kern_lwp.c revision 1.164.6.1 1 /* $NetBSD: kern_lwp.c,v 1.164.6.1 2012/02/18 07:35:29 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.164.6.1 2012/02/18 07:35:29 mrg Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_sa.h"
219 #include "opt_dtrace.h"
220
221 #define _LWP_API_PRIVATE
222
223 #include <sys/param.h>
224 #include <sys/systm.h>
225 #include <sys/cpu.h>
226 #include <sys/pool.h>
227 #include <sys/proc.h>
228 #include <sys/sa.h>
229 #include <sys/savar.h>
230 #include <sys/syscallargs.h>
231 #include <sys/syscall_stats.h>
232 #include <sys/kauth.h>
233 #include <sys/pserialize.h>
234 #include <sys/sleepq.h>
235 #include <sys/lockdebug.h>
236 #include <sys/kmem.h>
237 #include <sys/pset.h>
238 #include <sys/intr.h>
239 #include <sys/lwpctl.h>
240 #include <sys/atomic.h>
241 #include <sys/filedesc.h>
242 #include <sys/dtrace_bsd.h>
243 #include <sys/sdt.h>
244 #include <sys/xcall.h>
245
246 #include <uvm/uvm_extern.h>
247 #include <uvm/uvm_object.h>
248
249 static pool_cache_t lwp_cache __read_mostly;
250 struct lwplist alllwp __cacheline_aligned;
251
252 static void lwp_dtor(void *, void *);
253
254 /* DTrace proc provider probes */
255 SDT_PROBE_DEFINE(proc,,,lwp_create,
256 "struct lwp *", NULL,
257 NULL, NULL, NULL, NULL,
258 NULL, NULL, NULL, NULL);
259 SDT_PROBE_DEFINE(proc,,,lwp_start,
260 "struct lwp *", NULL,
261 NULL, NULL, NULL, NULL,
262 NULL, NULL, NULL, NULL);
263 SDT_PROBE_DEFINE(proc,,,lwp_exit,
264 "struct lwp *", NULL,
265 NULL, NULL, NULL, NULL,
266 NULL, NULL, NULL, NULL);
267
268 struct turnstile turnstile0;
269 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
270 #ifdef LWP0_CPU_INFO
271 .l_cpu = LWP0_CPU_INFO,
272 #endif
273 #ifdef LWP0_MD_INITIALIZER
274 .l_md = LWP0_MD_INITIALIZER,
275 #endif
276 .l_proc = &proc0,
277 .l_lid = 1,
278 .l_flag = LW_SYSTEM,
279 .l_stat = LSONPROC,
280 .l_ts = &turnstile0,
281 .l_syncobj = &sched_syncobj,
282 .l_refcnt = 1,
283 .l_priority = PRI_USER + NPRI_USER - 1,
284 .l_inheritedprio = -1,
285 .l_class = SCHED_OTHER,
286 .l_psid = PS_NONE,
287 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
288 .l_name = __UNCONST("swapper"),
289 .l_fd = &filedesc0,
290 };
291
292 void
293 lwpinit(void)
294 {
295
296 LIST_INIT(&alllwp);
297 lwpinit_specificdata();
298 lwp_sys_init();
299 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
300 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
301 }
302
303 void
304 lwp0_init(void)
305 {
306 struct lwp *l = &lwp0;
307
308 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
309 KASSERT(l->l_lid == proc0.p_nlwpid);
310
311 LIST_INSERT_HEAD(&alllwp, l, l_list);
312
313 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
314 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
315 cv_init(&l->l_sigcv, "sigwait");
316
317 kauth_cred_hold(proc0.p_cred);
318 l->l_cred = proc0.p_cred;
319
320 kdtrace_thread_ctor(NULL, l);
321 lwp_initspecific(l);
322
323 SYSCALL_TIME_LWP_INIT(l);
324 }
325
326 static void
327 lwp_dtor(void *arg, void *obj)
328 {
329 lwp_t *l = obj;
330 uint64_t where;
331 (void)l;
332
333 /*
334 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
335 * calls will exit before memory of LWP is returned to the pool, where
336 * KVA of LWP structure might be freed and re-used for other purposes.
337 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
338 * callers, therefore cross-call to all CPUs will do the job. Also,
339 * the value of l->l_cpu must be still valid at this point.
340 */
341 KASSERT(l->l_cpu != NULL);
342 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
343 xc_wait(where);
344 }
345
346 /*
347 * Set an suspended.
348 *
349 * Must be called with p_lock held, and the LWP locked. Will unlock the
350 * LWP before return.
351 */
352 int
353 lwp_suspend(struct lwp *curl, struct lwp *t)
354 {
355 int error;
356
357 KASSERT(mutex_owned(t->l_proc->p_lock));
358 KASSERT(lwp_locked(t, NULL));
359
360 KASSERT(curl != t || curl->l_stat == LSONPROC);
361
362 /*
363 * If the current LWP has been told to exit, we must not suspend anyone
364 * else or deadlock could occur. We won't return to userspace.
365 */
366 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
367 lwp_unlock(t);
368 return (EDEADLK);
369 }
370
371 error = 0;
372
373 switch (t->l_stat) {
374 case LSRUN:
375 case LSONPROC:
376 t->l_flag |= LW_WSUSPEND;
377 lwp_need_userret(t);
378 lwp_unlock(t);
379 break;
380
381 case LSSLEEP:
382 t->l_flag |= LW_WSUSPEND;
383
384 /*
385 * Kick the LWP and try to get it to the kernel boundary
386 * so that it will release any locks that it holds.
387 * setrunnable() will release the lock.
388 */
389 if ((t->l_flag & LW_SINTR) != 0)
390 setrunnable(t);
391 else
392 lwp_unlock(t);
393 break;
394
395 case LSSUSPENDED:
396 lwp_unlock(t);
397 break;
398
399 case LSSTOP:
400 t->l_flag |= LW_WSUSPEND;
401 setrunnable(t);
402 break;
403
404 case LSIDL:
405 case LSZOMB:
406 error = EINTR; /* It's what Solaris does..... */
407 lwp_unlock(t);
408 break;
409 }
410
411 return (error);
412 }
413
414 /*
415 * Restart a suspended LWP.
