Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.166.2.1
      1 /*	$NetBSD: kern_lwp.c,v 1.166.2.1 2012/10/01 23:07:08 riz Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.
     64  *
     65  *	LSIDL
     66  *
     67  *		Idle: the LWP has been created but has not yet executed,
     68  *		or it has ceased executing a unit of work and is waiting
     69  *		to be started again.
     70  *
     71  *	LSSUSPENDED:
     72  *
     73  *		Suspended: the LWP has had its execution suspended by
     74  *		another LWP in the same process using the _lwp_suspend()
     75  *		system call.  User-level LWPs also enter the suspended
     76  *		state when the system is shutting down.
     77  *
     78  *	The second set represent a "statement of intent" on behalf of the
     79  *	LWP.  The LWP may in fact be executing on a processor, may be
     80  *	sleeping or idle. It is expected to take the necessary action to
     81  *	stop executing or become "running" again within a short timeframe.
     82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83  *	Importantly, it indicates that its state is tied to a CPU.
     84  *
     85  *	LSZOMB:
     86  *
     87  *		Dead or dying: the LWP has released most of its resources
     88  *		and is about to switch away into oblivion, or has already
     89  *		switched away.  When it switches away, its few remaining
     90  *		resources can be collected.
     91  *
     92  *	LSSLEEP:
     93  *
     94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95  *		has switched away or will switch away shortly to allow other
     96  *		LWPs to run on the CPU.
     97  *
     98  *	LSSTOP:
     99  *
    100  *		Stopped: the LWP has been stopped as a result of a job
    101  *		control signal, or as a result of the ptrace() interface.
    102  *
    103  *		Stopped LWPs may run briefly within the kernel to handle
    104  *		signals that they receive, but will not return to user space
    105  *		until their process' state is changed away from stopped.
    106  *
    107  *		Single LWPs within a process can not be set stopped
    108  *		selectively: all actions that can stop or continue LWPs
    109  *		occur at the process level.
    110  *
    111  * State transitions
    112  *
    113  *	Note that the LSSTOP state may only be set when returning to
    114  *	user space in userret(), or when sleeping interruptably.  The
    115  *	LSSUSPENDED state may only be set in userret().  Before setting
    116  *	those states, we try to ensure that the LWPs will release all
    117  *	locks that they hold, and at a minimum try to ensure that the
    118  *	LWP can be set runnable again by a signal.
    119  *
    120  *	LWPs may transition states in the following ways:
    121  *
    122  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123  *		    				    > SLEEP
    124  *		    				    > STOPPED
    125  *						    > SUSPENDED
    126  *						    > ZOMB
    127  *						    > IDL (special cases)
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *						    > ONPROC (special cases)
    136  *
    137  *	Some state transitions are only possible with kernel threads (eg
    138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139  *	free of unwanted side effects.
    140  *
    141  * Migration
    142  *
    143  *	Migration of threads from one CPU to another could be performed
    144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  *	functions.  The universal lwp_migrate() function should be used for
    146  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  *	of LWP may change, while it is not locked.
    148  *
    149  * Locking
    150  *
    151  *	The majority of fields in 'struct lwp' are covered by a single,
    152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153  *	each field are documented in sys/lwp.h.
    154  *
    155  *	State transitions must be made with the LWP's general lock held,
    156  *	and may cause the LWP's lock pointer to change.  Manipulation of
    157  *	the general lock is not performed directly, but through calls to
    158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    159  *	adaptive locks are not allowed to be released while the LWP's lock
    160  *	is being held (unlike for other spin-locks).
    161  *
    162  *	States and their associated locks:
    163  *
    164  *	LSONPROC, LSZOMB:
    165  *
    166  *		Always covered by spc_lwplock, which protects running LWPs.
    167  *		This is a per-CPU lock and matches lwp::l_cpu.
    168  *
    169  *	LSIDL, LSRUN:
    170  *
    171  *		Always covered by spc_mutex, which protects the run queues.
    172  *		This is a per-CPU lock and matches lwp::l_cpu.
    173  *
    174  *	LSSLEEP:
    175  *
    176  *		Covered by a lock associated with the sleep queue that the
    177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    178  *
    179  *	LSSTOP, LSSUSPENDED:
    180  *
    181  *		If the LWP was previously sleeping (l_wchan != NULL), then
    182  *		l_mutex references the sleep queue lock.  If the LWP was
    183  *		runnable or on the CPU when halted, or has been removed from
    184  *		the sleep queue since halted, then the lock is spc_lwplock.
    185  *
    186  *	The lock order is as follows:
    187  *
    188  *		spc::spc_lwplock ->
    189  *		    sleeptab::st_mutex ->
    190  *			tschain_t::tc_mutex ->
    191  *			    spc::spc_mutex
    192  *
    193  *	Each process has an scheduler state lock (proc::p_lock), and a
    194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195  *	so on.  When an LWP is to be entered into or removed from one of the
    196  *	following states, p_lock must be held and the process wide counters
    197  *	adjusted:
    198  *
    199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200  *
    201  *	(But not always for kernel threads.  There are some special cases
    202  *	as mentioned above.  See kern_softint.c.)
    203  *
    204  *	Note that an LWP is considered running or likely to run soon if in
    205  *	one of the following states.  This affects the value of p_nrlwps:
    206  *
    207  *		LSRUN, LSONPROC, LSSLEEP
    208  *
    209  *	p_lock does not need to be held when transitioning among these
    210  *	three states, hence p_lock is rarely taken for state transitions.
