kern_lwp.c revision 1.166.2.1 1 /* $NetBSD: kern_lwp.c,v 1.166.2.1 2012/10/01 23:07:08 riz Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.166.2.1 2012/10/01 23:07:08 riz Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_sa.h"
219 #include "opt_dtrace.h"
220
221 #define _LWP_API_PRIVATE
222
223 #include <sys/param.h>
224 #include <sys/systm.h>
225 #include <sys/cpu.h>
226 #include <sys/pool.h>
227 #include <sys/proc.h>
228 #include <sys/sa.h>
229 #include <sys/savar.h>
230 #include <sys/syscallargs.h>
231 #include <sys/syscall_stats.h>
232 #include <sys/kauth.h>
233 #include <sys/pserialize.h>
234 #include <sys/sleepq.h>
235 #include <sys/lockdebug.h>
236 #include <sys/kmem.h>
237 #include <sys/pset.h>
238 #include <sys/intr.h>
239 #include <sys/lwpctl.h>
240 #include <sys/atomic.h>
241 #include <sys/filedesc.h>
242 #include <sys/dtrace_bsd.h>
243 #include <sys/sdt.h>
244 #include <sys/xcall.h>
245
246 #include <uvm/uvm_extern.h>
247 #include <uvm/uvm_object.h>
248
249 static pool_cache_t lwp_cache __read_mostly;
250 struct lwplist alllwp __cacheline_aligned;
251
252 static void lwp_dtor(void *, void *);
253
254 /* DTrace proc provider probes */
255 SDT_PROBE_DEFINE(proc,,,lwp_create,
256 "struct lwp *", NULL,
257 NULL, NULL, NULL, NULL,
258 NULL, NULL, NULL, NULL);
259 SDT_PROBE_DEFINE(proc,,,lwp_start,
260 "struct lwp *", NULL,
261 NULL, NULL, NULL, NULL,
262 NULL, NULL, NULL, NULL);
263 SDT_PROBE_DEFINE(proc,,,lwp_exit,
264 "struct lwp *", NULL,
265 NULL, NULL, NULL, NULL,
266 NULL, NULL, NULL, NULL);
267
268 struct turnstile turnstile0;
269 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
270 #ifdef LWP0_CPU_INFO
271 .l_cpu = LWP0_CPU_INFO,
272 #endif
273 #ifdef LWP0_MD_INITIALIZER
274 .l_md = LWP0_MD_INITIALIZER,
275 #endif
276 .l_proc = &proc0,
277 .l_lid = 1,
278 .l_flag = LW_SYSTEM,
279 .l_stat = LSONPROC,
280 .l_ts = &turnstile0,
281 .l_syncobj = &sched_syncobj,
282 .l_refcnt = 1,
283 .l_priority = PRI_USER + NPRI_USER - 1,
284 .l_inheritedprio = -1,
285 .l_class = SCHED_OTHER,
286 .l_psid = PS_NONE,
287 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
288 .l_name = __UNCONST("swapper"),
289 .l_fd = &filedesc0,
290 };
291
292 void
293 lwpinit(void)
294 {
295
296 LIST_INIT(&alllwp);
297 lwpinit_specificdata();
298 lwp_sys_init();
299 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
300 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
301 }
302
303 void
304 lwp0_init(void)
305 {
306 struct lwp *l = &lwp0;
307
308 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
309 KASSERT(l->l_lid == proc0.p_nlwpid);
310
311 LIST_INSERT_HEAD(&alllwp, l, l_list);
312
313 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
314 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
315 cv_init(&l->l_sigcv, "sigwait");
316
317 kauth_cred_hold(proc0.p_cred);
318 l->l_cred = proc0.p_cred;
319
320 kdtrace_thread_ctor(NULL, l);
321 lwp_initspecific(l);
322
323 SYSCALL_TIME_LWP_INIT(l);
324 }
325
326 static void
327 lwp_dtor(void *arg, void *obj)
328 {
329 lwp_t *l = obj;
330 uint64_t where;
331 (void)l;
332
333 /*
334 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
335 * calls will exit before memory of LWP is returned to the pool, where
336 * KVA of LWP structure might be freed and re-used for other purposes.
337 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
338 * callers, therefore cross-call to all CPUs will do the job. Also,
339 * the value of l->l_cpu must be still valid at this point.
340 */
341 KASSERT(l->l_cpu != NULL);
342 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
343 xc_wait(where);
344 }
345
346 /*
347 * Set an suspended.
348 *
349 * Must be called with p_lock held, and the LWP locked. Will unlock the
350 * LWP before return.
351 */
352 int
353 lwp_suspend(struct lwp *curl, struct lwp *t)
354 {
355 int error;
356
357 KASSERT(mutex_owned(t->l_proc->p_lock));
358 KASSERT(lwp_locked(t, NULL));
359
360 KASSERT(curl != t || curl->l_stat == LSONPROC);
361
362 /*
363 * If the current LWP has been told to exit, we must not suspend anyone
364 * else or deadlock could occur. We won't return to userspace.
365 */
366 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
367 lwp_unlock(t);
368 return (EDEADLK);
369 }
370
371 error = 0;
372
373 switch (t->l_stat) {
374 case LSRUN:
375 case LSONPROC:
376 t->l_flag |= LW_WSUSPEND;
377 lwp_need_userret(t);
378 lwp_unlock(t);
379 break;
380
381 case LSSLEEP:
382 t->l_flag |= LW_WSUSPEND;
383
384 /*
385 * Kick the LWP and try to get it to the kernel boundary
386 * so that it will release any locks that it holds.
387 * setrunnable() will release the lock.
388 */
389 if ((t->l_flag & LW_SINTR) != 0)
390 setrunnable(t);
391 else
392 lwp_unlock(t);
393 break;
394
395 case LSSUSPENDED:
396 lwp_unlock(t);
397 break;
398
399 case LSSTOP:
400 t->l_flag |= LW_WSUSPEND;
401 setrunnable(t);
402 break;
403
404 case LSIDL:
405 case LSZOMB:
406 error = EINTR; /* It's what Solaris does..... */
407 lwp_unlock(t);
408 break;
409 }
410
411 return (error);
412 }
413
414 /*
415 * Restart a suspended LWP.