416 *
417 * Must be called with p_lock held, and the LWP locked. Will unlock the
418 * LWP before return.
419 */
420 void
421 lwp_continue(struct lwp *l)
422 {
423
424 KASSERT(mutex_owned(l->l_proc->p_lock));
425 KASSERT(lwp_locked(l, NULL));
426
427 /* If rebooting or not suspended, then just bail out. */
428 if ((l->l_flag & LW_WREBOOT) != 0) {
429 lwp_unlock(l);
430 return;
431 }
432
433 l->l_flag &= ~LW_WSUSPEND;
434
435 if (l->l_stat != LSSUSPENDED) {
436 lwp_unlock(l);
437 return;
438 }
439
440 /* setrunnable() will release the lock. */
441 setrunnable(l);
442 }
443
444 /*
445 * Restart a stopped LWP.
446 *
447 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
448 * LWP before return.
449 */
450 void
451 lwp_unstop(struct lwp *l)
452 {
453 struct proc *p = l->l_proc;
454
455 KASSERT(mutex_owned(proc_lock));
456 KASSERT(mutex_owned(p->p_lock));
457
458 lwp_lock(l);
459
460 /* If not stopped, then just bail out. */
461 if (l->l_stat != LSSTOP) {
462 lwp_unlock(l);
463 return;
464 }
465
466 p->p_stat = SACTIVE;
467 p->p_sflag &= ~PS_STOPPING;
468
469 if (!p->p_waited)
470 p->p_pptr->p_nstopchild--;
471
472 if (l->l_wchan == NULL) {
473 /* setrunnable() will release the lock. */
474 setrunnable(l);
475 } else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
476 /* setrunnable() so we can receive the signal */
477 setrunnable(l);
478 } else {
479 l->l_stat = LSSLEEP;
480 p->p_nrlwps++;
481 lwp_unlock(l);
482 }
483 }
484
485 /*
486 * Wait for an LWP within the current process to exit. If 'lid' is
487 * non-zero, we are waiting for a specific LWP.
488 *
489 * Must be called with p->p_lock held.
490 */
491 int
492 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
493 {
494 struct proc *p = l->l_proc;
495 struct lwp *l2;
496 int nfound, error;
497 lwpid_t curlid;
498 bool exiting;
499
500 KASSERT(mutex_owned(p->p_lock));
501
502 p->p_nlwpwait++;
503 l->l_waitingfor = lid;
504 curlid = l->l_lid;
505 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
506
507 for (;;) {
508 /*
509 * Avoid a race between exit1() and sigexit(): if the
510 * process is dumping core, then we need to bail out: call
511 * into lwp_userret() where we will be suspended until the
512 * deed is done.
513 */
514 if ((p->p_sflag & PS_WCORE) != 0) {
515 mutex_exit(p->p_lock);
516 lwp_userret(l);
517 #ifdef DIAGNOSTIC
518 panic("lwp_wait1");
519 #endif
520 /* NOTREACHED */
521 }
522
523 /*
524 * First off, drain any detached LWP that is waiting to be
525 * reaped.
526 */
527 while ((l2 = p->p_zomblwp) != NULL) {
528 p->p_zomblwp = NULL;
529 lwp_free(l2, false, false);/* releases proc mutex */
530 mutex_enter(p->p_lock);
531 }
532
533 /*
534 * Now look for an LWP to collect. If the whole process is
535 * exiting, count detached LWPs as eligible to be collected,
536 * but don't drain them here.
537 */
538 nfound = 0;
539 error = 0;
540 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
541 /*
542 * If a specific wait and the target is waiting on
543 * us, then avoid deadlock. This also traps LWPs
544 * that try to wait on themselves.
545 *
546 * Note that this does not handle more complicated
547 * cycles, like: t1 -> t2 -> t3 -> t1. The process
548 * can still be killed so it is not a major problem.
549 */
550 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
551 error = EDEADLK;
552 break;
553 }
554 if (l2 == l)
555 continue;
556 if ((l2->l_prflag & LPR_DETACHED) != 0) {
557 nfound += exiting;
558 continue;
559 }
560 if (lid != 0) {
561 if (l2->l_lid != lid)
562 continue;
563 /*
564 * Mark this LWP as the first waiter, if there
565 * is no other.
566 */
567 if (l2->l_waiter == 0)
568 l2->l_waiter = curlid;
569 } else if (l2->l_waiter != 0) {
570 /*
571 * It already has a waiter - so don't
572 * collect it. If the waiter doesn't
573 * grab it we'll get another chance
574 * later.
575 */
576 nfound++;
577 continue;
578 }
579 nfound++;
580
581 /* No need to lock the LWP in order to see LSZOMB. */
582 if (l2->l_stat != LSZOMB)
583 continue;
584
585 /*
586 * We're no longer waiting. Reset the "first waiter"
587 * pointer on the target, in case it was us.
588 */
589 l->l_waitingfor = 0;
590 l2->l_waiter = 0;
591 p->p_nlwpwait--;
592 if (departed)
593 *departed = l2->l_lid;
594 sched_lwp_collect(l2);
595
596 /* lwp_free() releases the proc lock. */
597 lwp_free(l2, false, false);
598 mutex_enter(p->p_lock);
599 return 0;
600 }
601
602 if (error != 0)
603 break;
604 if (nfound == 0) {
605 error = ESRCH;
606 break;
607 }
608
609 /*
610 * The kernel is careful to ensure that it can not deadlock
611 * when exiting - just keep waiting.
612 */
613 if (exiting) {
614 KASSERT(p->p_nlwps > 1);
615 cv_wait(&p->p_lwpcv, p->p_lock);
616 continue;
617 }
618
619 /*
620 * If all other LWPs are waiting for exits or suspends
621 * and the supply of zombies and potential zombies is
622 * exhausted, then we are about to deadlock.
623 *
624 * If the process is exiting (and this LWP is not the one
625 * that is coordinating the exit) then bail out now.
626 */
627 if ((p->p_sflag & PS_WEXIT) != 0 ||
628 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
629 error = EDEADLK;
630 break;
631 }
632
633 /*
634 * Sit around and wait for something to happen. We'll be
635 * awoken if any of the conditions examined change: if an
636 * LWP exits, is collected, or is detached.
