Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.183
      1 /*	$NetBSD: kern_lwp.c,v 1.183 2016/04/04 20:47:57 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Overview
     34  *
     35  *	Lightweight processes (LWPs) are the basic unit or thread of
     36  *	execution within the kernel.  The core state of an LWP is described
     37  *	by "struct lwp", also known as lwp_t.
     38  *
     39  *	Each LWP is contained within a process (described by "struct proc"),
     40  *	Every process contains at least one LWP, but may contain more.  The
     41  *	process describes attributes shared among all of its LWPs such as a
     42  *	private address space, global execution state (stopped, active,
     43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     44  *	machine, multiple LWPs be executing concurrently in the kernel.
     45  *
     46  * Execution states
     47  *
     48  *	At any given time, an LWP has overall state that is described by
     49  *	lwp::l_stat.  The states are broken into two sets below.  The first
     50  *	set is guaranteed to represent the absolute, current state of the
     51  *	LWP:
     52  *
     53  *	LSONPROC
     54  *
     55  *		On processor: the LWP is executing on a CPU, either in the
     56  *		kernel or in user space.
     57  *
     58  *	LSRUN
     59  *
     60  *		Runnable: the LWP is parked on a run queue, and may soon be
     61  *		chosen to run by an idle processor, or by a processor that
     62  *		has been asked to preempt a currently runnning but lower
     63  *		priority LWP.
     64  *
     65  *	LSIDL
     66  *
     67  *		Idle: the LWP has been created but has not yet executed,
     68  *		or it has ceased executing a unit of work and is waiting
     69  *		to be started again.
     70  *
     71  *	LSSUSPENDED:
     72  *
     73  *		Suspended: the LWP has had its execution suspended by
     74  *		another LWP in the same process using the _lwp_suspend()
     75  *		system call.  User-level LWPs also enter the suspended
     76  *		state when the system is shutting down.
     77  *
     78  *	The second set represent a "statement of intent" on behalf of the
     79  *	LWP.  The LWP may in fact be executing on a processor, may be
     80  *	sleeping or idle. It is expected to take the necessary action to
     81  *	stop executing or become "running" again within a short timeframe.
     82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     83  *	Importantly, it indicates that its state is tied to a CPU.
     84  *
     85  *	LSZOMB:
     86  *
     87  *		Dead or dying: the LWP has released most of its resources
     88  *		and is about to switch away into oblivion, or has already
     89  *		switched away.  When it switches away, its few remaining
     90  *		resources can be collected.
     91  *
     92  *	LSSLEEP:
     93  *
     94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     95  *		has switched away or will switch away shortly to allow other
     96  *		LWPs to run on the CPU.
     97  *
     98  *	LSSTOP:
     99  *
    100  *		Stopped: the LWP has been stopped as a result of a job
    101  *		control signal, or as a result of the ptrace() interface.
    102  *
    103  *		Stopped LWPs may run briefly within the kernel to handle
    104  *		signals that they receive, but will not return to user space
    105  *		until their process' state is changed away from stopped.
    106  *
    107  *		Single LWPs within a process can not be set stopped
    108  *		selectively: all actions that can stop or continue LWPs
    109  *		occur at the process level.
    110  *
    111  * State transitions
    112  *
    113  *	Note that the LSSTOP state may only be set when returning to
    114  *	user space in userret(), or when sleeping interruptably.  The
    115  *	LSSUSPENDED state may only be set in userret().  Before setting
    116  *	those states, we try to ensure that the LWPs will release all
    117  *	locks that they hold, and at a minimum try to ensure that the
    118  *	LWP can be set runnable again by a signal.
    119  *
    120  *	LWPs may transition states in the following ways:
    121  *
    122  *	 RUN -------> ONPROC		ONPROC -----> RUN
    123  *		    				    > SLEEP
    124  *		    				    > STOPPED
    125  *						    > SUSPENDED
    126  *						    > ZOMB
    127  *						    > IDL (special cases)
    128  *
    129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    130  *	            > SLEEP
    131  *
    132  *	 SLEEP -----> ONPROC		IDL --------> RUN
    133  *		    > RUN			    > SUSPENDED
    134  *		    > STOPPED			    > STOPPED
    135  *						    > ONPROC (special cases)
    136  *
    137  *	Some state transitions are only possible with kernel threads (eg
    138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    139  *	free of unwanted side effects.
    140  *
    141  * Migration
    142  *
    143  *	Migration of threads from one CPU to another could be performed
    144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    145  *	functions.  The universal lwp_migrate() function should be used for
    146  *	any other cases.  Subsystems in the kernel must be aware that CPU
    147  *	of LWP may change, while it is not locked.
    148  *
    149  * Locking
    150  *
    151  *	The majority of fields in 'struct lwp' are covered by a single,
    152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    153  *	each field are documented in sys/lwp.h.
    154  *
    155  *	State transitions must be made with the LWP's general lock held,
    156  *	and may cause the LWP's lock pointer to change.  Manipulation of
    157  *	the general lock is not performed directly, but through calls to
    158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    159  *	adaptive locks are not allowed to be released while the LWP's lock
    160  *	is being held (unlike for other spin-locks).
    161  *
    162  *	States and their associated locks:
    163  *
    164  *	LSONPROC, LSZOMB:
    165  *
    166  *		Always covered by spc_lwplock, which protects running LWPs.
    167  *		This is a per-CPU lock and matches lwp::l_cpu.
    168  *
    169  *	LSIDL, LSRUN:
    170  *
    171  *		Always covered by spc_mutex, which protects the run queues.
    172  *		This is a per-CPU lock and matches lwp::l_cpu.
    173  *
    174  *	LSSLEEP:
    175  *
    176  *		Covered by a lock associated with the sleep queue that the
    177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
    178  *
    179  *	LSSTOP, LSSUSPENDED:
    180  *
    181  *		If the LWP was previously sleeping (l_wchan != NULL), then
    182  *		l_mutex references the sleep queue lock.  If the LWP was
    183  *		runnable or on the CPU when halted, or has been removed from
    184  *		the sleep queue since halted, then the lock is spc_lwplock.