416 *
417 * Must be called with p_lock held, and the LWP locked. Will unlock the
418 * LWP before return.
419 */
420 void
421 lwp_continue(struct lwp *l)
422 {
423
424 KASSERT(mutex_owned(l->l_proc->p_lock));
425 KASSERT(lwp_locked(l, NULL));
426
427 /* If rebooting or not suspended, then just bail out. */
428 if ((l->l_flag & LW_WREBOOT) != 0) {
429 lwp_unlock(l);
430 return;
431 }
432
433 l->l_flag &= ~LW_WSUSPEND;
434
435 if (l->l_stat != LSSUSPENDED) {
436 lwp_unlock(l);
437 return;
438 }
439
440 /* setrunnable() will release the lock. */
441 setrunnable(l);
442 }
443
444 /*
445 * Restart a stopped LWP.
446 *
447 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
448 * LWP before return.
449 */
450 void
451 lwp_unstop(struct lwp *l)
452 {
453 struct proc *p = l->l_proc;
454
455 KASSERT(mutex_owned(proc_lock));
456 KASSERT(mutex_owned(p->p_lock));
457
458 lwp_lock(l);
459
460 /* If not stopped, then just bail out. */
461 if (l->l_stat != LSSTOP) {
462 lwp_unlock(l);
463 return;
464 }
465
466 p->p_stat = SACTIVE;
467 p->p_sflag &= ~PS_STOPPING;
468
469 if (!p->p_waited)
470 p->p_pptr->p_nstopchild--;
471
472 if (l->l_wchan == NULL) {
473 /* setrunnable() will release the lock. */
474 setrunnable(l);
475 } else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
476 /* setrunnable() so we can receive the signal */
477 setrunnable(l);
478 } else {
479 l->l_stat = LSSLEEP;
480 p->p_nrlwps++;
481 lwp_unlock(l);
482 }
483 }
484
485 /*
486 * Wait for an LWP within the current process to exit. If 'lid' is
487 * non-zero, we are waiting for a specific LWP.
488 *
489 * Must be called with p->p_lock held.
490 */
491 int
492 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
493 {
494 const lwpid_t curlid = l->l_lid;
495 proc_t *p = l->l_proc;
496 lwp_t *l2;
497 int error;
498
499 KASSERT(mutex_owned(p->p_lock));
500
501 p->p_nlwpwait++;
502 l->l_waitingfor = lid;
503
504 for (;;) {
505 int nfound;
506
507 /*
508 * Avoid a race between exit1() and sigexit(): if the
509 * process is dumping core, then we need to bail out: call
510 * into lwp_userret() where we will be suspended until the
511 * deed is done.
512 */
513 if ((p->p_sflag & PS_WCORE) != 0) {
514 mutex_exit(p->p_lock);
515 lwp_userret(l);
516 KASSERT(false);
517 }
518
519 /*
520 * First off, drain any detached LWP that is waiting to be
521 * reaped.
522 */
523 while ((l2 = p->p_zomblwp) != NULL) {
524 p->p_zomblwp = NULL;
525 lwp_free(l2, false, false);/* releases proc mutex */
526 mutex_enter(p->p_lock);
527 }
528
529 /*
530 * Now look for an LWP to collect. If the whole process is
531 * exiting, count detached LWPs as eligible to be collected,
532 * but don't drain them here.
533 */
534 nfound = 0;
535 error = 0;
536 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
537 /*
538 * If a specific wait and the target is waiting on
539 * us, then avoid deadlock. This also traps LWPs
540 * that try to wait on themselves.
541 *
542 * Note that this does not handle more complicated
543 * cycles, like: t1 -> t2 -> t3 -> t1. The process
544 * can still be killed so it is not a major problem.
545 */
546 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
547 error = EDEADLK;
548 break;
549 }
550 if (l2 == l)
551 continue;
552 if ((l2->l_prflag & LPR_DETACHED) != 0) {
553 nfound += exiting;
554 continue;
555 }
556 if (lid != 0) {
557 if (l2->l_lid != lid)
558 continue;
559 /*
560 * Mark this LWP as the first waiter, if there
561 * is no other.
562 */
563 if (l2->l_waiter == 0)
564 l2->l_waiter = curlid;
565 } else if (l2->l_waiter != 0) {
566 /*
567 * It already has a waiter - so don't
568 * collect it. If the waiter doesn't
569 * grab it we'll get another chance
570 * later.
571 */
572 nfound++;
573 continue;
574 }
575 nfound++;
576
577 /* No need to lock the LWP in order to see LSZOMB. */
578 if (l2->l_stat != LSZOMB)
579 continue;
580
581 /*
582 * We're no longer waiting. Reset the "first waiter"
583 * pointer on the target, in case it was us.
584 */
585 l->l_waitingfor = 0;
586 l2->l_waiter = 0;
587 p->p_nlwpwait--;
588 if (departed)
589 *departed = l2->l_lid;
590 sched_lwp_collect(l2);
591
592 /* lwp_free() releases the proc lock. */
593 lwp_free(l2, false, false);
594 mutex_enter(p->p_lock);
595 return 0;
596 }
597
598 if (error != 0)
599 break;
600 if (nfound == 0) {
601 error = ESRCH;
602 break;
603 }
604
605 /*
606 * Note: since the lock will be dropped, need to restart on
607 * wakeup to run all LWPs again, e.g. there may be new LWPs.
608 */
609 if (exiting) {
610 KASSERT(p->p_nlwps > 1);
611 cv_wait(&p->p_lwpcv, p->p_lock);
612 error = EAGAIN;
613 break;
614 }
615
616 /*
617 * If all other LWPs are waiting for exits or suspends
618 * and the supply of zombies and potential zombies is
619 * exhausted, then we are about to deadlock.
620 *
621 * If the process is exiting (and this LWP is not the one
622 * that is coordinating the exit) then bail out now.
623 */
624 if ((p->p_sflag & PS_WEXIT) != 0 ||
625 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
626 error = EDEADLK;
627 break;
628 }
629
630 /*
631 * Sit around and wait for something to happen. We'll be
632 * awoken if any of the conditions examined change: if an
633 * LWP exits, is collected, or is detached.
