Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.173
      1 /*	$NetBSD: kern_lwp.c,v 1.173 2012/09/27 20:43:15 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.
     64  *
     65  *	LSIDL
     66  *
     67  *		Idle: the LWP has been created but has not yet executed,
     68  *		or it has ceased executing a unit of work and is waiting
     69  *		to be started again.
     70  *
     71  *	LSSUSPENDED:
     72  *
     73  *		Suspended: the LWP has had its execution suspended by
     74  *		another LWP in the same process using the _lwp_suspend()
     75  *		system call.  User-level LWPs also enter the suspended
     76  *		state when the system is shutting down.
     77  *
     78  *	The second set represent a "statement of intent" on behalf of the
     79  *	LWP.  The LWP may in fact be executing on a processor, may be
     80  *	sleeping or idle. It is expected to take the necessary action to
     81  *	stop executing or become "running" again within a short timeframe.
     82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83  *	Importantly, it indicates that its state is tied to a CPU.
     84  *
     85  *	LSZOMB:
     86  *
     87  *		Dead or dying: the LWP has released most of its resources
     88  *		and is about to switch away into oblivion, or has already
     89  *		switched away.  When it switches away, its few remaining
     90  *		resources can be collected.
     91  *
     92  *	LSSLEEP:
     93  *
     94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95  *		has switched away or will switch away shortly to allow other
     96  *		LWPs to run on the CPU.
     97  *
     98  *	LSSTOP:
     99  *
    100  *		Stopped: the LWP has been stopped as a result of a job
    101  *		control signal, or as a result of the ptrace() interface.
    102  *
    103  *		Stopped LWPs may run briefly within the kernel to handle
    104  *		signals that they receive, but will not return to user space
    105  *		until their process' state is changed away from stopped.
    106  *
    107  *		Single LWPs within a process can not be set stopped
    108  *		selectively: all actions that can stop or continue LWPs
    109  *		occur at the process level.
    110  *
    111  * State transitions
    112  *
    113  *	Note that the LSSTOP state may only be set when returning to
    114  *	user space in userret(), or when sleeping interruptably.  The
    115  *	LSSUSPENDED state may only be set in userret().  Before setting
    116  *	those states, we try to ensure that the LWPs will release all
    117  *	locks that they hold, and at a minimum try to ensure that the
    118  *	LWP can be set runnable again by a signal.
    119  *
    120  *	LWPs may transition states in the following ways:
    121  *
    122  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123  *		    				    > SLEEP
    124  *		    				    > STOPPED
    125  *						    > SUSPENDED
    126  *						    > ZOMB
    127  *						    > IDL (special cases)
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *						    > ONPROC (special cases)
    136  *
    137  *	Some state transitions are only possible with kernel threads (eg
    138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139  *	free of unwanted side effects.
    140  *
    141  * Migration
    142  *
    143  *	Migration of threads from one CPU to another could be performed
    144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  *	functions.  The universal lwp_migrate() function should be used for
    146  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  *	of LWP may change, while it is not locked.
    148  *
    149  * Locking
    150  *
    151  *	The majority of fields in 'struct lwp' are covered by a single,
    152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153  *	each field are documented in sys/lwp.h.
    154  *
    155  *	State transitions must be made with the LWP's general lock held,
    156  *	and may cause the LWP's lock pointer to change.  Manipulation of
    157  *	the general lock is not performed directly, but through calls to
    158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    159  *	adaptive locks are not allowed to be released while the LWP's lock
    160  *	is being held (unlike for other spin-locks).
    161  *
    162  *	States and their associated locks:
    163  *
    164  *	LSONPROC, LSZOMB:
    165  *
    166  *		Always covered by spc_lwplock, which protects running LWPs.
    167  *		This is a per-CPU lock and matches lwp::l_cpu.
    168  *
    169  *	LSIDL, LSRUN:
    170  *
    171  *		Always covered by spc_mutex, which protects the run queues.
    172  *		This is a per-CPU lock and matches lwp::l_cpu.
    173  *
    174  *	LSSLEEP:
    175  *
    176  *		Covered by a lock associated with the sleep queue that the
    177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    178  *
    179  *	LSSTOP, LSSUSPENDED:
    180  *
    181  *		If the LWP was previously sleeping (l_wchan != NULL), then
    182  *		l_mutex references the sleep queue lock.  If the LWP was
    183  *		runnable or on the CPU when halted, or has been removed from
    184  *		the sleep queue since halted, then the lock is spc_lwplock.
    185  *
    186  *	The lock order is as follows:
    187  *
    188  *		spc::spc_lwplock ->
    189  *		    sleeptab::st_mutex ->
    190  *			tschain_t::tc_mutex ->
    191  *			    spc::spc_mutex
    192  *
    193  *	Each process has an scheduler state lock (proc::p_lock), and a
    194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195  *	so on.  When an LWP is to be entered into or removed from one of the
    196  *	following states, p_lock must be held and the process wide counters
    197  *	adjusted:
    198  *
    199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200  *
    201  *	(But not always for kernel threads.  There are some special cases
    202  *	as mentioned above.  See kern_softint.c.)
    203  *
    204  *	Note that an LWP is considered running or likely to run soon if in
    205  *	one of the following states.  This affects the value of p_nrlwps:
    206  *
    207  *		LSRUN, LSONPROC, LSSLEEP
    208  *
    209  *	p_lock does not need to be held when transitioning among these
    210  *	three states, hence p_lock is rarely taken for state transitions.
    211  */
    212 
    213 #include <sys/cdefs.h>
    214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.173 2012/09/27 20:43:15 rmind Exp $");
    215 
    216 #include "opt_ddb.h"
    217 #include "opt_lockdebug.h"
    218 #include "opt_dtrace.h"
    219 
    220 #define _LWP_API_PRIVATE
    221 
    222 #include <sys/param.h>
    223 #include <sys/systm.h>
    224 #include <sys/cpu.h>
    225 #include <sys/pool.h>
    226 #include <sys/proc.h>
    227 #include <sys/syscallargs.h>
    228 #include <sys/syscall_stats.h>
    229 #include <sys/kauth.h>
    230 #include <sys/pserialize.h>
    231 #include <sys/sleepq.h>
    232 #include <sys/lockdebug.h>
    233 #include <sys/kmem.h>
    234 #include <sys/pset.h>
    235 #include <sys/intr.h>
    236 #include <sys/lwpctl.h>
    237 #include <sys/atomic.h>
    238 #include <sys/filedesc.h>
    239 #include <sys/dtrace_bsd.h>
    240 #include <sys/sdt.h>
    241 #include <sys/xcall.h>
    242 #include <sys/uidinfo.h>
    243 #include <sys/sysctl.h>
    244 
    245 #include <uvm/uvm_extern.h>
    246 #include <uvm/uvm_object.h>
    247 
    248 static pool_cache_t	lwp_cache	__read_mostly;
    249 struct lwplist		alllwp		__cacheline_aligned;
    250 
    251 static void		lwp_dtor(void *, void *);
    252 
    253 /* DTrace proc provider probes */
    254 SDT_PROBE_DEFINE(proc,,,lwp_create,
    255 	"struct lwp *", NULL,
    256 	NULL, NULL, NULL, NULL,
    257 	NULL, NULL, NULL, NULL);
    258 SDT_PROBE_DEFINE(proc,,,lwp_start,
    259 	"struct lwp *", NULL,
    260 	NULL, NULL, NULL, NULL,
    261 	NULL, NULL, NULL, NULL);
    262 SDT_PROBE_DEFINE(proc,,,lwp_exit,
    263 	"struct lwp *", NULL,
    264 	NULL, NULL, NULL, NULL,
    265 	NULL, NULL, NULL, NULL);
    266 
    267 struct turnstile turnstile0;
    268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    269 #ifdef LWP0_CPU_INFO
    270 	.l_cpu = LWP0_CPU_INFO,
    271 #endif
    272 #ifdef LWP0_MD_INITIALIZER
    273 	.l_md = LWP0_MD_INITIALIZER,
    274 #endif
    275 	.l_proc = &proc0,
    276 	.l_lid = 1,
    277 	.l_flag = LW_SYSTEM,
    278 	.l_stat = LSONPROC,
    279 	.l_ts = &turnstile0,
    280 	.l_syncobj = &sched_syncobj,
    281 	.l_refcnt = 1,
    282 	.l_priority = PRI_USER + NPRI_USER - 1,
    283 	.l_inheritedprio = -1,
    284 	.l_class = SCHED_OTHER,
    285 	.l_psid = PS_NONE,
    286 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    287 	.l_name = __UNCONST("swapper"),
    288 	.l_fd = &filedesc0,
    289 };
    290 
    291 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
    292 
    293 /*
    294  * sysctl helper routine for kern.maxlwp. Ensures that the new
    295  * values are not too low or too high.
