1->l_psid;
891 /* Look for a CPU to start */
892 l2->l_cpu = sched_takecpu(l2);
893 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
894 }
895 mutex_exit(p2->p_lock);
896
897 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
898
899 mutex_enter(proc_lock);
900 LIST_INSERT_HEAD(&alllwp, l2, l_list);
901 mutex_exit(proc_lock);
902
903 SYSCALL_TIME_LWP_INIT(l2);
904
905 if (p2->p_emul->e_lwp_fork)
906 (*p2->p_emul->e_lwp_fork)(l1, l2);
907
908 return (0);
909 }
910
911 /*
912 * Called by MD code when a new LWP begins execution. Must be called
913 * with the previous LWP locked (so at splsched), or if there is no
914 * previous LWP, at splsched.
915 */
916 void
917 lwp_startup(struct lwp *prev, struct lwp *new)
918 {
919 KASSERTMSG(new == curlwp, "l %p curlwp %p prevlwp %p", new, curlwp, prev);
920
921 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
922
923 KASSERT(kpreempt_disabled());
924 if (prev != NULL) {
925 /*
926 * Normalize the count of the spin-mutexes, it was
927 * increased in mi_switch(). Unmark the state of
928 * context switch - it is finished for previous LWP.
929 */
930 curcpu()->ci_mtx_count++;
931 membar_exit();
932 prev->l_ctxswtch = 0;
933 }
934 KPREEMPT_DISABLE(new);
935 spl0();
936 if (__predict_true(new->l_proc->p_vmspace))
937 pmap_activate(new);
938
939 /* Note trip through cpu_switchto(). */
940 pserialize_switchpoint();
941
942 LOCKDEBUG_BARRIER(NULL, 0);
943 KPREEMPT_ENABLE(new);
944 if ((new->l_pflag & LP_MPSAFE) == 0) {
945 KERNEL_LOCK(1, new);
946 }
947 }
948
949 /*
950 * Exit an LWP.
951 */
952 void
953 lwp_exit(struct lwp *l)
954 {
955 struct proc *p = l->l_proc;
956 struct lwp *l2;
957 bool current;
958
959 current = (l == curlwp);
960
961 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
962 KASSERT(p == curproc);
963
964 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
965
966 /*
967 * Verify that we hold no locks other than the kernel lock.
968 */
969 LOCKDEBUG_BARRIER(&kernel_lock, 0);
970
971 /*
972 * If we are the last live LWP in a process, we need to exit the
973 * entire process. We do so with an exit status of zero, because
974 * it's a "controlled" exit, and because that's what Solaris does.
975 *
976 * We are not quite a zombie yet, but for accounting purposes we
977 * must increment the count of zombies here.
978 *
979 * Note: the last LWP's specificdata will be deleted here.
980 */
981 mutex_enter(p->p_lock);
982 if (p->p_nlwps - p->p_nzlwps == 1) {
983 KASSERT(current == true);
984 KASSERT(p != &proc0);
985 /* XXXSMP kernel_lock not held */
986 exit1(l, 0);
987 /* NOTREACHED */
988 }
989 p->p_nzlwps++;
990 mutex_exit(p->p_lock);
991
992 if (p->p_emul->e_lwp_exit)
993 (*p->p_emul->e_lwp_exit)(l);
994
995 /* Drop filedesc reference. */
996 fd_free();
997
998 /* Delete the specificdata while it's still safe to sleep. */
999 lwp_finispecific(l);
1000
1001 /*
1002 * Release our cached credentials.
1003 */
1004 kauth_cred_free(l->l_cred);
1005 callout_destroy(&l->l_timeout_ch);
1006
1007 /*
1008 * Remove the LWP from the global list.
1009 * Free its LID from the PID namespace if needed.
1010 */
1011 mutex_enter(proc_lock);
1012 LIST_REMOVE(l, l_list);
1013 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1014 proc_free_pid(l->l_lid);
1015 }
1016 mutex_exit(proc_lock);
1017
1018 /*
1019 * Get rid of all references to the LWP that others (e.g. procfs)
1020 * may have, and mark the LWP as a zombie. If the LWP is detached,
1021 * mark it waiting for collection in the proc structure. Note that
1022 * before we can do that, we need to free any other dead, deatched
1023 * LWP waiting to meet its maker.