634 */
635 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
636 break;
637 }
638
639 /*
640 * We didn't find any LWPs to collect, we may have received a
641 * signal, or some other condition has caused us to bail out.
642 *
643 * If waiting on a specific LWP, clear the waiters marker: some
644 * other LWP may want it. Then, kick all the remaining waiters
645 * so that they can re-check for zombies and for deadlock.
646 */
647 if (lid != 0) {
648 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
649 if (l2->l_lid == lid) {
650 if (l2->l_waiter == curlid)
651 l2->l_waiter = 0;
652 break;
653 }
654 }
655 }
656 p->p_nlwpwait--;
657 l->l_waitingfor = 0;
658 cv_broadcast(&p->p_lwpcv);
659
660 return error;
661 }
662
663 /*
664 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
665 * The new LWP is created in state LSIDL and must be set running,
666 * suspended, or stopped by the caller.
667 */
668 int
669 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
670 void *stack, size_t stacksize, void (*func)(void *), void *arg,
671 lwp_t **rnewlwpp, int sclass)
672 {
673 struct lwp *l2, *isfree;
674 turnstile_t *ts;
675 lwpid_t lid;
676
677 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
678
679 /*
680 * First off, reap any detached LWP waiting to be collected.
681 * We can re-use its LWP structure and turnstile.
682 */
683 isfree = NULL;
684 if (p2->p_zomblwp != NULL) {
685 mutex_enter(p2->p_lock);
686 if ((isfree = p2->p_zomblwp) != NULL) {
687 p2->p_zomblwp = NULL;
688 lwp_free(isfree, true, false);/* releases proc mutex */
689 } else
690 mutex_exit(p2->p_lock);
691 }
692 if (isfree == NULL) {
693 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
694 memset(l2, 0, sizeof(*l2));
695 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
696 SLIST_INIT(&l2->l_pi_lenders);
697 } else {
698 l2 = isfree;
699 ts = l2->l_ts;
700 KASSERT(l2->l_inheritedprio == -1);
701 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
702 memset(l2, 0, sizeof(*l2));
703 l2->l_ts = ts;
704 }
705
706 l2->l_stat = LSIDL;
707 l2->l_proc = p2;
708 l2->l_refcnt = 1;
709 l2->l_class = sclass;
710
711 /*
712 * If vfork(), we want the LWP to run fast and on the same CPU
713 * as its parent, so that it can reuse the VM context and cache
714 * footprint on the local CPU.
715 */
716 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
717 l2->l_kpribase = PRI_KERNEL;
718 l2->l_priority = l1->l_priority;
719 l2->l_inheritedprio = -1;
720 l2->l_flag = 0;
721 l2->l_pflag = LP_MPSAFE;
722 TAILQ_INIT(&l2->l_ld_locks);
723
724 /*
725 * For vfork, borrow parent's lwpctl context if it exists.
726 * This also causes us to return via lwp_userret.
727 */
728 if (flags & LWP_VFORK && l1->l_lwpctl) {
729 l2->l_lwpctl = l1->l_lwpctl;
730 l2->l_flag |= LW_LWPCTL;
731 }
732
733 /*
734 * If not the first LWP in the process, grab a reference to the
735 * descriptor table.
736 */
737 l2->l_fd = p2->p_fd;
738 if (p2->p_nlwps != 0) {
739 KASSERT(l1->l_proc == p2);
740 fd_hold(l2);
741 } else {
742 KASSERT(l1->l_proc != p2);
743 }
744
745 if (p2->p_flag & PK_SYSTEM) {
746 /* Mark it as a system LWP. */
747 l2->l_flag |= LW_SYSTEM;
748 }
749
750 kpreempt_disable();
751 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
752 l2->l_cpu = l1->l_cpu;
753 kpreempt_enable();
754
755 kdtrace_thread_ctor(NULL, l2);
756 lwp_initspecific(l2);
757 sched_lwp_fork(l1, l2);
758 lwp_update_creds(l2);
759 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
760 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
761 cv_init(&l2->l_sigcv, "sigwait");
762 l2->l_syncobj = &sched_syncobj;
763
764 if (rnewlwpp != NULL)
765 *rnewlwpp = l2;
766
767 /*
768 * PCU state needs to be saved before calling uvm_lwp_fork() so that
769 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
770 */
771 pcu_save_all(l1);
772
773 uvm_lwp_setuarea(l2, uaddr);
774 uvm_lwp_fork(l1, l2, stack, stacksize, func,
775 (arg != NULL) ? arg : l2);
776
777 if ((flags & LWP_PIDLID) != 0) {
778 lid = proc_alloc_pid(p2);
779 l2->l_pflag |= LP_PIDLID;
780 } else {
781 lid = 0;
782 }
783
784 mutex_enter(p2->p_lock);
785
786 if ((flags & LWP_DETACHED) != 0) {
787 l2->l_prflag = LPR_DETACHED;
788 p2->p_ndlwps++;
789 } else
790 l2->l_prflag = 0;
791
792 l2->l_sigstk = l1->l_sigstk;
793 l2->l_sigmask = l1->l_sigmask;
794 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
795 sigemptyset(&l2->l_sigpend.sp_set);
796
797 if (lid == 0) {
798 p2->p_nlwpid++;
799 if (p2->p_nlwpid == 0)
800 p2->p_nlwpid++;
801 lid = p2->p_nlwpid;
802 }
803 l2->l_lid = lid;
804 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
805 p2->p_nlwps++;
806 p2->p_nrlwps++;
807
808 KASSERT(l2->l_affinity == NULL);
809
810 if ((p2->p_flag & PK_SYSTEM) == 0) {
811 /* Inherit the affinity mask. */
812 if (l1->l_affinity) {
813 /*
814 * Note that we hold the state lock while inheriting
815 * the affinity to avoid race with sched_setaffinity().