    296  */
    297 static int
    298 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
    299 {
    300 	int error, nmaxlwp;
    301 	struct sysctlnode node;
    302 
    303 	nmaxlwp = maxlwp;
    304 	node = *rnode;
    305 	node.sysctl_data = &nmaxlwp;
    306 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    307 	if (error || newp == NULL)
    308 		return error;
    309 
    310 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
    311 		return EINVAL;
    312 	if (nmaxlwp > cpu_maxlwp())
    313 		return EINVAL;
    314 	maxlwp = nmaxlwp;
    315 
    316 	return 0;
    317 }
    318 
    319 static void
    320 sysctl_kern_lwp_setup(void)
    321 {
    322 	struct sysctllog *clog = NULL;
    323 
    324 	sysctl_createv(&clog, 0, NULL, NULL,
    325 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    326 		       CTLTYPE_INT, "maxlwp",
    327 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
    328 		       sysctl_kern_maxlwp, 0, NULL, 0,
    329 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    330 }
    331 
    332 void
    333 lwpinit(void)
    334 {
    335 
    336 	LIST_INIT(&alllwp);
    337 	lwpinit_specificdata();
    338 	lwp_sys_init();
    339 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    340 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
    341 
    342 	maxlwp = cpu_maxlwp();
    343 	sysctl_kern_lwp_setup();
    344 }
    345 
    346 void
    347 lwp0_init(void)
    348 {
    349 	struct lwp *l = &lwp0;
    350 
    351 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    352 	KASSERT(l->l_lid == proc0.p_nlwpid);
    353 
    354 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    355 
    356 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    357 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    358 	cv_init(&l->l_sigcv, "sigwait");
    359 	cv_init(&l->l_waitcv, "vfork");
    360 
    361 	kauth_cred_hold(proc0.p_cred);
    362 	l->l_cred = proc0.p_cred;
    363 
    364 	kdtrace_thread_ctor(NULL, l);
    365 	lwp_initspecific(l);
    366 
    367 	SYSCALL_TIME_LWP_INIT(l);
    368 }
    369 
    370 static void
    371 lwp_dtor(void *arg, void *obj)
    372 {
    373 	lwp_t *l = obj;
    374 	uint64_t where;
    375 	(void)l;
    376 
    377 	/*
    378 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    379 	 * calls will exit before memory of LWP is returned to the pool, where
    380 	 * KVA of LWP structure might be freed and re-used for other purposes.
    381 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    382 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
    383 	 * the value of l->l_cpu must be still valid at this point.
    384 	 */
    385 	KASSERT(l->l_cpu != NULL);
    386 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    387 	xc_wait(where);
    388 }
    389 
    390 /*
    391  * Set an suspended.
    392  *
    393  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    394  * LWP before return.
    395  */
    396 int
    397 lwp_suspend(struct lwp *curl, struct lwp *t)
    398 {
    399 	int error;
    400 
    401 	KASSERT(mutex_owned(t->l_proc->p_lock));
    402 	KASSERT(lwp_locked(t, NULL));
    403 
    404 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    405 
    406 	/*
    407 	 * If the current LWP has been told to exit, we must not suspend anyone
    408 	 * else or deadlock could occur.  We won't return to userspace.
    409 	 */
    410 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    411 		lwp_unlock(t);
    412 		return (EDEADLK);
    413 	}
    414 
    415 	error = 0;
    416 
    417 	switch (t->l_stat) {
    418 	case LSRUN:
    419 	case LSONPROC:
    420 		t->l_flag |= LW_WSUSPEND;
    421 		lwp_need_userret(t);
    422 		lwp_unlock(t);
    423 		break;
    424 
    425 	case LSSLEEP:
    426 		t->l_flag |= LW_WSUSPEND;
    427 
    428 		/*
    429 		 * Kick the LWP and try to get it to the kernel boundary
    430 		 * so that it will release any locks that it holds.
    431 		 * setrunnable() will release the lock.
    432 		 */
    433 		if ((t->l_flag & LW_SINTR) != 0)
    434 			setrunnable(t);
    435 		else
    436 			lwp_unlock(t);
    437 		break;
    438 
    439 	case LSSUSPENDED:
    440 		lwp_unlock(t);
    441 		break;
    442 
    443 	case LSSTOP:
    444 		t->l_flag |= LW_WSUSPEND;
    445 		setrunnable(t);
    446 		break;
    447 
    448 	case LSIDL:
    449 	case LSZOMB:
    450 		error = EINTR; /* It's what Solaris does..... */
    451 		lwp_unlock(t);
    452 		break;
    453 	}
    454 
    455 	return (error);
    456 }
    457 
    458 /*
    459  * Restart a suspended LWP.
    460  *
    461  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    462  * LWP before return.
    463  */
    464 void
    465 lwp_continue(struct lwp *l)
    466 {
    467 
    468 	KASSERT(mutex_owned(l->l_proc->p_lock));
    469 	KASSERT(lwp_locked(l, NULL));
    470 
    471 	/* If rebooting or not suspended, then just bail out. */
    472 	if ((l->l_flag & LW_WREBOOT) != 0) {
    473 		lwp_unlock(l);
    474 		return;
    475 	}
    476 
    477 	l->l_flag &= ~LW_WSUSPEND;
    478 
    479 	if (l->l_stat != LSSUSPENDED) {
    480 		lwp_unlock(l);
    481 		return;
    482 	}
    483 
    484 	/* setrunnable() will release the lock. */
    485 	setrunnable(l);
    486 }
    487 
    488 /*
    489  * Restart a stopped LWP.
    490  *
    491  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    492  * LWP before return.
    493  */
    494 void
    495 lwp_unstop(struct lwp *l)
    496 {
    497 	struct proc *p = l->l_proc;
    498 
    499 	KASSERT(mutex_owned(proc_lock));
    500 	KASSERT(mutex_owned(p->p_lock));
    501 
    502 	lwp_lock(l);
    503 
    504 	/* If not stopped, then just bail out. */
    505 	if (l->l_stat != LSSTOP) {
    506 		lwp_unlock(l);
    507 		return;
    508 	}
    509 
    510 	p->p_stat = SACTIVE;
    511 	p->p_sflag &= ~PS_STOPPING;
    512 
    513 	if (!p->p_waited)
    514 		p->p_pptr->p_nstopchild--;
    515 
    516 	if (l->l_wchan == NULL) {
    517 		/* setrunnable() will release the lock. */
    518 		setrunnable(l);
    519 	} else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
    520 		/* setrunnable() so we can receive the signal */
    521 		setrunnable(l);
    522 	} else {
    523 		l->l_stat = LSSLEEP;
    524 		p->p_nrlwps++;
    525 		lwp_unlock(l);
    526 	}
    527 }
    528 
    529 /*
    530  * Wait for an LWP within the current process to exit.  If 'lid' is
    531  * non-zero, we are waiting for a specific LWP.