    211  */
    212 
    213 #include <sys/cdefs.h>
    214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.166.2.1 2012/10/01 23:07:08 riz Exp $");
    215 
    216 #include "opt_ddb.h"
    217 #include "opt_lockdebug.h"
    218 #include "opt_sa.h"
    219 #include "opt_dtrace.h"
    220 
    221 #define _LWP_API_PRIVATE
    222 
    223 #include <sys/param.h>
    224 #include <sys/systm.h>
    225 #include <sys/cpu.h>
    226 #include <sys/pool.h>
    227 #include <sys/proc.h>
    228 #include <sys/sa.h>
    229 #include <sys/savar.h>
    230 #include <sys/syscallargs.h>
    231 #include <sys/syscall_stats.h>
    232 #include <sys/kauth.h>
    233 #include <sys/pserialize.h>
    234 #include <sys/sleepq.h>
    235 #include <sys/lockdebug.h>
    236 #include <sys/kmem.h>
    237 #include <sys/pset.h>
    238 #include <sys/intr.h>
    239 #include <sys/lwpctl.h>
    240 #include <sys/atomic.h>
    241 #include <sys/filedesc.h>
    242 #include <sys/dtrace_bsd.h>
    243 #include <sys/sdt.h>
    244 #include <sys/xcall.h>
    245 
    246 #include <uvm/uvm_extern.h>
    247 #include <uvm/uvm_object.h>
    248 
    249 static pool_cache_t	lwp_cache	__read_mostly;
    250 struct lwplist		alllwp		__cacheline_aligned;
    251 
    252 static void		lwp_dtor(void *, void *);
    253 
    254 /* DTrace proc provider probes */
    255 SDT_PROBE_DEFINE(proc,,,lwp_create,
    256 	"struct lwp *", NULL,
    257 	NULL, NULL, NULL, NULL,
    258 	NULL, NULL, NULL, NULL);
    259 SDT_PROBE_DEFINE(proc,,,lwp_start,
    260 	"struct lwp *", NULL,
    261 	NULL, NULL, NULL, NULL,
    262 	NULL, NULL, NULL, NULL);
    263 SDT_PROBE_DEFINE(proc,,,lwp_exit,
    264 	"struct lwp *", NULL,
    265 	NULL, NULL, NULL, NULL,
    266 	NULL, NULL, NULL, NULL);
    267 
    268 struct turnstile turnstile0;
    269 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    270 #ifdef LWP0_CPU_INFO
    271 	.l_cpu = LWP0_CPU_INFO,
    272 #endif
    273 #ifdef LWP0_MD_INITIALIZER
    274 	.l_md = LWP0_MD_INITIALIZER,
    275 #endif
    276 	.l_proc = &proc0,
    277 	.l_lid = 1,
    278 	.l_flag = LW_SYSTEM,
    279 	.l_stat = LSONPROC,
    280 	.l_ts = &turnstile0,
    281 	.l_syncobj = &sched_syncobj,
    282 	.l_refcnt = 1,
    283 	.l_priority = PRI_USER + NPRI_USER - 1,
    284 	.l_inheritedprio = -1,
    285 	.l_class = SCHED_OTHER,
    286 	.l_psid = PS_NONE,
    287 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    288 	.l_name = __UNCONST("swapper"),
    289 	.l_fd = &filedesc0,
    290 };
    291 
    292 void
    293 lwpinit(void)
    294 {
    295 
    296 	LIST_INIT(&alllwp);
    297 	lwpinit_specificdata();
    298 	lwp_sys_init();
    299 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    300 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
    301 }
    302 
    303 void
    304 lwp0_init(void)
    305 {
    306 	struct lwp *l = &lwp0;
    307 
    308 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    309 	KASSERT(l->l_lid == proc0.p_nlwpid);
    310 
    311 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    312 
    313 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    314 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    315 	cv_init(&l->l_sigcv, "sigwait");
    316 
    317 	kauth_cred_hold(proc0.p_cred);
    318 	l->l_cred = proc0.p_cred;
    319 
    320 	kdtrace_thread_ctor(NULL, l);
    321 	lwp_initspecific(l);
    322 
    323 	SYSCALL_TIME_LWP_INIT(l);
    324 }
    325 
    326 static void
    327 lwp_dtor(void *arg, void *obj)
    328 {
    329 	lwp_t *l = obj;
    330 	uint64_t where;
    331 	(void)l;
    332 
    333 	/*
    334 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    335 	 * calls will exit before memory of LWP is returned to the pool, where
    336 	 * KVA of LWP structure might be freed and re-used for other purposes.
    337 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    338 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
    339 	 * the value of l->l_cpu must be still valid at this point.
    340 	 */
    341 	KASSERT(l->l_cpu != NULL);
    342 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    343 	xc_wait(where);
    344 }
    345 
    346 /*
    347  * Set an suspended.
    348  *
    349  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    350  * LWP before return.
    351  */
    352 int
    353 lwp_suspend(struct lwp *curl, struct lwp *t)
    354 {
    355 	int error;
    356 
    357 	KASSERT(mutex_owned(t->l_proc->p_lock));
    358 	KASSERT(lwp_locked(t, NULL));
    359 
    360 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    361 
    362 	/*
    363 	 * If the current LWP has been told to exit, we must not suspend anyone
    364 	 * else or deadlock could occur.  We won't return to userspace.
    365 	 */
    366 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    367 		lwp_unlock(t);
    368 		return (EDEADLK);
    369 	}
    370 
    371 	error = 0;
    372 
    373 	switch (t->l_stat) {
    374 	case LSRUN:
    375 	case LSONPROC:
    376 		t->l_flag |= LW_WSUSPEND;
    377 		lwp_need_userret(t);
    378 		lwp_unlock(t);
    379 		break;
    380 
    381 	case LSSLEEP:
    382 		t->l_flag |= LW_WSUSPEND;
    383 
    384 		/*
    385 		 * Kick the LWP and try to get it to the kernel boundary
    386 		 * so that it will release any locks that it holds.
    387 		 * setrunnable() will release the lock.
    388 		 */
    389 		if ((t->l_flag & LW_SINTR) != 0)
    390 			setrunnable(t);
    391 		else
    392 			lwp_unlock(t);
    393 		break;
    394 
    395 	case LSSUSPENDED:
    396 		lwp_unlock(t);
    397 		break;
    398 
    399 	case LSSTOP:
    400 		t->l_flag |= LW_WSUSPEND;
    401 		setrunnable(t);
    402 		break;
    403 
    404 	case LSIDL:
    405 	case LSZOMB:
    406 		error = EINTR; /* It's what Solaris does..... */
    407 		lwp_unlock(t);
    408 		break;
    409 	}
    410 
    411 	return (error);
    412 }
    413 
    414 /*
    415  * Restart a suspended LWP.
    416  *
    417  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    418  * LWP before return.
    419  */
    420 void
    421 lwp_continue(struct lwp *l)
    422 {
    423 
    424 	KASSERT(mutex_owned(l->l_proc->p_lock));
    425 	KASSERT(lwp_locked(l, NULL));
    426 
    427 	/* If rebooting or not suspended, then just bail out. */
    428 	if ((l->l_flag & LW_WREBOOT) != 0) {
    429 		lwp_unlock(l);
    430 		return;
    431 	}
    432 
    433 	l->l_flag &= ~LW_WSUSPEND;
    434 
    435 	if (l->l_stat != LSSUSPENDED) {
    436 		lwp_unlock(l);
    437 		return;
    438 	}
    439 
    440 	/* setrunnable() will release the lock. */
    441 	setrunnable(l);
    442 }
    443 
    444 /*
    445  * Restart a stopped LWP.
    446  *
    447  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    448  * LWP before return.
    449  */
    450 void
    451 lwp_unstop(struct lwp *l)
    452 {
    453 	struct proc *p = l->l_proc;
    454 
    455 	KASSERT(mutex_owned(proc_lock));
    456 	KASSERT(mutex_owned(p->p_lock));
    457 
    458 	lwp_lock(l);
    459 
    460 	/* If not stopped, then just bail out. */
    461 	if (l->l_stat != LSSTOP) {
    462 		lwp_unlock(l);
    463 		return;
    464 	}
    465 
    466 	p->p_stat = SACTIVE;
    467 	p->p_sflag &= ~PS_STOPPING;
    468 
    469 	if (!p->p_waited)
    470 		p->p_pptr->p_nstopchild--;
    471 
    472 	if (l->l_wchan == NULL) {
    473 		/* setrunnable() will release the lock. */
    474 		setrunnable(l);
    475 	} else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
    476 		/* setrunnable() so we can receive the signal */
    477 		setrunnable(l);
    478 	} else {
    479 		l->l_stat = LSSLEEP;
    480 		p->p_nrlwps++;
    481 		lwp_unlock(l);
    482 	}
    483 }
    484 
    485 /*
    486  * Wait for an LWP within the current process to exit.  If 'lid' is
    487  * non-zero, we are waiting for a specific LWP.
    488  *
    489  * Must be called with p->p_lock held.
    490  */
    491 int
    492 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
    493 {
    494 	const lwpid_t curlid = l->l_lid;
    495 	proc_t *p = l->l_proc;
    496 	lwp_t *l2;
    497 	int error;
    498 
    499 	KASSERT(mutex_owned(p->p_lock));
    500 
    501 	p->p_nlwpwait++;
    502 	l->l_waitingfor = lid;
    503 
    504 	for (;;) {
    505 		int nfound;
    506 
    507 		/*
    508 		 * Avoid a race between exit1() and sigexit(): if the
    509 		 * process is dumping core, then we need to bail out: call
    510 		 * into lwp_userret() where we will be suspended until the
    511 		 * deed is done.