1024 */
1025 mutex_enter(p->p_lock);
1026 lwp_drainrefs(l);
1027
1028 if ((l->l_prflag & LPR_DETACHED) != 0) {
1029 while ((l2 = p->p_zomblwp) != NULL) {
1030 p->p_zomblwp = NULL;
1031 lwp_free(l2, false, false);/* releases proc mutex */
1032 mutex_enter(p->p_lock);
1033 l->l_refcnt++;
1034 lwp_drainrefs(l);
1035 }
1036 p->p_zomblwp = l;
1037 }
1038
1039 /*
1040 * If we find a pending signal for the process and we have been
1041 * asked to check for signals, then we lose: arrange to have
1042 * all other LWPs in the process check for signals.
1043 */
1044 if ((l->l_flag & LW_PENDSIG) != 0 &&
1045 firstsig(&p->p_sigpend.sp_set) != 0) {
1046 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1047 lwp_lock(l2);
1048 l2->l_flag |= LW_PENDSIG;
1049 lwp_unlock(l2);
1050 }
1051 }
1052
1053 /*
1054 * Release any PCU resources before becoming a zombie.
1055 */
1056 pcu_discard_all(l);
1057
1058 lwp_lock(l);
1059 l->l_stat = LSZOMB;
1060 if (l->l_name != NULL) {
1061 strcpy(l->l_name, "(zombie)");
1062 }
1063 lwp_unlock(l);
1064 p->p_nrlwps--;
1065 cv_broadcast(&p->p_lwpcv);
1066 if (l->l_lwpctl != NULL)
1067 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1068 mutex_exit(p->p_lock);
1069
1070 /*
1071 * We can no longer block. At this point, lwp_free() may already
1072 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1073 *
1074 * Free MD LWP resources.
1075 */
1076 cpu_lwp_free(l, 0);
1077
1078 if (current) {
1079 pmap_deactivate(l);
1080
1081 /*
1082 * Release the kernel lock, and switch away into
1083 * oblivion.
1084 */
1085 #ifdef notyet
1086 /* XXXSMP hold in lwp_userret() */
1087 KERNEL_UNLOCK_LAST(l);
1088 #else
1089 KERNEL_UNLOCK_ALL(l, NULL);
1090 #endif
1091 lwp_exit_switchaway(l);
1092 }
1093 }
1094
1095 /*
1096 * Free a dead LWP's remaining resources.
1097 *
1098 * XXXLWP limits.
1099 */
1100 void
1101 lwp_free(struct lwp *l, bool recycle, bool last)
1102 {
1103 struct proc *p = l->l_proc;
1104 struct rusage *ru;
1105 ksiginfoq_t kq;
1106
1107 KASSERT(l != curlwp);
1108 KASSERT(last || mutex_owned(p->p_lock));
1109
1110 if (p != &proc0 && p->p_nlwps != 1)
1111 (void)chglwpcnt(kauth_cred_getuid(l->l_cred), -1);
1112 /*
1113 * If this was not the last LWP in the process, then adjust
1114 * counters and unlock.
1115 */
1116 if (!last) {
1117 /*
1118 * Add the LWP's run time to the process' base value.
1119 * This needs to co-incide with coming off p_lwps.
1120 */
1121 bintime_add(&p->p_rtime, &l->l_rtime);
1122 p->p_pctcpu += l->l_pctcpu;
1123 ru = &p->p_stats->p_ru;
1124 ruadd(ru, &l->l_ru);
1125 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1126 ru->ru_nivcsw += l->l_nivcsw;
1127 LIST_REMOVE(l, l_sibling);
1128 p->p_nlwps--;
1129 p->p_nzlwps--;
1130 if ((l->l_prflag & LPR_DETACHED) != 0)
1131 p->p_ndlwps--;
1132
1133 /*
1134 * Have any LWPs sleeping in lwp_wait() recheck for
1135 * deadlock.
1136 */
1137 cv_broadcast(&p->p_lwpcv);
1138 mutex_exit(p->p_lock);
1139 }
1140
1141 #ifdef MULTIPROCESSOR
1142 /*
1143 * In the unlikely event that the LWP is still on the CPU,
1144 * then spin until it has switched away. We need to release
1145 * all locks to avoid deadlock against interrupt handlers on
1146 * the target CPU.