816 */
817 lwp_lock(l1);
818 if (l1->l_affinity) {
819 kcpuset_use(l1->l_affinity);
820 l2->l_affinity = l1->l_affinity;
821 }
822 lwp_unlock(l1);
823 }
824 lwp_lock(l2);
825 /* Inherit a processor-set */
826 l2->l_psid = l1->l_psid;
827 /* Look for a CPU to start */
828 l2->l_cpu = sched_takecpu(l2);
829 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
830 }
831 mutex_exit(p2->p_lock);
832
833 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
834
835 mutex_enter(proc_lock);
836 LIST_INSERT_HEAD(&alllwp, l2, l_list);
837 mutex_exit(proc_lock);
838
839 SYSCALL_TIME_LWP_INIT(l2);
840
841 if (p2->p_emul->e_lwp_fork)
842 (*p2->p_emul->e_lwp_fork)(l1, l2);
843
844 return (0);
845 }
846
847 /*
848 * Called by MD code when a new LWP begins execution. Must be called
849 * with the previous LWP locked (so at splsched), or if there is no
850 * previous LWP, at splsched.
851 */
852 void
853 lwp_startup(struct lwp *prev, struct lwp *new)
854 {
855
856 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
857
858 KASSERT(kpreempt_disabled());
859 if (prev != NULL) {
860 /*
861 * Normalize the count of the spin-mutexes, it was
862 * increased in mi_switch(). Unmark the state of
863 * context switch - it is finished for previous LWP.
864 */
865 curcpu()->ci_mtx_count++;
866 membar_exit();
867 prev->l_ctxswtch = 0;
868 }
869 KPREEMPT_DISABLE(new);
870 spl0();
871 if (__predict_true(new->l_proc->p_vmspace))
872 pmap_activate(new);
873
874 /* Note trip through cpu_switchto(). */
875 pserialize_switchpoint();
876
877 LOCKDEBUG_BARRIER(NULL, 0);
878 KPREEMPT_ENABLE(new);
879 if ((new->l_pflag & LP_MPSAFE) == 0) {
880 KERNEL_LOCK(1, new);
881 }
882 }
883
884 /*
885 * Exit an LWP.
886 */
887 void
888 lwp_exit(struct lwp *l)
889 {
890 struct proc *p = l->l_proc;
891 struct lwp *l2;
892 bool current;
893
894 current = (l == curlwp);
895
896 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
897 KASSERT(p == curproc);
898
899 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
900
901 /*
902 * Verify that we hold no locks other than the kernel lock.
903 */
904 LOCKDEBUG_BARRIER(&kernel_lock, 0);
905
906 /*
907 * If we are the last live LWP in a process, we need to exit the
908 * entire process. We do so with an exit status of zero, because
909 * it's a "controlled" exit, and because that's what Solaris does.
910 *
911 * We are not quite a zombie yet, but for accounting purposes we
912 * must increment the count of zombies here.
913 *
914 * Note: the last LWP's specificdata will be deleted here.
915 */
916 mutex_enter(p->p_lock);
917 if (p->p_nlwps - p->p_nzlwps == 1) {
918 KASSERT(current == true);
919 /* XXXSMP kernel_lock not held */
920 exit1(l, 0);
921 /* NOTREACHED */
922 }
923 p->p_nzlwps++;
924 mutex_exit(p->p_lock);
925
926 if (p->p_emul->e_lwp_exit)
927 (*p->p_emul->e_lwp_exit)(l);
928
929 /* Drop filedesc reference. */
930 fd_free();
931
932 /* Delete the specificdata while it's still safe to sleep. */
933 lwp_finispecific(l);
934
935 /*
936 * Release our cached credentials.
937 */
938 kauth_cred_free(l->l_cred);
939 callout_destroy(&l->l_timeout_ch);
940
941 /*
942 * Remove the LWP from the global list.
943 * Free its LID from the PID namespace if needed.
944 */
945 mutex_enter(proc_lock);
946 LIST_REMOVE(l, l_list);
947 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
948 proc_free_pid(l->l_lid);
949 }
950 mutex_exit(proc_lock);
951
952 /*
953 * Get rid of all references to the LWP that others (e.g. procfs)
954 * may have, and mark the LWP as a zombie. If the LWP is detached,
955 * mark it waiting for collection in the proc structure. Note that
956 * before we can do that, we need to free any other dead, deatched
957 * LWP waiting to meet its maker.
958 */
959 mutex_enter(p->p_lock);
960 lwp_drainrefs(l);
961
962 if ((l->l_prflag & LPR_DETACHED) != 0) {
963 while ((l2 = p->p_zomblwp) != NULL) {
964 p->p_zomblwp = NULL;
965 lwp_free(l2, false, false);/* releases proc mutex */
966 mutex_enter(p->p_lock);
967 l->l_refcnt++;
968 lwp_drainrefs(l);
969 }
970 p->p_zomblwp = l;
971 }
972
973 /*
974 * If we find a pending signal for the process and we have been
975 * asked to check for signals, then we lose: arrange to have
976 * all other LWPs in the process check for signals.
977 */
978 if ((l->l_flag & LW_PENDSIG) != 0 &&
979 firstsig(&p->p_sigpend.sp_set) != 0) {
980 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
981 lwp_lock(l2);
982 l2->l_flag |= LW_PENDSIG;
983 lwp_unlock(l2);
984 }
985 }
986
987 /*
988 * Release any PCU resources before becoming a zombie.
989 */
990 pcu_discard_all(l);
991
992 lwp_lock(l);
993 l->l_stat = LSZOMB;
994 if (l->l_name != NULL) {
995 strcpy(l->l_name, "(zombie)");
996 }
997 lwp_unlock(l);
998 p->p_nrlwps--;
999 cv_broadcast(&p->p_lwpcv);
1000 if (l->l_lwpctl != NULL)
1001 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1002 mutex_exit(p->p_lock);
1003
1004 /*
1005 * We can no longer block. At this point, lwp_free() may already
1006 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1007 *
1008 * Free MD LWP resources.
1009 */
1010 cpu_lwp_free(l, 0);
1011
1012 if (current) {
1013 pmap_deactivate(l);
1014
1015 /*
1016 * Release the kernel lock, and switch away into
1017 * oblivion.
1018 */
1019 #ifdef notyet
1020 /* XXXSMP hold in lwp_userret() */
1021 KERNEL_UNLOCK_LAST(l);
1022 #else
1023 KERNEL_UNLOCK_ALL(l, NULL);
1024 #endif
1025 lwp_exit_switchaway(l);
1026 }
1027 }
1028
1029 /*
1030 * Free a dead LWP's remaining resources.