637 */
638 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
639 break;
640 }
641
642 /*
643 * We didn't find any LWPs to collect, we may have received a
644 * signal, or some other condition has caused us to bail out.
645 *
646 * If waiting on a specific LWP, clear the waiters marker: some
647 * other LWP may want it. Then, kick all the remaining waiters
648 * so that they can re-check for zombies and for deadlock.
649 */
650 if (lid != 0) {
651 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
652 if (l2->l_lid == lid) {
653 if (l2->l_waiter == curlid)
654 l2->l_waiter = 0;
655 break;
656 }
657 }
658 }
659 p->p_nlwpwait--;
660 l->l_waitingfor = 0;
661 cv_broadcast(&p->p_lwpcv);
662
663 return error;
664 }
665
666 /*
667 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
668 * The new LWP is created in state LSIDL and must be set running,
669 * suspended, or stopped by the caller.
670 */
671 int
672 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
673 void *stack, size_t stacksize, void (*func)(void *), void *arg,
674 lwp_t **rnewlwpp, int sclass)
675 {
676 struct lwp *l2, *isfree;
677 turnstile_t *ts;
678 lwpid_t lid;
679
680 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
681
682 /*
683 * First off, reap any detached LWP waiting to be collected.
684 * We can re-use its LWP structure and turnstile.
685 */
686 isfree = NULL;
687 if (p2->p_zomblwp != NULL) {
688 mutex_enter(p2->p_lock);
689 if ((isfree = p2->p_zomblwp) != NULL) {
690 p2->p_zomblwp = NULL;
691 lwp_free(isfree, true, false);/* releases proc mutex */
692 } else
693 mutex_exit(p2->p_lock);
694 }
695 if (isfree == NULL) {
696 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
697 memset(l2, 0, sizeof(*l2));
698 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
699 SLIST_INIT(&l2->l_pi_lenders);
700 } else {
701 l2 = isfree;
702 ts = l2->l_ts;
703 KASSERT(l2->l_inheritedprio == -1);
704 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
705 memset(l2, 0, sizeof(*l2));
706 l2->l_ts = ts;
707 }
708
709 l2->l_stat = LSIDL;
710 l2->l_proc = p2;
711 l2->l_refcnt = 1;
712 l2->l_class = sclass;
713
714 /*
715 * If vfork(), we want the LWP to run fast and on the same CPU
716 * as its parent, so that it can reuse the VM context and cache
717 * footprint on the local CPU.
718 */
719 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
720 l2->l_kpribase = PRI_KERNEL;
721 l2->l_priority = l1->l_priority;
722 l2->l_inheritedprio = -1;
723 l2->l_flag = 0;
724 l2->l_pflag = LP_MPSAFE;
725 TAILQ_INIT(&l2->l_ld_locks);
726
727 /*
728 * For vfork, borrow parent's lwpctl context if it exists.
729 * This also causes us to return via lwp_userret.
730 */
731 if (flags & LWP_VFORK && l1->l_lwpctl) {
732 l2->l_lwpctl = l1->l_lwpctl;
733 l2->l_flag |= LW_LWPCTL;
734 }
735
736 /*
737 * If not the first LWP in the process, grab a reference to the
738 * descriptor table.
739 */
740 l2->l_fd = p2->p_fd;
741 if (p2->p_nlwps != 0) {
742 KASSERT(l1->l_proc == p2);
743 fd_hold(l2);
744 } else {
745 KASSERT(l1->l_proc != p2);
746 }
747
748 if (p2->p_flag & PK_SYSTEM) {
749 /* Mark it as a system LWP. */
750 l2->l_flag |= LW_SYSTEM;
751 }
752
753 kpreempt_disable();
754 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
755 l2->l_cpu = l1->l_cpu;
756 kpreempt_enable();
757
758 kdtrace_thread_ctor(NULL, l2);
759 lwp_initspecific(l2);
760 sched_lwp_fork(l1, l2);
761 lwp_update_creds(l2);
762 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
763 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
764 cv_init(&l2->l_sigcv, "sigwait");
765 l2->l_syncobj = &sched_syncobj;
766
767 if (rnewlwpp != NULL)
768 *rnewlwpp = l2;
769
770 /*
771 * PCU state needs to be saved before calling uvm_lwp_fork() so that
772 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
773 */
774 pcu_save_all(l1);
775
776 uvm_lwp_setuarea(l2, uaddr);
777 uvm_lwp_fork(l1, l2, stack, stacksize, func,
778 (arg != NULL) ? arg : l2);
779
780 if ((flags & LWP_PIDLID) != 0) {
781 lid = proc_alloc_pid(p2);
782 l2->l_pflag |= LP_PIDLID;
783 } else {
784 lid = 0;
785 }
786
787 mutex_enter(p2->p_lock);
788
789 if ((flags & LWP_DETACHED) != 0) {
790 l2->l_prflag = LPR_DETACHED;
791 p2->p_ndlwps++;
792 } else
793 l2->l_prflag = 0;
794
795 l2->l_sigstk = l1->l_sigstk;
796 l2->l_sigmask = l1->l_sigmask;
797 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
798 sigemptyset(&l2->l_sigpend.sp_set);
799
800 if (lid == 0) {
801 p2->p_nlwpid++;
802 if (p2->p_nlwpid == 0)
803 p2->p_nlwpid++;
804 lid = p2->p_nlwpid;
805 }
806 l2->l_lid = lid;
807 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
808 p2->p_nlwps++;
809 p2->p_nrlwps++;
810
811 KASSERT(l2->l_affinity == NULL);
812
813 if ((p2->p_flag & PK_SYSTEM) == 0) {
814 /* Inherit the affinity mask. */
815 if (l1->l_affinity) {
816 /*
817 * Note that we hold the state lock while inheriting
818 * the affinity to avoid race with sched_setaffinity().
