kern_lwp.c revision 1.169 1 /* $NetBSD: kern_lwp.c,v 1.169 2012/06/09 02:31:14 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.169 2012/06/09 02:31:14 christos Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219
220 #define _LWP_API_PRIVATE
221
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 #include <sys/xcall.h>
242 #include <sys/uidinfo.h>
243 #include <sys/sysctl.h>
244
245 #include <uvm/uvm_extern.h>
246 #include <uvm/uvm_object.h>
247
248 static pool_cache_t lwp_cache __read_mostly;
249 struct lwplist alllwp __cacheline_aligned;
250
251 static void lwp_dtor(void *, void *);
252
253 /* DTrace proc provider probes */
254 SDT_PROBE_DEFINE(proc,,,lwp_create,
255 "struct lwp *", NULL,
256 NULL, NULL, NULL, NULL,
257 NULL, NULL, NULL, NULL);
258 SDT_PROBE_DEFINE(proc,,,lwp_start,
259 "struct lwp *", NULL,
260 NULL, NULL, NULL, NULL,
261 NULL, NULL, NULL, NULL);
262 SDT_PROBE_DEFINE(proc,,,lwp_exit,
263 "struct lwp *", NULL,
264 NULL, NULL, NULL, NULL,
265 NULL, NULL, NULL, NULL);
266
267 struct turnstile turnstile0;
268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
269 #ifdef LWP0_CPU_INFO
270 .l_cpu = LWP0_CPU_INFO,
271 #endif
272 #ifdef LWP0_MD_INITIALIZER
273 .l_md = LWP0_MD_INITIALIZER,
274 #endif
275 .l_proc = &proc0,
276 .l_lid = 1,
277 .l_flag = LW_SYSTEM,
278 .l_stat = LSONPROC,
279 .l_ts = &turnstile0,
280 .l_syncobj = &sched_syncobj,
281 .l_refcnt = 1,
282 .l_priority = PRI_USER + NPRI_USER - 1,
283 .l_inheritedprio = -1,
284 .l_class = SCHED_OTHER,
285 .l_psid = PS_NONE,
286 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
287 .l_name = __UNCONST("swapper"),
288 .l_fd = &filedesc0,
289 };
290
291 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
292
293 /*
294 * sysctl helper routine for kern.maxlwp. Ensures that the new
295 * values are not too low or too high.
296 */
297 static int
298 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
299 {
300 int error, nmaxlwp;
301 struct sysctlnode node;
302
303 nmaxlwp = maxlwp;
304 node = *rnode;
305 node.sysctl_data = &nmaxlwp;
306 error = sysctl_lookup(SYSCTLFN_CALL(&node));
307 if (error || newp == NULL)
308 return error;
309
310 if (nmaxlwp < 0 || nmaxlwp >= 65536)
311 return EINVAL;
312 if (nmaxlwp > cpu_maxlwp())
313 return EINVAL;
314 maxlwp = nmaxlwp;
315
316 return 0;
317 }
318
319 static void
320 sysctl_kern_lwp_setup(void)
321 {
322 struct sysctllog *clog = NULL;
323
324 sysctl_createv(&clog, 0, NULL, NULL,
325 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
326 CTLTYPE_INT, "maxlwp",
327 SYSCTL_DESCR("Maximum number of simultaneous threads"),
328 sysctl_kern_maxlwp, 0, NULL, 0,
329 CTL_KERN, CTL_CREATE, CTL_EOL);
330 }
331
332 void
333 lwpinit(void)
334 {
335
336 LIST_INIT(&alllwp);
337 lwpinit_specificdata();
338 lwp_sys_init();
339 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
340 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
341
342 maxlwp = cpu_maxlwp();
343 sysctl_kern_lwp_setup();
344 }
345
346 void
347 lwp0_init(void)
348 {
349 struct lwp *l = &lwp0;
350
351 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
352 KASSERT(l->l_lid == proc0.p_nlwpid);
353
354 LIST_INSERT_HEAD(&alllwp, l, l_list);
355
356 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
357 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
358 cv_init(&l->l_sigcv, "sigwait");
359
360 kauth_cred_hold(proc0.p_cred);
361 l->l_cred = proc0.p_cred;
362
363 kdtrace_thread_ctor(NULL, l);
364 lwp_initspecific(l);
365
366 SYSCALL_TIME_LWP_INIT(l);
367 }
368
369 static void
370 lwp_dtor(void *arg, void *obj)
371 {
372 lwp_t *l = obj;
373 uint64_t where;
374 (void)l;
375
376 /*
377 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
378 * calls will exit before memory of LWP is returned to the pool, where
379 * KVA of LWP structure might be freed and re-used for other purposes.
380 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
381 * callers, therefore cross-call to all CPUs will do the job. Also,
382 * the value of l->l_cpu must be still valid at this point.
383 */
384 KASSERT(l->l_cpu != NULL);
385 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
386 xc_wait(where);
387 }
388
389 /*
390 * Set an suspended.
391 *
392 * Must be called with p_lock held, and the LWP locked. Will unlock the
393 * LWP before return.
394 */
395 int
396 lwp_suspend(struct lwp *curl, struct lwp *t)
397 {
398 int error;
399
400 KASSERT(mutex_owned(t->l_proc->p_lock));
401 KASSERT(lwp_locked(t, NULL));
402
403 KASSERT(curl != t || curl->l_stat == LSONPROC);
404
405 /*
406 * If the current LWP has been told to exit, we must not suspend anyone
407 * else or deadlock could occur. We won't return to userspace.
408 */
409 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
410 lwp_unlock(t);
411 return (EDEADLK);
412 }
413
414 error = 0;
415
416 switch (t->l_stat) {
417 case LSRUN:
418 case LSONPROC:
419 t->l_flag |= LW_WSUSPEND;
420 lwp_need_userret(t);
421 lwp_unlock(t);
422 break;
423
424 case LSSLEEP:
425 t->l_flag |= LW_WSUSPEND;
426
427 /*
428 * Kick the LWP and try to get it to the kernel boundary
429 * so that it will release any locks that it holds.
430 * setrunnable() will release the lock.