1147 */
1148 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1149 int count;
1150 (void)count; /* XXXgcc */
1151 KERNEL_UNLOCK_ALL(curlwp, &count);
1152 while ((l->l_pflag & LP_RUNNING) != 0 ||
1153 l->l_cpu->ci_curlwp == l)
1154 SPINLOCK_BACKOFF_HOOK;
1155 KERNEL_LOCK(count, curlwp);
1156 }
1157 #endif
1158
1159 /*
1160 * Destroy the LWP's remaining signal information.
1161 */
1162 ksiginfo_queue_init(&kq);
1163 sigclear(&l->l_sigpend, NULL, &kq);
1164 ksiginfo_queue_drain(&kq);
1165 cv_destroy(&l->l_sigcv);
1166 cv_destroy(&l->l_waitcv);
1167
1168 /*
1169 * Free lwpctl structure and affinity.
1170 */
1171 if (l->l_lwpctl) {
1172 lwp_ctl_free(l);
1173 }
1174 if (l->l_affinity) {
1175 kcpuset_unuse(l->l_affinity, NULL);
1176 l->l_affinity = NULL;
1177 }
1178
1179 /*
1180 * Free the LWP's turnstile and the LWP structure itself unless the
1181 * caller wants to recycle them. Also, free the scheduler specific
1182 * data.
1183 *
1184 * We can't return turnstile0 to the pool (it didn't come from it),
1185 * so if it comes up just drop it quietly and move on.
1186 *
1187 * We don't recycle the VM resources at this time.
1188 */
1189
1190 if (!recycle && l->l_ts != &turnstile0)
1191 pool_cache_put(turnstile_cache, l->l_ts);
1192 if (l->l_name != NULL)
1193 kmem_free(l->l_name, MAXCOMLEN);
1194
1195 cpu_lwp_free2(l);
1196 uvm_lwp_exit(l);
1197
1198 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1199 KASSERT(l->l_inheritedprio == -1);
1200 KASSERT(l->l_blcnt == 0);
1201 kdtrace_thread_dtor(NULL, l);
1202 if (!recycle)
1203 pool_cache_put(lwp_cache, l);
1204 }
1205
1206 /*
1207 * Migrate the LWP to the another CPU. Unlocks the LWP.
1208 */
1209 void
1210 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1211 {
1212 struct schedstate_percpu *tspc;
1213 int lstat = l->l_stat;
1214
1215 KASSERT(lwp_locked(l, NULL));
1216 KASSERT(tci != NULL);
1217
1218 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1219 if ((l->l_pflag & LP_RUNNING) != 0) {
1220 lstat = LSONPROC;
1221 }
1222
1223 /*
1224 * The destination CPU could be changed while previous migration
1225 * was not finished.
1226 */
1227 if (l->l_target_cpu != NULL) {
1228 l->l_target_cpu = tci;
1229 lwp_unlock(l);
1230 return;
1231 }
1232
1233 /* Nothing to do if trying to migrate to the same CPU */
1234 if (l->l_cpu == tci) {
1235 lwp_unlock(l);
1236 return;
1237 }
1238
1239 KASSERT(l->l_target_cpu == NULL);
1240 tspc = &tci->ci_schedstate;
1241 switch (lstat) {
1242 case LSRUN:
1243 l->l_target_cpu = tci;
1244 break;
1245 case LSIDL:
1246 l->l_cpu = tci;
1247 lwp_unlock_to(l, tspc->spc_mutex);
1248 return;
1249 case LSSLEEP:
1250 l->l_cpu = tci;
1251 break;
1252 case LSSTOP:
1253 case LSSUSPENDED:
1254 l->l_cpu = tci;
1255 if (l->l_wchan == NULL) {
1256 lwp_unlock_to(l, tspc->spc_lwplock);
1257 return;
1258 }
1259 break;
1260 case LSONPROC:
1261 l->l_target_cpu = tci;
1262 spc_lock(l->l_cpu);
1263 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1264 spc_unlock(l->l_cpu);
1265 break;
1266 }
1267 lwp_unlock(l);
1268 }
1269
1270 /*
1271 * Find the LWP in the process. Arguments may be zero, in such case,
1272 * the calling process and first LWP in the list will be used.
1273 * On success - returns proc locked.