1031 *
1032 * XXXLWP limits.
1033 */
1034 void
1035 lwp_free(struct lwp *l, bool recycle, bool last)
1036 {
1037 struct proc *p = l->l_proc;
1038 struct rusage *ru;
1039 ksiginfoq_t kq;
1040
1041 KASSERT(l != curlwp);
1042 KASSERT(last || mutex_owned(p->p_lock));
1043
1044 /*
1045 * If this was not the last LWP in the process, then adjust
1046 * counters and unlock.
1047 */
1048 if (!last) {
1049 /*
1050 * Add the LWP's run time to the process' base value.
1051 * This needs to co-incide with coming off p_lwps.
1052 */
1053 bintime_add(&p->p_rtime, &l->l_rtime);
1054 p->p_pctcpu += l->l_pctcpu;
1055 ru = &p->p_stats->p_ru;
1056 ruadd(ru, &l->l_ru);
1057 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1058 ru->ru_nivcsw += l->l_nivcsw;
1059 LIST_REMOVE(l, l_sibling);
1060 p->p_nlwps--;
1061 p->p_nzlwps--;
1062 if ((l->l_prflag & LPR_DETACHED) != 0)
1063 p->p_ndlwps--;
1064
1065 /*
1066 * Have any LWPs sleeping in lwp_wait() recheck for
1067 * deadlock.
1068 */
1069 cv_broadcast(&p->p_lwpcv);
1070 mutex_exit(p->p_lock);
1071 }
1072
1073 #ifdef MULTIPROCESSOR
1074 /*
1075 * In the unlikely event that the LWP is still on the CPU,
1076 * then spin until it has switched away. We need to release
1077 * all locks to avoid deadlock against interrupt handlers on
1078 * the target CPU.
1079 */
1080 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1081 int count;
1082 (void)count; /* XXXgcc */
1083 KERNEL_UNLOCK_ALL(curlwp, &count);
1084 while ((l->l_pflag & LP_RUNNING) != 0 ||
1085 l->l_cpu->ci_curlwp == l)
1086 SPINLOCK_BACKOFF_HOOK;
1087 KERNEL_LOCK(count, curlwp);
1088 }
1089 #endif
1090
1091 /*
1092 * Destroy the LWP's remaining signal information.
1093 */
1094 ksiginfo_queue_init(&kq);
1095 sigclear(&l->l_sigpend, NULL, &kq);
1096 ksiginfo_queue_drain(&kq);
1097 cv_destroy(&l->l_sigcv);
1098
1099 /*
1100 * Free lwpctl structure and affinity.
1101 */
1102 if (l->l_lwpctl) {
1103 lwp_ctl_free(l);
1104 }
1105 if (l->l_affinity) {
1106 kcpuset_unuse(l->l_affinity, NULL);
1107 l->l_affinity = NULL;
1108 }
1109
1110 /*
1111 * Free the LWP's turnstile and the LWP structure itself unless the
1112 * caller wants to recycle them. Also, free the scheduler specific
1113 * data.
1114 *
1115 * We can't return turnstile0 to the pool (it didn't come from it),
1116 * so if it comes up just drop it quietly and move on.
1117 *
1118 * We don't recycle the VM resources at this time.
1119 */
1120
1121 if (!recycle && l->l_ts != &turnstile0)
1122 pool_cache_put(turnstile_cache, l->l_ts);
1123 if (l->l_name != NULL)
1124 kmem_free(l->l_name, MAXCOMLEN);
1125
1126 cpu_lwp_free2(l);
1127 uvm_lwp_exit(l);
1128
1129 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1130 KASSERT(l->l_inheritedprio == -1);
1131 KASSERT(l->l_blcnt == 0);
1132 kdtrace_thread_dtor(NULL, l);
1133 if (!recycle)
1134 pool_cache_put(lwp_cache, l);
1135 }
1136
1137 /*
1138 * Migrate the LWP to the another CPU. Unlocks the LWP.
1139 */
1140 void
1141 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1142 {
1143 struct schedstate_percpu *tspc;
1144 int lstat = l->l_stat;
1145
1146 KASSERT(lwp_locked(l, NULL));
1147 KASSERT(tci != NULL);
1148
1149 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1150 if ((l->l_pflag & LP_RUNNING) != 0) {
1151 lstat = LSONPROC;
1152 }
1153
1154 /*
1155 * The destination CPU could be changed while previous migration
1156 * was not finished.
1157 */
1158 if (l->l_target_cpu != NULL) {
1159 l->l_target_cpu = tci;
1160 lwp_unlock(l);
1161 return;
1162 }
1163
1164 /* Nothing to do if trying to migrate to the same CPU */
1165 if (l->l_cpu == tci) {
1166 lwp_unlock(l);
1167 return;
1168 }
1169
1170 KASSERT(l->l_target_cpu == NULL);
1171 tspc = &tci->ci_schedstate;
1172 switch (lstat) {
1173 case LSRUN:
1174 l->l_target_cpu = tci;
1175 break;
1176 case LSIDL:
1177 l->l_cpu = tci;
1178 lwp_unlock_to(l, tspc->spc_mutex);
1179 return;
1180 case LSSLEEP:
1181 l->l_cpu = tci;
1182 break;
1183 case LSSTOP:
1184 case LSSUSPENDED:
1185 l->l_cpu = tci;
1186 if (l->l_wchan == NULL) {
1187 lwp_unlock_to(l, tspc->spc_lwplock);
1188 return;
1189 }
1190 break;
1191 case LSONPROC:
1192 l->l_target_cpu = tci;
1193 spc_lock(l->l_cpu);
1194 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1195 spc_unlock(l->l_cpu);
1196 break;
1197 }
1198 lwp_unlock(l);
1199 }
1200
1201 /*
1202 * Find the LWP in the process. Arguments may be zero, in such case,
1203 * the calling process and first LWP in the list will be used.
1204 * On success - returns proc locked.