431 */
432 if ((t->l_flag & LW_SINTR) != 0)
433 setrunnable(t);
434 else
435 lwp_unlock(t);
436 break;
437
438 case LSSUSPENDED:
439 lwp_unlock(t);
440 break;
441
442 case LSSTOP:
443 t->l_flag |= LW_WSUSPEND;
444 setrunnable(t);
445 break;
446
447 case LSIDL:
448 case LSZOMB:
449 error = EINTR; /* It's what Solaris does..... */
450 lwp_unlock(t);
451 break;
452 }
453
454 return (error);
455 }
456
457 /*
458 * Restart a suspended LWP.
459 *
460 * Must be called with p_lock held, and the LWP locked. Will unlock the
461 * LWP before return.
462 */
463 void
464 lwp_continue(struct lwp *l)
465 {
466
467 KASSERT(mutex_owned(l->l_proc->p_lock));
468 KASSERT(lwp_locked(l, NULL));
469
470 /* If rebooting or not suspended, then just bail out. */
471 if ((l->l_flag & LW_WREBOOT) != 0) {
472 lwp_unlock(l);
473 return;
474 }
475
476 l->l_flag &= ~LW_WSUSPEND;
477
478 if (l->l_stat != LSSUSPENDED) {
479 lwp_unlock(l);
480 return;
481 }
482
483 /* setrunnable() will release the lock. */
484 setrunnable(l);
485 }
486
487 /*
488 * Restart a stopped LWP.
489 *
490 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
491 * LWP before return.
492 */
493 void
494 lwp_unstop(struct lwp *l)
495 {
496 struct proc *p = l->l_proc;
497
498 KASSERT(mutex_owned(proc_lock));
499 KASSERT(mutex_owned(p->p_lock));
500
501 lwp_lock(l);
502
503 /* If not stopped, then just bail out. */
504 if (l->l_stat != LSSTOP) {
505 lwp_unlock(l);
506 return;
507 }
508
509 p->p_stat = SACTIVE;
510 p->p_sflag &= ~PS_STOPPING;
511
512 if (!p->p_waited)
513 p->p_pptr->p_nstopchild--;
514
515 if (l->l_wchan == NULL) {
516 /* setrunnable() will release the lock. */
517 setrunnable(l);
518 } else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
519 /* setrunnable() so we can receive the signal */
520 setrunnable(l);
521 } else {
522 l->l_stat = LSSLEEP;
523 p->p_nrlwps++;
524 lwp_unlock(l);
525 }
526 }
527
528 /*
529 * Wait for an LWP within the current process to exit. If 'lid' is
530 * non-zero, we are waiting for a specific LWP.
531 *
532 * Must be called with p->p_lock held.
533 */
534 int
535 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
536 {
537 struct proc *p = l->l_proc;
538 struct lwp *l2;
539 int nfound, error;
540 lwpid_t curlid;
541 bool exiting;
542
543 KASSERT(mutex_owned(p->p_lock));
544
545 p->p_nlwpwait++;
546 l->l_waitingfor = lid;
547 curlid = l->l_lid;
548 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
549
550 for (;;) {
551 /*
552 * Avoid a race between exit1() and sigexit(): if the
553 * process is dumping core, then we need to bail out: call
554 * into lwp_userret() where we will be suspended until the
555 * deed is done.
556 */
557 if ((p->p_sflag & PS_WCORE) != 0) {
558 mutex_exit(p->p_lock);
559 lwp_userret(l);
560 #ifdef DIAGNOSTIC
561 panic("lwp_wait1");
562 #endif
563 /* NOTREACHED */
564 }
565
566 /*
567 * First off, drain any detached LWP that is waiting to be
568 * reaped.
569 */
570 while ((l2 = p->p_zomblwp) != NULL) {
571 p->p_zomblwp = NULL;
572 lwp_free(l2, false, false);/* releases proc mutex */
573 mutex_enter(p->p_lock);
574 }
575
576 /*
577 * Now look for an LWP to collect. If the whole process is
578 * exiting, count detached LWPs as eligible to be collected,
579 * but don't drain them here.
580 */
581 nfound = 0;
582 error = 0;
583 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
584 /*
585 * If a specific wait and the target is waiting on
586 * us, then avoid deadlock. This also traps LWPs
587 * that try to wait on themselves.
588 *
589 * Note that this does not handle more complicated
590 * cycles, like: t1 -> t2 -> t3 -> t1. The process
591 * can still be killed so it is not a major problem.
592 */
593 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
594 error = EDEADLK;
595 break;
596 }
597 if (l2 == l)
598 continue;
599 if ((l2->l_prflag & LPR_DETACHED) != 0) {
600 nfound += exiting;
601 continue;
602 }
603 if (lid != 0) {
604 if (l2->l_lid != lid)
605 continue;
606 /*
607 * Mark this LWP as the first waiter, if there
608 * is no other.
609 */
610 if (l2->l_waiter == 0)
611 l2->l_waiter = curlid;
612 } else if (l2->l_waiter != 0) {
613 /*
614 * It already has a waiter - so don't
615 * collect it. If the waiter doesn't
616 * grab it we'll get another chance
617 * later.
618 */
619 nfound++;
620 continue;
621 }
622 nfound++;
623
624 /* No need to lock the LWP in order to see LSZOMB. */
625 if (l2->l_stat != LSZOMB)
626 continue;
627
628 /*
629 * We're no longer waiting. Reset the "first waiter"
630 * pointer on the target, in case it was us.
631 */
632 l->l_waitingfor = 0;
633 l2->l_waiter = 0;
634 p->p_nlwpwait--;
635 if (departed)
636 *departed = l2->l_lid;
637 sched_lwp_collect(l2);
638
639 /* lwp_free() releases the proc lock. */
640 lwp_free(l2, false, false);
641 mutex_enter(p->p_lock);
642 return 0;
643 }
644
645 if (error != 0)
646 break;
647 if (nfound == 0) {
648 error = ESRCH;
649 break;
650 }
651
652 /*
653 * The kernel is careful to ensure that it can not deadlock
654 * when exiting - just keep waiting.
655 */
656 if (exiting) {
657 KASSERT(p->p_nlwps > 1);
658 cv_wait(&p->p_lwpcv, p->p_lock);
659 continue;
660 }
661
662 /*
663 * If all other LWPs are waiting for exits or suspends
664 * and the supply of zombies and potential zombies is
665 * exhausted, then we are about to deadlock.