    512 		 */
    513 		if ((p->p_sflag & PS_WCORE) != 0) {
    514 			mutex_exit(p->p_lock);
    515 			lwp_userret(l);
    516 			KASSERT(false);
    517 		}
    518 
    519 		/*
    520 		 * First off, drain any detached LWP that is waiting to be
    521 		 * reaped.
    522 		 */
    523 		while ((l2 = p->p_zomblwp) != NULL) {
    524 			p->p_zomblwp = NULL;
    525 			lwp_free(l2, false, false);/* releases proc mutex */
    526 			mutex_enter(p->p_lock);
    527 		}
    528 
    529 		/*
    530 		 * Now look for an LWP to collect.  If the whole process is
    531 		 * exiting, count detached LWPs as eligible to be collected,
    532 		 * but don't drain them here.
    533 		 */
    534 		nfound = 0;
    535 		error = 0;
    536 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    537 			/*
    538 			 * If a specific wait and the target is waiting on
    539 			 * us, then avoid deadlock.  This also traps LWPs
    540 			 * that try to wait on themselves.
    541 			 *
    542 			 * Note that this does not handle more complicated
    543 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    544 			 * can still be killed so it is not a major problem.
    545 			 */
    546 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    547 				error = EDEADLK;
    548 				break;
    549 			}
    550 			if (l2 == l)
    551 				continue;
    552 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    553 				nfound += exiting;
    554 				continue;
    555 			}
    556 			if (lid != 0) {
    557 				if (l2->l_lid != lid)
    558 					continue;
    559 				/*
    560 				 * Mark this LWP as the first waiter, if there
    561 				 * is no other.
    562 				 */
    563 				if (l2->l_waiter == 0)
    564 					l2->l_waiter = curlid;
    565 			} else if (l2->l_waiter != 0) {
    566 				/*
    567 				 * It already has a waiter - so don't
    568 				 * collect it.  If the waiter doesn't
    569 				 * grab it we'll get another chance
    570 				 * later.
    571 				 */
    572 				nfound++;
    573 				continue;
    574 			}
    575 			nfound++;
    576 
    577 			/* No need to lock the LWP in order to see LSZOMB. */
    578 			if (l2->l_stat != LSZOMB)
    579 				continue;
    580 
    581 			/*
    582 			 * We're no longer waiting.  Reset the "first waiter"
    583 			 * pointer on the target, in case it was us.
    584 			 */
    585 			l->l_waitingfor = 0;
    586 			l2->l_waiter = 0;
    587 			p->p_nlwpwait--;
    588 			if (departed)
    589 				*departed = l2->l_lid;
    590 			sched_lwp_collect(l2);
    591 
    592 			/* lwp_free() releases the proc lock. */
    593 			lwp_free(l2, false, false);
    594 			mutex_enter(p->p_lock);
    595 			return 0;
    596 		}
    597 
    598 		if (error != 0)
    599 			break;
    600 		if (nfound == 0) {
    601 			error = ESRCH;
    602 			break;
    603 		}
    604 
    605 		/*
    606 		 * Note: since the lock will be dropped, need to restart on
    607 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
    608 		 */
    609 		if (exiting) {
    610 			KASSERT(p->p_nlwps > 1);
    611 			cv_wait(&p->p_lwpcv, p->p_lock);
    612 			error = EAGAIN;
    613 			break;
    614 		}
    615 
    616 		/*
    617 		 * If all other LWPs are waiting for exits or suspends
    618 		 * and the supply of zombies and potential zombies is
    619 		 * exhausted, then we are about to deadlock.
    620 		 *
    621 		 * If the process is exiting (and this LWP is not the one
    622 		 * that is coordinating the exit) then bail out now.
    623 		 */
    624 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    625 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    626 			error = EDEADLK;
    627 			break;
    628 		}
    629 
    630 		/*
    631 		 * Sit around and wait for something to happen.  We'll be
    632 		 * awoken if any of the conditions examined change: if an
    633 		 * LWP exits, is collected, or is detached.
    634 		 */
    635 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    636 			break;
    637 	}
    638 
    639 	/*
    640 	 * We didn't find any LWPs to collect, we may have received a
    641 	 * signal, or some other condition has caused us to bail out.
    642 	 *
    643 	 * If waiting on a specific LWP, clear the waiters marker: some
    644 	 * other LWP may want it.  Then, kick all the remaining waiters
    645 	 * so that they can re-check for zombies and for deadlock.
    646 	 */
    647 	if (lid != 0) {
    648 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    649 			if (l2->l_lid == lid) {
    650 				if (l2->l_waiter == curlid)
    651 					l2->l_waiter = 0;
    652 				break;
    653 			}
    654 		}
    655 	}
    656 	p->p_nlwpwait--;
    657 	l->l_waitingfor = 0;
    658 	cv_broadcast(&p->p_lwpcv);
    659 
    660 	return error;
    661 }
    662 
    663 /*
    664  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    665  * The new LWP is created in state LSIDL and must be set running,
    666  * suspended, or stopped by the caller.
    667  */
    668 int
    669 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    670 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    671 	   lwp_t **rnewlwpp, int sclass)
    672 {
    673 	struct lwp *l2, *isfree;
    674 	turnstile_t *ts;
    675 	lwpid_t lid;
    676 
    677 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    678 
    679 	/*
    680 	 * First off, reap any detached LWP waiting to be collected.
    681 	 * We can re-use its LWP structure and turnstile.
    682 	 */
    683 	isfree = NULL;
    684 	if (p2->p_zomblwp != NULL) {
    685 		mutex_enter(p2->p_lock);
    686 		if ((isfree = p2->p_zomblwp) != NULL) {
    687 			p2->p_zomblwp = NULL;
    688 			lwp_free(isfree, true, false);/* releases proc mutex */
    689 		} else
    690 			mutex_exit(p2->p_lock);
    691 	}
    692 	if (isfree == NULL) {
    693 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    694 		memset(l2, 0, sizeof(*l2));
    695 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    696 		SLIST_INIT(&l2->l_pi_lenders);
    697 	} else {
    698 		l2 = isfree;
    699 		ts = l2->l_ts;
    700 		KASSERT(l2->l_inheritedprio == -1);
    701 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    702 		memset(l2, 0, sizeof(*l2));
    703 		l2->l_ts = ts;
    704 	}
    705 
    706 	l2->l_stat = LSIDL;
    707 	l2->l_proc = p2;
    708 	l2->l_refcnt = 1;
    709 	l2->l_class = sclass;
    710 
    711 	/*
    712 	 * If vfork(), we want the LWP to run fast and on the same CPU
    713 	 * as its parent, so that it can reuse the VM context and cache
    714 	 * footprint on the local CPU.
    715 	 */
    716 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    717 	l2->l_kpribase = PRI_KERNEL;
    718 	l2->l_priority = l1->l_priority;
    719 	l2->l_inheritedprio = -1;
    720 	l2->l_flag = 0;
    721 	l2->l_pflag = LP_MPSAFE;
    722 	TAILQ_INIT(&l2->l_ld_locks);
    723 
    724 	/*
    725 	 * For vfork, borrow parent's lwpctl context if it exists.