819 */
820 lwp_lock(l1);
821 if (l1->l_affinity) {
822 kcpuset_use(l1->l_affinity);
823 l2->l_affinity = l1->l_affinity;
824 }
825 lwp_unlock(l1);
826 }
827 lwp_lock(l2);
828 /* Inherit a processor-set */
829 l2->l_psid = l1->l_psid;
830 /* Look for a CPU to start */
831 l2->l_cpu = sched_takecpu(l2);
832 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
833 }
834 mutex_exit(p2->p_lock);
835
836 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
837
838 mutex_enter(proc_lock);
839 LIST_INSERT_HEAD(&alllwp, l2, l_list);
840 mutex_exit(proc_lock);
841
842 SYSCALL_TIME_LWP_INIT(l2);
843
844 if (p2->p_emul->e_lwp_fork)
845 (*p2->p_emul->e_lwp_fork)(l1, l2);
846
847 return (0);
848 }
849
850 /*
851 * Called by MD code when a new LWP begins execution. Must be called
852 * with the previous LWP locked (so at splsched), or if there is no
853 * previous LWP, at splsched.
854 */
855 void
856 lwp_startup(struct lwp *prev, struct lwp *new)
857 {
858
859 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
860
861 KASSERT(kpreempt_disabled());
862 if (prev != NULL) {
863 /*
864 * Normalize the count of the spin-mutexes, it was
865 * increased in mi_switch(). Unmark the state of
866 * context switch - it is finished for previous LWP.
867 */
868 curcpu()->ci_mtx_count++;
869 membar_exit();
870 prev->l_ctxswtch = 0;
871 }
872 KPREEMPT_DISABLE(new);
873 spl0();
874 if (__predict_true(new->l_proc->p_vmspace))
875 pmap_activate(new);
876
877 /* Note trip through cpu_switchto(). */
878 pserialize_switchpoint();
879
880 LOCKDEBUG_BARRIER(NULL, 0);
881 KPREEMPT_ENABLE(new);
882 if ((new->l_pflag & LP_MPSAFE) == 0) {
883 KERNEL_LOCK(1, new);
884 }
885 }
886
887 /*
888 * Exit an LWP.
889 */
890 void
891 lwp_exit(struct lwp *l)
892 {
893 struct proc *p = l->l_proc;
894 struct lwp *l2;
895 bool current;
896
897 current = (l == curlwp);
898
899 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
900 KASSERT(p == curproc);
901
902 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
903
904 /*
905 * Verify that we hold no locks other than the kernel lock.
906 */
907 LOCKDEBUG_BARRIER(&kernel_lock, 0);
908
909 /*
910 * If we are the last live LWP in a process, we need to exit the
911 * entire process. We do so with an exit status of zero, because
912 * it's a "controlled" exit, and because that's what Solaris does.
913 *
914 * We are not quite a zombie yet, but for accounting purposes we
915 * must increment the count of zombies here.
916 *
917 * Note: the last LWP's specificdata will be deleted here.
918 */
919 mutex_enter(p->p_lock);
920 if (p->p_nlwps - p->p_nzlwps == 1) {
921 KASSERT(current == true);
922 /* XXXSMP kernel_lock not held */
923 exit1(l, 0);
924 /* NOTREACHED */
925 }
926 p->p_nzlwps++;
927 mutex_exit(p->p_lock);
928
929 if (p->p_emul->e_lwp_exit)
930 (*p->p_emul->e_lwp_exit)(l);
931
932 /* Drop filedesc reference. */
933 fd_free();
934
935 /* Delete the specificdata while it's still safe to sleep. */
936 lwp_finispecific(l);
937
938 /*
939 * Release our cached credentials.
940 */
941 kauth_cred_free(l->l_cred);
942 callout_destroy(&l->l_timeout_ch);
943
944 /*
945 * Remove the LWP from the global list.
946 * Free its LID from the PID namespace if needed.
947 */
948 mutex_enter(proc_lock);
949 LIST_REMOVE(l, l_list);
950 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
951 proc_free_pid(l->l_lid);
952 }
953 mutex_exit(proc_lock);
954
955 /*
956 * Get rid of all references to the LWP that others (e.g. procfs)
957 * may have, and mark the LWP as a zombie. If the LWP is detached,
958 * mark it waiting for collection in the proc structure. Note that
959 * before we can do that, we need to free any other dead, deatched
960 * LWP waiting to meet its maker.
961 */
962 mutex_enter(p->p_lock);
963 lwp_drainrefs(l);
964
965 if ((l->l_prflag & LPR_DETACHED) != 0) {
966 while ((l2 = p->p_zomblwp) != NULL) {
967 p->p_zomblwp = NULL;
968 lwp_free(l2, false, false);/* releases proc mutex */
969 mutex_enter(p->p_lock);
970 l->l_refcnt++;
971 lwp_drainrefs(l);
972 }
973 p->p_zomblwp = l;
974 }
975
976 /*
977 * If we find a pending signal for the process and we have been
978 * asked to check for signals, then we lose: arrange to have
979 * all other LWPs in the process check for signals.
980 */
981 if ((l->l_flag & LW_PENDSIG) != 0 &&
982 firstsig(&p->p_sigpend.sp_set) != 0) {
983 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
984 lwp_lock(l2);
985 l2->l_flag |= LW_PENDSIG;
986 lwp_unlock(l2);
987 }
988 }
989
990 /*
991 * Release any PCU resources before becoming a zombie.
992 */
993 pcu_discard_all(l);
994
995 lwp_lock(l);
996 l->l_stat = LSZOMB;
997 if (l->l_name != NULL) {
998 strcpy(l->l_name, "(zombie)");
999 }
1000 lwp_unlock(l);
1001 p->p_nrlwps--;
1002 cv_broadcast(&p->p_lwpcv);
1003 if (l->l_lwpctl != NULL)
1004 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1005 mutex_exit(p->p_lock);
1006
1007 /*
1008 * We can no longer block. At this point, lwp_free() may already
1009 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1010 *
1011 * Free MD LWP resources.
1012 */
1013 cpu_lwp_free(l, 0);
1014
1015 if (current) {
1016 pmap_deactivate(l);
1017
1018 /*
1019 * Release the kernel lock, and switch away into
1020 * oblivion.
1021 */
1022 #ifdef notyet
1023 /* XXXSMP hold in lwp_userret() */
1024 KERNEL_UNLOCK_LAST(l);
1025 #else
1026 KERNEL_UNLOCK_ALL(l, NULL);
1027 #endif
1028 lwp_exit_switchaway(l);
1029 }
1030 }
1031
1032 /*
1033 * Free a dead LWP's remaining resources.