    532  *
    533  * Must be called with p->p_lock held.
    534  */
    535 int
    536 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
    537 {
    538 	const lwpid_t curlid = l->l_lid;
    539 	proc_t *p = l->l_proc;
    540 	lwp_t *l2;
    541 	int error;
    542 
    543 	KASSERT(mutex_owned(p->p_lock));
    544 
    545 	p->p_nlwpwait++;
    546 	l->l_waitingfor = lid;
    547 
    548 	for (;;) {
    549 		int nfound;
    550 
    551 		/*
    552 		 * Avoid a race between exit1() and sigexit(): if the
    553 		 * process is dumping core, then we need to bail out: call
    554 		 * into lwp_userret() where we will be suspended until the
    555 		 * deed is done.
    556 		 */
    557 		if ((p->p_sflag & PS_WCORE) != 0) {
    558 			mutex_exit(p->p_lock);
    559 			lwp_userret(l);
    560 			KASSERT(false);
    561 		}
    562 
    563 		/*
    564 		 * First off, drain any detached LWP that is waiting to be
    565 		 * reaped.
    566 		 */
    567 		while ((l2 = p->p_zomblwp) != NULL) {
    568 			p->p_zomblwp = NULL;
    569 			lwp_free(l2, false, false);/* releases proc mutex */
    570 			mutex_enter(p->p_lock);
    571 		}
    572 
    573 		/*
    574 		 * Now look for an LWP to collect.  If the whole process is
    575 		 * exiting, count detached LWPs as eligible to be collected,
    576 		 * but don't drain them here.
    577 		 */
    578 		nfound = 0;
    579 		error = 0;
    580 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    581 			/*
    582 			 * If a specific wait and the target is waiting on
    583 			 * us, then avoid deadlock.  This also traps LWPs
    584 			 * that try to wait on themselves.
    585 			 *
    586 			 * Note that this does not handle more complicated
    587 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    588 			 * can still be killed so it is not a major problem.
    589 			 */
    590 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    591 				error = EDEADLK;
    592 				break;
    593 			}
    594 			if (l2 == l)
    595 				continue;
    596 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    597 				nfound += exiting;
    598 				continue;
    599 			}
    600 			if (lid != 0) {
    601 				if (l2->l_lid != lid)
    602 					continue;
    603 				/*
    604 				 * Mark this LWP as the first waiter, if there
    605 				 * is no other.
    606 				 */
    607 				if (l2->l_waiter == 0)
    608 					l2->l_waiter = curlid;
    609 			} else if (l2->l_waiter != 0) {
    610 				/*
    611 				 * It already has a waiter - so don't
    612 				 * collect it.  If the waiter doesn't
    613 				 * grab it we'll get another chance
    614 				 * later.
    615 				 */
    616 				nfound++;
    617 				continue;
    618 			}
    619 			nfound++;
    620 
    621 			/* No need to lock the LWP in order to see LSZOMB. */
    622 			if (l2->l_stat != LSZOMB)
    623 				continue;
    624 
    625 			/*
    626 			 * We're no longer waiting.  Reset the "first waiter"
    627 			 * pointer on the target, in case it was us.
    628 			 */
    629 			l->l_waitingfor = 0;
    630 			l2->l_waiter = 0;
    631 			p->p_nlwpwait--;
    632 			if (departed)
    633 				*departed = l2->l_lid;
    634 			sched_lwp_collect(l2);
    635 
    636 			/* lwp_free() releases the proc lock. */
    637 			lwp_free(l2, false, false);
    638 			mutex_enter(p->p_lock);
    639 			return 0;
    640 		}
    641 
    642 		if (error != 0)
    643 			break;
    644 		if (nfound == 0) {
    645 			error = ESRCH;
    646 			break;
    647 		}
    648 
    649 		/*
    650 		 * Note: since the lock will be dropped, need to restart on
    651 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
    652 		 */
    653 		if (exiting) {
    654 			KASSERT(p->p_nlwps > 1);
    655 			cv_wait(&p->p_lwpcv, p->p_lock);
    656 			error = EAGAIN;
    657 			break;
    658 		}
    659 
    660 		/*
    661 		 * If all other LWPs are waiting for exits or suspends
    662 		 * and the supply of zombies and potential zombies is
    663 		 * exhausted, then we are about to deadlock.
    664 		 *
    665 		 * If the process is exiting (and this LWP is not the one
    666 		 * that is coordinating the exit) then bail out now.
    667 		 */
    668 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    669 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    670 			error = EDEADLK;
    671 			break;
    672 		}
    673 
    674 		/*
    675 		 * Sit around and wait for something to happen.  We'll be
    676 		 * awoken if any of the conditions examined change: if an
    677 		 * LWP exits, is collected, or is detached.
    678 		 */
    679 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    680 			break;
    681 	}
    682 
    683 	/*
    684 	 * We didn't find any LWPs to collect, we may have received a
    685 	 * signal, or some other condition has caused us to bail out.
    686 	 *
    687 	 * If waiting on a specific LWP, clear the waiters marker: some
    688 	 * other LWP may want it.  Then, kick all the remaining waiters
    689 	 * so that they can re-check for zombies and for deadlock.
    690 	 */
    691 	if (lid != 0) {
    692 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    693 			if (l2->l_lid == lid) {
    694 				if (l2->l_waiter == curlid)
    695 					l2->l_waiter = 0;
    696 				break;
    697 			}
    698 		}
    699 	}
    700 	p->p_nlwpwait--;
    701 	l->l_waitingfor = 0;
    702 	cv_broadcast(&p->p_lwpcv);
    703 
    704 	return error;
    705 }
    706 
    707 /*
    708  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    709  * The new LWP is created in state LSIDL and must be set running,
    710  * suspended, or stopped by the caller.
    711  */
    712 int
    713 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    714 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    715 	   lwp_t **rnewlwpp, int sclass)
    716 {
    717 	struct lwp *l2, *isfree;
    718 	turnstile_t *ts;
    719 	lwpid_t lid;
    720 
    721 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    722 
    723 	/*
    724 	 * Enforce limits, excluding the first lwp and kthreads.
    725 	 */
    726 	if (p2->p_nlwps != 0 && p2 != &proc0) {
    727 		uid_t uid = kauth_cred_getuid(l1->l_cred);
    728 		int count = chglwpcnt(uid, 1);
    729 		if (__predict_false(count >
    730 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
    731 			if (kauth_authorize_process(l1->l_cred,
    732 			    KAUTH_PROCESS_RLIMIT, p2,
    733 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    734 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
    735 			    != 0) {
    736 				(void)chglwpcnt(uid, -1);
    737 				return EAGAIN;
    738 			}
    739 		}
    740 	}
    741 
    742 	/*
    743 	 * First off, reap any detached LWP waiting to be collected.
    744 	 * We can re-use its LWP structure and turnstile.