    185  *
    186  *	The lock order is as follows:
    187  *
    188  *		spc::spc_lwplock ->
    189  *		    sleeptab::st_mutex ->
    190  *			tschain_t::tc_mutex ->
    191  *			    spc::spc_mutex
    192  *
    193  *	Each process has an scheduler state lock (proc::p_lock), and a
    194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195  *	so on.  When an LWP is to be entered into or removed from one of the
    196  *	following states, p_lock must be held and the process wide counters
    197  *	adjusted:
    198  *
    199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200  *
    201  *	(But not always for kernel threads.  There are some special cases
    202  *	as mentioned above.  See kern_softint.c.)
    203  *
    204  *	Note that an LWP is considered running or likely to run soon if in
    205  *	one of the following states.  This affects the value of p_nrlwps:
    206  *
    207  *		LSRUN, LSONPROC, LSSLEEP
    208  *
    209  *	p_lock does not need to be held when transitioning among these
    210  *	three states, hence p_lock is rarely taken for state transitions.
    211  */
    212 
    213 #include <sys/cdefs.h>
    214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.183 2016/04/04 20:47:57 christos Exp $");
    215 
    216 #include "opt_ddb.h"
    217 #include "opt_lockdebug.h"
    218 #include "opt_dtrace.h"
    219 
    220 #define _LWP_API_PRIVATE
    221 
    222 #include <sys/param.h>
    223 #include <sys/systm.h>
    224 #include <sys/cpu.h>
    225 #include <sys/pool.h>
    226 #include <sys/proc.h>
    227 #include <sys/syscallargs.h>
    228 #include <sys/syscall_stats.h>
    229 #include <sys/kauth.h>
    230 #include <sys/pserialize.h>
    231 #include <sys/sleepq.h>
    232 #include <sys/lockdebug.h>
    233 #include <sys/kmem.h>
    234 #include <sys/pset.h>
    235 #include <sys/intr.h>
    236 #include <sys/lwpctl.h>
    237 #include <sys/atomic.h>
    238 #include <sys/filedesc.h>
    239 #include <sys/dtrace_bsd.h>
    240 #include <sys/sdt.h>
    241 #include <sys/xcall.h>
    242 #include <sys/uidinfo.h>
    243 #include <sys/sysctl.h>
    244 
    245 #include <uvm/uvm_extern.h>
    246 #include <uvm/uvm_object.h>
    247 
    248 static pool_cache_t	lwp_cache	__read_mostly;
    249 struct lwplist		alllwp		__cacheline_aligned;
    250 
    251 static void		lwp_dtor(void *, void *);
    252 
    253 /* DTrace proc provider probes */
    254 SDT_PROVIDER_DEFINE(proc);
    255 
    256 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
    257 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
    258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
    259 
    260 struct turnstile turnstile0;
    261 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    262 #ifdef LWP0_CPU_INFO
    263 	.l_cpu = LWP0_CPU_INFO,
    264 #endif
    265 #ifdef LWP0_MD_INITIALIZER
    266 	.l_md = LWP0_MD_INITIALIZER,
    267 #endif
    268 	.l_proc = &proc0,
    269 	.l_lid = 1,
    270 	.l_flag = LW_SYSTEM,
    271 	.l_stat = LSONPROC,
    272 	.l_ts = &turnstile0,
    273 	.l_syncobj = &sched_syncobj,
    274 	.l_refcnt = 1,
    275 	.l_priority = PRI_USER + NPRI_USER - 1,
    276 	.l_inheritedprio = -1,
    277 	.l_class = SCHED_OTHER,
    278 	.l_psid = PS_NONE,
    279 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    280 	.l_name = __UNCONST("swapper"),
    281 	.l_fd = &filedesc0,
    282 };
    283 
    284 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
    285 
    286 /*
    287  * sysctl helper routine for kern.maxlwp. Ensures that the new
    288  * values are not too low or too high.
    289  */
    290 static int
    291 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
    292 {
    293 	int error, nmaxlwp;
    294 	struct sysctlnode node;
    295 
    296 	nmaxlwp = maxlwp;
    297 	node = *rnode;
    298 	node.sysctl_data = &nmaxlwp;
    299 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    300 	if (error || newp == NULL)
    301 		return error;
    302 
    303 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
    304 		return EINVAL;
    305 	if (nmaxlwp > cpu_maxlwp())
    306 		return EINVAL;
    307 	maxlwp = nmaxlwp;
    308 
    309 	return 0;
    310 }
    311 
    312 static void
    313 sysctl_kern_lwp_setup(void)
    314 {
    315 	struct sysctllog *clog = NULL;
    316 
    317 	sysctl_createv(&clog, 0, NULL, NULL,
    318 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    319 		       CTLTYPE_INT, "maxlwp",
    320 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
    321 		       sysctl_kern_maxlwp, 0, NULL, 0,
    322 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    323 }
    324 
    325 void
    326 lwpinit(void)
    327 {
    328 
    329 	LIST_INIT(&alllwp);
    330 	lwpinit_specificdata();
    331 	lwp_sys_init();
    332 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    333 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
    334 
    335 	maxlwp = cpu_maxlwp();
    336 	sysctl_kern_lwp_setup();
    337 }
    338 
    339 void
    340 lwp0_init(void)
    341 {
    342 	struct lwp *l = &lwp0;
    343 
    344 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    345 	KASSERT(l->l_lid == proc0.p_nlwpid);
    346 
    347 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    348 
    349 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    350 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    351 	cv_init(&l->l_sigcv, "sigwait");
    352 	cv_init(&l->l_waitcv, "vfork");
    353 
    354 	kauth_cred_hold(proc0.p_cred);
    355 	l->l_cred = proc0.p_cred;
    356 
    357 	kdtrace_thread_ctor(NULL, l);
    358 	lwp_initspecific(l);
    359 
    360 	SYSCALL_TIME_LWP_INIT(l);
    361 }
    362 
    363 static void
    364 lwp_dtor(void *arg, void *obj)
    365 {
    366 	lwp_t *l = obj;
    367 	uint64_t where;
    368 	(void)l;
    369 
    370 	/*
    371 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    372 	 * calls will exit before memory of LWP is returned to the pool, where
    373 	 * KVA of LWP structure might be freed and re-used for other purposes.