1034 *
1035 * XXXLWP limits.
1036 */
1037 void
1038 lwp_free(struct lwp *l, bool recycle, bool last)
1039 {
1040 struct proc *p = l->l_proc;
1041 struct rusage *ru;
1042 ksiginfoq_t kq;
1043
1044 KASSERT(l != curlwp);
1045 KASSERT(last || mutex_owned(p->p_lock));
1046
1047 /*
1048 * If this was not the last LWP in the process, then adjust
1049 * counters and unlock.
1050 */
1051 if (!last) {
1052 /*
1053 * Add the LWP's run time to the process' base value.
1054 * This needs to co-incide with coming off p_lwps.
1055 */
1056 bintime_add(&p->p_rtime, &l->l_rtime);
1057 p->p_pctcpu += l->l_pctcpu;
1058 ru = &p->p_stats->p_ru;
1059 ruadd(ru, &l->l_ru);
1060 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1061 ru->ru_nivcsw += l->l_nivcsw;
1062 LIST_REMOVE(l, l_sibling);
1063 p->p_nlwps--;
1064 p->p_nzlwps--;
1065 if ((l->l_prflag & LPR_DETACHED) != 0)
1066 p->p_ndlwps--;
1067
1068 /*
1069 * Have any LWPs sleeping in lwp_wait() recheck for
1070 * deadlock.
1071 */
1072 cv_broadcast(&p->p_lwpcv);
1073 mutex_exit(p->p_lock);
1074 }
1075
1076 #ifdef MULTIPROCESSOR
1077 /*
1078 * In the unlikely event that the LWP is still on the CPU,
1079 * then spin until it has switched away. We need to release
1080 * all locks to avoid deadlock against interrupt handlers on
1081 * the target CPU.
1082 */
1083 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1084 int count;
1085 (void)count; /* XXXgcc */
1086 KERNEL_UNLOCK_ALL(curlwp, &count);
1087 while ((l->l_pflag & LP_RUNNING) != 0 ||
1088 l->l_cpu->ci_curlwp == l)
1089 SPINLOCK_BACKOFF_HOOK;
1090 KERNEL_LOCK(count, curlwp);
1091 }
1092 #endif
1093
1094 /*
1095 * Destroy the LWP's remaining signal information.
1096 */
1097 ksiginfo_queue_init(&kq);
1098 sigclear(&l->l_sigpend, NULL, &kq);
1099 ksiginfo_queue_drain(&kq);
1100 cv_destroy(&l->l_sigcv);
1101
1102 /*
1103 * Free lwpctl structure and affinity.
1104 */
1105 if (l->l_lwpctl) {
1106 lwp_ctl_free(l);
1107 }
1108 if (l->l_affinity) {
1109 kcpuset_unuse(l->l_affinity, NULL);
1110 l->l_affinity = NULL;
1111 }
1112
1113 /*
1114 * Free the LWP's turnstile and the LWP structure itself unless the
1115 * caller wants to recycle them. Also, free the scheduler specific
1116 * data.
1117 *
1118 * We can't return turnstile0 to the pool (it didn't come from it),
1119 * so if it comes up just drop it quietly and move on.
1120 *
1121 * We don't recycle the VM resources at this time.
1122 */
1123
1124 if (!recycle && l->l_ts != &turnstile0)
1125 pool_cache_put(turnstile_cache, l->l_ts);
1126 if (l->l_name != NULL)
1127 kmem_free(l->l_name, MAXCOMLEN);
1128
1129 cpu_lwp_free2(l);
1130 uvm_lwp_exit(l);
1131
1132 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1133 KASSERT(l->l_inheritedprio == -1);
1134 KASSERT(l->l_blcnt == 0);
1135 kdtrace_thread_dtor(NULL, l);
1136 if (!recycle)
1137 pool_cache_put(lwp_cache, l);
1138 }
1139
1140 /*
1141 * Migrate the LWP to the another CPU. Unlocks the LWP.
1142 */
1143 void
1144 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1145 {
1146 struct schedstate_percpu *tspc;
1147 int lstat = l->l_stat;
1148
1149 KASSERT(lwp_locked(l, NULL));
1150 KASSERT(tci != NULL);
1151
1152 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1153 if ((l->l_pflag & LP_RUNNING) != 0) {
1154 lstat = LSONPROC;
1155 }
1156
1157 /*
1158 * The destination CPU could be changed while previous migration
1159 * was not finished.
1160 */
1161 if (l->l_target_cpu != NULL) {
1162 l->l_target_cpu = tci;
1163 lwp_unlock(l);
1164 return;
1165 }
1166
1167 /* Nothing to do if trying to migrate to the same CPU */
1168 if (l->l_cpu == tci) {
1169 lwp_unlock(l);
1170 return;
1171 }
1172
1173 KASSERT(l->l_target_cpu == NULL);
1174 tspc = &tci->ci_schedstate;
1175 switch (lstat) {
1176 case LSRUN:
1177 l->l_target_cpu = tci;
1178 break;
1179 case LSIDL:
1180 l->l_cpu = tci;
1181 lwp_unlock_to(l, tspc->spc_mutex);
1182 return;
1183 case LSSLEEP:
1184 l->l_cpu = tci;
1185 break;
1186 case LSSTOP:
1187 case LSSUSPENDED:
1188 l->l_cpu = tci;
1189 if (l->l_wchan == NULL) {
1190 lwp_unlock_to(l, tspc->spc_lwplock);
1191 return;
1192 }
1193 break;
1194 case LSONPROC:
1195 l->l_target_cpu = tci;
1196 spc_lock(l->l_cpu);
1197 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1198 spc_unlock(l->l_cpu);
1199 break;
1200 }
1201 lwp_unlock(l);
1202 }
1203
1204 /*
1205 * Find the LWP in the process. Arguments may be zero, in such case,
1206 * the calling process and first LWP in the list will be used.
1207 * On success - returns proc locked.