1274 */
1275 struct lwp *
1276 lwp_find2(pid_t pid, lwpid_t lid)
1277 {
1278 proc_t *p;
1279 lwp_t *l;
1280
1281 /* Find the process. */
1282 if (pid != 0) {
1283 mutex_enter(proc_lock);
1284 p = proc_find(pid);
1285 if (p == NULL) {
1286 mutex_exit(proc_lock);
1287 return NULL;
1288 }
1289 mutex_enter(p->p_lock);
1290 mutex_exit(proc_lock);
1291 } else {
1292 p = curlwp->l_proc;
1293 mutex_enter(p->p_lock);
1294 }
1295 /* Find the thread. */
1296 if (lid != 0) {
1297 l = lwp_find(p, lid);
1298 } else {
1299 l = LIST_FIRST(&p->p_lwps);
1300 }
1301 if (l == NULL) {
1302 mutex_exit(p->p_lock);
1303 }
1304 return l;
1305 }
1306
1307 /*
1308 * Look up a live LWP within the specified process.
1309 *
1310 * Must be called with p->p_lock held.
1311 */
1312 struct lwp *
1313 lwp_find(struct proc *p, lwpid_t id)
1314 {
1315 struct lwp *l;
1316
1317 KASSERT(mutex_owned(p->p_lock));
1318
1319 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1320 if (l->l_lid == id)
1321 break;
1322 }
1323
1324 /*
1325 * No need to lock - all of these conditions will
1326 * be visible with the process level mutex held.
1327 */
1328 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1329 l = NULL;
1330
1331 return l;
1332 }
1333
1334 /*
1335 * Update an LWP's cached credentials to mirror the process' master copy.
1336 *
1337 * This happens early in the syscall path, on user trap, and on LWP
1338 * creation. A long-running LWP can also voluntarily choose to update
1339 * it's credentials by calling this routine. This may be called from
1340 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1341 */
1342 void
1343 lwp_update_creds(struct lwp *l)
1344 {
1345 kauth_cred_t oc;
1346 struct proc *p;
1347
1348 p = l->l_proc;
1349 oc = l->l_cred;
1350
1351 mutex_enter(p->p_lock);
1352 kauth_cred_hold(p->p_cred);
1353 l->l_cred = p->p_cred;
1354 l->l_prflag &= ~LPR_CRMOD;
1355 mutex_exit(p->p_lock);
1356 if (oc != NULL)
1357 kauth_cred_free(oc);
1358 }
1359
1360 /*
1361 * Verify that an LWP is locked, and optionally verify that the lock matches
1362 * one we specify.
1363 */
1364 int
1365 lwp_locked(struct lwp *l, kmutex_t *mtx)
1366 {
1367 kmutex_t *cur = l->l_mutex;
1368
1369 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1370 }
1371
1372 /*
1373 * Lend a new mutex to an LWP. The old mutex must be held.
1374 */
1375 void
1376 lwp_setlock(struct lwp *l, kmutex_t *new)
1377 {
1378
1379 KASSERT(mutex_owned(l->l_mutex));
1380
1381 membar_exit();
1382 l->l_mutex = new;
1383 }
1384
1385 /*
1386 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1387 * must be held.
1388 */
1389 void
1390 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1391 {
1392 kmutex_t *old;
1393
1394 KASSERT(lwp_locked(l, NULL));
1395
1396 old = l->l_mutex;
1397 membar_exit();
1398 l->l_mutex = new;
1399 mutex_spin_exit(old);
1400 }
1401
1402 int
1403 lwp_trylock(struct lwp *l)
1404 {
1405 kmutex_t *old;
1406
1407 for (;;) {
1408 if (!mutex_tryenter(old = l->l_mutex))
1409 return 0;
1410 if (__predict_true(l->l_mutex == old))
1411 return 1;
1412 mutex_spin_exit(old);
1413 }
1414 }
1415
1416 void
1417 lwp_unsleep(lwp_t *l, bool cleanup)
1418 {
1419
1420 KASSERT(mutex_owned(l->l_mutex));
1421 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1422 }
1423
1424 /*
1425 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1426 * set.
1427 */
1428 void
1429 lwp_userret(struct lwp *l)
1430 {
1431 struct proc *p;
1432 int sig;
1433
1434 KASSERT(l == curlwp);
1435 KASSERT(l->l_stat == LSONPROC);
1436 p = l->l_proc;
1437
1438 #ifndef __HAVE_FAST_SOFTINTS
1439 /* Run pending soft interrupts. */
1440 if (l->l_cpu->ci_data.cpu_softints != 0)
1441 softint_overlay();
1442 #endif
1443
1444 /*
1445 * It is safe to do this read unlocked on a MP system..