666 *
667 * If the process is exiting (and this LWP is not the one
668 * that is coordinating the exit) then bail out now.
669 */
670 if ((p->p_sflag & PS_WEXIT) != 0 ||
671 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
672 error = EDEADLK;
673 break;
674 }
675
676 /*
677 * Sit around and wait for something to happen. We'll be
678 * awoken if any of the conditions examined change: if an
679 * LWP exits, is collected, or is detached.
680 */
681 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
682 break;
683 }
684
685 /*
686 * We didn't find any LWPs to collect, we may have received a
687 * signal, or some other condition has caused us to bail out.
688 *
689 * If waiting on a specific LWP, clear the waiters marker: some
690 * other LWP may want it. Then, kick all the remaining waiters
691 * so that they can re-check for zombies and for deadlock.
692 */
693 if (lid != 0) {
694 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
695 if (l2->l_lid == lid) {
696 if (l2->l_waiter == curlid)
697 l2->l_waiter = 0;
698 break;
699 }
700 }
701 }
702 p->p_nlwpwait--;
703 l->l_waitingfor = 0;
704 cv_broadcast(&p->p_lwpcv);
705
706 return error;
707 }
708
709 /*
710 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
711 * The new LWP is created in state LSIDL and must be set running,
712 * suspended, or stopped by the caller.
713 */
714 int
715 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
716 void *stack, size_t stacksize, void (*func)(void *), void *arg,
717 lwp_t **rnewlwpp, int sclass)
718 {
719 struct lwp *l2, *isfree;
720 turnstile_t *ts;
721 lwpid_t lid;
722
723 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
724
725 /*
726 * Enforce limits, excluding the first lwp and kthreads.
727 */
728 if (p2->p_nlwps != 0 && p2 != &proc0) {
729 uid_t uid = kauth_cred_getuid(l1->l_cred);
730 int count = chglwpcnt(uid, 1);
731 if (__predict_false(count >
732 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
733 if (kauth_authorize_process(l1->l_cred,
734 KAUTH_PROCESS_RLIMIT, p2,
735 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
736 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
737 != 0) {
738 if ((count = chglwpcnt(uid, -1)) < 0)
739 printf("%s, %d: %s, %d, %d\n", __FILE__,
740 __LINE__, l1->l_proc->p_comm,
741 l1->l_proc->p_pid, count);
742 // return EAGAIN;
743 }
744 }
745 }
746
747 /*
748 * First off, reap any detached LWP waiting to be collected.
749 * We can re-use its LWP structure and turnstile.
750 */
751 isfree = NULL;
752 if (p2->p_zomblwp != NULL) {
753 mutex_enter(p2->p_lock);
754 if ((isfree = p2->p_zomblwp) != NULL) {
755 p2->p_zomblwp = NULL;
756 lwp_free(isfree, true, false);/* releases proc mutex */
757 } else
758 mutex_exit(p2->p_lock);
759 }
760 if (isfree == NULL) {
761 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
762 memset(l2, 0, sizeof(*l2));
763 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
764 SLIST_INIT(&l2->l_pi_lenders);
765 } else {
766 l2 = isfree;
767 ts = l2->l_ts;
768 KASSERT(l2->l_inheritedprio == -1);
769 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
770 memset(l2, 0, sizeof(*l2));
771 l2->l_ts = ts;
772 }
773
774 l2->l_stat = LSIDL;
775 l2->l_proc = p2;
776 l2->l_refcnt = 1;
777 l2->l_class = sclass;
778
779 /*
780 * If vfork(), we want the LWP to run fast and on the same CPU
781 * as its parent, so that it can reuse the VM context and cache
782 * footprint on the local CPU.
783 */
784 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
785 l2->l_kpribase = PRI_KERNEL;
786 l2->l_priority = l1->l_priority;
787 l2->l_inheritedprio = -1;
788 l2->l_flag = 0;
789 l2->l_pflag = LP_MPSAFE;
790 TAILQ_INIT(&l2->l_ld_locks);
791
792 /*
793 * For vfork, borrow parent's lwpctl context if it exists.
794 * This also causes us to return via lwp_userret.
795 */
796 if (flags & LWP_VFORK && l1->l_lwpctl) {
797 l2->l_lwpctl = l1->l_lwpctl;
798 l2->l_flag |= LW_LWPCTL;
799 }
800
801 /*
802 * If not the first LWP in the process, grab a reference to the
803 * descriptor table.
804 */
805 l2->l_fd = p2->p_fd;
806 if (p2->p_nlwps != 0) {
807 KASSERT(l1->l_proc == p2);
808 fd_hold(l2);
809 } else {
810 KASSERT(l1->l_proc != p2);
811 }
812
813 if (p2->p_flag & PK_SYSTEM) {
814 /* Mark it as a system LWP. */
815 l2->l_flag |= LW_SYSTEM;
816 }
817
818 kpreempt_disable();
819 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
820 l2->l_cpu = l1->l_cpu;
821 kpreempt_enable();
822
823 kdtrace_thread_ctor(NULL, l2);
824 lwp_initspecific(l2);
825 sched_lwp_fork(l1, l2);
826 lwp_update_creds(l2);
827 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
828 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
829 cv_init(&l2->l_sigcv, "sigwait");
830 l2->l_syncobj = &sched_syncobj;
831
832 if (rnewlwpp != NULL)
833 *rnewlwpp = l2;
834
835 /*
836 * PCU state needs to be saved before calling uvm_lwp_fork() so that
837 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
838 */
839 pcu_save_all(l1);
840
841 uvm_lwp_setuarea(l2, uaddr);
842 uvm_lwp_fork(l1, l2, stack, stacksize, func,
843 (arg != NULL) ? arg : l2);
844
845 if ((flags & LWP_PIDLID) != 0) {
846 lid = proc_alloc_pid(p2);
847 l2->l_pflag |= LP_PIDLID;
848 } else {
849 lid = 0;
850 }
851
852 mutex_enter(p2->p_lock);
853
854 if ((flags & LWP_DETACHED) != 0) {
855 l2->l_prflag = LPR_DETACHED;
856 p2->p_ndlwps++;
857 } else
858 l2->l_prflag = 0;
859
860 l2->l_sigstk = l1->l_sigstk;
861 l2->l_sigmask = l1->l_sigmask;
862 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
863 sigemptyset(&l2->l_sigpend.sp_set);
864
865 if (lid == 0) {
866 p2->p_nlwpid++;
867 if (p2->p_nlwpid == 0)
868 p2->p_nlwpid++;
869 lid = p2->p_nlwpid;
870 }
871 l2->l_lid = lid;
872 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
873 p2->p_nlwps++;
874 p2->p_nrlwps++;
875
876 KASSERT(l2->l_affinity == NULL);
877
878 if ((p2->p_flag & PK_SYSTEM) == 0) {
879 /* Inherit the affinity mask. */
880 if (l1->l_affinity) {
881 /*
882 * Note that we hold the state lock while inheriting
883 * the affinity to avoid race with sched_setaffinity().