1208 */
1209 struct lwp *
1210 lwp_find2(pid_t pid, lwpid_t lid)
1211 {
1212 proc_t *p;
1213 lwp_t *l;
1214
1215 /* Find the process. */
1216 if (pid != 0) {
1217 mutex_enter(proc_lock);
1218 p = proc_find(pid);
1219 if (p == NULL) {
1220 mutex_exit(proc_lock);
1221 return NULL;
1222 }
1223 mutex_enter(p->p_lock);
1224 mutex_exit(proc_lock);
1225 } else {
1226 p = curlwp->l_proc;
1227 mutex_enter(p->p_lock);
1228 }
1229 /* Find the thread. */
1230 if (lid != 0) {
1231 l = lwp_find(p, lid);
1232 } else {
1233 l = LIST_FIRST(&p->p_lwps);
1234 }
1235 if (l == NULL) {
1236 mutex_exit(p->p_lock);
1237 }
1238 return l;
1239 }
1240
1241 /*
1242 * Look up a live LWP within the specified process, and return it locked.
1243 *
1244 * Must be called with p->p_lock held.
1245 */
1246 struct lwp *
1247 lwp_find(struct proc *p, lwpid_t id)
1248 {
1249 struct lwp *l;
1250
1251 KASSERT(mutex_owned(p->p_lock));
1252
1253 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1254 if (l->l_lid == id)
1255 break;
1256 }
1257
1258 /*
1259 * No need to lock - all of these conditions will
1260 * be visible with the process level mutex held.
1261 */
1262 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1263 l = NULL;
1264
1265 return l;
1266 }
1267
1268 /*
1269 * Update an LWP's cached credentials to mirror the process' master copy.
1270 *
1271 * This happens early in the syscall path, on user trap, and on LWP
1272 * creation. A long-running LWP can also voluntarily choose to update
1273 * it's credentials by calling this routine. This may be called from
1274 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1275 */
1276 void
1277 lwp_update_creds(struct lwp *l)
1278 {
1279 kauth_cred_t oc;
1280 struct proc *p;
1281
1282 p = l->l_proc;
1283 oc = l->l_cred;
1284
1285 mutex_enter(p->p_lock);
1286 kauth_cred_hold(p->p_cred);
1287 l->l_cred = p->p_cred;
1288 l->l_prflag &= ~LPR_CRMOD;
1289 mutex_exit(p->p_lock);
1290 if (oc != NULL)
1291 kauth_cred_free(oc);
1292 }
1293
1294 /*
1295 * Verify that an LWP is locked, and optionally verify that the lock matches
1296 * one we specify.
1297 */
1298 int
1299 lwp_locked(struct lwp *l, kmutex_t *mtx)
1300 {
1301 kmutex_t *cur = l->l_mutex;
1302
1303 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1304 }
1305
1306 /*
1307 * Lend a new mutex to an LWP. The old mutex must be held.
1308 */
1309 void
1310 lwp_setlock(struct lwp *l, kmutex_t *new)
1311 {
1312
1313 KASSERT(mutex_owned(l->l_mutex));
1314
1315 membar_exit();
1316 l->l_mutex = new;
1317 }
1318
1319 /*
1320 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1321 * must be held.
1322 */
1323 void
1324 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1325 {
1326 kmutex_t *old;
1327
1328 KASSERT(lwp_locked(l, NULL));
1329
1330 old = l->l_mutex;
1331 membar_exit();
1332 l->l_mutex = new;
1333 mutex_spin_exit(old);
1334 }
1335
1336 int
1337 lwp_trylock(struct lwp *l)
1338 {
1339 kmutex_t *old;
1340
1341 for (;;) {
1342 if (!mutex_tryenter(old = l->l_mutex))
1343 return 0;
1344 if (__predict_true(l->l_mutex == old))
1345 return 1;
1346 mutex_spin_exit(old);
1347 }
1348 }
1349
1350 void
1351 lwp_unsleep(lwp_t *l, bool cleanup)
1352 {
1353
1354 KASSERT(mutex_owned(l->l_mutex));
1355 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1356 }
1357
1358 /*
1359 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1360 * set.
1361 */
1362 void
1363 lwp_userret(struct lwp *l)
1364 {
1365 struct proc *p;
1366 int sig;
1367
1368 KASSERT(l == curlwp);
1369 KASSERT(l->l_stat == LSONPROC);
1370 p = l->l_proc;
1371
1372 #ifndef __HAVE_FAST_SOFTINTS
1373 /* Run pending soft interrupts. */
1374 if (l->l_cpu->ci_data.cpu_softints != 0)
1375 softint_overlay();
1376 #endif
1377
1378 #ifdef KERN_SA
1379 /* Generate UNBLOCKED upcall if needed */
1380 if (l->l_flag & LW_SA_BLOCKING) {
1381 sa_unblock_userret(l);
1382 /* NOTREACHED */
1383 }
1384 #endif
1385
1386 /*
1387 * It should be safe to do this read unlocked on a multiprocessor
1388 * system..
1389 *
1390 * LW_SA_UPCALL will be handled after the while() loop, so don't
1391 * consider it now.
1392 */
1393 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1394 /*
1395 * Process pending signals first, unless the process
1396 * is dumping core or exiting, where we will instead
1397 * enter the LW_WSUSPEND case below.
1398 */
1399 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1400 LW_PENDSIG) {
1401 mutex_enter(p->p_lock);
1402 while ((sig = issignal(l)) != 0)
1403 postsig(sig);
1404 mutex_exit(p->p_lock);
1405 }
1406
1407 /*
1408 * Core-dump or suspend pending.
1409 *
1410 * In case of core dump, suspend ourselves, so that the kernel
1411 * stack and therefore the userland registers saved in the
1412 * trapframe are around for coredump() to write them out.
1413 * We also need to save any PCU resources that we have so that
1414 * they accessible for coredump(). We issue a wakeup on
1415 * p->p_lwpcv so that sigexit() will write the core file out
1416 * once all other LWPs are suspended.