1446 */
1447 while ((l->l_flag & LW_USERRET) != 0) {
1448 /*
1449 * Process pending signals first, unless the process
1450 * is dumping core or exiting, where we will instead
1451 * enter the LW_WSUSPEND case below.
1452 */
1453 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1454 LW_PENDSIG) {
1455 mutex_enter(p->p_lock);
1456 while ((sig = issignal(l)) != 0)
1457 postsig(sig);
1458 mutex_exit(p->p_lock);
1459 }
1460
1461 /*
1462 * Core-dump or suspend pending.
1463 *
1464 * In case of core dump, suspend ourselves, so that the kernel
1465 * stack and therefore the userland registers saved in the
1466 * trapframe are around for coredump() to write them out.
1467 * We also need to save any PCU resources that we have so that
1468 * they accessible for coredump(). We issue a wakeup on
1469 * p->p_lwpcv so that sigexit() will write the core file out
1470 * once all other LWPs are suspended.
1471 */
1472 if ((l->l_flag & LW_WSUSPEND) != 0) {
1473 pcu_save_all(l);
1474 mutex_enter(p->p_lock);
1475 p->p_nrlwps--;
1476 cv_broadcast(&p->p_lwpcv);
1477 lwp_lock(l);
1478 l->l_stat = LSSUSPENDED;
1479 lwp_unlock(l);
1480 mutex_exit(p->p_lock);
1481 lwp_lock(l);
1482 mi_switch(l);
1483 }
1484
1485 /* Process is exiting. */
1486 if ((l->l_flag & LW_WEXIT) != 0) {
1487 lwp_exit(l);
1488 KASSERT(0);
1489 /* NOTREACHED */
1490 }
1491
1492 /* update lwpctl processor (for vfork child_return) */
1493 if (l->l_flag & LW_LWPCTL) {
1494 lwp_lock(l);
1495 KASSERT(kpreempt_disabled());
1496 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1497 l->l_lwpctl->lc_pctr++;
1498 l->l_flag &= ~LW_LWPCTL;
1499 lwp_unlock(l);
1500 }
1501 }
1502 }
1503
1504 /*
1505 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1506 */
1507 void
1508 lwp_need_userret(struct lwp *l)
1509 {
1510 KASSERT(lwp_locked(l, NULL));
1511
1512 /*
1513 * Since the tests in lwp_userret() are done unlocked, make sure
1514 * that the condition will be seen before forcing the LWP to enter
1515 * kernel mode.
1516 */
1517 membar_producer();
1518 cpu_signotify(l);
1519 }
1520
1521 /*
1522 * Add one reference to an LWP. This will prevent the LWP from
1523 * exiting, thus keep the lwp structure and PCB around to inspect.
1524 */
1525 void
1526 lwp_addref(struct lwp *l)
1527 {
1528
1529 KASSERT(mutex_owned(l->l_proc->p_lock));
1530 KASSERT(l->l_stat != LSZOMB);
1531 KASSERT(l->l_refcnt != 0);
1532
1533 l->l_refcnt++;
1534 }
1535
1536 /*
1537 * Remove one reference to an LWP. If this is the last reference,
1538 * then we must finalize the LWP's death.
1539 */
1540 void
1541 lwp_delref(struct lwp *l)
1542 {
1543 struct proc *p = l->l_proc;
1544
1545 mutex_enter(p->p_lock);
1546 lwp_delref2(l);
1547 mutex_exit(p->p_lock);
1548 }
1549
1550 /*
1551 * Remove one reference to an LWP. If this is the last reference,
1552 * then we must finalize the LWP's death. The proc mutex is held
1553 * on entry.
1554 */
1555 void
1556 lwp_delref2(struct lwp *l)
1557 {
1558 struct proc *p = l->l_proc;
1559
1560 KASSERT(mutex_owned(p->p_lock));
1561 KASSERT(l->l_stat != LSZOMB);
1562 KASSERT(l->l_refcnt > 0);
1563 if (--l->l_refcnt == 0)
1564 cv_broadcast(&p->p_lwpcv);
1565 }
1566
1567 /*
1568 * Drain all references to the current LWP.
1569 */
1570 void
1571 lwp_drainrefs(struct lwp *l)
1572 {
1573 struct proc *p = l->l_proc;
1574
1575 KASSERT(mutex_owned(p->p_lock));
1576 KASSERT(l->l_refcnt != 0);
1577
1578 l->l_refcnt--;
1579 while (l->l_refcnt != 0)
1580 cv_wait(&p->p_lwpcv, p->p_lock);
1581 }
1582
1583 /*
1584 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1585 * be held.