    726 	 * This also causes us to return via lwp_userret.
    727 	 */
    728 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    729 		l2->l_lwpctl = l1->l_lwpctl;
    730 		l2->l_flag |= LW_LWPCTL;
    731 	}
    732 
    733 	/*
    734 	 * If not the first LWP in the process, grab a reference to the
    735 	 * descriptor table.
    736 	 */
    737 	l2->l_fd = p2->p_fd;
    738 	if (p2->p_nlwps != 0) {
    739 		KASSERT(l1->l_proc == p2);
    740 		fd_hold(l2);
    741 	} else {
    742 		KASSERT(l1->l_proc != p2);
    743 	}
    744 
    745 	if (p2->p_flag & PK_SYSTEM) {
    746 		/* Mark it as a system LWP. */
    747 		l2->l_flag |= LW_SYSTEM;
    748 	}
    749 
    750 	kpreempt_disable();
    751 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    752 	l2->l_cpu = l1->l_cpu;
    753 	kpreempt_enable();
    754 
    755 	kdtrace_thread_ctor(NULL, l2);
    756 	lwp_initspecific(l2);
    757 	sched_lwp_fork(l1, l2);
    758 	lwp_update_creds(l2);
    759 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    760 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    761 	cv_init(&l2->l_sigcv, "sigwait");
    762 	l2->l_syncobj = &sched_syncobj;
    763 
    764 	if (rnewlwpp != NULL)
    765 		*rnewlwpp = l2;
    766 
    767 	/*
    768 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    769 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    770 	 */
    771 	pcu_save_all(l1);
    772 
    773 	uvm_lwp_setuarea(l2, uaddr);
    774 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    775 	    (arg != NULL) ? arg : l2);
    776 
    777 	if ((flags & LWP_PIDLID) != 0) {
    778 		lid = proc_alloc_pid(p2);
    779 		l2->l_pflag |= LP_PIDLID;
    780 	} else {
    781 		lid = 0;
    782 	}
    783 
    784 	mutex_enter(p2->p_lock);
    785 
    786 	if ((flags & LWP_DETACHED) != 0) {
    787 		l2->l_prflag = LPR_DETACHED;
    788 		p2->p_ndlwps++;
    789 	} else
    790 		l2->l_prflag = 0;
    791 
    792 	l2->l_sigstk = l1->l_sigstk;
    793 	l2->l_sigmask = l1->l_sigmask;
    794 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    795 	sigemptyset(&l2->l_sigpend.sp_set);
    796 
    797 	if (lid == 0) {
    798 		p2->p_nlwpid++;
    799 		if (p2->p_nlwpid == 0)
    800 			p2->p_nlwpid++;
    801 		lid = p2->p_nlwpid;
    802 	}
    803 	l2->l_lid = lid;
    804 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    805 	p2->p_nlwps++;
    806 	p2->p_nrlwps++;
    807 
    808 	KASSERT(l2->l_affinity == NULL);
    809 
    810 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    811 		/* Inherit the affinity mask. */
    812 		if (l1->l_affinity) {
    813 			/*
    814 			 * Note that we hold the state lock while inheriting
    815 			 * the affinity to avoid race with sched_setaffinity().
    816 			 */
    817 			lwp_lock(l1);
    818 			if (l1->l_affinity) {
    819 				kcpuset_use(l1->l_affinity);
    820 				l2->l_affinity = l1->l_affinity;
    821 			}
    822 			lwp_unlock(l1);
    823 		}
    824 		lwp_lock(l2);
    825 		/* Inherit a processor-set */
    826 		l2->l_psid = l1->l_psid;
    827 		/* Look for a CPU to start */
    828 		l2->l_cpu = sched_takecpu(l2);
    829 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    830 	}
    831 	mutex_exit(p2->p_lock);
    832 
    833 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
    834 
    835 	mutex_enter(proc_lock);
    836 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    837 	mutex_exit(proc_lock);
    838 
    839 	SYSCALL_TIME_LWP_INIT(l2);
    840 
    841 	if (p2->p_emul->e_lwp_fork)
    842 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    843 
    844 	return (0);
    845 }
    846 
    847 /*
    848  * Called by MD code when a new LWP begins execution.  Must be called
    849  * with the previous LWP locked (so at splsched), or if there is no
    850  * previous LWP, at splsched.
    851  */
    852 void
    853 lwp_startup(struct lwp *prev, struct lwp *new)
    854 {
    855 
    856 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
    857 
    858 	KASSERT(kpreempt_disabled());
    859 	if (prev != NULL) {
    860 		/*
    861 		 * Normalize the count of the spin-mutexes, it was
    862 		 * increased in mi_switch().  Unmark the state of
    863 		 * context switch - it is finished for previous LWP.
    864 		 */
    865 		curcpu()->ci_mtx_count++;
    866 		membar_exit();
    867 		prev->l_ctxswtch = 0;
    868 	}
    869 	KPREEMPT_DISABLE(new);
    870 	spl0();
    871 	if (__predict_true(new->l_proc->p_vmspace))
    872 		pmap_activate(new);
    873 
    874 	/* Note trip through cpu_switchto(). */
    875 	pserialize_switchpoint();
    876 
    877 	LOCKDEBUG_BARRIER(NULL, 0);
    878 	KPREEMPT_ENABLE(new);
    879 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    880 		KERNEL_LOCK(1, new);
    881 	}
    882 }
    883 
    884 /*
    885  * Exit an LWP.
    886  */
    887 void
    888 lwp_exit(struct lwp *l)
    889 {
    890 	struct proc *p = l->l_proc;
    891 	struct lwp *l2;
    892 	bool current;
    893 
    894 	current = (l == curlwp);
    895 
    896 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    897 	KASSERT(p == curproc);
    898 
    899 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
    900 
    901 	/*
    902 	 * Verify that we hold no locks other than the kernel lock.
    903 	 */
    904 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    905 
    906 	/*
    907 	 * If we are the last live LWP in a process, we need to exit the
    908 	 * entire process.  We do so with an exit status of zero, because
    909 	 * it's a "controlled" exit, and because that's what Solaris does.
    910 	 *
    911 	 * We are not quite a zombie yet, but for accounting purposes we
    912 	 * must increment the count of zombies here.
    913 	 *
    914 	 * Note: the last LWP's specificdata will be deleted here.
    915 	 */
    916 	mutex_enter(p->p_lock);
    917 	if (p->p_nlwps - p->p_nzlwps == 1) {
    918 		KASSERT(current == true);
    919 		/* XXXSMP kernel_lock not held */
    920 		exit1(l, 0);
    921 		/* NOTREACHED */
    922 	}
    923 	p->p_nzlwps++;
    924 	mutex_exit(p->p_lock);
    925 
    926 	if (p->p_emul->e_lwp_exit)
    927 		(*p->p_emul->e_lwp_exit)(l);
    928 
    929 	/* Drop filedesc reference. */
    930 	fd_free();
    931 
    932 	/* Delete the specificdata while it's still safe to sleep. */
    933 	lwp_finispecific(l);
    934 
    935 	/*
    936 	 * Release our cached credentials.
    937 	 */
    938 	kauth_cred_free(l->l_cred);
    939 	callout_destroy(&l->l_timeout_ch);
    940 
    941 	/*
    942 	 * Remove the LWP from the global list.
    943 	 * Free its LID from the PID namespace if needed.