884 */
885 lwp_lock(l1);
886 if (l1->l_affinity) {
887 kcpuset_use(l1->l_affinity);
888 l2->l_affinity = l1->l_affinity;
889 }
890 lwp_unlock(l1);
891 }
892 lwp_lock(l2);
893 /* Inherit a processor-set */
894 l2->l_psid = l1->l_psid;
895 /* Look for a CPU to start */
896 l2->l_cpu = sched_takecpu(l2);
897 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
898 }
899 mutex_exit(p2->p_lock);
900
901 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
902
903 mutex_enter(proc_lock);
904 LIST_INSERT_HEAD(&alllwp, l2, l_list);
905 mutex_exit(proc_lock);
906
907 SYSCALL_TIME_LWP_INIT(l2);
908
909 if (p2->p_emul->e_lwp_fork)
910 (*p2->p_emul->e_lwp_fork)(l1, l2);
911
912 return (0);
913 }
914
915 /*
916 * Called by MD code when a new LWP begins execution. Must be called
917 * with the previous LWP locked (so at splsched), or if there is no
918 * previous LWP, at splsched.
919 */
920 void
921 lwp_startup(struct lwp *prev, struct lwp *new)
922 {
923
924 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
925
926 KASSERT(kpreempt_disabled());
927 if (prev != NULL) {
928 /*
929 * Normalize the count of the spin-mutexes, it was
930 * increased in mi_switch(). Unmark the state of
931 * context switch - it is finished for previous LWP.
932 */
933 curcpu()->ci_mtx_count++;
934 membar_exit();
935 prev->l_ctxswtch = 0;
936 }
937 KPREEMPT_DISABLE(new);
938 spl0();
939 if (__predict_true(new->l_proc->p_vmspace))
940 pmap_activate(new);
941
942 /* Note trip through cpu_switchto(). */
943 pserialize_switchpoint();
944
945 LOCKDEBUG_BARRIER(NULL, 0);
946 KPREEMPT_ENABLE(new);
947 if ((new->l_pflag & LP_MPSAFE) == 0) {
948 KERNEL_LOCK(1, new);
949 }
950 }
951
952 /*
953 * Exit an LWP.
954 */
955 void
956 lwp_exit(struct lwp *l)
957 {
958 struct proc *p = l->l_proc;
959 struct lwp *l2;
960 bool current;
961
962 current = (l == curlwp);
963
964 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
965 KASSERT(p == curproc);
966
967 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
968
969 /*
970 * Verify that we hold no locks other than the kernel lock.
971 */
972 LOCKDEBUG_BARRIER(&kernel_lock, 0);
973
974 /*
975 * If we are the last live LWP in a process, we need to exit the
976 * entire process. We do so with an exit status of zero, because
977 * it's a "controlled" exit, and because that's what Solaris does.
978 *
979 * We are not quite a zombie yet, but for accounting purposes we
980 * must increment the count of zombies here.
981 *
982 * Note: the last LWP's specificdata will be deleted here.
983 */
984 mutex_enter(p->p_lock);
985 if (p->p_nlwps - p->p_nzlwps == 1) {
986 KASSERT(current == true);
987 /* XXXSMP kernel_lock not held */
988 exit1(l, 0);
989 /* NOTREACHED */
990 }
991 p->p_nzlwps++;
992 mutex_exit(p->p_lock);
993
994 if (p->p_emul->e_lwp_exit)
995 (*p->p_emul->e_lwp_exit)(l);
996
997 /* Drop filedesc reference. */
998 fd_free();
999
1000 /* Delete the specificdata while it's still safe to sleep. */
1001 lwp_finispecific(l);
1002
1003 /*
1004 * Release our cached credentials.
1005 */
1006 kauth_cred_free(l->l_cred);
1007 callout_destroy(&l->l_timeout_ch);
1008
1009 /*
1010 * Remove the LWP from the global list.
1011 * Free its LID from the PID namespace if needed.
1012 */
1013 mutex_enter(proc_lock);
1014 LIST_REMOVE(l, l_list);
1015 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1016 proc_free_pid(l->l_lid);
1017 }
1018 mutex_exit(proc_lock);
1019
1020 /*
1021 * Get rid of all references to the LWP that others (e.g. procfs)
1022 * may have, and mark the LWP as a zombie. If the LWP is detached,
1023 * mark it waiting for collection in the proc structure. Note that
1024 * before we can do that, we need to free any other dead, deatched
1025 * LWP waiting to meet its maker.
1026 */
1027 mutex_enter(p->p_lock);
1028 lwp_drainrefs(l);
1029
1030 if ((l->l_prflag & LPR_DETACHED) != 0) {
1031 while ((l2 = p->p_zomblwp) != NULL) {
1032 p->p_zomblwp = NULL;
1033 lwp_free(l2, false, false);/* releases proc mutex */
1034 mutex_enter(p->p_lock);
1035 l->l_refcnt++;
1036 lwp_drainrefs(l);
1037 }
1038 p->p_zomblwp = l;
1039 }
1040
1041 /*
1042 * If we find a pending signal for the process and we have been
1043 * asked to check for signals, then we lose: arrange to have
1044 * all other LWPs in the process check for signals.
1045 */
1046 if ((l->l_flag & LW_PENDSIG) != 0 &&
1047 firstsig(&p->p_sigpend.sp_set) != 0) {
1048 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1049 lwp_lock(l2);
1050 l2->l_flag |= LW_PENDSIG;
1051 lwp_unlock(l2);
1052 }
1053 }
1054
1055 /*
1056 * Release any PCU resources before becoming a zombie.