1205 */
1206 struct lwp *
1207 lwp_find2(pid_t pid, lwpid_t lid)
1208 {
1209 proc_t *p;
1210 lwp_t *l;
1211
1212 /* Find the process. */
1213 if (pid != 0) {
1214 mutex_enter(proc_lock);
1215 p = proc_find(pid);
1216 if (p == NULL) {
1217 mutex_exit(proc_lock);
1218 return NULL;
1219 }
1220 mutex_enter(p->p_lock);
1221 mutex_exit(proc_lock);
1222 } else {
1223 p = curlwp->l_proc;
1224 mutex_enter(p->p_lock);
1225 }
1226 /* Find the thread. */
1227 if (lid != 0) {
1228 l = lwp_find(p, lid);
1229 } else {
1230 l = LIST_FIRST(&p->p_lwps);
1231 }
1232 if (l == NULL) {
1233 mutex_exit(p->p_lock);
1234 }
1235 return l;
1236 }
1237
1238 /*
1239 * Look up a live LWP within the specified process, and return it locked.
1240 *
1241 * Must be called with p->p_lock held.
1242 */
1243 struct lwp *
1244 lwp_find(struct proc *p, lwpid_t id)
1245 {
1246 struct lwp *l;
1247
1248 KASSERT(mutex_owned(p->p_lock));
1249
1250 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1251 if (l->l_lid == id)
1252 break;
1253 }
1254
1255 /*
1256 * No need to lock - all of these conditions will
1257 * be visible with the process level mutex held.
1258 */
1259 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1260 l = NULL;
1261
1262 return l;
1263 }
1264
1265 /*
1266 * Update an LWP's cached credentials to mirror the process' master copy.
1267 *
1268 * This happens early in the syscall path, on user trap, and on LWP
1269 * creation. A long-running LWP can also voluntarily choose to update
1270 * it's credentials by calling this routine. This may be called from
1271 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1272 */
1273 void
1274 lwp_update_creds(struct lwp *l)
1275 {
1276 kauth_cred_t oc;
1277 struct proc *p;
1278
1279 p = l->l_proc;
1280 oc = l->l_cred;
1281
1282 mutex_enter(p->p_lock);
1283 kauth_cred_hold(p->p_cred);
1284 l->l_cred = p->p_cred;
1285 l->l_prflag &= ~LPR_CRMOD;
1286 mutex_exit(p->p_lock);
1287 if (oc != NULL)
1288 kauth_cred_free(oc);
1289 }
1290
1291 /*
1292 * Verify that an LWP is locked, and optionally verify that the lock matches
1293 * one we specify.
1294 */
1295 int
1296 lwp_locked(struct lwp *l, kmutex_t *mtx)
1297 {
1298 kmutex_t *cur = l->l_mutex;
1299
1300 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1301 }
1302
1303 /*
1304 * Lend a new mutex to an LWP. The old mutex must be held.
1305 */
1306 void
1307 lwp_setlock(struct lwp *l, kmutex_t *new)
1308 {
1309
1310 KASSERT(mutex_owned(l->l_mutex));
1311
1312 membar_exit();
1313 l->l_mutex = new;
1314 }
1315
1316 /*
1317 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1318 * must be held.
1319 */
1320 void
1321 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1322 {
1323 kmutex_t *old;
1324
1325 KASSERT(lwp_locked(l, NULL));
1326
1327 old = l->l_mutex;
1328 membar_exit();
1329 l->l_mutex = new;
1330 mutex_spin_exit(old);
1331 }
1332
1333 int
1334 lwp_trylock(struct lwp *l)
1335 {
1336 kmutex_t *old;
1337
1338 for (;;) {
1339 if (!mutex_tryenter(old = l->l_mutex))
1340 return 0;
1341 if (__predict_true(l->l_mutex == old))
1342 return 1;
1343 mutex_spin_exit(old);
1344 }
1345 }
1346
1347 void
1348 lwp_unsleep(lwp_t *l, bool cleanup)
1349 {
1350
1351 KASSERT(mutex_owned(l->l_mutex));
1352 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1353 }
1354
1355 /*
1356 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1357 * set.
1358 */
1359 void
1360 lwp_userret(struct lwp *l)
1361 {
1362 struct proc *p;
1363 int sig;
1364
1365 KASSERT(l == curlwp);
1366 KASSERT(l->l_stat == LSONPROC);
1367 p = l->l_proc;
1368
1369 #ifndef __HAVE_FAST_SOFTINTS
1370 /* Run pending soft interrupts. */
1371 if (l->l_cpu->ci_data.cpu_softints != 0)
1372 softint_overlay();
1373 #endif
1374
1375 #ifdef KERN_SA
1376 /* Generate UNBLOCKED upcall if needed */
1377 if (l->l_flag & LW_SA_BLOCKING) {
1378 sa_unblock_userret(l);
1379 /* NOTREACHED */
1380 }
1381 #endif
1382
1383 /*
1384 * It should be safe to do this read unlocked on a multiprocessor
1385 * system..
1386 *
1387 * LW_SA_UPCALL will be handled after the while() loop, so don't
1388 * consider it now.
1389 */
1390 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1391 /*
1392 * Process pending signals first, unless the process
1393 * is dumping core or exiting, where we will instead
1394 * enter the LW_WSUSPEND case below.
1395 */
1396 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1397 LW_PENDSIG) {
1398 mutex_enter(p->p_lock);
1399 while ((sig = issignal(l)) != 0)
1400 postsig(sig);
1401 mutex_exit(p->p_lock);
1402 }
1403
1404 /*
1405 * Core-dump or suspend pending.
1406 *
1407 * In case of core dump, suspend ourselves, so that the kernel
1408 * stack and therefore the userland registers saved in the
1409 * trapframe are around for coredump() to write them out.
1410 * We also need to save any PCU resources that we have so that
1411 * they accessible for coredump(). We issue a wakeup on
1412 * p->p_lwpcv so that sigexit() will write the core file out
1413 * once all other LWPs are suspended.