    944 	 */
    945 	mutex_enter(proc_lock);
    946 	LIST_REMOVE(l, l_list);
    947 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
    948 		proc_free_pid(l->l_lid);
    949 	}
    950 	mutex_exit(proc_lock);
    951 
    952 	/*
    953 	 * Get rid of all references to the LWP that others (e.g. procfs)
    954 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    955 	 * mark it waiting for collection in the proc structure.  Note that
    956 	 * before we can do that, we need to free any other dead, deatched
    957 	 * LWP waiting to meet its maker.
    958 	 */
    959 	mutex_enter(p->p_lock);
    960 	lwp_drainrefs(l);
    961 
    962 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    963 		while ((l2 = p->p_zomblwp) != NULL) {
    964 			p->p_zomblwp = NULL;
    965 			lwp_free(l2, false, false);/* releases proc mutex */
    966 			mutex_enter(p->p_lock);
    967 			l->l_refcnt++;
    968 			lwp_drainrefs(l);
    969 		}
    970 		p->p_zomblwp = l;
    971 	}
    972 
    973 	/*
    974 	 * If we find a pending signal for the process and we have been
    975 	 * asked to check for signals, then we lose: arrange to have
    976 	 * all other LWPs in the process check for signals.
    977 	 */
    978 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    979 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    980 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    981 			lwp_lock(l2);
    982 			l2->l_flag |= LW_PENDSIG;
    983 			lwp_unlock(l2);
    984 		}
    985 	}
    986 
    987 	/*
    988 	 * Release any PCU resources before becoming a zombie.
    989 	 */
    990 	pcu_discard_all(l);
    991 
    992 	lwp_lock(l);
    993 	l->l_stat = LSZOMB;
    994 	if (l->l_name != NULL) {
    995 		strcpy(l->l_name, "(zombie)");
    996 	}
    997 	lwp_unlock(l);
    998 	p->p_nrlwps--;
    999 	cv_broadcast(&p->p_lwpcv);
   1000 	if (l->l_lwpctl != NULL)
   1001 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
   1002 	mutex_exit(p->p_lock);
   1003 
   1004 	/*
   1005 	 * We can no longer block.  At this point, lwp_free() may already
   1006 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1007 	 *
   1008 	 * Free MD LWP resources.
   1009 	 */
   1010 	cpu_lwp_free(l, 0);
   1011 
   1012 	if (current) {
   1013 		pmap_deactivate(l);
   1014 
   1015 		/*
   1016 		 * Release the kernel lock, and switch away into
   1017 		 * oblivion.
   1018 		 */
   1019 #ifdef notyet
   1020 		/* XXXSMP hold in lwp_userret() */
   1021 		KERNEL_UNLOCK_LAST(l);
   1022 #else
   1023 		KERNEL_UNLOCK_ALL(l, NULL);
   1024 #endif
   1025 		lwp_exit_switchaway(l);
   1026 	}
   1027 }
   1028 
   1029 /*
   1030  * Free a dead LWP's remaining resources.
   1031  *
   1032  * XXXLWP limits.
   1033  */
   1034 void
   1035 lwp_free(struct lwp *l, bool recycle, bool last)
   1036 {
   1037 	struct proc *p = l->l_proc;
   1038 	struct rusage *ru;
   1039 	ksiginfoq_t kq;
   1040 
   1041 	KASSERT(l != curlwp);
   1042 	KASSERT(last || mutex_owned(p->p_lock));
   1043 
   1044 	/*
   1045 	 * If this was not the last LWP in the process, then adjust
   1046 	 * counters and unlock.
   1047 	 */
   1048 	if (!last) {
   1049 		/*
   1050 		 * Add the LWP's run time to the process' base value.
   1051 		 * This needs to co-incide with coming off p_lwps.
   1052 		 */
   1053 		bintime_add(&p->p_rtime, &l->l_rtime);
   1054 		p->p_pctcpu += l->l_pctcpu;
   1055 		ru = &p->p_stats->p_ru;
   1056 		ruadd(ru, &l->l_ru);
   1057 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1058 		ru->ru_nivcsw += l->l_nivcsw;
   1059 		LIST_REMOVE(l, l_sibling);
   1060 		p->p_nlwps--;
   1061 		p->p_nzlwps--;
   1062 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1063 			p->p_ndlwps--;
   1064 
   1065 		/*
   1066 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1067 		 * deadlock.
   1068 		 */
   1069 		cv_broadcast(&p->p_lwpcv);
   1070 		mutex_exit(p->p_lock);
   1071 	}
   1072 
   1073 #ifdef MULTIPROCESSOR
   1074 	/*
   1075 	 * In the unlikely event that the LWP is still on the CPU,
   1076 	 * then spin until it has switched away.  We need to release
   1077 	 * all locks to avoid deadlock against interrupt handlers on
   1078 	 * the target CPU.
   1079 	 */
   1080 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
   1081 		int count;
   1082 		(void)count; /* XXXgcc */
   1083 		KERNEL_UNLOCK_ALL(curlwp, &count);
   1084 		while ((l->l_pflag & LP_RUNNING) != 0 ||
   1085 		    l->l_cpu->ci_curlwp == l)
   1086 			SPINLOCK_BACKOFF_HOOK;
   1087 		KERNEL_LOCK(count, curlwp);
   1088 	}
   1089 #endif
   1090 
   1091 	/*
   1092 	 * Destroy the LWP's remaining signal information.
   1093 	 */
   1094 	ksiginfo_queue_init(&kq);
   1095 	sigclear(&l->l_sigpend, NULL, &kq);
   1096 	ksiginfo_queue_drain(&kq);
   1097 	cv_destroy(&l->l_sigcv);
   1098 
   1099 	/*
   1100 	 * Free lwpctl structure and affinity.
   1101 	 */
   1102 	if (l->l_lwpctl) {
   1103 		lwp_ctl_free(l);
   1104 	}
   1105 	if (l->l_affinity) {
   1106 		kcpuset_unuse(l->l_affinity, NULL);
   1107 		l->l_affinity = NULL;
   1108 	}
   1109 
   1110 	/*
   1111 	 * Free the LWP's turnstile and the LWP structure itself unless the
   1112 	 * caller wants to recycle them.  Also, free the scheduler specific
   1113 	 * data.
   1114 	 *
   1115 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1116 	 * so if it comes up just drop it quietly and move on.
   1117 	 *
   1118 	 * We don't recycle the VM resources at this time.
   1119 	 */
   1120 
   1121 	if (!recycle && l->l_ts != &turnstile0)
   1122 		pool_cache_put(turnstile_cache, l->l_ts);
   1123 	if (l->l_name != NULL)
   1124 		kmem_free(l->l_name, MAXCOMLEN);
   1125 
   1126 	cpu_lwp_free2(l);
   1127 	uvm_lwp_exit(l);
   1128 
   1129 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1130 	KASSERT(l->l_inheritedprio == -1);
   1131 	KASSERT(l->l_blcnt == 0);
   1132 	kdtrace_thread_dtor(NULL, l);
   1133 	if (!recycle)
   1134 		pool_cache_put(lwp_cache, l);
   1135 }
   1136 
   1137 /*
   1138  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1139  */
   1140 void
   1141 lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1142 {
   1143 	struct schedstate_percpu *tspc;
   1144 	int lstat = l->l_stat;
   1145 
   1146 	KASSERT(lwp_locked(l, NULL));
   1147 	KASSERT(tci != NULL);
   1148 
   1149 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1150 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1151 		lstat = LSONPROC;
   1152 	}
   1153 
   1154 	/*
   1155 	 * The destination CPU could be changed while previous migration
   1156 	 * was not finished.