1057 */
1058 pcu_discard_all(l);
1059
1060 lwp_lock(l);
1061 l->l_stat = LSZOMB;
1062 if (l->l_name != NULL) {
1063 strcpy(l->l_name, "(zombie)");
1064 }
1065 lwp_unlock(l);
1066 p->p_nrlwps--;
1067 cv_broadcast(&p->p_lwpcv);
1068 if (l->l_lwpctl != NULL)
1069 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1070 mutex_exit(p->p_lock);
1071
1072 /*
1073 * We can no longer block. At this point, lwp_free() may already
1074 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1075 *
1076 * Free MD LWP resources.
1077 */
1078 cpu_lwp_free(l, 0);
1079
1080 if (current) {
1081 pmap_deactivate(l);
1082
1083 /*
1084 * Release the kernel lock, and switch away into
1085 * oblivion.
1086 */
1087 #ifdef notyet
1088 /* XXXSMP hold in lwp_userret() */
1089 KERNEL_UNLOCK_LAST(l);
1090 #else
1091 KERNEL_UNLOCK_ALL(l, NULL);
1092 #endif
1093 lwp_exit_switchaway(l);
1094 }
1095 }
1096
1097 /*
1098 * Free a dead LWP's remaining resources.
1099 *
1100 * XXXLWP limits.
1101 */
1102 void
1103 lwp_free(struct lwp *l, bool recycle, bool last)
1104 {
1105 struct proc *p = l->l_proc;
1106 struct rusage *ru;
1107 ksiginfoq_t kq;
1108
1109 KASSERT(l != curlwp);
1110 KASSERT(last || mutex_owned(p->p_lock));
1111
1112 if (p != &proc0 && p->p_nlwps != 1)
1113 if (chglwpcnt(kauth_cred_getuid(l->l_cred), -1) < 0)
1114 printf("%s, %d: %d, %s\n", __FILE__, __LINE__,
1115 p->p_pid, p->p_comm);
1116 /*
1117 * If this was not the last LWP in the process, then adjust
1118 * counters and unlock.
1119 */
1120 if (!last) {
1121 /*
1122 * Add the LWP's run time to the process' base value.
1123 * This needs to co-incide with coming off p_lwps.
1124 */
1125 bintime_add(&p->p_rtime, &l->l_rtime);
1126 p->p_pctcpu += l->l_pctcpu;
1127 ru = &p->p_stats->p_ru;
1128 ruadd(ru, &l->l_ru);
1129 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1130 ru->ru_nivcsw += l->l_nivcsw;
1131 LIST_REMOVE(l, l_sibling);
1132 p->p_nlwps--;
1133 p->p_nzlwps--;
1134 if ((l->l_prflag & LPR_DETACHED) != 0)
1135 p->p_ndlwps--;
1136
1137 /*
1138 * Have any LWPs sleeping in lwp_wait() recheck for
1139 * deadlock.
1140 */
1141 cv_broadcast(&p->p_lwpcv);
1142 mutex_exit(p->p_lock);
1143 }
1144
1145 #ifdef MULTIPROCESSOR
1146 /*
1147 * In the unlikely event that the LWP is still on the CPU,
1148 * then spin until it has switched away. We need to release
1149 * all locks to avoid deadlock against interrupt handlers on
1150 * the target CPU.
1151 */
1152 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1153 int count;
1154 (void)count; /* XXXgcc */
1155 KERNEL_UNLOCK_ALL(curlwp, &count);
1156 while ((l->l_pflag & LP_RUNNING) != 0 ||
1157 l->l_cpu->ci_curlwp == l)
1158 SPINLOCK_BACKOFF_HOOK;
1159 KERNEL_LOCK(count, curlwp);
1160 }
1161 #endif
1162
1163 /*
1164 * Destroy the LWP's remaining signal information.
1165 */
1166 ksiginfo_queue_init(&kq);
1167 sigclear(&l->l_sigpend, NULL, &kq);
1168 ksiginfo_queue_drain(&kq);
1169 cv_destroy(&l->l_sigcv);
1170
1171 /*
1172 * Free lwpctl structure and affinity.
1173 */
1174 if (l->l_lwpctl) {
1175 lwp_ctl_free(l);
1176 }
1177 if (l->l_affinity) {
1178 kcpuset_unuse(l->l_affinity, NULL);
1179 l->l_affinity = NULL;
1180 }
1181
1182 /*
1183 * Free the LWP's turnstile and the LWP structure itself unless the
1184 * caller wants to recycle them. Also, free the scheduler specific
1185 * data.
1186 *
1187 * We can't return turnstile0 to the pool (it didn't come from it),
1188 * so if it comes up just drop it quietly and move on.
1189 *
1190 * We don't recycle the VM resources at this time.
1191 */
1192
1193 if (!recycle && l->l_ts != &turnstile0)
1194 pool_cache_put(turnstile_cache, l->l_ts);
1195 if (l->l_name != NULL)
1196 kmem_free(l->l_name, MAXCOMLEN);
1197
1198 cpu_lwp_free2(l);
1199 uvm_lwp_exit(l);
1200
1201 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1202 KASSERT(l->l_inheritedprio == -1);
1203 KASSERT(l->l_blcnt == 0);
1204 kdtrace_thread_dtor(NULL, l);
1205 if (!recycle)
1206 pool_cache_put(lwp_cache, l);
1207 }
1208
1209 /*
1210 * Migrate the LWP to the another CPU. Unlocks the LWP.
1211 */
1212 void
1213 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1214 {
1215 struct schedstate_percpu *tspc;
1216 int lstat = l->l_stat;
1217
1218 KASSERT(lwp_locked(l, NULL));
1219 KASSERT(tci != NULL);
1220
1221 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1222 if ((l->l_pflag & LP_RUNNING) != 0) {
1223 lstat = LSONPROC;
1224 }
1225
1226 /*
1227 * The destination CPU could be changed while previous migration
1228 * was not finished.