1586 */
1587 bool
1588 lwp_alive(lwp_t *l)
1589 {
1590
1591 KASSERT(mutex_owned(l->l_proc->p_lock));
1592
1593 switch (l->l_stat) {
1594 case LSSLEEP:
1595 case LSRUN:
1596 case LSONPROC:
1597 case LSSTOP:
1598 case LSSUSPENDED:
1599 return true;
1600 default:
1601 return false;
1602 }
1603 }
1604
1605 /*
1606 * Return first live LWP in the process.
1607 */
1608 lwp_t *
1609 lwp_find_first(proc_t *p)
1610 {
1611 lwp_t *l;
1612
1613 KASSERT(mutex_owned(p->p_lock));
1614
1615 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1616 if (lwp_alive(l)) {
1617 return l;
1618 }
1619 }
1620
1621 return NULL;
1622 }
1623
1624 /*
1625 * Allocate a new lwpctl structure for a user LWP.
1626 */
1627 int
1628 lwp_ctl_alloc(vaddr_t *uaddr)
1629 {
1630 lcproc_t *lp;
1631 u_int bit, i, offset;
1632 struct uvm_object *uao;
1633 int error;
1634 lcpage_t *lcp;
1635 proc_t *p;
1636 lwp_t *l;
1637
1638 l = curlwp;
1639 p = l->l_proc;
1640
1641 /* don't allow a vforked process to create lwp ctls */
1642 if (p->p_lflag & PL_PPWAIT)
1643 return EBUSY;
1644
1645 if (l->l_lcpage != NULL) {
1646 lcp = l->l_lcpage;
1647 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1648 return 0;
1649 }
1650
1651 /* First time around, allocate header structure for the process. */
1652 if ((lp = p->p_lwpctl) == NULL) {
1653 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1654 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1655 lp->lp_uao = NULL;
1656 TAILQ_INIT(&lp->lp_pages);
1657 mutex_enter(p->p_lock);
1658 if (p->p_lwpctl == NULL) {
1659 p->p_lwpctl = lp;
1660 mutex_exit(p->p_lock);
1661 } else {
1662 mutex_exit(p->p_lock);
1663 mutex_destroy(&lp->lp_lock);
1664 kmem_free(lp, sizeof(*lp));
1665 lp = p->p_lwpctl;
1666 }
1667 }
1668
1669 /*
1670 * Set up an anonymous memory region to hold the shared pages.
1671 * Map them into the process' address space. The user vmspace
1672 * gets the first reference on the UAO.
1673 */
1674 mutex_enter(&lp->lp_lock);
1675 if (lp->lp_uao == NULL) {
1676 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1677 lp->lp_cur = 0;
1678 lp->lp_max = LWPCTL_UAREA_SZ;
1679 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1680 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1681 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1682 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1683 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1684 if (error != 0) {
1685 uao_detach(lp->lp_uao);
1686 lp->lp_uao = NULL;
1687 mutex_exit(&lp->lp_lock);
1688 return error;
1689 }
1690 }
1691
1692 /* Get a free block and allocate for this LWP. */
1693 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1694 if (lcp->lcp_nfree != 0)
1695 break;
1696 }
1697 if (lcp == NULL) {
1698 /* Nothing available - try to set up a free page. */
1699 if (lp->lp_cur == lp->lp_max) {
1700 mutex_exit(&lp->lp_lock);
1701 return ENOMEM;
1702 }
1703 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1704 if (lcp == NULL) {
1705 mutex_exit(&lp->lp_lock);
1706 return ENOMEM;
1707 }
1708 /*
1709 * Wire the next page down in kernel space. Since this
1710 * is a new mapping, we must add a reference.