1417 */
1418 if ((l->l_flag & LW_WSUSPEND) != 0) {
1419 pcu_save_all(l);
1420 mutex_enter(p->p_lock);
1421 p->p_nrlwps--;
1422 cv_broadcast(&p->p_lwpcv);
1423 lwp_lock(l);
1424 l->l_stat = LSSUSPENDED;
1425 lwp_unlock(l);
1426 mutex_exit(p->p_lock);
1427 lwp_lock(l);
1428 mi_switch(l);
1429 }
1430
1431 /* Process is exiting. */
1432 if ((l->l_flag & LW_WEXIT) != 0) {
1433 lwp_exit(l);
1434 KASSERT(0);
1435 /* NOTREACHED */
1436 }
1437
1438 /* update lwpctl processor (for vfork child_return) */
1439 if (l->l_flag & LW_LWPCTL) {
1440 lwp_lock(l);
1441 KASSERT(kpreempt_disabled());
1442 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1443 l->l_lwpctl->lc_pctr++;
1444 l->l_flag &= ~LW_LWPCTL;
1445 lwp_unlock(l);
1446 }
1447 }
1448
1449 #ifdef KERN_SA
1450 /*
1451 * Timer events are handled specially. We only try once to deliver
1452 * pending timer upcalls; if if fails, we can try again on the next
1453 * loop around. If we need to re-enter lwp_userret(), MD code will
1454 * bounce us back here through the trap path after we return.
1455 */
1456 if (p->p_timerpend)
1457 timerupcall(l);
1458 if (l->l_flag & LW_SA_UPCALL)
1459 sa_upcall_userret(l);
1460 #endif /* KERN_SA */
1461 }
1462
1463 /*
1464 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1465 */
1466 void
1467 lwp_need_userret(struct lwp *l)
1468 {
1469 KASSERT(lwp_locked(l, NULL));
1470
1471 /*
1472 * Since the tests in lwp_userret() are done unlocked, make sure
1473 * that the condition will be seen before forcing the LWP to enter
1474 * kernel mode.
1475 */
1476 membar_producer();
1477 cpu_signotify(l);
1478 }
1479
1480 /*
1481 * Add one reference to an LWP. This will prevent the LWP from
1482 * exiting, thus keep the lwp structure and PCB around to inspect.
1483 */
1484 void
1485 lwp_addref(struct lwp *l)
1486 {
1487
1488 KASSERT(mutex_owned(l->l_proc->p_lock));
1489 KASSERT(l->l_stat != LSZOMB);
1490 KASSERT(l->l_refcnt != 0);
1491
1492 l->l_refcnt++;
1493 }
1494
1495 /*
1496 * Remove one reference to an LWP. If this is the last reference,
1497 * then we must finalize the LWP's death.
1498 */
1499 void
1500 lwp_delref(struct lwp *l)
1501 {
1502 struct proc *p = l->l_proc;
1503
1504 mutex_enter(p->p_lock);
1505 lwp_delref2(l);
1506 mutex_exit(p->p_lock);
1507 }
1508
1509 /*
1510 * Remove one reference to an LWP. If this is the last reference,
1511 * then we must finalize the LWP's death. The proc mutex is held
1512 * on entry.
1513 */
1514 void
1515 lwp_delref2(struct lwp *l)
1516 {
1517 struct proc *p = l->l_proc;
1518
1519 KASSERT(mutex_owned(p->p_lock));
1520 KASSERT(l->l_stat != LSZOMB);
1521 KASSERT(l->l_refcnt > 0);
1522 if (--l->l_refcnt == 0)
1523 cv_broadcast(&p->p_lwpcv);
1524 }
1525
1526 /*
1527 * Drain all references to the current LWP.
1528 */
1529 void
1530 lwp_drainrefs(struct lwp *l)
1531 {
1532 struct proc *p = l->l_proc;
1533
1534 KASSERT(mutex_owned(p->p_lock));
1535 KASSERT(l->l_refcnt != 0);
1536
1537 l->l_refcnt--;
1538 while (l->l_refcnt != 0)
1539 cv_wait(&p->p_lwpcv, p->p_lock);
1540 }
1541
1542 /*
1543 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1544 * be held.
1545 */
1546 bool
1547 lwp_alive(lwp_t *l)
1548 {
1549
1550 KASSERT(mutex_owned(l->l_proc->p_lock));
1551
1552 switch (l->l_stat) {
1553 case LSSLEEP:
1554 case LSRUN:
1555 case LSONPROC:
1556 case LSSTOP:
1557 case LSSUSPENDED:
1558 return true;
1559 default:
1560 return false;
1561 }
1562 }
1563
1564 /*
1565 * Return first live LWP in the process.
1566 */
1567 lwp_t *
1568 lwp_find_first(proc_t *p)
1569 {
1570 lwp_t *l;
1571
1572 KASSERT(mutex_owned(p->p_lock));
1573
1574 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1575 if (lwp_alive(l)) {
1576 return l;
1577 }
1578 }
1579
1580 return NULL;
1581 }
1582
1583 /*
1584 * Allocate a new lwpctl structure for a user LWP.
1585 */
1586 int
1587 lwp_ctl_alloc(vaddr_t *uaddr)
1588 {
1589 lcproc_t *lp;
1590 u_int bit, i, offset;
1591 struct uvm_object *uao;
1592 int error;
1593 lcpage_t *lcp;
1594 proc_t *p;
1595 lwp_t *l;
1596
1597 l = curlwp;
1598 p = l->l_proc;
1599
1600 /* don't allow a vforked process to create lwp ctls */
1601 if (p->p_lflag & PL_PPWAIT)
1602 return EBUSY;
1603
1604 if (l->l_lcpage != NULL) {
1605 lcp = l->l_lcpage;
1606 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1607 return 0;
1608 }
1609
1610 /* First time around, allocate header structure for the process. */
1611 if ((lp = p->p_lwpctl) == NULL) {
1612 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1613 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1614 lp->lp_uao = NULL;
1615 TAILQ_INIT(&lp->lp_pages);
1616 mutex_enter(p->p_lock);
1617 if (p->p_lwpctl == NULL) {
1618 p->p_lwpctl = lp;
1619 mutex_exit(p->p_lock);
1620 } else {
1621 mutex_exit(p->p_lock);
1622 mutex_destroy(&lp->lp_lock);
1623 kmem_free(lp, sizeof(*lp));
1624 lp = p->p_lwpctl;
1625 }
1626 }
1627
1628 /*
1629 * Set up an anonymous memory region to hold the shared pages.