    745 	 */
    746 	isfree = NULL;
    747 	if (p2->p_zomblwp != NULL) {
    748 		mutex_enter(p2->p_lock);
    749 		if ((isfree = p2->p_zomblwp) != NULL) {
    750 			p2->p_zomblwp = NULL;
    751 			lwp_free(isfree, true, false);/* releases proc mutex */
    752 		} else
    753 			mutex_exit(p2->p_lock);
    754 	}
    755 	if (isfree == NULL) {
    756 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    757 		memset(l2, 0, sizeof(*l2));
    758 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    759 		SLIST_INIT(&l2->l_pi_lenders);
    760 	} else {
    761 		l2 = isfree;
    762 		ts = l2->l_ts;
    763 		KASSERT(l2->l_inheritedprio == -1);
    764 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    765 		memset(l2, 0, sizeof(*l2));
    766 		l2->l_ts = ts;
    767 	}
    768 
    769 	l2->l_stat = LSIDL;
    770 	l2->l_proc = p2;
    771 	l2->l_refcnt = 1;
    772 	l2->l_class = sclass;
    773 
    774 	/*
    775 	 * If vfork(), we want the LWP to run fast and on the same CPU
    776 	 * as its parent, so that it can reuse the VM context and cache
    777 	 * footprint on the local CPU.
    778 	 */
    779 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    780 	l2->l_kpribase = PRI_KERNEL;
    781 	l2->l_priority = l1->l_priority;
    782 	l2->l_inheritedprio = -1;
    783 	l2->l_flag = 0;
    784 	l2->l_pflag = LP_MPSAFE;
    785 	TAILQ_INIT(&l2->l_ld_locks);
    786 
    787 	/*
    788 	 * For vfork, borrow parent's lwpctl context if it exists.
    789 	 * This also causes us to return via lwp_userret.
    790 	 */
    791 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    792 		l2->l_lwpctl = l1->l_lwpctl;
    793 		l2->l_flag |= LW_LWPCTL;
    794 	}
    795 
    796 	/*
    797 	 * If not the first LWP in the process, grab a reference to the
    798 	 * descriptor table.
    799 	 */
    800 	l2->l_fd = p2->p_fd;
    801 	if (p2->p_nlwps != 0) {
    802 		KASSERT(l1->l_proc == p2);
    803 		fd_hold(l2);
    804 	} else {
    805 		KASSERT(l1->l_proc != p2);
    806 	}
    807 
    808 	if (p2->p_flag & PK_SYSTEM) {
    809 		/* Mark it as a system LWP. */
    810 		l2->l_flag |= LW_SYSTEM;
    811 	}
    812 
    813 	kpreempt_disable();
    814 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    815 	l2->l_cpu = l1->l_cpu;
    816 	kpreempt_enable();
    817 
    818 	kdtrace_thread_ctor(NULL, l2);
    819 	lwp_initspecific(l2);
    820 	sched_lwp_fork(l1, l2);
    821 	lwp_update_creds(l2);
    822 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    823 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    824 	cv_init(&l2->l_sigcv, "sigwait");
    825 	cv_init(&l2->l_waitcv, "vfork");
    826 	l2->l_syncobj = &sched_syncobj;
    827 
    828 	if (rnewlwpp != NULL)
    829 		*rnewlwpp = l2;
    830 
    831 	/*
    832 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    833 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    834 	 */
    835 	pcu_save_all(l1);
    836 
    837 	uvm_lwp_setuarea(l2, uaddr);
    838 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    839 	    (arg != NULL) ? arg : l2);
    840 
    841 	if ((flags & LWP_PIDLID) != 0) {
    842 		lid = proc_alloc_pid(p2);
    843 		l2->l_pflag |= LP_PIDLID;
    844 	} else {
    845 		lid = 0;
    846 	}
    847 
    848 	mutex_enter(p2->p_lock);
    849 
    850 	if ((flags & LWP_DETACHED) != 0) {
    851 		l2->l_prflag = LPR_DETACHED;
    852 		p2->p_ndlwps++;
    853 	} else
    854 		l2->l_prflag = 0;
    855 
    856 	l2->l_sigstk = l1->l_sigstk;
    857 	l2->l_sigmask = l1->l_sigmask;
    858 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    859 	sigemptyset(&l2->l_sigpend.sp_set);
    860 
    861 	if (lid == 0) {
    862 		p2->p_nlwpid++;
    863 		if (p2->p_nlwpid == 0)
    864 			p2->p_nlwpid++;
    865 		lid = p2->p_nlwpid;
    866 	}
    867 	l2->l_lid = lid;
    868 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    869 	p2->p_nlwps++;
    870 	p2->p_nrlwps++;
    871 
    872 	KASSERT(l2->l_affinity == NULL);
    873 
    874 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    875 		/* Inherit the affinity mask. */
    876 		if (l1->l_affinity) {
    877 			/*
    878 			 * Note that we hold the state lock while inheriting
    879 			 * the affinity to avoid race with sched_setaffinity().
    880 			 */
    881 			lwp_lock(l1);
    882 			if (l1->l_affinity) {
    883 				kcpuset_use(l1->l_affinity);
    884 				l2->l_affinity = l1->l_affinity;
    885 			}
    886 			lwp_unlock(l1);
    887 		}
    888 		lwp_lock(l2);
    889 		/* Inherit a processor-set */
    890 		l2->l_psid = l1->l_psid;
    891 		/* Look for a CPU to start */
    892 		l2->l_cpu = sched_takecpu(l2);
    893 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    894 	}
    895 	mutex_exit(p2->p_lock);
    896 
    897 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
    898 
    899 	mutex_enter(proc_lock);
    900 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    901 	mutex_exit(proc_lock);
    902 
    903 	SYSCALL_TIME_LWP_INIT(l2);
    904 
    905 	if (p2->p_emul->e_lwp_fork)
    906 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    907 
    908 	return (0);
    909 }
    910 
    911 /*
    912  * Called by MD code when a new LWP begins execution.  Must be called
    913  * with the previous LWP locked (so at splsched), or if there is no
    914  * previous LWP, at splsched.
    915  */
    916 void
    917 lwp_startup(struct lwp *prev, struct lwp *new)
    918 {
    919 	KASSERTMSG(new == curlwp, "l %p curlwp %p prevlwp %p", new, curlwp, prev);
    920 
    921 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
    922 
    923 	KASSERT(kpreempt_disabled());
    924 	if (prev != NULL) {
    925 		/*
    926 		 * Normalize the count of the spin-mutexes, it was
    927 		 * increased in mi_switch().  Unmark the state of
    928 		 * context switch - it is finished for previous LWP.
    929 		 */
    930 		curcpu()->ci_mtx_count++;
    931 		membar_exit();
    932 		prev->l_ctxswtch = 0;
    933 	}
    934 	KPREEMPT_DISABLE(new);
    935 	spl0();
    936 	if (__predict_true(new->l_proc->p_vmspace))
    937 		pmap_activate(new);
    938 
    939 	/* Note trip through cpu_switchto(). */
    940 	pserialize_switchpoint();
    941 
    942 	LOCKDEBUG_BARRIER(NULL, 0);
    943 	KPREEMPT_ENABLE(new);
    944 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    945 		KERNEL_LOCK(1, new);
    946 	}
    947 }
    948 
    949 /*
    950  * Exit an LWP.
    951  */
    952 void
    953 lwp_exit(struct lwp *l)
    954 {
    955 	struct proc *p = l->l_proc;
    956 	struct lwp *l2;
    957 	bool current;
    958 
    959 	current = (l == curlwp);
    960 
    961 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
    962 	KASSERT(p == curproc);
    963 
    964 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
    965 
    966 	/*
    967 	 * Verify that we hold no locks other than the kernel lock.
    968 	 */
    969 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    970 
    971 	/*
    972 	 * If we are the last live LWP in a process, we need to exit the
    973 	 * entire process.  We do so with an exit status of zero, because
    974 	 * it's a "controlled" exit, and because that's what Solaris does.
    975 	 *
    976 	 * We are not quite a zombie yet, but for accounting purposes we
    977 	 * must increment the count of zombies here.