1414 */
1415 if ((l->l_flag & LW_WSUSPEND) != 0) {
1416 pcu_save_all(l);
1417 mutex_enter(p->p_lock);
1418 p->p_nrlwps--;
1419 cv_broadcast(&p->p_lwpcv);
1420 lwp_lock(l);
1421 l->l_stat = LSSUSPENDED;
1422 lwp_unlock(l);
1423 mutex_exit(p->p_lock);
1424 lwp_lock(l);
1425 mi_switch(l);
1426 }
1427
1428 /* Process is exiting. */
1429 if ((l->l_flag & LW_WEXIT) != 0) {
1430 lwp_exit(l);
1431 KASSERT(0);
1432 /* NOTREACHED */
1433 }
1434
1435 /* update lwpctl processor (for vfork child_return) */
1436 if (l->l_flag & LW_LWPCTL) {
1437 lwp_lock(l);
1438 KASSERT(kpreempt_disabled());
1439 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1440 l->l_lwpctl->lc_pctr++;
1441 l->l_flag &= ~LW_LWPCTL;
1442 lwp_unlock(l);
1443 }
1444 }
1445
1446 #ifdef KERN_SA
1447 /*
1448 * Timer events are handled specially. We only try once to deliver
1449 * pending timer upcalls; if if fails, we can try again on the next
1450 * loop around. If we need to re-enter lwp_userret(), MD code will
1451 * bounce us back here through the trap path after we return.
1452 */
1453 if (p->p_timerpend)
1454 timerupcall(l);
1455 if (l->l_flag & LW_SA_UPCALL)
1456 sa_upcall_userret(l);
1457 #endif /* KERN_SA */
1458 }
1459
1460 /*
1461 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1462 */
1463 void
1464 lwp_need_userret(struct lwp *l)
1465 {
1466 KASSERT(lwp_locked(l, NULL));
1467
1468 /*
1469 * Since the tests in lwp_userret() are done unlocked, make sure
1470 * that the condition will be seen before forcing the LWP to enter
1471 * kernel mode.
1472 */
1473 membar_producer();
1474 cpu_signotify(l);
1475 }
1476
1477 /*
1478 * Add one reference to an LWP. This will prevent the LWP from
1479 * exiting, thus keep the lwp structure and PCB around to inspect.
1480 */
1481 void
1482 lwp_addref(struct lwp *l)
1483 {
1484
1485 KASSERT(mutex_owned(l->l_proc->p_lock));
1486 KASSERT(l->l_stat != LSZOMB);
1487 KASSERT(l->l_refcnt != 0);
1488
1489 l->l_refcnt++;
1490 }
1491
1492 /*
1493 * Remove one reference to an LWP. If this is the last reference,
1494 * then we must finalize the LWP's death.
1495 */
1496 void
1497 lwp_delref(struct lwp *l)
1498 {
1499 struct proc *p = l->l_proc;
1500
1501 mutex_enter(p->p_lock);
1502 lwp_delref2(l);
1503 mutex_exit(p->p_lock);
1504 }
1505
1506 /*
1507 * Remove one reference to an LWP. If this is the last reference,
1508 * then we must finalize the LWP's death. The proc mutex is held
1509 * on entry.
1510 */
1511 void
1512 lwp_delref2(struct lwp *l)
1513 {
1514 struct proc *p = l->l_proc;
1515
1516 KASSERT(mutex_owned(p->p_lock));
1517 KASSERT(l->l_stat != LSZOMB);
1518 KASSERT(l->l_refcnt > 0);
1519 if (--l->l_refcnt == 0)
1520 cv_broadcast(&p->p_lwpcv);
1521 }
1522
1523 /*
1524 * Drain all references to the current LWP.
1525 */
1526 void
1527 lwp_drainrefs(struct lwp *l)
1528 {
1529 struct proc *p = l->l_proc;
1530
1531 KASSERT(mutex_owned(p->p_lock));
1532 KASSERT(l->l_refcnt != 0);
1533
1534 l->l_refcnt--;
1535 while (l->l_refcnt != 0)
1536 cv_wait(&p->p_lwpcv, p->p_lock);
1537 }
1538
1539 /*
1540 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1541 * be held.
1542 */
1543 bool
1544 lwp_alive(lwp_t *l)
1545 {
1546
1547 KASSERT(mutex_owned(l->l_proc->p_lock));
1548
1549 switch (l->l_stat) {
1550 case LSSLEEP:
1551 case LSRUN:
1552 case LSONPROC:
1553 case LSSTOP:
1554 case LSSUSPENDED:
1555 return true;
1556 default:
1557 return false;
1558 }
1559 }
1560
1561 /*
1562 * Return first live LWP in the process.
1563 */
1564 lwp_t *
1565 lwp_find_first(proc_t *p)
1566 {
1567 lwp_t *l;
1568
1569 KASSERT(mutex_owned(p->p_lock));
1570
1571 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1572 if (lwp_alive(l)) {
1573 return l;
1574 }
1575 }
1576
1577 return NULL;
1578 }
1579
1580 /*
1581 * Allocate a new lwpctl structure for a user LWP.
1582 */
1583 int
1584 lwp_ctl_alloc(vaddr_t *uaddr)
1585 {
1586 lcproc_t *lp;
1587 u_int bit, i, offset;
1588 struct uvm_object *uao;
1589 int error;
1590 lcpage_t *lcp;
1591 proc_t *p;
1592 lwp_t *l;
1593
1594 l = curlwp;
1595 p = l->l_proc;
1596
1597 /* don't allow a vforked process to create lwp ctls */
1598 if (p->p_lflag & PL_PPWAIT)
1599 return EBUSY;
1600
1601 if (l->l_lcpage != NULL) {
1602 lcp = l->l_lcpage;
1603 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1604 return 0;
1605 }
1606
1607 /* First time around, allocate header structure for the process. */
1608 if ((lp = p->p_lwpctl) == NULL) {
1609 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1610 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1611 lp->lp_uao = NULL;
1612 TAILQ_INIT(&lp->lp_pages);
1613 mutex_enter(p->p_lock);
1614 if (p->p_lwpctl == NULL) {
1615 p->p_lwpctl = lp;
1616 mutex_exit(p->p_lock);
1617 } else {
1618 mutex_exit(p->p_lock);
1619 mutex_destroy(&lp->lp_lock);
1620 kmem_free(lp, sizeof(*lp));
1621 lp = p->p_lwpctl;
1622 }
1623 }
1624
1625 /*
1626 * Set up an anonymous memory region to hold the shared pages.