1229 */
1230 if (l->l_target_cpu != NULL) {
1231 l->l_target_cpu = tci;
1232 lwp_unlock(l);
1233 return;
1234 }
1235
1236 /* Nothing to do if trying to migrate to the same CPU */
1237 if (l->l_cpu == tci) {
1238 lwp_unlock(l);
1239 return;
1240 }
1241
1242 KASSERT(l->l_target_cpu == NULL);
1243 tspc = &tci->ci_schedstate;
1244 switch (lstat) {
1245 case LSRUN:
1246 l->l_target_cpu = tci;
1247 break;
1248 case LSIDL:
1249 l->l_cpu = tci;
1250 lwp_unlock_to(l, tspc->spc_mutex);
1251 return;
1252 case LSSLEEP:
1253 l->l_cpu = tci;
1254 break;
1255 case LSSTOP:
1256 case LSSUSPENDED:
1257 l->l_cpu = tci;
1258 if (l->l_wchan == NULL) {
1259 lwp_unlock_to(l, tspc->spc_lwplock);
1260 return;
1261 }
1262 break;
1263 case LSONPROC:
1264 l->l_target_cpu = tci;
1265 spc_lock(l->l_cpu);
1266 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1267 spc_unlock(l->l_cpu);
1268 break;
1269 }
1270 lwp_unlock(l);
1271 }
1272
1273 /*
1274 * Find the LWP in the process. Arguments may be zero, in such case,
1275 * the calling process and first LWP in the list will be used.
1276 * On success - returns proc locked.
1277 */
1278 struct lwp *
1279 lwp_find2(pid_t pid, lwpid_t lid)
1280 {
1281 proc_t *p;
1282 lwp_t *l;
1283
1284 /* Find the process. */
1285 if (pid != 0) {
1286 mutex_enter(proc_lock);
1287 p = proc_find(pid);
1288 if (p == NULL) {
1289 mutex_exit(proc_lock);
1290 return NULL;
1291 }
1292 mutex_enter(p->p_lock);
1293 mutex_exit(proc_lock);
1294 } else {
1295 p = curlwp->l_proc;
1296 mutex_enter(p->p_lock);
1297 }
1298 /* Find the thread. */
1299 if (lid != 0) {
1300 l = lwp_find(p, lid);
1301 } else {
1302 l = LIST_FIRST(&p->p_lwps);
1303 }
1304 if (l == NULL) {
1305 mutex_exit(p->p_lock);
1306 }
1307 return l;
1308 }
1309
1310 /*
1311 * Look up a live LWP within the specified process.
1312 *
1313 * Must be called with p->p_lock held.
1314 */
1315 struct lwp *
1316 lwp_find(struct proc *p, lwpid_t id)
1317 {
1318 struct lwp *l;
1319
1320 KASSERT(mutex_owned(p->p_lock));
1321
1322 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1323 if (l->l_lid == id)
1324 break;
1325 }
1326
1327 /*
1328 * No need to lock - all of these conditions will
1329 * be visible with the process level mutex held.
1330 */
1331 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1332 l = NULL;
1333
1334 return l;
1335 }
1336
1337 /*
1338 * Update an LWP's cached credentials to mirror the process' master copy.
1339 *
1340 * This happens early in the syscall path, on user trap, and on LWP
1341 * creation. A long-running LWP can also voluntarily choose to update
1342 * it's credentials by calling this routine. This may be called from
1343 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1344 */
1345 void
1346 lwp_update_creds(struct lwp *l)
1347 {
1348 kauth_cred_t oc;
1349 struct proc *p;
1350
1351 p = l->l_proc;
1352 oc = l->l_cred;
1353
1354 mutex_enter(p->p_lock);
1355 kauth_cred_hold(p->p_cred);
1356 l->l_cred = p->p_cred;
1357 l->l_prflag &= ~LPR_CRMOD;
1358 mutex_exit(p->p_lock);
1359 if (oc != NULL)
1360 kauth_cred_free(oc);
1361 }
1362
1363 /*
1364 * Verify that an LWP is locked, and optionally verify that the lock matches
1365 * one we specify.
1366 */
1367 int
1368 lwp_locked(struct lwp *l, kmutex_t *mtx)
1369 {
1370 kmutex_t *cur = l->l_mutex;
1371
1372 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1373 }
1374
1375 /*
1376 * Lend a new mutex to an LWP. The old mutex must be held.
1377 */
1378 void
1379 lwp_setlock(struct lwp *l, kmutex_t *new)
1380 {
1381
1382 KASSERT(mutex_owned(l->l_mutex));
1383
1384 membar_exit();
1385 l->l_mutex = new;
1386 }
1387
1388 /*
1389 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1390 * must be held.
1391 */
1392 void
1393 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1394 {
1395 kmutex_t *old;
1396
1397 KASSERT(lwp_locked(l, NULL));
1398
1399 old = l->l_mutex;
1400 membar_exit();
1401 l->l_mutex = new;
1402 mutex_spin_exit(old);
1403 }
1404
1405 int
1406 lwp_trylock(struct lwp *l)
1407 {
1408 kmutex_t *old;
1409
1410 for (;;) {
1411 if (!mutex_tryenter(old = l->l_mutex))
1412 return 0;
1413 if (__predict_true(l->l_mutex == old))
1414 return 1;
1415 mutex_spin_exit(old);
1416 }
1417 }
1418
1419 void
1420 lwp_unsleep(lwp_t *l, bool cleanup)
1421 {
1422
1423 KASSERT(mutex_owned(l->l_mutex));
1424 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1425 }
1426
1427 /*
1428 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1429 * set.
1430 */
1431 void
1432 lwp_userret(struct lwp *l)
1433 {
1434 struct proc *p;
1435 int sig;
1436
1437 KASSERT(l == curlwp);
1438 KASSERT(l->l_stat == LSONPROC);
1439 p = l->l_proc;
1440
1441 #ifndef __HAVE_FAST_SOFTINTS
1442 /* Run pending soft interrupts. */
1443 if (l->l_cpu->ci_data.cpu_softints != 0)
1444 softint_overlay();
1445 #endif
1446
1447 /*
1448 * It is safe to do this read unlocked on a MP system..
1449 */
1450 while ((l->l_flag & LW_USERRET) != 0) {
1451 /*
1452 * Process pending signals first, unless the process
1453 * is dumping core or exiting, where we will instead
1454 * enter the LW_WSUSPEND case below.
1455 */
1456 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1457 LW_PENDSIG) {
1458 mutex_enter(p->p_lock);
1459 while ((sig = issignal(l)) != 0)
1460 postsig(sig);
1461 mutex_exit(p->p_lock);
1462 }
1463
1464 /*
1465 * Core-dump or suspend pending.