    978 	 *
    979 	 * Note: the last LWP's specificdata will be deleted here.
    980 	 */
    981 	mutex_enter(p->p_lock);
    982 	if (p->p_nlwps - p->p_nzlwps == 1) {
    983 		KASSERT(current == true);
    984 		KASSERT(p != &proc0);
    985 		/* XXXSMP kernel_lock not held */
    986 		exit1(l, 0);
    987 		/* NOTREACHED */
    988 	}
    989 	p->p_nzlwps++;
    990 	mutex_exit(p->p_lock);
    991 
    992 	if (p->p_emul->e_lwp_exit)
    993 		(*p->p_emul->e_lwp_exit)(l);
    994 
    995 	/* Drop filedesc reference. */
    996 	fd_free();
    997 
    998 	/* Delete the specificdata while it's still safe to sleep. */
    999 	lwp_finispecific(l);
   1000 
   1001 	/*
   1002 	 * Release our cached credentials.
   1003 	 */
   1004 	kauth_cred_free(l->l_cred);
   1005 	callout_destroy(&l->l_timeout_ch);
   1006 
   1007 	/*
   1008 	 * Remove the LWP from the global list.
   1009 	 * Free its LID from the PID namespace if needed.
   1010 	 */
   1011 	mutex_enter(proc_lock);
   1012 	LIST_REMOVE(l, l_list);
   1013 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
   1014 		proc_free_pid(l->l_lid);
   1015 	}
   1016 	mutex_exit(proc_lock);
   1017 
   1018 	/*
   1019 	 * Get rid of all references to the LWP that others (e.g. procfs)
   1020 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
   1021 	 * mark it waiting for collection in the proc structure.  Note that
   1022 	 * before we can do that, we need to free any other dead, deatched
   1023 	 * LWP waiting to meet its maker.
   1024 	 */
   1025 	mutex_enter(p->p_lock);
   1026 	lwp_drainrefs(l);
   1027 
   1028 	if ((l->l_prflag & LPR_DETACHED) != 0) {
   1029 		while ((l2 = p->p_zomblwp) != NULL) {
   1030 			p->p_zomblwp = NULL;
   1031 			lwp_free(l2, false, false);/* releases proc mutex */
   1032 			mutex_enter(p->p_lock);
   1033 			l->l_refcnt++;
   1034 			lwp_drainrefs(l);
   1035 		}
   1036 		p->p_zomblwp = l;
   1037 	}
   1038 
   1039 	/*
   1040 	 * If we find a pending signal for the process and we have been
   1041 	 * asked to check for signals, then we lose: arrange to have
   1042 	 * all other LWPs in the process check for signals.
   1043 	 */
   1044 	if ((l->l_flag & LW_PENDSIG) != 0 &&
   1045 	    firstsig(&p->p_sigpend.sp_set) != 0) {
   1046 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1047 			lwp_lock(l2);
   1048 			l2->l_flag |= LW_PENDSIG;
   1049 			lwp_unlock(l2);
   1050 		}
   1051 	}
   1052 
   1053 	/*
   1054 	 * Release any PCU resources before becoming a zombie.
   1055 	 */
   1056 	pcu_discard_all(l);
   1057 
   1058 	lwp_lock(l);
   1059 	l->l_stat = LSZOMB;
   1060 	if (l->l_name != NULL) {
   1061 		strcpy(l->l_name, "(zombie)");
   1062 	}
   1063 	lwp_unlock(l);
   1064 	p->p_nrlwps--;
   1065 	cv_broadcast(&p->p_lwpcv);
   1066 	if (l->l_lwpctl != NULL)
   1067 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
   1068 	mutex_exit(p->p_lock);
   1069 
   1070 	/*
   1071 	 * We can no longer block.  At this point, lwp_free() may already
   1072 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1073 	 *
   1074 	 * Free MD LWP resources.
   1075 	 */
   1076 	cpu_lwp_free(l, 0);
   1077 
   1078 	if (current) {
   1079 		pmap_deactivate(l);
   1080 
   1081 		/*
   1082 		 * Release the kernel lock, and switch away into
   1083 		 * oblivion.
   1084 		 */
   1085 #ifdef notyet
   1086 		/* XXXSMP hold in lwp_userret() */
   1087 		KERNEL_UNLOCK_LAST(l);
   1088 #else
   1089 		KERNEL_UNLOCK_ALL(l, NULL);
   1090 #endif
   1091 		lwp_exit_switchaway(l);
   1092 	}
   1093 }
   1094 
   1095 /*
   1096  * Free a dead LWP's remaining resources.
   1097  *
   1098  * XXXLWP limits.
   1099  */
   1100 void
   1101 lwp_free(struct lwp *l, bool recycle, bool last)
   1102 {
   1103 	struct proc *p = l->l_proc;
   1104 	struct rusage *ru;
   1105 	ksiginfoq_t kq;
   1106 
   1107 	KASSERT(l != curlwp);
   1108 	KASSERT(last || mutex_owned(p->p_lock));
   1109 
   1110 	if (p != &proc0 && p->p_nlwps != 1)
   1111 		(void)chglwpcnt(kauth_cred_getuid(l->l_cred), -1);
   1112 	/*
   1113 	 * If this was not the last LWP in the process, then adjust
   1114 	 * counters and unlock.
   1115 	 */
   1116 	if (!last) {
   1117 		/*
   1118 		 * Add the LWP's run time to the process' base value.
   1119 		 * This needs to co-incide with coming off p_lwps.
   1120 		 */
   1121 		bintime_add(&p->p_rtime, &l->l_rtime);
   1122 		p->p_pctcpu += l->l_pctcpu;
   1123 		ru = &p->p_stats->p_ru;
   1124 		ruadd(ru, &l->l_ru);
   1125 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1126 		ru->ru_nivcsw += l->l_nivcsw;
   1127 		LIST_REMOVE(l, l_sibling);
   1128 		p->p_nlwps--;
   1129 		p->p_nzlwps--;
   1130 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1131 			p->p_ndlwps--;
   1132 
   1133 		/*
   1134 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1135 		 * deadlock.
   1136 		 */
   1137 		cv_broadcast(&p->p_lwpcv);
   1138 		mutex_exit(p->p_lock);
   1139 	}
   1140 
   1141 #ifdef MULTIPROCESSOR
   1142 	/*
   1143 	 * In the unlikely event that the LWP is still on the CPU,
   1144 	 * then spin until it has switched away.  We need to release
   1145 	 * all locks to avoid deadlock against interrupt handlers on
   1146 	 * the target CPU.
   1147 	 */
   1148 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
   1149 		int count;
   1150 		(void)count; /* XXXgcc */
   1151 		KERNEL_UNLOCK_ALL(curlwp, &count);
   1152 		while ((l->l_pflag & LP_RUNNING) != 0 ||
   1153 		    l->l_cpu->ci_curlwp == l)
   1154 			SPINLOCK_BACKOFF_HOOK;
   1155 		KERNEL_LOCK(count, curlwp);
   1156 	}
   1157 #endif
   1158 
   1159 	/*
   1160 	 * Destroy the LWP's remaining signal information.
   1161 	 */
   1162 	ksiginfo_queue_init(&kq);
   1163 	sigclear(&l->l_sigpend, NULL, &kq);
   1164 	ksiginfo_queue_drain(&kq);
   1165 	cv_destroy(&l->l_sigcv);
   1166 	cv_destroy(&l->l_waitcv);
   1167 
   1168 	/*
   1169 	 * Free lwpctl structure and affinity.