    374 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    375 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
    376 	 * the value of l->l_cpu must be still valid at this point.
    377 	 */
    378 	KASSERT(l->l_cpu != NULL);
    379 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    380 	xc_wait(where);
    381 }
    382 
    383 /*
    384  * Set an suspended.
    385  *
    386  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    387  * LWP before return.
    388  */
    389 int
    390 lwp_suspend(struct lwp *curl, struct lwp *t)
    391 {
    392 	int error;
    393 
    394 	KASSERT(mutex_owned(t->l_proc->p_lock));
    395 	KASSERT(lwp_locked(t, NULL));
    396 
    397 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    398 
    399 	/*
    400 	 * If the current LWP has been told to exit, we must not suspend anyone
    401 	 * else or deadlock could occur.  We won't return to userspace.
    402 	 */
    403 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    404 		lwp_unlock(t);
    405 		return (EDEADLK);
    406 	}
    407 
    408 	error = 0;
    409 
    410 	switch (t->l_stat) {
    411 	case LSRUN:
    412 	case LSONPROC:
    413 		t->l_flag |= LW_WSUSPEND;
    414 		lwp_need_userret(t);
    415 		lwp_unlock(t);
    416 		break;
    417 
    418 	case LSSLEEP:
    419 		t->l_flag |= LW_WSUSPEND;
    420 
    421 		/*
    422 		 * Kick the LWP and try to get it to the kernel boundary
    423 		 * so that it will release any locks that it holds.
    424 		 * setrunnable() will release the lock.
    425 		 */
    426 		if ((t->l_flag & LW_SINTR) != 0)
    427 			setrunnable(t);
    428 		else
    429 			lwp_unlock(t);
    430 		break;
    431 
    432 	case LSSUSPENDED:
    433 		lwp_unlock(t);
    434 		break;
    435 
    436 	case LSSTOP:
    437 		t->l_flag |= LW_WSUSPEND;
    438 		setrunnable(t);
    439 		break;
    440 
    441 	case LSIDL:
    442 	case LSZOMB:
    443 		error = EINTR; /* It's what Solaris does..... */
    444 		lwp_unlock(t);
    445 		break;
    446 	}
    447 
    448 	return (error);
    449 }
    450 
    451 /*
    452  * Restart a suspended LWP.
    453  *
    454  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    455  * LWP before return.
    456  */
    457 void
    458 lwp_continue(struct lwp *l)
    459 {
    460 
    461 	KASSERT(mutex_owned(l->l_proc->p_lock));
    462 	KASSERT(lwp_locked(l, NULL));
    463 
    464 	/* If rebooting or not suspended, then just bail out. */
    465 	if ((l->l_flag & LW_WREBOOT) != 0) {
    466 		lwp_unlock(l);
    467 		return;
    468 	}
    469 
    470 	l->l_flag &= ~LW_WSUSPEND;
    471 
    472 	if (l->l_stat != LSSUSPENDED) {
    473 		lwp_unlock(l);
    474 		return;
    475 	}
    476 
    477 	/* setrunnable() will release the lock. */
    478 	setrunnable(l);
    479 }
    480 
    481 /*
    482  * Restart a stopped LWP.
    483  *
    484  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    485  * LWP before return.
    486  */
    487 void
    488 lwp_unstop(struct lwp *l)
    489 {
    490 	struct proc *p = l->l_proc;
    491 
    492 	KASSERT(mutex_owned(proc_lock));
    493 	KASSERT(mutex_owned(p->p_lock));
    494 
    495 	lwp_lock(l);
    496 
    497 	/* If not stopped, then just bail out. */
    498 	if (l->l_stat != LSSTOP) {
    499 		lwp_unlock(l);
    500 		return;
    501 	}
    502 
    503 	p->p_stat = SACTIVE;
    504 	p->p_sflag &= ~PS_STOPPING;
    505 
    506 	if (!p->p_waited)
    507 		p->p_pptr->p_nstopchild--;
    508 
    509 	if (l->l_wchan == NULL) {
    510 		/* setrunnable() will release the lock. */
    511 		setrunnable(l);
    512 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
    513 		/* setrunnable() so we can receive the signal */
    514 		setrunnable(l);
    515 	} else {
    516 		l->l_stat = LSSLEEP;
    517 		p->p_nrlwps++;
    518 		lwp_unlock(l);
    519 	}
    520 }
    521 
    522 /*
    523  * Wait for an LWP within the current process to exit.  If 'lid' is
    524  * non-zero, we are waiting for a specific LWP.
    525  *
    526  * Must be called with p->p_lock held.
    527  */
    528 int
    529 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
    530 {
    531 	const lwpid_t curlid = l->l_lid;
    532 	proc_t *p = l->l_proc;
    533 	lwp_t *l2;
    534 	int error;
    535 
    536 	KASSERT(mutex_owned(p->p_lock));
    537 
    538 	p->p_nlwpwait++;
    539 	l->l_waitingfor = lid;
    540 
    541 	for (;;) {
    542 		int nfound;
    543 
    544 		/*
    545 		 * Avoid a race between exit1() and sigexit(): if the
    546 		 * process is dumping core, then we need to bail out: call
    547 		 * into lwp_userret() where we will be suspended until the
    548 		 * deed is done.