1627 * Map them into the process' address space. The user vmspace
1628 * gets the first reference on the UAO.
1629 */
1630 mutex_enter(&lp->lp_lock);
1631 if (lp->lp_uao == NULL) {
1632 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1633 lp->lp_cur = 0;
1634 lp->lp_max = LWPCTL_UAREA_SZ;
1635 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1636 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1637 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1638 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1639 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1640 if (error != 0) {
1641 uao_detach(lp->lp_uao);
1642 lp->lp_uao = NULL;
1643 mutex_exit(&lp->lp_lock);
1644 return error;
1645 }
1646 }
1647
1648 /* Get a free block and allocate for this LWP. */
1649 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1650 if (lcp->lcp_nfree != 0)
1651 break;
1652 }
1653 if (lcp == NULL) {
1654 /* Nothing available - try to set up a free page. */
1655 if (lp->lp_cur == lp->lp_max) {
1656 mutex_exit(&lp->lp_lock);
1657 return ENOMEM;
1658 }
1659 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1660 if (lcp == NULL) {
1661 mutex_exit(&lp->lp_lock);
1662 return ENOMEM;
1663 }
1664 /*
1665 * Wire the next page down in kernel space. Since this
1666 * is a new mapping, we must add a reference.
1667 */
1668 uao = lp->lp_uao;
1669 (*uao->pgops->pgo_reference)(uao);
1670 lcp->lcp_kaddr = vm_map_min(kernel_map);
1671 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1672 uao, lp->lp_cur, PAGE_SIZE,
1673 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1674 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1675 if (error != 0) {
1676 mutex_exit(&lp->lp_lock);
1677 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1678 (*uao->pgops->pgo_detach)(uao);
1679 return error;
1680 }
1681 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1682 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1683 if (error != 0) {
1684 mutex_exit(&lp->lp_lock);
1685 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1686 lcp->lcp_kaddr + PAGE_SIZE);
1687 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1688 return error;
1689 }
1690 /* Prepare the page descriptor and link into the list. */
1691 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1692 lp->lp_cur += PAGE_SIZE;
1693 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1694 lcp->lcp_rotor = 0;
1695 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1696 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1697 }
1698 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1699 if (++i >= LWPCTL_BITMAP_ENTRIES)
1700 i = 0;
1701 }
1702 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1703 lcp->lcp_bitmap[i] ^= (1 << bit);
1704 lcp->lcp_rotor = i;
1705 lcp->lcp_nfree--;
1706 l->l_lcpage = lcp;
1707 offset = (i << 5) + bit;
1708 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1709 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1710 mutex_exit(&lp->lp_lock);
1711
1712 KPREEMPT_DISABLE(l);
1713 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1714 KPREEMPT_ENABLE(l);
1715
1716 return 0;
1717 }
1718
1719 /*
1720 * Free an lwpctl structure back to the per-process list.
1721 */
1722 void
1723 lwp_ctl_free(lwp_t *l)
1724 {
1725 struct proc *p = l->l_proc;
1726 lcproc_t *lp;
1727 lcpage_t *lcp;
1728 u_int map, offset;
1729
1730 /* don't free a lwp context we borrowed for vfork */
1731 if (p->p_lflag & PL_PPWAIT) {
1732 l->l_lwpctl = NULL;
1733 return;
1734 }
1735
1736 lp = p->p_lwpctl;
1737 KASSERT(lp != NULL);
1738
1739 lcp = l->l_lcpage;
1740 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1741 KASSERT(offset < LWPCTL_PER_PAGE);
1742
1743 mutex_enter(&lp->lp_lock);
1744 lcp->lcp_nfree++;
1745 map = offset >> 5;
1746 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1747 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1748 lcp->lcp_rotor = map;
1749 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1750 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1751 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1752 }
1753 mutex_exit(&lp->lp_lock);
1754 }
1755
1756 /*
1757 * Process is exiting; tear down lwpctl state. This can only be safely
1758 * called by the last LWP in the process.
1759 */
1760 void
1761 lwp_ctl_exit(void)
1762 {
1763 lcpage_t *lcp, *next;
1764 lcproc_t *lp;
1765 proc_t *p;
1766 lwp_t *l;
1767
1768 l = curlwp;
1769 l->l_lwpctl = NULL;
1770 l->l_lcpage = NULL;
1771 p = l->l_proc;
1772 lp = p->p_lwpctl;
1773
1774 KASSERT(lp != NULL);
1775 KASSERT(p->p_nlwps == 1);
1776
1777 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1778 next = TAILQ_NEXT(lcp, lcp_chain);
1779 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1780 lcp->lcp_kaddr + PAGE_SIZE);
1781 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1782 }
1783
1784 if (lp->lp_uao != NULL) {
1785 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1786 lp->lp_uva + LWPCTL_UAREA_SZ);
1787 }
1788
1789 mutex_destroy(&lp->lp_lock);
1790 kmem_free(lp, sizeof(*lp));
1791 p->p_lwpctl = NULL;
1792 }
1793
1794 /*
1795 * Return the current LWP's "preemption counter". Used to detect
1796 * preemption across operations that can tolerate preemption without
1797 * crashing, but which may generate incorrect results if preempted.
1798 */
1799 uint64_t
1800 lwp_pctr(void)
1801 {
1802
1803 return curlwp->l_ncsw;
1804 }
1805
1806 /*
1807 * Set an LWP's private data pointer.
1808 */
1809 int
1810 lwp_setprivate(struct lwp *l, void *ptr)
1811 {
1812 int error = 0;
1813
1814 l->l_private = ptr;
1815 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1816 error = cpu_lwp_setprivate(l, ptr);
1817 #endif
1818 return error;
1819 }
1820
1821 #if defined(DDB)
1822 #include <machine/pcb.h>
1823
1824 void
1825 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1826 {
1827 lwp_t *l;
1828
1829 LIST_FOREACH(l, &alllwp, l_list) {
1830 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1831
1832 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1833 continue;
1834 }
1835 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1836 (void *)addr, (void *)stack,
1837 (size_t)(addr - stack), l);
1838 }
1839 }
1840 #endif /* defined(DDB) */
1841