   1170 	 */
   1171 	if (l->l_lwpctl) {
   1172 		lwp_ctl_free(l);
   1173 	}
   1174 	if (l->l_affinity) {
   1175 		kcpuset_unuse(l->l_affinity, NULL);
   1176 		l->l_affinity = NULL;
   1177 	}
   1178 
   1179 	/*
   1180 	 * Free the LWP's turnstile and the LWP structure itself unless the
   1181 	 * caller wants to recycle them.  Also, free the scheduler specific
   1182 	 * data.
   1183 	 *
   1184 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1185 	 * so if it comes up just drop it quietly and move on.
   1186 	 *
   1187 	 * We don't recycle the VM resources at this time.
   1188 	 */
   1189 
   1190 	if (!recycle && l->l_ts != &turnstile0)
   1191 		pool_cache_put(turnstile_cache, l->l_ts);
   1192 	if (l->l_name != NULL)
   1193 		kmem_free(l->l_name, MAXCOMLEN);
   1194 
   1195 	cpu_lwp_free2(l);
   1196 	uvm_lwp_exit(l);
   1197 
   1198 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1199 	KASSERT(l->l_inheritedprio == -1);
   1200 	KASSERT(l->l_blcnt == 0);
   1201 	kdtrace_thread_dtor(NULL, l);
   1202 	if (!recycle)
   1203 		pool_cache_put(lwp_cache, l);
   1204 }
   1205 
   1206 /*
   1207  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1208  */
   1209 void
   1210 lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1211 {
   1212 	struct schedstate_percpu *tspc;
   1213 	int lstat = l->l_stat;
   1214 
   1215 	KASSERT(lwp_locked(l, NULL));
   1216 	KASSERT(tci != NULL);
   1217 
   1218 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1219 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1220 		lstat = LSONPROC;
   1221 	}
   1222 
   1223 	/*
   1224 	 * The destination CPU could be changed while previous migration
   1225 	 * was not finished.
   1226 	 */
   1227 	if (l->l_target_cpu != NULL) {
   1228 		l->l_target_cpu = tci;
   1229 		lwp_unlock(l);
   1230 		return;
   1231 	}
   1232 
   1233 	/* Nothing to do if trying to migrate to the same CPU */
   1234 	if (l->l_cpu == tci) {
   1235 		lwp_unlock(l);
   1236 		return;
   1237 	}
   1238 
   1239 	KASSERT(l->l_target_cpu == NULL);
   1240 	tspc = &tci->ci_schedstate;
   1241 	switch (lstat) {
   1242 	case LSRUN:
   1243 		l->l_target_cpu = tci;
   1244 		break;
   1245 	case LSIDL:
   1246 		l->l_cpu = tci;
   1247 		lwp_unlock_to(l, tspc->spc_mutex);
   1248 		return;
   1249 	case LSSLEEP:
   1250 		l->l_cpu = tci;
   1251 		break;
   1252 	case LSSTOP:
   1253 	case LSSUSPENDED:
   1254 		l->l_cpu = tci;
   1255 		if (l->l_wchan == NULL) {
   1256 			lwp_unlock_to(l, tspc->spc_lwplock);
   1257 			return;
   1258 		}
   1259 		break;
   1260 	case LSONPROC:
   1261 		l->l_target_cpu = tci;
   1262 		spc_lock(l->l_cpu);
   1263 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1264 		spc_unlock(l->l_cpu);
   1265 		break;
   1266 	}
   1267 	lwp_unlock(l);
   1268 }
   1269 
   1270 /*
   1271  * Find the LWP in the process.  Arguments may be zero, in such case,
   1272  * the calling process and first LWP in the list will be used.
   1273  * On success - returns proc locked.
   1274  */
   1275 struct lwp *
   1276 lwp_find2(pid_t pid, lwpid_t lid)
   1277 {
   1278 	proc_t *p;
   1279 	lwp_t *l;
   1280 
   1281 	/* Find the process. */
   1282 	if (pid != 0) {
   1283 		mutex_enter(proc_lock);
   1284 		p = proc_find(pid);
   1285 		if (p == NULL) {
   1286 			mutex_exit(proc_lock);
   1287 			return NULL;
   1288 		}
   1289 		mutex_enter(p->p_lock);
   1290 		mutex_exit(proc_lock);
   1291 	} else {
   1292 		p = curlwp->l_proc;
   1293 		mutex_enter(p->p_lock);
   1294 	}
   1295 	/* Find the thread. */
   1296 	if (lid != 0) {
   1297 		l = lwp_find(p, lid);
   1298 	} else {
   1299 		l = LIST_FIRST(&p->p_lwps);
   1300 	}
   1301 	if (l == NULL) {
   1302 		mutex_exit(p->p_lock);
   1303 	}
   1304 	return l;
   1305 }
   1306 
   1307 /*
   1308  * Look up a live LWP within the specified process.
   1309  *
   1310  * Must be called with p->p_lock held.
   1311  */
   1312 struct lwp *
   1313 lwp_find(struct proc *p, lwpid_t id)
   1314 {
   1315 	struct lwp *l;
   1316 
   1317 	KASSERT(mutex_owned(p->p_lock));
   1318 
   1319 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1320 		if (l->l_lid == id)
   1321 			break;
   1322 	}
   1323 
   1324 	/*
   1325 	 * No need to lock - all of these conditions will
   1326 	 * be visible with the process level mutex held.
   1327 	 */
   1328 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1329 		l = NULL;
   1330 
   1331 	return l;
   1332 }
   1333 
   1334 /*
   1335  * Update an LWP's cached credentials to mirror the process' master copy.
   1336  *
   1337  * This happens early in the syscall path, on user trap, and on LWP
   1338  * creation.  A long-running LWP can also voluntarily choose to update
   1339  * it's credentials by calling this routine.  This may be called from
   1340  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1341  */
   1342 void
   1343 lwp_update_creds(struct lwp *l)
   1344 {
   1345 	kauth_cred_t oc;
   1346 	struct proc *p;
   1347 
   1348 	p = l->l_proc;
   1349 	oc = l->l_cred;
   1350 
   1351 	mutex_enter(p->p_lock);
   1352 	kauth_cred_hold(p->p_cred);
   1353 	l->l_cred = p->p_cred;
   1354 	l->l_prflag &= ~LPR_CRMOD;
   1355 	mutex_exit(p->p_lock);
   1356 	if (oc != NULL)
   1357 		kauth_cred_free(oc);
   1358 }
   1359 
   1360 /*
   1361  * Verify that an LWP is locked, and optionally verify that the lock matches
   1362  * one we specify.
   1363  */
   1364 int
   1365 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1366 {
   1367 	kmutex_t *cur = l->l_mutex;
   1368 
   1369 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1370 }
   1371 
   1372 /*
   1373  * Lend a new mutex to an LWP.  The old mutex must be held.
   1374  */
   1375 void
   1376 lwp_setlock(struct lwp *l, kmutex_t *new)
   1377 {
   1378 
   1379 	KASSERT(mutex_owned(l->l_mutex));
   1380 
   1381 	membar_exit();
   1382 	l->l_mutex = new;
   1383 }
   1384 
   1385 /*
   1386  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1387  * must be held.
   1388  */
   1389 void
   1390 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1391 {
   1392 	kmutex_t *old;
   1393 
   1394 	KASSERT(lwp_locked(l, NULL));
   1395 
   1396 	old = l->l_mutex;
   1397 	membar_exit();
   1398 	l->l_mutex = new;
   1399 	mutex_spin_exit(old);
   1400 }
   1401 
   1402 int
   1403 lwp_trylock(struct lwp *l)
   1404 {
   1405 	kmutex_t *old;
   1406 
   1407 	for (;;) {
   1408 		if (!mutex_tryenter(old = l->l_mutex))
   1409 			return 0;
   1410 		if (__predict_true(l->l_mutex == old))
   1411 			return 1;
   1412 		mutex_spin_exit(old);
   1413 	}
   1414 }
   1415 
   1416 void
   1417 lwp_unsleep(lwp_t *l, bool cleanup)
   1418 {
   1419 
   1420 	KASSERT(mutex_owned(l->l_mutex));
   1421 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1422 }
   1423 
   1424 /*
   1425  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1426  * set.