    549 		 */
    550 		if ((p->p_sflag & PS_WCORE) != 0) {
    551 			mutex_exit(p->p_lock);
    552 			lwp_userret(l);
    553 			KASSERT(false);
    554 		}
    555 
    556 		/*
    557 		 * First off, drain any detached LWP that is waiting to be
    558 		 * reaped.
    559 		 */
    560 		while ((l2 = p->p_zomblwp) != NULL) {
    561 			p->p_zomblwp = NULL;
    562 			lwp_free(l2, false, false);/* releases proc mutex */
    563 			mutex_enter(p->p_lock);
    564 		}
    565 
    566 		/*
    567 		 * Now look for an LWP to collect.  If the whole process is
    568 		 * exiting, count detached LWPs as eligible to be collected,
    569 		 * but don't drain them here.
    570 		 */
    571 		nfound = 0;
    572 		error = 0;
    573 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    574 			/*
    575 			 * If a specific wait and the target is waiting on
    576 			 * us, then avoid deadlock.  This also traps LWPs
    577 			 * that try to wait on themselves.
    578 			 *
    579 			 * Note that this does not handle more complicated
    580 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    581 			 * can still be killed so it is not a major problem.
    582 			 */
    583 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    584 				error = EDEADLK;
    585 				break;
    586 			}
    587 			if (l2 == l)
    588 				continue;
    589 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    590 				nfound += exiting;
    591 				continue;
    592 			}
    593 			if (lid != 0) {
    594 				if (l2->l_lid != lid)
    595 					continue;
    596 				/*
    597 				 * Mark this LWP as the first waiter, if there
    598 				 * is no other.
    599 				 */
    600 				if (l2->l_waiter == 0)
    601 					l2->l_waiter = curlid;
    602 			} else if (l2->l_waiter != 0) {
    603 				/*
    604 				 * It already has a waiter - so don't
    605 				 * collect it.  If the waiter doesn't
    606 				 * grab it we'll get another chance
    607 				 * later.
    608 				 */
    609 				nfound++;
    610 				continue;
    611 			}
    612 			nfound++;
    613 
    614 			/* No need to lock the LWP in order to see LSZOMB. */
    615 			if (l2->l_stat != LSZOMB)
    616 				continue;
    617 
    618 			/*
    619 			 * We're no longer waiting.  Reset the "first waiter"
    620 			 * pointer on the target, in case it was us.
    621 			 */
    622 			l->l_waitingfor = 0;
    623 			l2->l_waiter = 0;
    624 			p->p_nlwpwait--;
    625 			if (departed)
    626 				*departed = l2->l_lid;
    627 			sched_lwp_collect(l2);
    628 
    629 			/* lwp_free() releases the proc lock. */
    630 			lwp_free(l2, false, false);
    631 			mutex_enter(p->p_lock);
    632 			return 0;
    633 		}
    634 
    635 		if (error != 0)
    636 			break;
    637 		if (nfound == 0) {
    638 			error = ESRCH;
    639 			break;
    640 		}
    641 
    642 		/*
    643 		 * Note: since the lock will be dropped, need to restart on
    644 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
    645 		 */
    646 		if (exiting) {
    647 			KASSERT(p->p_nlwps > 1);
    648 			cv_wait(&p->p_lwpcv, p->p_lock);
    649 			error = EAGAIN;
    650 			break;
    651 		}
    652 
    653 		/*
    654 		 * If all other LWPs are waiting for exits or suspends
    655 		 * and the supply of zombies and potential zombies is
    656 		 * exhausted, then we are about to deadlock.
    657 		 *
    658 		 * If the process is exiting (and this LWP is not the one
    659 		 * that is coordinating the exit) then bail out now.
    660 		 */
    661 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    662 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    663 			error = EDEADLK;
    664 			break;
    665 		}
    666 
    667 		/*
    668 		 * Sit around and wait for something to happen.  We'll be
    669 		 * awoken if any of the conditions examined change: if an
    670 		 * LWP exits, is collected, or is detached.
    671 		 */
    672 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    673 			break;
    674 	}
    675 
    676 	/*
    677 	 * We didn't find any LWPs to collect, we may have received a
    678 	 * signal, or some other condition has caused us to bail out.
    679 	 *
    680 	 * If waiting on a specific LWP, clear the waiters marker: some
    681 	 * other LWP may want it.  Then, kick all the remaining waiters
    682 	 * so that they can re-check for zombies and for deadlock.
    683 	 */
    684 	if (lid != 0) {
    685 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    686 			if (l2->l_lid == lid) {
    687 				if (l2->l_waiter == curlid)
    688 					l2->l_waiter = 0;
    689 				break;
    690 			}
    691 		}
    692 	}
    693 	p->p_nlwpwait--;
    694 	l->l_waitingfor = 0;
    695 	cv_broadcast(&p->p_lwpcv);
    696 
    697 	return error;
    698 }
    699 
    700 static lwpid_t
    701 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
    702 {
    703 	#define LID_SCAN (1u << 31)
    704 	lwp_t *scan, *free_before;
    705 	lwpid_t nxt_lid;
    706 
    707 	/*
    708 	 * We want the first unused lid greater than or equal to
    709 	 * try_lid (modulo 2^31).
    710 	 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
    711 	 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
    712 	 * the outer test easier.
    713 	 * This would be much easier if the list were sorted in
    714 	 * increasing order.
    715 	 * The list is kept sorted in decreasing order.
    716 	 * This code is only used after a process has generated 2^31 lwp.
    717 	 *
    718 	 * Code assumes it can always find an id.