1466 *
1467 * In case of core dump, suspend ourselves, so that the kernel
1468 * stack and therefore the userland registers saved in the
1469 * trapframe are around for coredump() to write them out.
1470 * We also need to save any PCU resources that we have so that
1471 * they accessible for coredump(). We issue a wakeup on
1472 * p->p_lwpcv so that sigexit() will write the core file out
1473 * once all other LWPs are suspended.
1474 */
1475 if ((l->l_flag & LW_WSUSPEND) != 0) {
1476 pcu_save_all(l);
1477 mutex_enter(p->p_lock);
1478 p->p_nrlwps--;
1479 cv_broadcast(&p->p_lwpcv);
1480 lwp_lock(l);
1481 l->l_stat = LSSUSPENDED;
1482 lwp_unlock(l);
1483 mutex_exit(p->p_lock);
1484 lwp_lock(l);
1485 mi_switch(l);
1486 }
1487
1488 /* Process is exiting. */
1489 if ((l->l_flag & LW_WEXIT) != 0) {
1490 lwp_exit(l);
1491 KASSERT(0);
1492 /* NOTREACHED */
1493 }
1494
1495 /* update lwpctl processor (for vfork child_return) */
1496 if (l->l_flag & LW_LWPCTL) {
1497 lwp_lock(l);
1498 KASSERT(kpreempt_disabled());
1499 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1500 l->l_lwpctl->lc_pctr++;
1501 l->l_flag &= ~LW_LWPCTL;
1502 lwp_unlock(l);
1503 }
1504 }
1505 }
1506
1507 /*
1508 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1509 */
1510 void
1511 lwp_need_userret(struct lwp *l)
1512 {
1513 KASSERT(lwp_locked(l, NULL));
1514
1515 /*
1516 * Since the tests in lwp_userret() are done unlocked, make sure
1517 * that the condition will be seen before forcing the LWP to enter
1518 * kernel mode.
1519 */
1520 membar_producer();
1521 cpu_signotify(l);
1522 }
1523
1524 /*
1525 * Add one reference to an LWP. This will prevent the LWP from
1526 * exiting, thus keep the lwp structure and PCB around to inspect.
1527 */
1528 void
1529 lwp_addref(struct lwp *l)
1530 {
1531
1532 KASSERT(mutex_owned(l->l_proc->p_lock));
1533 KASSERT(l->l_stat != LSZOMB);
1534 KASSERT(l->l_refcnt != 0);
1535
1536 l->l_refcnt++;
1537 }
1538
1539 /*
1540 * Remove one reference to an LWP. If this is the last reference,
1541 * then we must finalize the LWP's death.
1542 */
1543 void
1544 lwp_delref(struct lwp *l)
1545 {
1546 struct proc *p = l->l_proc;
1547
1548 mutex_enter(p->p_lock);
1549 lwp_delref2(l);
1550 mutex_exit(p->p_lock);
1551 }
1552
1553 /*
1554 * Remove one reference to an LWP. If this is the last reference,
1555 * then we must finalize the LWP's death. The proc mutex is held
1556 * on entry.
1557 */
1558 void
1559 lwp_delref2(struct lwp *l)
1560 {
1561 struct proc *p = l->l_proc;
1562
1563 KASSERT(mutex_owned(p->p_lock));
1564 KASSERT(l->l_stat != LSZOMB);
1565 KASSERT(l->l_refcnt > 0);
1566 if (--l->l_refcnt == 0)
1567 cv_broadcast(&p->p_lwpcv);
1568 }
1569
1570 /*
1571 * Drain all references to the current LWP.
1572 */
1573 void
1574 lwp_drainrefs(struct lwp *l)
1575 {
1576 struct proc *p = l->l_proc;
1577
1578 KASSERT(mutex_owned(p->p_lock));
1579 KASSERT(l->l_refcnt != 0);
1580
1581 l->l_refcnt--;
1582 while (l->l_refcnt != 0)
1583 cv_wait(&p->p_lwpcv, p->p_lock);
1584 }
1585
1586 /*
1587 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1588 * be held.
1589 */
1590 bool
1591 lwp_alive(lwp_t *l)
1592 {
1593
1594 KASSERT(mutex_owned(l->l_proc->p_lock));
1595
1596 switch (l->l_stat) {
1597 case LSSLEEP:
1598 case LSRUN:
1599 case LSONPROC:
1600 case LSSTOP:
1601 case LSSUSPENDED:
1602 return true;
1603 default:
1604 return false;
1605 }
1606 }
1607
1608 /*
1609 * Return first live LWP in the process.
1610 */
1611 lwp_t *
1612 lwp_find_first(proc_t *p)
1613 {
1614 lwp_t *l;
1615
1616 KASSERT(mutex_owned(p->p_lock));
1617
1618 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1619 if (lwp_alive(l)) {
1620 return l;
1621 }
1622 }
1623
1624 return NULL;
1625 }
1626
1627 /*
1628 * Allocate a new lwpctl structure for a user LWP.
1629 */
1630 int
1631 lwp_ctl_alloc(vaddr_t *uaddr)
1632 {
1633 lcproc_t *lp;
1634 u_int bit, i, offset;
1635 struct uvm_object *uao;
1636 int error;
1637 lcpage_t *lcp;
1638 proc_t *p;
1639 lwp_t *l;
1640
1641 l = curlwp;
1642 p = l->l_proc;
1643
1644 /* don't allow a vforked process to create lwp ctls */
1645 if (p->p_lflag & PL_PPWAIT)
1646 return EBUSY;
1647
1648 if (l->l_lcpage != NULL) {
1649 lcp = l->l_lcpage;
1650 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1651 return 0;
1652 }
1653
1654 /* First time around, allocate header structure for the process. */
1655 if ((lp = p->p_lwpctl) == NULL) {
1656 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1657 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1658 lp->lp_uao = NULL;
1659 TAILQ_INIT(&lp->lp_pages);
1660 mutex_enter(p->p_lock);
1661 if (p->p_lwpctl == NULL) {
1662 p->p_lwpctl = lp;
1663 mutex_exit(p->p_lock);
1664 } else {
1665 mutex_exit(p->p_lock);
1666 mutex_destroy(&lp->lp_lock);
1667 kmem_free(lp, sizeof(*lp));
1668 lp = p->p_lwpctl;
1669 }
1670 }
1671
1672 /*
1673 * Set up an anonymous memory region to hold the shared pages.