   1427  */
   1428 void
   1429 lwp_userret(struct lwp *l)
   1430 {
   1431 	struct proc *p;
   1432 	int sig;
   1433 
   1434 	KASSERT(l == curlwp);
   1435 	KASSERT(l->l_stat == LSONPROC);
   1436 	p = l->l_proc;
   1437 
   1438 #ifndef __HAVE_FAST_SOFTINTS
   1439 	/* Run pending soft interrupts. */
   1440 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1441 		softint_overlay();
   1442 #endif
   1443 
   1444 	/*
   1445 	 * It is safe to do this read unlocked on a MP system..
   1446 	 */
   1447 	while ((l->l_flag & LW_USERRET) != 0) {
   1448 		/*
   1449 		 * Process pending signals first, unless the process
   1450 		 * is dumping core or exiting, where we will instead
   1451 		 * enter the LW_WSUSPEND case below.
   1452 		 */
   1453 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1454 		    LW_PENDSIG) {
   1455 			mutex_enter(p->p_lock);
   1456 			while ((sig = issignal(l)) != 0)
   1457 				postsig(sig);
   1458 			mutex_exit(p->p_lock);
   1459 		}
   1460 
   1461 		/*
   1462 		 * Core-dump or suspend pending.
   1463 		 *
   1464 		 * In case of core dump, suspend ourselves, so that the kernel
   1465 		 * stack and therefore the userland registers saved in the
   1466 		 * trapframe are around for coredump() to write them out.
   1467 		 * We also need to save any PCU resources that we have so that
   1468 		 * they accessible for coredump().  We issue a wakeup on
   1469 		 * p->p_lwpcv so that sigexit() will write the core file out
   1470 		 * once all other LWPs are suspended.
   1471 		 */
   1472 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1473 			pcu_save_all(l);
   1474 			mutex_enter(p->p_lock);
   1475 			p->p_nrlwps--;
   1476 			cv_broadcast(&p->p_lwpcv);
   1477 			lwp_lock(l);
   1478 			l->l_stat = LSSUSPENDED;
   1479 			lwp_unlock(l);
   1480 			mutex_exit(p->p_lock);
   1481 			lwp_lock(l);
   1482 			mi_switch(l);
   1483 		}
   1484 
   1485 		/* Process is exiting. */
   1486 		if ((l->l_flag & LW_WEXIT) != 0) {
   1487 			lwp_exit(l);
   1488 			KASSERT(0);
   1489 			/* NOTREACHED */
   1490 		}
   1491 
   1492 		/* update lwpctl processor (for vfork child_return) */
   1493 		if (l->l_flag & LW_LWPCTL) {
   1494 			lwp_lock(l);
   1495 			KASSERT(kpreempt_disabled());
   1496 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1497 			l->l_lwpctl->lc_pctr++;
   1498 			l->l_flag &= ~LW_LWPCTL;
   1499 			lwp_unlock(l);
   1500 		}
   1501 	}
   1502 }
   1503 
   1504 /*
   1505  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1506  */
   1507 void
   1508 lwp_need_userret(struct lwp *l)
   1509 {
   1510 	KASSERT(lwp_locked(l, NULL));
   1511 
   1512 	/*
   1513 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1514 	 * that the condition will be seen before forcing the LWP to enter
   1515 	 * kernel mode.
   1516 	 */
   1517 	membar_producer();
   1518 	cpu_signotify(l);
   1519 }
   1520 
   1521 /*
   1522  * Add one reference to an LWP.  This will prevent the LWP from
   1523  * exiting, thus keep the lwp structure and PCB around to inspect.
   1524  */
   1525 void
   1526 lwp_addref(struct lwp *l)
   1527 {
   1528 
   1529 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1530 	KASSERT(l->l_stat != LSZOMB);
   1531 	KASSERT(l->l_refcnt != 0);
   1532 
   1533 	l->l_refcnt++;
   1534 }
   1535 
   1536 /*
   1537  * Remove one reference to an LWP.  If this is the last reference,
   1538  * then we must finalize the LWP's death.
   1539  */
   1540 void
   1541 lwp_delref(struct lwp *l)
   1542 {
   1543 	struct proc *p = l->l_proc;
   1544 
   1545 	mutex_enter(p->p_lock);
   1546 	lwp_delref2(l);
   1547 	mutex_exit(p->p_lock);
   1548 }
   1549 
   1550 /*
   1551  * Remove one reference to an LWP.  If this is the last reference,
   1552  * then we must finalize the LWP's death.  The proc mutex is held
   1553  * on entry.
   1554  */
   1555 void
   1556 lwp_delref2(struct lwp *l)
   1557 {
   1558 	struct proc *p = l->l_proc;
   1559 
   1560 	KASSERT(mutex_owned(p->p_lock));
   1561 	KASSERT(l->l_stat != LSZOMB);
   1562 	KASSERT(l->l_refcnt > 0);
   1563 	if (--l->l_refcnt == 0)
   1564 		cv_broadcast(&p->p_lwpcv);
   1565 }
   1566 
   1567 /*
   1568  * Drain all references to the current LWP.
   1569  */
   1570 void
   1571 lwp_drainrefs(struct lwp *l)
   1572 {
   1573 	struct proc *p = l->l_proc;
   1574 
   1575 	KASSERT(mutex_owned(p->p_lock));
   1576 	KASSERT(l->l_refcnt != 0);
   1577 
   1578 	l->l_refcnt--;
   1579 	while (l->l_refcnt != 0)
   1580 		cv_wait(&p->p_lwpcv, p->p_lock);
   1581 }
   1582 
   1583 /*
   1584  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1585  * be held.
   1586  */
   1587 bool
   1588 lwp_alive(lwp_t *l)
   1589 {
   1590 
   1591 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1592 
   1593 	switch (l->l_stat) {
   1594 	case LSSLEEP:
   1595 	case LSRUN:
   1596 	case LSONPROC:
   1597 	case LSSTOP:
   1598 	case LSSUSPENDED:
   1599 		return true;
   1600 	default:
   1601 		return false;
   1602 	}
   1603 }
   1604 
   1605 /*
   1606  * Return first live LWP in the process.
   1607  */
   1608 lwp_t *
   1609 lwp_find_first(proc_t *p)
   1610 {
   1611 	lwp_t *l;
   1612 
   1613 	KASSERT(mutex_owned(p->p_lock));
   1614 
   1615 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1616 		if (lwp_alive(l)) {
   1617 			return l;
   1618 		}
   1619 	}
   1620 
   1621 	return NULL;
   1622 }
   1623 
   1624 /*
   1625  * Allocate a new lwpctl structure for a user LWP.