    719 	 */
    720 
    721 	try_lid &= LID_SCAN - 1;
    722 	if (try_lid <= 1)
    723 		try_lid = 2;
    724 
    725 	free_before = NULL;
    726 	nxt_lid = LID_SCAN - 1;
    727 	LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
    728 		if (scan->l_lid != nxt_lid) {
    729 			/* There are available lid before this entry */
    730 			free_before = scan;
    731 			if (try_lid > scan->l_lid)
    732 				break;
    733 		}
    734 		if (try_lid == scan->l_lid) {
    735 			/* The ideal lid is busy, take a higher one */
    736 			if (free_before != NULL) {
    737 				try_lid = free_before->l_lid + 1;
    738 				break;
    739 			}
    740 			/* No higher ones, reuse low numbers */
    741 			try_lid = 2;
    742 		}
    743 
    744 		nxt_lid = scan->l_lid - 1;
    745 		if (LIST_NEXT(scan, l_sibling) == NULL) {
    746 		    /* The value we have is lower than any existing lwp */
    747 		    LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
    748 		    return try_lid;
    749 		}
    750 	}
    751 
    752 	LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
    753 	return try_lid;
    754 }
    755 
    756 /*
    757  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    758  * The new LWP is created in state LSIDL and must be set running,
    759  * suspended, or stopped by the caller.
    760  */
    761 int
    762 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    763 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    764 	   lwp_t **rnewlwpp, int sclass)
    765 {
    766 	struct lwp *l2, *isfree;
    767 	turnstile_t *ts;
    768 	lwpid_t lid;
    769 
    770 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    771 
    772 	/*
    773 	 * Enforce limits, excluding the first lwp and kthreads.
    774 	 */
    775 	if (p2->p_nlwps != 0 && p2 != &proc0) {
    776 		uid_t uid = kauth_cred_getuid(l1->l_cred);
    777 		int count = chglwpcnt(uid, 1);
    778 		if (__predict_false(count >
    779 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
    780 			if (kauth_authorize_process(l1->l_cred,
    781 			    KAUTH_PROCESS_RLIMIT, p2,
    782 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    783 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
    784 			    != 0) {
    785 				(void)chglwpcnt(uid, -1);
    786 				return EAGAIN;
    787 			}
    788 		}
    789 	}
    790 
    791 	/*
    792 	 * First off, reap any detached LWP waiting to be collected.
    793 	 * We can re-use its LWP structure and turnstile.
    794 	 */
    795 	isfree = NULL;
    796 	if (p2->p_zomblwp != NULL) {
    797 		mutex_enter(p2->p_lock);
    798 		if ((isfree = p2->p_zomblwp) != NULL) {
    799 			p2->p_zomblwp = NULL;
    800 			lwp_free(isfree, true, false);/* releases proc mutex */
    801 		} else
    802 			mutex_exit(p2->p_lock);
    803 	}
    804 	if (isfree == NULL) {
    805 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    806 		memset(l2, 0, sizeof(*l2));
    807 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    808 		SLIST_INIT(&l2->l_pi_lenders);
    809 	} else {
    810 		l2 = isfree;
    811 		ts = l2->l_ts;
    812 		KASSERT(l2->l_inheritedprio == -1);
    813 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    814 		memset(l2, 0, sizeof(*l2));
    815 		l2->l_ts = ts;
    816 	}
    817 
    818 	l2->l_stat = LSIDL;
    819 	l2->l_proc = p2;
    820 	l2->l_refcnt = 1;
    821 	l2->l_class = sclass;
    822 
    823 	/*
    824 	 * If vfork(), we want the LWP to run fast and on the same CPU
    825 	 * as its parent, so that it can reuse the VM context and cache
    826 	 * footprint on the local CPU.
    827 	 */
    828 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    829 	l2->l_kpribase = PRI_KERNEL;
    830 	l2->l_priority = l1->l_priority;
    831 	l2->l_inheritedprio = -1;
    832 	l2->l_flag = 0;
    833 	l2->l_pflag = LP_MPSAFE;
    834 	TAILQ_INIT(&l2->l_ld_locks);
    835 
    836 	/*
    837 	 * For vfork, borrow parent's lwpctl context if it exists.
    838 	 * This also causes us to return via lwp_userret.
    839 	 */
    840 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    841 		l2->l_lwpctl = l1->l_lwpctl;
    842 		l2->l_flag |= LW_LWPCTL;
    843 	}
    844 
    845 	/*
    846 	 * If not the first LWP in the process, grab a reference to the
    847 	 * descriptor table.
    848 	 */
    849 	l2->l_fd = p2->p_fd;
    850 	if (p2->p_nlwps != 0) {
    851 		KASSERT(l1->l_proc == p2);
    852 		fd_hold(l2);
    853 	} else {
    854 		KASSERT(l1->l_proc != p2);
    855 	}
    856 
    857 	if (p2->p_flag & PK_SYSTEM) {
    858 		/* Mark it as a system LWP. */
    859 		l2->l_flag |= LW_SYSTEM;
    860 	}
    861 
    862 	kpreempt_disable();
    863 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    864 	l2->l_cpu = l1->l_cpu;
    865 	kpreempt_enable();
    866 
    867 	kdtrace_thread_ctor(NULL, l2);
    868 	lwp_initspecific(l2);
    869 	sched_lwp_fork(l1, l2);
    870 	lwp_update_creds(l2);
    871 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    872 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    873 	cv_init(&l2->l_sigcv, "sigwait");
    874 	cv_init(&l2->l_waitcv, "vfork");
    875 	l2->l_syncobj = &sched_syncobj;
    876 
    877 	if (rnewlwpp != NULL)
    878 		*rnewlwpp = l2;
    879 
    880 	/*
    881 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    882 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    883 	 */
    884 	pcu_save_all(l1);
    885 
    886 	uvm_lwp_setuarea(l2, uaddr);
    887 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    888 	    (arg != NULL) ? arg : l2);
    889 
    890 	if ((flags & LWP_PIDLID) != 0) {
    891 		lid = proc_alloc_pid(p2);
    892 		l2->l_pflag |= LP_PIDLID;
    893 	} else {
    894 		lid = 0;
    895 	}
    896 
    897 	mutex_enter(p2->p_lock);
    898 
    899 	if ((flags & LWP_DETACHED) != 0) {
    900 		l2->l_prflag = LPR_DETACHED;
    901 		p2->p_ndlwps++;
    902 	} else
    903 		l2->l_prflag = 0;
    904 
    905 	l2->l_sigstk = l1->l_sigstk;
    906 	l2->l_sigmask = l1->l_sigmask;
    907 	TAILQ_INIT(&l2->l_sigpend.sp_info);
    908 	sigemptyset(&l2->l_sigpend.sp_set);
    909 
    910 	if (__predict_true(lid == 0)) {
    911 		/*
    912 		 * XXX: l_lid are expected to be unique (for a process)
    913 		 * if LWP_PIDLID is sometimes set this won't be true.