1630 * Map them into the process' address space. The user vmspace
1631 * gets the first reference on the UAO.
1632 */
1633 mutex_enter(&lp->lp_lock);
1634 if (lp->lp_uao == NULL) {
1635 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1636 lp->lp_cur = 0;
1637 lp->lp_max = LWPCTL_UAREA_SZ;
1638 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1639 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1640 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1641 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1642 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1643 if (error != 0) {
1644 uao_detach(lp->lp_uao);
1645 lp->lp_uao = NULL;
1646 mutex_exit(&lp->lp_lock);
1647 return error;
1648 }
1649 }
1650
1651 /* Get a free block and allocate for this LWP. */
1652 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1653 if (lcp->lcp_nfree != 0)
1654 break;
1655 }
1656 if (lcp == NULL) {
1657 /* Nothing available - try to set up a free page. */
1658 if (lp->lp_cur == lp->lp_max) {
1659 mutex_exit(&lp->lp_lock);
1660 return ENOMEM;
1661 }
1662 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1663 if (lcp == NULL) {
1664 mutex_exit(&lp->lp_lock);
1665 return ENOMEM;
1666 }
1667 /*
1668 * Wire the next page down in kernel space. Since this
1669 * is a new mapping, we must add a reference.
1670 */
1671 uao = lp->lp_uao;
1672 (*uao->pgops->pgo_reference)(uao);
1673 lcp->lcp_kaddr = vm_map_min(kernel_map);
1674 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1675 uao, lp->lp_cur, PAGE_SIZE,
1676 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1677 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1678 if (error != 0) {
1679 mutex_exit(&lp->lp_lock);
1680 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1681 (*uao->pgops->pgo_detach)(uao);
1682 return error;
1683 }
1684 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1685 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1686 if (error != 0) {
1687 mutex_exit(&lp->lp_lock);
1688 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1689 lcp->lcp_kaddr + PAGE_SIZE);
1690 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1691 return error;
1692 }
1693 /* Prepare the page descriptor and link into the list. */
1694 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1695 lp->lp_cur += PAGE_SIZE;
1696 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1697 lcp->lcp_rotor = 0;
1698 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1699 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1700 }
1701 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1702 if (++i >= LWPCTL_BITMAP_ENTRIES)
1703 i = 0;
1704 }
1705 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1706 lcp->lcp_bitmap[i] ^= (1 << bit);
1707 lcp->lcp_rotor = i;
1708 lcp->lcp_nfree--;
1709 l->l_lcpage = lcp;
1710 offset = (i << 5) + bit;
1711 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1712 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1713 mutex_exit(&lp->lp_lock);
1714
1715 KPREEMPT_DISABLE(l);
1716 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1717 KPREEMPT_ENABLE(l);
1718
1719 return 0;
1720 }
1721
1722 /*
1723 * Free an lwpctl structure back to the per-process list.
1724 */
1725 void
1726 lwp_ctl_free(lwp_t *l)
1727 {
1728 struct proc *p = l->l_proc;
1729 lcproc_t *lp;
1730 lcpage_t *lcp;
1731 u_int map, offset;
1732
1733 /* don't free a lwp context we borrowed for vfork */
1734 if (p->p_lflag & PL_PPWAIT) {
1735 l->l_lwpctl = NULL;
1736 return;
1737 }
1738
1739 lp = p->p_lwpctl;
1740 KASSERT(lp != NULL);
1741
1742 lcp = l->l_lcpage;
1743 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1744 KASSERT(offset < LWPCTL_PER_PAGE);
1745
1746 mutex_enter(&lp->lp_lock);
1747 lcp->lcp_nfree++;
1748 map = offset >> 5;
1749 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1750 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1751 lcp->lcp_rotor = map;
1752 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1753 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1754 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1755 }
1756 mutex_exit(&lp->lp_lock);
1757 }
1758
1759 /*
1760 * Process is exiting; tear down lwpctl state. This can only be safely
1761 * called by the last LWP in the process.
1762 */
1763 void
1764 lwp_ctl_exit(void)
1765 {
1766 lcpage_t *lcp, *next;
1767 lcproc_t *lp;
1768 proc_t *p;
1769 lwp_t *l;
1770
1771 l = curlwp;
1772 l->l_lwpctl = NULL;
1773 l->l_lcpage = NULL;
1774 p = l->l_proc;
1775 lp = p->p_lwpctl;
1776
1777 KASSERT(lp != NULL);
1778 KASSERT(p->p_nlwps == 1);
1779
1780 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1781 next = TAILQ_NEXT(lcp, lcp_chain);
1782 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1783 lcp->lcp_kaddr + PAGE_SIZE);
1784 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1785 }
1786
1787 if (lp->lp_uao != NULL) {
1788 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1789 lp->lp_uva + LWPCTL_UAREA_SZ);
1790 }
1791
1792 mutex_destroy(&lp->lp_lock);
1793 kmem_free(lp, sizeof(*lp));
1794 p->p_lwpctl = NULL;
1795 }
1796
1797 /*
1798 * Return the current LWP's "preemption counter". Used to detect
1799 * preemption across operations that can tolerate preemption without
1800 * crashing, but which may generate incorrect results if preempted.
1801 */
1802 uint64_t
1803 lwp_pctr(void)
1804 {
1805
1806 return curlwp->l_ncsw;
1807 }
1808
1809 /*
1810 * Set an LWP's private data pointer.
1811 */
1812 int
1813 lwp_setprivate(struct lwp *l, void *ptr)
1814 {
1815 int error = 0;
1816
1817 l->l_private = ptr;
1818 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1819 error = cpu_lwp_setprivate(l, ptr);
1820 #endif
1821 return error;
1822 }
1823
1824 #if defined(DDB)
1825 #include <machine/pcb.h>
1826
1827 void
1828 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1829 {
1830 lwp_t *l;
1831
1832 LIST_FOREACH(l, &alllwp, l_list) {
1833 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1834
1835 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1836 continue;
1837 }
1838 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1839 (void *)addr, (void *)stack,
1840 (size_t)(addr - stack), l);
1841 }
1842 }
1843 #endif /* defined(DDB) */
1844