   1626  */
   1627 int
   1628 lwp_ctl_alloc(vaddr_t *uaddr)
   1629 {
   1630 	lcproc_t *lp;
   1631 	u_int bit, i, offset;
   1632 	struct uvm_object *uao;
   1633 	int error;
   1634 	lcpage_t *lcp;
   1635 	proc_t *p;
   1636 	lwp_t *l;
   1637 
   1638 	l = curlwp;
   1639 	p = l->l_proc;
   1640 
   1641 	/* don't allow a vforked process to create lwp ctls */
   1642 	if (p->p_lflag & PL_PPWAIT)
   1643 		return EBUSY;
   1644 
   1645 	if (l->l_lcpage != NULL) {
   1646 		lcp = l->l_lcpage;
   1647 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1648 		return 0;
   1649 	}
   1650 
   1651 	/* First time around, allocate header structure for the process. */
   1652 	if ((lp = p->p_lwpctl) == NULL) {
   1653 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1654 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1655 		lp->lp_uao = NULL;
   1656 		TAILQ_INIT(&lp->lp_pages);
   1657 		mutex_enter(p->p_lock);
   1658 		if (p->p_lwpctl == NULL) {
   1659 			p->p_lwpctl = lp;
   1660 			mutex_exit(p->p_lock);
   1661 		} else {
   1662 			mutex_exit(p->p_lock);
   1663 			mutex_destroy(&lp->lp_lock);
   1664 			kmem_free(lp, sizeof(*lp));
   1665 			lp = p->p_lwpctl;
   1666 		}
   1667 	}
   1668 
   1669  	/*
   1670  	 * Set up an anonymous memory region to hold the shared pages.
   1671  	 * Map them into the process' address space.  The user vmspace
   1672  	 * gets the first reference on the UAO.
   1673  	 */
   1674 	mutex_enter(&lp->lp_lock);
   1675 	if (lp->lp_uao == NULL) {
   1676 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1677 		lp->lp_cur = 0;
   1678 		lp->lp_max = LWPCTL_UAREA_SZ;
   1679 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1680 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1681 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1682 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1683 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1684 		if (error != 0) {
   1685 			uao_detach(lp->lp_uao);
   1686 			lp->lp_uao = NULL;
   1687 			mutex_exit(&lp->lp_lock);
   1688 			return error;
   1689 		}
   1690 	}
   1691 
   1692 	/* Get a free block and allocate for this LWP. */
   1693 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1694 		if (lcp->lcp_nfree != 0)
   1695 			break;
   1696 	}
   1697 	if (lcp == NULL) {
   1698 		/* Nothing available - try to set up a free page. */
   1699 		if (lp->lp_cur == lp->lp_max) {
   1700 			mutex_exit(&lp->lp_lock);
   1701 			return ENOMEM;
   1702 		}
   1703 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1704 		if (lcp == NULL) {
   1705 			mutex_exit(&lp->lp_lock);
   1706 			return ENOMEM;
   1707 		}
   1708 		/*
   1709 		 * Wire the next page down in kernel space.  Since this
   1710 		 * is a new mapping, we must add a reference.
   1711 		 */
   1712 		uao = lp->lp_uao;
   1713 		(*uao->pgops->pgo_reference)(uao);
   1714 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1715 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1716 		    uao, lp->lp_cur, PAGE_SIZE,
   1717 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1718 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1719 		if (error != 0) {
   1720 			mutex_exit(&lp->lp_lock);
   1721 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1722 			(*uao->pgops->pgo_detach)(uao);
   1723 			return error;
   1724 		}
   1725 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1726 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1727 		if (error != 0) {
   1728 			mutex_exit(&lp->lp_lock);
   1729 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1730 			    lcp->lcp_kaddr + PAGE_SIZE);
   1731 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1732 			return error;
   1733 		}
   1734 		/* Prepare the page descriptor and link into the list. */
   1735 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1736 		lp->lp_cur += PAGE_SIZE;
   1737 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1738 		lcp->lcp_rotor = 0;
   1739 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1740 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1741 	}
   1742 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1743 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1744 			i = 0;
   1745 	}
   1746 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1747 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1748 	lcp->lcp_rotor = i;
   1749 	lcp->lcp_nfree--;
   1750 	l->l_lcpage = lcp;
   1751 	offset = (i << 5) + bit;
   1752 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1753 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1754 	mutex_exit(&lp->lp_lock);
   1755 
   1756 	KPREEMPT_DISABLE(l);
   1757 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1758 	KPREEMPT_ENABLE(l);
   1759 
   1760 	return 0;
   1761 }
   1762 
   1763 /*
   1764  * Free an lwpctl structure back to the per-process list.
   1765  */
   1766 void
   1767 lwp_ctl_free(lwp_t *l)
   1768 {
   1769 	struct proc *p = l->l_proc;
   1770 	lcproc_t *lp;
   1771 	lcpage_t *lcp;
   1772 	u_int map, offset;
   1773 
   1774 	/* don't free a lwp context we borrowed for vfork */
   1775 	if (p->p_lflag & PL_PPWAIT) {
   1776 		l->l_lwpctl = NULL;
   1777 		return;
   1778 	}
   1779 
   1780 	lp = p->p_lwpctl;
   1781 	KASSERT(lp != NULL);
   1782 
   1783 	lcp = l->l_lcpage;
   1784 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1785 	KASSERT(offset < LWPCTL_PER_PAGE);
   1786 
   1787 	mutex_enter(&lp->lp_lock);
   1788 	lcp->lcp_nfree++;
   1789 	map = offset >> 5;
   1790 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1791 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1792 		lcp->lcp_rotor = map;
   1793 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1794 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1795 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1796 	}
   1797 	mutex_exit(&lp->lp_lock);
   1798 }
   1799 
   1800 /*
   1801  * Process is exiting; tear down lwpctl state.  This can only be safely
   1802  * called by the last LWP in the process.
   1803  */
   1804 void
   1805 lwp_ctl_exit(void)
   1806 {
   1807 	lcpage_t *lcp, *next;
   1808 	lcproc_t *lp;
   1809 	proc_t *p;
   1810 	lwp_t *l;
   1811 
   1812 	l = curlwp;
   1813 	l->l_lwpctl = NULL;
   1814 	l->l_lcpage = NULL;
   1815 	p = l->l_proc;
   1816 	lp = p->p_lwpctl;
   1817 
   1818 	KASSERT(lp != NULL);
   1819 	KASSERT(p->p_nlwps == 1);
   1820 
   1821 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1822 		next = TAILQ_NEXT(lcp, lcp_chain);
   1823 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1824 		    lcp->lcp_kaddr + PAGE_SIZE);
   1825 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1826 	}
   1827 
   1828 	if (lp->lp_uao != NULL) {
   1829 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1830 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1831 	}
   1832 
   1833 	mutex_destroy(&lp->lp_lock);
   1834 	kmem_free(lp, sizeof(*lp));
   1835 	p->p_lwpctl = NULL;
   1836 }
   1837 
   1838 /*
   1839  * Return the current LWP's "preemption counter".  Used to detect
   1840  * preemption across operations that can tolerate preemption without
   1841  * crashing, but which may generate incorrect results if preempted.
   1842  */
   1843 uint64_t
   1844 lwp_pctr(void)
   1845 {
   1846 
   1847 	return curlwp->l_ncsw;
   1848 }
   1849 
   1850 /*
   1851  * Set an LWP's private data pointer.
   1852  */
   1853 int
   1854 lwp_setprivate(struct lwp *l, void *ptr)
   1855 {
   1856 	int error = 0;
   1857 
   1858 	l->l_private = ptr;
   1859 #ifdef __HAVE_CPU_LWP_SETPRIVATE
   1860 	error = cpu_lwp_setprivate(l, ptr);
   1861 #endif
   1862 	return error;
   1863 }
   1864 
   1865 #if defined(DDB)
   1866 #include <machine/pcb.h>
   1867 
   1868 void
   1869 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1870 {
   1871 	lwp_t *l;
   1872 
   1873 	LIST_FOREACH(l, &alllwp, l_list) {
   1874 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1875 
   1876 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1877 			continue;
   1878 		}
   1879 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1880 		    (void *)addr, (void *)stack,
   1881 		    (size_t)(addr - stack), l);
   1882 	}
   1883 }
   1884 #endif /* defined(DDB) */
   1885