    914 		 * Once 2^31 threads have been allocated we have to
    915 		 * scan to ensure we allocate a unique value.
    916 		 */
    917 		lid = ++p2->p_nlwpid;
    918 		if (__predict_false(lid & LID_SCAN)) {
    919 			lid = lwp_find_free_lid(lid, l2, p2);
    920 			p2->p_nlwpid = lid | LID_SCAN;
    921 			/* l2 as been inserted into p_lwps in order */
    922 			goto skip_insert;
    923 		}
    924 		p2->p_nlwpid = lid;
    925 	}
    926 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    927     skip_insert:
    928 	l2->l_lid = lid;
    929 	p2->p_nlwps++;
    930 	p2->p_nrlwps++;
    931 
    932 	KASSERT(l2->l_affinity == NULL);
    933 
    934 	if ((p2->p_flag & PK_SYSTEM) == 0) {
    935 		/* Inherit the affinity mask. */
    936 		if (l1->l_affinity) {
    937 			/*
    938 			 * Note that we hold the state lock while inheriting
    939 			 * the affinity to avoid race with sched_setaffinity().
    940 			 */
    941 			lwp_lock(l1);
    942 			if (l1->l_affinity) {
    943 				kcpuset_use(l1->l_affinity);
    944 				l2->l_affinity = l1->l_affinity;
    945 			}
    946 			lwp_unlock(l1);
    947 		}
    948 		lwp_lock(l2);
    949 		/* Inherit a processor-set */
    950 		l2->l_psid = l1->l_psid;
    951 		/* Look for a CPU to start */
    952 		l2->l_cpu = sched_takecpu(l2);
    953 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
    954 	}
    955 	mutex_exit(p2->p_lock);
    956 
    957 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
    958 
    959 	mutex_enter(proc_lock);
    960 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    961 	mutex_exit(proc_lock);
    962 
    963 	SYSCALL_TIME_LWP_INIT(l2);
    964 
    965 	if (p2->p_emul->e_lwp_fork)
    966 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    967 
    968 	return (0);
    969 }
    970 
    971 /*
    972  * Called by MD code when a new LWP begins execution.  Must be called
    973  * with the previous LWP locked (so at splsched), or if there is no
    974  * previous LWP, at splsched.
    975  */
    976 void
    977 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
    978 {
    979 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
    980 
    981 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
    982 
    983 	KASSERT(kpreempt_disabled());
    984 	if (prev != NULL) {
    985 		/*
    986 		 * Normalize the count of the spin-mutexes, it was
    987 		 * increased in mi_switch().  Unmark the state of
    988 		 * context switch - it is finished for previous LWP.
    989 		 */
    990 		curcpu()->ci_mtx_count++;
    991 		membar_exit();
    992 		prev->l_ctxswtch = 0;
    993 	}
    994 	KPREEMPT_DISABLE(new_lwp);
    995 	if (__predict_true(new_lwp->l_proc->p_vmspace))
    996 		pmap_activate(new_lwp);
    997 	spl0();
    998 
    999 	/* Note trip through cpu_switchto(). */
   1000 	pserialize_switchpoint();
   1001 
   1002 	LOCKDEBUG_BARRIER(NULL, 0);
   1003 	KPREEMPT_ENABLE(new_lwp);
   1004 	if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
   1005 		KERNEL_LOCK(1, new_lwp);
   1006 	}
   1007 }
   1008 
   1009 /*
   1010  * Exit an LWP.
   1011  */
   1012 void
   1013 lwp_exit(struct lwp *l)
   1014 {
   1015 	struct proc *p = l->l_proc;
   1016 	struct lwp *l2;
   1017 	bool current;
   1018 
   1019 	current = (l == curlwp);
   1020 
   1021 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
   1022 	KASSERT(p == curproc);
   1023 
   1024 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
   1025 
   1026 	/*
   1027 	 * Verify that we hold no locks other than the kernel lock.
   1028 	 */
   1029 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
   1030 
   1031 	/*
   1032 	 * If we are the last live LWP in a process, we need to exit the
   1033 	 * entire process.  We do so with an exit status of zero, because
   1034 	 * it's a "controlled" exit, and because that's what Solaris does.
   1035 	 *
   1036 	 * We are not quite a zombie yet, but for accounting purposes we
   1037 	 * must increment the count of zombies here.
   1038 	 *
   1039 	 * Note: the last LWP's specificdata will be deleted here.
   1040 	 */
   1041 	mutex_enter(p->p_lock);
   1042 	if (p->p_nlwps - p->p_nzlwps == 1) {
   1043 		KASSERT(current == true);
   1044 		KASSERT(p != &proc0);
   1045 		/* XXXSMP kernel_lock not held */
   1046 		exit1(l, 0, 0, 0);
   1047 		/* NOTREACHED */
   1048 	}
   1049 	p->p_nzlwps++;
   1050 	mutex_exit(p->p_lock);
   1051 
   1052 	if (p->p_emul->e_lwp_exit)
   1053 		(*p->p_emul->e_lwp_exit)(l);
   1054 
   1055 	/* Drop filedesc reference. */
   1056 	fd_free();
   1057 
   1058 	/* Delete the specificdata while it's still safe to sleep. */
   1059 	lwp_finispecific(l);
   1060 
   1061 	/*
   1062 	 * Release our cached credentials.