1711 */
1712 uao = lp->lp_uao;
1713 (*uao->pgops->pgo_reference)(uao);
1714 lcp->lcp_kaddr = vm_map_min(kernel_map);
1715 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1716 uao, lp->lp_cur, PAGE_SIZE,
1717 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1718 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1719 if (error != 0) {
1720 mutex_exit(&lp->lp_lock);
1721 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1722 (*uao->pgops->pgo_detach)(uao);
1723 return error;
1724 }
1725 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1726 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1727 if (error != 0) {
1728 mutex_exit(&lp->lp_lock);
1729 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1730 lcp->lcp_kaddr + PAGE_SIZE);
1731 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1732 return error;
1733 }
1734 /* Prepare the page descriptor and link into the list. */
1735 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1736 lp->lp_cur += PAGE_SIZE;
1737 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1738 lcp->lcp_rotor = 0;
1739 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1740 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1741 }
1742 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1743 if (++i >= LWPCTL_BITMAP_ENTRIES)
1744 i = 0;
1745 }
1746 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1747 lcp->lcp_bitmap[i] ^= (1 << bit);
1748 lcp->lcp_rotor = i;
1749 lcp->lcp_nfree--;
1750 l->l_lcpage = lcp;
1751 offset = (i << 5) + bit;
1752 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1753 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1754 mutex_exit(&lp->lp_lock);
1755
1756 KPREEMPT_DISABLE(l);
1757 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1758 KPREEMPT_ENABLE(l);
1759
1760 return 0;
1761 }
1762
1763 /*
1764 * Free an lwpctl structure back to the per-process list.
1765 */
1766 void
1767 lwp_ctl_free(lwp_t *l)
1768 {
1769 struct proc *p = l->l_proc;
1770 lcproc_t *lp;
1771 lcpage_t *lcp;
1772 u_int map, offset;
1773
1774 /* don't free a lwp context we borrowed for vfork */
1775 if (p->p_lflag & PL_PPWAIT) {
1776 l->l_lwpctl = NULL;
1777 return;
1778 }
1779
1780 lp = p->p_lwpctl;
1781 KASSERT(lp != NULL);
1782
1783 lcp = l->l_lcpage;
1784 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1785 KASSERT(offset < LWPCTL_PER_PAGE);
1786
1787 mutex_enter(&lp->lp_lock);
1788 lcp->lcp_nfree++;
1789 map = offset >> 5;
1790 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1791 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1792 lcp->lcp_rotor = map;
1793 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1794 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1795 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1796 }
1797 mutex_exit(&lp->lp_lock);
1798 }
1799
1800 /*
1801 * Process is exiting; tear down lwpctl state. This can only be safely
1802 * called by the last LWP in the process.
1803 */
1804 void
1805 lwp_ctl_exit(void)
1806 {
1807 lcpage_t *lcp, *next;
1808 lcproc_t *lp;
1809 proc_t *p;
1810 lwp_t *l;
1811
1812 l = curlwp;
1813 l->l_lwpctl = NULL;
1814 l->l_lcpage = NULL;
1815 p = l->l_proc;
1816 lp = p->p_lwpctl;
1817
1818 KASSERT(lp != NULL);
1819 KASSERT(p->p_nlwps == 1);
1820
1821 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1822 next = TAILQ_NEXT(lcp, lcp_chain);
1823 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1824 lcp->lcp_kaddr + PAGE_SIZE);
1825 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1826 }
1827
1828 if (lp->lp_uao != NULL) {
1829 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1830 lp->lp_uva + LWPCTL_UAREA_SZ);
1831 }
1832
1833 mutex_destroy(&lp->lp_lock);
1834 kmem_free(lp, sizeof(*lp));
1835 p->p_lwpctl = NULL;
1836 }
1837
1838 /*
1839 * Return the current LWP's "preemption counter". Used to detect
1840 * preemption across operations that can tolerate preemption without
1841 * crashing, but which may generate incorrect results if preempted.
1842 */
1843 uint64_t
1844 lwp_pctr(void)
1845 {
1846
1847 return curlwp->l_ncsw;
1848 }
1849
1850 /*
1851 * Set an LWP's private data pointer.
1852 */
1853 int
1854 lwp_setprivate(struct lwp *l, void *ptr)
1855 {
1856 int error = 0;
1857
1858 l->l_private = ptr;
1859 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1860 error = cpu_lwp_setprivate(l, ptr);
1861 #endif
1862 return error;
1863 }
1864
1865 #if defined(DDB)
1866 #include <machine/pcb.h>
1867
1868 void
1869 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1870 {
1871 lwp_t *l;
1872
1873 LIST_FOREACH(l, &alllwp, l_list) {
1874 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1875
1876 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1877 continue;
1878 }
1879 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1880 (void *)addr, (void *)stack,
1881 (size_t)(addr - stack), l);
1882 }
1883 }
1884 #endif /* defined(DDB) */
1885