   1157 	 */
   1158 	if (l->l_target_cpu != NULL) {
   1159 		l->l_target_cpu = tci;
   1160 		lwp_unlock(l);
   1161 		return;
   1162 	}
   1163 
   1164 	/* Nothing to do if trying to migrate to the same CPU */
   1165 	if (l->l_cpu == tci) {
   1166 		lwp_unlock(l);
   1167 		return;
   1168 	}
   1169 
   1170 	KASSERT(l->l_target_cpu == NULL);
   1171 	tspc = &tci->ci_schedstate;
   1172 	switch (lstat) {
   1173 	case LSRUN:
   1174 		l->l_target_cpu = tci;
   1175 		break;
   1176 	case LSIDL:
   1177 		l->l_cpu = tci;
   1178 		lwp_unlock_to(l, tspc->spc_mutex);
   1179 		return;
   1180 	case LSSLEEP:
   1181 		l->l_cpu = tci;
   1182 		break;
   1183 	case LSSTOP:
   1184 	case LSSUSPENDED:
   1185 		l->l_cpu = tci;
   1186 		if (l->l_wchan == NULL) {
   1187 			lwp_unlock_to(l, tspc->spc_lwplock);
   1188 			return;
   1189 		}
   1190 		break;
   1191 	case LSONPROC:
   1192 		l->l_target_cpu = tci;
   1193 		spc_lock(l->l_cpu);
   1194 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1195 		spc_unlock(l->l_cpu);
   1196 		break;
   1197 	}
   1198 	lwp_unlock(l);
   1199 }
   1200 
   1201 /*
   1202  * Find the LWP in the process.  Arguments may be zero, in such case,
   1203  * the calling process and first LWP in the list will be used.
   1204  * On success - returns proc locked.
   1205  */
   1206 struct lwp *
   1207 lwp_find2(pid_t pid, lwpid_t lid)
   1208 {
   1209 	proc_t *p;
   1210 	lwp_t *l;
   1211 
   1212 	/* Find the process. */
   1213 	if (pid != 0) {
   1214 		mutex_enter(proc_lock);
   1215 		p = proc_find(pid);
   1216 		if (p == NULL) {
   1217 			mutex_exit(proc_lock);
   1218 			return NULL;
   1219 		}
   1220 		mutex_enter(p->p_lock);
   1221 		mutex_exit(proc_lock);
   1222 	} else {
   1223 		p = curlwp->l_proc;
   1224 		mutex_enter(p->p_lock);
   1225 	}
   1226 	/* Find the thread. */
   1227 	if (lid != 0) {
   1228 		l = lwp_find(p, lid);
   1229 	} else {
   1230 		l = LIST_FIRST(&p->p_lwps);
   1231 	}
   1232 	if (l == NULL) {
   1233 		mutex_exit(p->p_lock);
   1234 	}
   1235 	return l;
   1236 }
   1237 
   1238 /*
   1239  * Look up a live LWP within the specified process, and return it locked.
   1240  *
   1241  * Must be called with p->p_lock held.
   1242  */
   1243 struct lwp *
   1244 lwp_find(struct proc *p, lwpid_t id)
   1245 {
   1246 	struct lwp *l;
   1247 
   1248 	KASSERT(mutex_owned(p->p_lock));
   1249 
   1250 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1251 		if (l->l_lid == id)
   1252 			break;
   1253 	}
   1254 
   1255 	/*
   1256 	 * No need to lock - all of these conditions will
   1257 	 * be visible with the process level mutex held.
   1258 	 */
   1259 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1260 		l = NULL;
   1261 
   1262 	return l;
   1263 }
   1264 
   1265 /*
   1266  * Update an LWP's cached credentials to mirror the process' master copy.
   1267  *
   1268  * This happens early in the syscall path, on user trap, and on LWP
   1269  * creation.  A long-running LWP can also voluntarily choose to update
   1270  * it's credentials by calling this routine.  This may be called from
   1271  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1272  */
   1273 void
   1274 lwp_update_creds(struct lwp *l)
   1275 {
   1276 	kauth_cred_t oc;
   1277 	struct proc *p;
   1278 
   1279 	p = l->l_proc;
   1280 	oc = l->l_cred;
   1281 
   1282 	mutex_enter(p->p_lock);
   1283 	kauth_cred_hold(p->p_cred);
   1284 	l->l_cred = p->p_cred;
   1285 	l->l_prflag &= ~LPR_CRMOD;
   1286 	mutex_exit(p->p_lock);
   1287 	if (oc != NULL)
   1288 		kauth_cred_free(oc);
   1289 }
   1290 
   1291 /*
   1292  * Verify that an LWP is locked, and optionally verify that the lock matches
   1293  * one we specify.
   1294  */
   1295 int
   1296 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1297 {
   1298 	kmutex_t *cur = l->l_mutex;
   1299 
   1300 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1301 }
   1302 
   1303 /*
   1304  * Lend a new mutex to an LWP.  The old mutex must be held.
   1305  */
   1306 void
   1307 lwp_setlock(struct lwp *l, kmutex_t *new)
   1308 {
   1309 
   1310 	KASSERT(mutex_owned(l->l_mutex));
   1311 
   1312 	membar_exit();
   1313 	l->l_mutex = new;
   1314 }
   1315 
   1316 /*
   1317  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1318  * must be held.
   1319  */
   1320 void
   1321 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1322 {
   1323 	kmutex_t *old;
   1324 
   1325 	KASSERT(lwp_locked(l, NULL));
   1326 
   1327 	old = l->l_mutex;
   1328 	membar_exit();
   1329 	l->l_mutex = new;
   1330 	mutex_spin_exit(old);
   1331 }
   1332 
   1333 int
   1334 lwp_trylock(struct lwp *l)
   1335 {
   1336 	kmutex_t *old;
   1337 
   1338 	for (;;) {
   1339 		if (!mutex_tryenter(old = l->l_mutex))
   1340 			return 0;
   1341 		if (__predict_true(l->l_mutex == old))
   1342 			return 1;
   1343 		mutex_spin_exit(old);
   1344 	}
   1345 }
   1346 
   1347 void
   1348 lwp_unsleep(lwp_t *l, bool cleanup)
   1349 {
   1350 
   1351 	KASSERT(mutex_owned(l->l_mutex));
   1352 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1353 }
   1354 
   1355 /*
   1356  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1357  * set.
   1358  */
   1359 void
   1360 lwp_userret(struct lwp *l)
   1361 {
   1362 	struct proc *p;
   1363 	int sig;
   1364 
   1365 	KASSERT(l == curlwp);
   1366 	KASSERT(l->l_stat == LSONPROC);
   1367 	p = l->l_proc;
   1368 
   1369 #ifndef __HAVE_FAST_SOFTINTS
   1370 	/* Run pending soft interrupts. */
   1371 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1372 		softint_overlay();
   1373 #endif
   1374 
   1375 #ifdef KERN_SA
   1376 	/* Generate UNBLOCKED upcall if needed */
   1377 	if (l->l_flag & LW_SA_BLOCKING) {
   1378 		sa_unblock_userret(l);
   1379 		/* NOTREACHED */
   1380 	}
   1381 #endif
   1382 
   1383 	/*
   1384 	 * It should be safe to do this read unlocked on a multiprocessor
   1385 	 * system..