   1063 	 */
   1064 	kauth_cred_free(l->l_cred);
   1065 	callout_destroy(&l->l_timeout_ch);
   1066 
   1067 	/*
   1068 	 * Remove the LWP from the global list.
   1069 	 * Free its LID from the PID namespace if needed.
   1070 	 */
   1071 	mutex_enter(proc_lock);
   1072 	LIST_REMOVE(l, l_list);
   1073 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
   1074 		proc_free_pid(l->l_lid);
   1075 	}
   1076 	mutex_exit(proc_lock);
   1077 
   1078 	/*
   1079 	 * Get rid of all references to the LWP that others (e.g. procfs)
   1080 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
   1081 	 * mark it waiting for collection in the proc structure.  Note that
   1082 	 * before we can do that, we need to free any other dead, deatched
   1083 	 * LWP waiting to meet its maker.
   1084 	 */
   1085 	mutex_enter(p->p_lock);
   1086 	lwp_drainrefs(l);
   1087 
   1088 	if ((l->l_prflag & LPR_DETACHED) != 0) {
   1089 		while ((l2 = p->p_zomblwp) != NULL) {
   1090 			p->p_zomblwp = NULL;
   1091 			lwp_free(l2, false, false);/* releases proc mutex */
   1092 			mutex_enter(p->p_lock);
   1093 			l->l_refcnt++;
   1094 			lwp_drainrefs(l);
   1095 		}
   1096 		p->p_zomblwp = l;
   1097 	}
   1098 
   1099 	/*
   1100 	 * If we find a pending signal for the process and we have been
   1101 	 * asked to check for signals, then we lose: arrange to have
   1102 	 * all other LWPs in the process check for signals.
   1103 	 */
   1104 	if ((l->l_flag & LW_PENDSIG) != 0 &&
   1105 	    firstsig(&p->p_sigpend.sp_set) != 0) {
   1106 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1107 			lwp_lock(l2);
   1108 			l2->l_flag |= LW_PENDSIG;
   1109 			lwp_unlock(l2);
   1110 		}
   1111 	}
   1112 
   1113 	/*
   1114 	 * Release any PCU resources before becoming a zombie.
   1115 	 */
   1116 	pcu_discard_all(l);
   1117 
   1118 	lwp_lock(l);
   1119 	l->l_stat = LSZOMB;
   1120 	if (l->l_name != NULL) {
   1121 		strcpy(l->l_name, "(zombie)");
   1122 	}
   1123 	lwp_unlock(l);
   1124 	p->p_nrlwps--;
   1125 	cv_broadcast(&p->p_lwpcv);
   1126 	if (l->l_lwpctl != NULL)
   1127 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
   1128 	mutex_exit(p->p_lock);
   1129 
   1130 	/*
   1131 	 * We can no longer block.  At this point, lwp_free() may already
   1132 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1133 	 *
   1134 	 * Free MD LWP resources.
   1135 	 */
   1136 	cpu_lwp_free(l, 0);
   1137 
   1138 	if (current) {
   1139 		pmap_deactivate(l);
   1140 
   1141 		/*
   1142 		 * Release the kernel lock, and switch away into
   1143 		 * oblivion.
   1144 		 */
   1145 #ifdef notyet
   1146 		/* XXXSMP hold in lwp_userret() */
   1147 		KERNEL_UNLOCK_LAST(l);
   1148 #else
   1149 		KERNEL_UNLOCK_ALL(l, NULL);
   1150 #endif
   1151 		lwp_exit_switchaway(l);
   1152 	}
   1153 }
   1154 
   1155 /*
   1156  * Free a dead LWP's remaining resources.
   1157  *
   1158  * XXXLWP limits.
   1159  */
   1160 void
   1161 lwp_free(struct lwp *l, bool recycle, bool last)
   1162 {
   1163 	struct proc *p = l->l_proc;
   1164 	struct rusage *ru;
   1165 	ksiginfoq_t kq;
   1166 
   1167 	KASSERT(l != curlwp);
   1168 	KASSERT(last || mutex_owned(p->p_lock));
   1169 
   1170 	/*
   1171 	 * We use the process credentials instead of the lwp credentials here
   1172 	 * because the lwp credentials maybe cached (just after a setuid call)
   1173 	 * and we don't want pay for syncing, since the lwp is going away
   1174 	 * anyway
   1175 	 */
   1176 	if (p != &proc0 && p->p_nlwps != 1)
   1177 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
   1178 	/*
   1179 	 * If this was not the last LWP in the process, then adjust
   1180 	 * counters and unlock.
   1181 	 */
   1182 	if (!last) {
   1183 		/*
   1184 		 * Add the LWP's run time to the process' base value.
   1185 		 * This needs to co-incide with coming off p_lwps.
   1186 		 */
   1187 		bintime_add(&p->p_rtime, &l->l_rtime);
   1188 		p->p_pctcpu += l->l_pctcpu;
   1189 		ru = &p->p_stats->p_ru;
   1190 		ruadd(ru, &l->l_ru);
   1191 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1192 		ru->ru_nivcsw += l->l_nivcsw;
   1193 		LIST_REMOVE(l, l_sibling);
   1194 		p->p_nlwps--;
   1195 		p->p_nzlwps--;
   1196 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1197 			p->p_ndlwps--;
   1198 
   1199 		/*
   1200 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1201 		 * deadlock.
   1202 		 */
   1203 		cv_broadcast(&p->p_lwpcv);
   1204 		mutex_exit(p->p_lock);
   1205 	}
   1206 
   1207 #ifdef MULTIPROCESSOR
   1208 	/*
   1209 	 * In the unlikely event that the LWP is still on the CPU,
   1210 	 * then spin until it has switched away.  We need to release
   1211 	 * all locks to avoid deadlock against interrupt handlers on
   1212 	 * the target CPU.