1674 * Map them into the process' address space. The user vmspace
1675 * gets the first reference on the UAO.
1676 */
1677 mutex_enter(&lp->lp_lock);
1678 if (lp->lp_uao == NULL) {
1679 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1680 lp->lp_cur = 0;
1681 lp->lp_max = LWPCTL_UAREA_SZ;
1682 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1683 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1684 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1685 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1686 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1687 if (error != 0) {
1688 uao_detach(lp->lp_uao);
1689 lp->lp_uao = NULL;
1690 mutex_exit(&lp->lp_lock);
1691 return error;
1692 }
1693 }
1694
1695 /* Get a free block and allocate for this LWP. */
1696 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1697 if (lcp->lcp_nfree != 0)
1698 break;
1699 }
1700 if (lcp == NULL) {
1701 /* Nothing available - try to set up a free page. */
1702 if (lp->lp_cur == lp->lp_max) {
1703 mutex_exit(&lp->lp_lock);
1704 return ENOMEM;
1705 }
1706 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1707 if (lcp == NULL) {
1708 mutex_exit(&lp->lp_lock);
1709 return ENOMEM;
1710 }
1711 /*
1712 * Wire the next page down in kernel space. Since this
1713 * is a new mapping, we must add a reference.
1714 */
1715 uao = lp->lp_uao;
1716 (*uao->pgops->pgo_reference)(uao);
1717 lcp->lcp_kaddr = vm_map_min(kernel_map);
1718 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1719 uao, lp->lp_cur, PAGE_SIZE,
1720 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1721 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1722 if (error != 0) {
1723 mutex_exit(&lp->lp_lock);
1724 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1725 (*uao->pgops->pgo_detach)(uao);
1726 return error;
1727 }
1728 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1729 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1730 if (error != 0) {
1731 mutex_exit(&lp->lp_lock);
1732 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1733 lcp->lcp_kaddr + PAGE_SIZE);
1734 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1735 return error;
1736 }
1737 /* Prepare the page descriptor and link into the list. */
1738 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1739 lp->lp_cur += PAGE_SIZE;
1740 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1741 lcp->lcp_rotor = 0;
1742 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1743 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1744 }
1745 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1746 if (++i >= LWPCTL_BITMAP_ENTRIES)
1747 i = 0;
1748 }
1749 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1750 lcp->lcp_bitmap[i] ^= (1 << bit);
1751 lcp->lcp_rotor = i;
1752 lcp->lcp_nfree--;
1753 l->l_lcpage = lcp;
1754 offset = (i << 5) + bit;
1755 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1756 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1757 mutex_exit(&lp->lp_lock);
1758
1759 KPREEMPT_DISABLE(l);
1760 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1761 KPREEMPT_ENABLE(l);
1762
1763 return 0;
1764 }
1765
1766 /*
1767 * Free an lwpctl structure back to the per-process list.
1768 */
1769 void
1770 lwp_ctl_free(lwp_t *l)
1771 {
1772 struct proc *p = l->l_proc;
1773 lcproc_t *lp;
1774 lcpage_t *lcp;
1775 u_int map, offset;
1776
1777 /* don't free a lwp context we borrowed for vfork */
1778 if (p->p_lflag & PL_PPWAIT) {
1779 l->l_lwpctl = NULL;
1780 return;
1781 }
1782
1783 lp = p->p_lwpctl;
1784 KASSERT(lp != NULL);
1785
1786 lcp = l->l_lcpage;
1787 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1788 KASSERT(offset < LWPCTL_PER_PAGE);
1789
1790 mutex_enter(&lp->lp_lock);
1791 lcp->lcp_nfree++;
1792 map = offset >> 5;
1793 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1794 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1795 lcp->lcp_rotor = map;
1796 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1797 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1798 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1799 }
1800 mutex_exit(&lp->lp_lock);
1801 }
1802
1803 /*
1804 * Process is exiting; tear down lwpctl state. This can only be safely
1805 * called by the last LWP in the process.
1806 */
1807 void
1808 lwp_ctl_exit(void)
1809 {
1810 lcpage_t *lcp, *next;
1811 lcproc_t *lp;
1812 proc_t *p;
1813 lwp_t *l;
1814
1815 l = curlwp;
1816 l->l_lwpctl = NULL;
1817 l->l_lcpage = NULL;
1818 p = l->l_proc;
1819 lp = p->p_lwpctl;
1820
1821 KASSERT(lp != NULL);
1822 KASSERT(p->p_nlwps == 1);
1823
1824 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1825 next = TAILQ_NEXT(lcp, lcp_chain);
1826 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1827 lcp->lcp_kaddr + PAGE_SIZE);
1828 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1829 }
1830
1831 if (lp->lp_uao != NULL) {
1832 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1833 lp->lp_uva + LWPCTL_UAREA_SZ);
1834 }
1835
1836 mutex_destroy(&lp->lp_lock);
1837 kmem_free(lp, sizeof(*lp));
1838 p->p_lwpctl = NULL;
1839 }
1840
1841 /*
1842 * Return the current LWP's "preemption counter". Used to detect
1843 * preemption across operations that can tolerate preemption without
1844 * crashing, but which may generate incorrect results if preempted.
1845 */
1846 uint64_t
1847 lwp_pctr(void)
1848 {
1849
1850 return curlwp->l_ncsw;
1851 }
1852
1853 /*
1854 * Set an LWP's private data pointer.
1855 */
1856 int
1857 lwp_setprivate(struct lwp *l, void *ptr)
1858 {
1859 int error = 0;
1860
1861 l->l_private = ptr;
1862 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1863 error = cpu_lwp_setprivate(l, ptr);
1864 #endif
1865 return error;
1866 }
1867
1868 #if defined(DDB)
1869 #include <machine/pcb.h>
1870
1871 void
1872 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1873 {
1874 lwp_t *l;
1875
1876 LIST_FOREACH(l, &alllwp, l_list) {
1877 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1878
1879 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1880 continue;
1881 }
1882 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1883 (void *)addr, (void *)stack,
1884 (size_t)(addr - stack), l);
1885 }
1886 }
1887 #endif /* defined(DDB) */
1888