   1386 	 *
   1387 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
   1388 	 * consider it now.
   1389 	 */
   1390 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
   1391 		/*
   1392 		 * Process pending signals first, unless the process
   1393 		 * is dumping core or exiting, where we will instead
   1394 		 * enter the LW_WSUSPEND case below.
   1395 		 */
   1396 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1397 		    LW_PENDSIG) {
   1398 			mutex_enter(p->p_lock);
   1399 			while ((sig = issignal(l)) != 0)
   1400 				postsig(sig);
   1401 			mutex_exit(p->p_lock);
   1402 		}
   1403 
   1404 		/*
   1405 		 * Core-dump or suspend pending.
   1406 		 *
   1407 		 * In case of core dump, suspend ourselves, so that the kernel
   1408 		 * stack and therefore the userland registers saved in the
   1409 		 * trapframe are around for coredump() to write them out.
   1410 		 * We also need to save any PCU resources that we have so that
   1411 		 * they accessible for coredump().  We issue a wakeup on
   1412 		 * p->p_lwpcv so that sigexit() will write the core file out
   1413 		 * once all other LWPs are suspended.
   1414 		 */
   1415 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1416 			pcu_save_all(l);
   1417 			mutex_enter(p->p_lock);
   1418 			p->p_nrlwps--;
   1419 			cv_broadcast(&p->p_lwpcv);
   1420 			lwp_lock(l);
   1421 			l->l_stat = LSSUSPENDED;
   1422 			lwp_unlock(l);
   1423 			mutex_exit(p->p_lock);
   1424 			lwp_lock(l);
   1425 			mi_switch(l);
   1426 		}
   1427 
   1428 		/* Process is exiting. */
   1429 		if ((l->l_flag & LW_WEXIT) != 0) {
   1430 			lwp_exit(l);
   1431 			KASSERT(0);
   1432 			/* NOTREACHED */
   1433 		}
   1434 
   1435 		/* update lwpctl processor (for vfork child_return) */
   1436 		if (l->l_flag & LW_LWPCTL) {
   1437 			lwp_lock(l);
   1438 			KASSERT(kpreempt_disabled());
   1439 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1440 			l->l_lwpctl->lc_pctr++;
   1441 			l->l_flag &= ~LW_LWPCTL;
   1442 			lwp_unlock(l);
   1443 		}
   1444 	}
   1445 
   1446 #ifdef KERN_SA
   1447 	/*
   1448 	 * Timer events are handled specially.  We only try once to deliver
   1449 	 * pending timer upcalls; if if fails, we can try again on the next
   1450 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
   1451 	 * bounce us back here through the trap path after we return.
   1452 	 */
   1453 	if (p->p_timerpend)
   1454 		timerupcall(l);
   1455 	if (l->l_flag & LW_SA_UPCALL)
   1456 		sa_upcall_userret(l);
   1457 #endif /* KERN_SA */
   1458 }
   1459 
   1460 /*
   1461  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1462  */
   1463 void
   1464 lwp_need_userret(struct lwp *l)
   1465 {
   1466 	KASSERT(lwp_locked(l, NULL));
   1467 
   1468 	/*
   1469 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1470 	 * that the condition will be seen before forcing the LWP to enter
   1471 	 * kernel mode.
   1472 	 */
   1473 	membar_producer();
   1474 	cpu_signotify(l);
   1475 }
   1476 
   1477 /*
   1478  * Add one reference to an LWP.  This will prevent the LWP from
   1479  * exiting, thus keep the lwp structure and PCB around to inspect.
   1480  */
   1481 void
   1482 lwp_addref(struct lwp *l)
   1483 {
   1484 
   1485 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1486 	KASSERT(l->l_stat != LSZOMB);
   1487 	KASSERT(l->l_refcnt != 0);
   1488 
   1489 	l->l_refcnt++;
   1490 }
   1491 
   1492 /*
   1493  * Remove one reference to an LWP.  If this is the last reference,
   1494  * then we must finalize the LWP's death.
   1495  */
   1496 void
   1497 lwp_delref(struct lwp *l)
   1498 {
   1499 	struct proc *p = l->l_proc;
   1500 
   1501 	mutex_enter(p->p_lock);
   1502 	lwp_delref2(l);
   1503 	mutex_exit(p->p_lock);
   1504 }
   1505 
   1506 /*
   1507  * Remove one reference to an LWP.  If this is the last reference,
   1508  * then we must finalize the LWP's death.  The proc mutex is held
   1509  * on entry.
   1510  */
   1511 void
   1512 lwp_delref2(struct lwp *l)
   1513 {
   1514 	struct proc *p = l->l_proc;
   1515 
   1516 	KASSERT(mutex_owned(p->p_lock));
   1517 	KASSERT(l->l_stat != LSZOMB);
   1518 	KASSERT(l->l_refcnt > 0);
   1519 	if (--l->l_refcnt == 0)
   1520 		cv_broadcast(&p->p_lwpcv);
   1521 }
   1522 
   1523 /*
   1524  * Drain all references to the current LWP.
   1525  */
   1526 void
   1527 lwp_drainrefs(struct lwp *l)
   1528 {
   1529 	struct proc *p = l->l_proc;
   1530 
   1531 	KASSERT(mutex_owned(p->p_lock));
   1532 	KASSERT(l->l_refcnt != 0);
   1533 
   1534 	l->l_refcnt--;
   1535 	while (l->l_refcnt != 0)
   1536 		cv_wait(&p->p_lwpcv, p->p_lock);
   1537 }
   1538 
   1539 /*
   1540  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1541  * be held.
   1542  */
   1543 bool
   1544 lwp_alive(lwp_t *l)
   1545 {
   1546 
   1547 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1548 
   1549 	switch (l->l_stat) {
   1550 	case LSSLEEP:
   1551 	case LSRUN:
   1552 	case LSONPROC:
   1553 	case LSSTOP:
   1554 	case LSSUSPENDED:
   1555 		return true;
   1556 	default:
   1557 		return false;
   1558 	}
   1559 }
   1560 
   1561 /*
   1562  * Return first live LWP in the process.
   1563  */
   1564 lwp_t *
   1565 lwp_find_first(proc_t *p)
   1566 {
   1567 	lwp_t *l;
   1568 
   1569 	KASSERT(mutex_owned(p->p_lock));
   1570 
   1571 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1572 		if (lwp_alive(l)) {
   1573 			return l;
   1574 		}
   1575 	}
   1576 
   1577 	return NULL;
   1578 }
   1579 
   1580 /*
   1581  * Allocate a new lwpctl structure for a user LWP.
   1582  */
   1583 int
   1584 lwp_ctl_alloc(vaddr_t *uaddr)
   1585 {
   1586 	lcproc_t *lp;
   1587 	u_int bit, i, offset;
   1588 	struct uvm_object *uao;
   1589 	int error;
   1590 	lcpage_t *lcp;
   1591 	proc_t *p;
   1592 	lwp_t *l;
   1593 
   1594 	l = curlwp;
   1595 	p = l->l_proc;
   1596 
   1597 	/* don't allow a vforked process to create lwp ctls */
   1598 	if (p->p_lflag & PL_PPWAIT)
   1599 		return EBUSY;
   1600 
   1601 	if (l->l_lcpage != NULL) {
   1602 		lcp = l->l_lcpage;
   1603 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1604 		return 0;
   1605 	}
   1606 
   1607 	/* First time around, allocate header structure for the process. */
   1608 	if ((lp = p->p_lwpctl) == NULL) {
   1609 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1610 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1611 		lp->lp_uao = NULL;
   1612 		TAILQ_INIT(&lp->lp_pages);
   1613 		mutex_enter(p->p_lock);
   1614 		if (p->p_lwpctl == NULL) {
   1615 			p->p_lwpctl = lp;
   1616 			mutex_exit(p->p_lock);
   1617 		} else {
   1618 			mutex_exit(p->p_lock);
   1619 			mutex_destroy(&lp->lp_lock);
   1620 			kmem_free(lp, sizeof(*lp));
   1621 			lp = p->p_lwpctl;
   1622 		}
   1623 	}
   1624 
   1625  	/*
   1626  	 * Set up an anonymous memory region to hold the shared pages.
   1627  	 * Map them into the process' address space.  The user vmspace
   1628  	 * gets the first reference on the UAO.
   1629  	 */
   1630 	mutex_enter(&lp->lp_lock);
   1631 	if (lp->lp_uao == NULL) {
   1632 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1633 		lp->lp_cur = 0;
   1634 		lp->lp_max = LWPCTL_UAREA_SZ;
   1635 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1636 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1637 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1638 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1639 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1640 		if (error != 0) {
   1641 			uao_detach(lp->lp_uao);
   1642 			lp->lp_uao = NULL;
   1643 			mutex_exit(&lp->lp_lock);
   1644 			return error;
   1645 		}
   1646 	}
   1647 
   1648 	/* Get a free block and allocate for this LWP. */
   1649 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1650 		if (lcp->lcp_nfree != 0)
   1651 			break;
   1652 	}
   1653 	if (lcp == NULL) {
   1654 		/* Nothing available - try to set up a free page. */
   1655 		if (lp->lp_cur == lp->lp_max) {
   1656 			mutex_exit(&lp->lp_lock);
   1657 			return ENOMEM;
   1658 		}
   1659 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1660 		if (lcp == NULL) {
   1661 			mutex_exit(&lp->lp_lock);
   1662 			return ENOMEM;
   1663 		}
   1664 		/*
   1665 		 * Wire the next page down in kernel space.  Since this
   1666 		 * is a new mapping, we must add a reference.
   1667 		 */
   1668 		uao = lp->lp_uao;
   1669 		(*uao->pgops->pgo_reference)(uao);
   1670 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1671 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1672 		    uao, lp->lp_cur, PAGE_SIZE,
   1673 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1674 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1675 		if (error != 0) {
   1676 			mutex_exit(&lp->lp_lock);
   1677 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1678 			(*uao->pgops->pgo_detach)(uao);
   1679 			return error;
   1680 		}
   1681 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1682 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1683 		if (error != 0) {
   1684 			mutex_exit(&lp->lp_lock);
   1685 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1686 			    lcp->lcp_kaddr + PAGE_SIZE);
   1687 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1688 			return error;
   1689 		}
   1690 		/* Prepare the page descriptor and link into the list. */
   1691 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1692 		lp->lp_cur += PAGE_SIZE;
   1693 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1694 		lcp->lcp_rotor = 0;
   1695 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1696 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1697 	}
   1698 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1699 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1700 			i = 0;
   1701 	}
   1702 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1703 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1704 	lcp->lcp_rotor = i;
   1705 	lcp->lcp_nfree--;
   1706 	l->l_lcpage = lcp;
   1707 	offset = (i << 5) + bit;
   1708 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1709 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1710 	mutex_exit(&lp->lp_lock);
   1711 
   1712 	KPREEMPT_DISABLE(l);
   1713 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1714 	KPREEMPT_ENABLE(l);
   1715 
   1716 	return 0;
   1717 }
   1718 
   1719 /*
   1720  * Free an lwpctl structure back to the per-process list.
   1721  */
   1722 void
   1723 lwp_ctl_free(lwp_t *l)
   1724 {
   1725 	struct proc *p = l->l_proc;
   1726 	lcproc_t *lp;
   1727 	lcpage_t *lcp;
   1728 	u_int map, offset;
   1729 
   1730 	/* don't free a lwp context we borrowed for vfork */
   1731 	if (p->p_lflag & PL_PPWAIT) {
   1732 		l->l_lwpctl = NULL;
   1733 		return;
   1734 	}
   1735 
   1736 	lp = p->p_lwpctl;
   1737 	KASSERT(lp != NULL);
   1738 
   1739 	lcp = l->l_lcpage;
   1740 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1741 	KASSERT(offset < LWPCTL_PER_PAGE);
   1742 
   1743 	mutex_enter(&lp->lp_lock);
   1744 	lcp->lcp_nfree++;
   1745 	map = offset >> 5;
   1746 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1747 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1748 		lcp->lcp_rotor = map;
   1749 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1750 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1751 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1752 	}
   1753 	mutex_exit(&lp->lp_lock);
   1754 }
   1755 
   1756 /*
   1757  * Process is exiting; tear down lwpctl state.  This can only be safely
   1758  * called by the last LWP in the process.
   1759  */
   1760 void
   1761 lwp_ctl_exit(void)
   1762 {
   1763 	lcpage_t *lcp, *next;
   1764 	lcproc_t *lp;
   1765 	proc_t *p;
   1766 	lwp_t *l;
   1767 
   1768 	l = curlwp;
   1769 	l->l_lwpctl = NULL;
   1770 	l->l_lcpage = NULL;
   1771 	p = l->l_proc;
   1772 	lp = p->p_lwpctl;
   1773 
   1774 	KASSERT(lp != NULL);
   1775 	KASSERT(p->p_nlwps == 1);
   1776 
   1777 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1778 		next = TAILQ_NEXT(lcp, lcp_chain);
   1779 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1780 		    lcp->lcp_kaddr + PAGE_SIZE);
   1781 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1782 	}
   1783 
   1784 	if (lp->lp_uao != NULL) {
   1785 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1786 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1787 	}
   1788 
   1789 	mutex_destroy(&lp->lp_lock);
   1790 	kmem_free(lp, sizeof(*lp));
   1791 	p->p_lwpctl = NULL;
   1792 }
   1793 
   1794 /*
   1795  * Return the current LWP's "preemption counter".  Used to detect
   1796  * preemption across operations that can tolerate preemption without
   1797  * crashing, but which may generate incorrect results if preempted.
   1798  */
   1799 uint64_t
   1800 lwp_pctr(void)
   1801 {
   1802 
   1803 	return curlwp->l_ncsw;
   1804 }
   1805 
   1806 /*
   1807  * Set an LWP's private data pointer.
   1808  */
   1809 int
   1810 lwp_setprivate(struct lwp *l, void *ptr)
   1811 {
   1812 	int error = 0;
   1813 
   1814 	l->l_private = ptr;
   1815 #ifdef __HAVE_CPU_LWP_SETPRIVATE
   1816 	error = cpu_lwp_setprivate(l, ptr);
   1817 #endif
   1818 	return error;
   1819 }
   1820 
   1821 #if defined(DDB)
   1822 #include <machine/pcb.h>
   1823 
   1824 void
   1825 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1826 {
   1827 	lwp_t *l;
   1828 
   1829 	LIST_FOREACH(l, &alllwp, l_list) {
   1830 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1831 
   1832 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1833 			continue;
   1834 		}
   1835 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1836 		    (void *)addr, (void *)stack,
   1837 		    (size_t)(addr - stack), l);
   1838 	}
   1839 }
   1840 #endif /* defined(DDB) */
   1841