   1213 	 */
   1214 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
   1215 		int count;
   1216 		(void)count; /* XXXgcc */
   1217 		KERNEL_UNLOCK_ALL(curlwp, &count);
   1218 		while ((l->l_pflag & LP_RUNNING) != 0 ||
   1219 		    l->l_cpu->ci_curlwp == l)
   1220 			SPINLOCK_BACKOFF_HOOK;
   1221 		KERNEL_LOCK(count, curlwp);
   1222 	}
   1223 #endif
   1224 
   1225 	/*
   1226 	 * Destroy the LWP's remaining signal information.
   1227 	 */
   1228 	ksiginfo_queue_init(&kq);
   1229 	sigclear(&l->l_sigpend, NULL, &kq);
   1230 	ksiginfo_queue_drain(&kq);
   1231 	cv_destroy(&l->l_sigcv);
   1232 	cv_destroy(&l->l_waitcv);
   1233 
   1234 	/*
   1235 	 * Free lwpctl structure and affinity.
   1236 	 */
   1237 	if (l->l_lwpctl) {
   1238 		lwp_ctl_free(l);
   1239 	}
   1240 	if (l->l_affinity) {
   1241 		kcpuset_unuse(l->l_affinity, NULL);
   1242 		l->l_affinity = NULL;
   1243 	}
   1244 
   1245 	/*
   1246 	 * Free the LWP's turnstile and the LWP structure itself unless the
   1247 	 * caller wants to recycle them.  Also, free the scheduler specific
   1248 	 * data.
   1249 	 *
   1250 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1251 	 * so if it comes up just drop it quietly and move on.
   1252 	 *
   1253 	 * We don't recycle the VM resources at this time.
   1254 	 */
   1255 
   1256 	if (!recycle && l->l_ts != &turnstile0)
   1257 		pool_cache_put(turnstile_cache, l->l_ts);
   1258 	if (l->l_name != NULL)
   1259 		kmem_free(l->l_name, MAXCOMLEN);
   1260 
   1261 	cpu_lwp_free2(l);
   1262 	uvm_lwp_exit(l);
   1263 
   1264 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1265 	KASSERT(l->l_inheritedprio == -1);
   1266 	KASSERT(l->l_blcnt == 0);
   1267 	kdtrace_thread_dtor(NULL, l);
   1268 	if (!recycle)
   1269 		pool_cache_put(lwp_cache, l);
   1270 }
   1271 
   1272 /*
   1273  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1274  */
   1275 void
   1276 lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1277 {
   1278 	struct schedstate_percpu *tspc;
   1279 	int lstat = l->l_stat;
   1280 
   1281 	KASSERT(lwp_locked(l, NULL));
   1282 	KASSERT(tci != NULL);
   1283 
   1284 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1285 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1286 		lstat = LSONPROC;
   1287 	}
   1288 
   1289 	/*
   1290 	 * The destination CPU could be changed while previous migration
   1291 	 * was not finished.
   1292 	 */
   1293 	if (l->l_target_cpu != NULL) {
   1294 		l->l_target_cpu = tci;
   1295 		lwp_unlock(l);
   1296 		return;
   1297 	}
   1298 
   1299 	/* Nothing to do if trying to migrate to the same CPU */
   1300 	if (l->l_cpu == tci) {
   1301 		lwp_unlock(l);
   1302 		return;
   1303 	}
   1304 
   1305 	KASSERT(l->l_target_cpu == NULL);
   1306 	tspc = &tci->ci_schedstate;
   1307 	switch (lstat) {
   1308 	case LSRUN:
   1309 		l->l_target_cpu = tci;
   1310 		break;
   1311 	case LSIDL:
   1312 		l->l_cpu = tci;
   1313 		lwp_unlock_to(l, tspc->spc_mutex);
   1314 		return;
   1315 	case LSSLEEP:
   1316 		l->l_cpu = tci;
   1317 		break;
   1318 	case LSSTOP:
   1319 	case LSSUSPENDED:
   1320 		l->l_cpu = tci;
   1321 		if (l->l_wchan == NULL) {
   1322 			lwp_unlock_to(l, tspc->spc_lwplock);
   1323 			return;
   1324 		}
   1325 		break;
   1326 	case LSONPROC:
   1327 		l->l_target_cpu = tci;
   1328 		spc_lock(l->l_cpu);
   1329 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
   1330 		spc_unlock(l->l_cpu);
   1331 		break;
   1332 	}
   1333 	lwp_unlock(l);
   1334 }
   1335 
   1336 /*
   1337  * Find the LWP in the process.  Arguments may be zero, in such case,
   1338  * the calling process and first LWP in the list will be used.
   1339  * On success - returns proc locked.
   1340  */
   1341 struct lwp *
   1342 lwp_find2(pid_t pid, lwpid_t lid)
   1343 {
   1344 	proc_t *p;
   1345 	lwp_t *l;
   1346 
   1347 	/* Find the process. */
   1348 	if (pid != 0) {
   1349 		mutex_enter(proc_lock);
   1350 		p = proc_find(pid);
   1351 		if (p == NULL) {
   1352 			mutex_exit(proc_lock);
   1353 			return NULL;
   1354 		}
   1355 		mutex_enter(p->p_lock);
   1356 		mutex_exit(proc_lock);
   1357 	} else {
   1358 		p = curlwp->l_proc;
   1359 		mutex_enter(p->p_lock);
   1360 	}
   1361 	/* Find the thread. */
   1362 	if (lid != 0) {
   1363 		l = lwp_find(p, lid);
   1364 	} else {
   1365 		l = LIST_FIRST(&p->p_lwps);
   1366 	}
   1367 	if (l == NULL) {
   1368 		mutex_exit(p->p_lock);
   1369 	}
   1370 	return l;
   1371 }
   1372 
   1373 /*
   1374  * Look up a live LWP within the specified process.
   1375  *
   1376  * Must be called with p->p_lock held.
   1377  */
   1378 struct lwp *
   1379 lwp_find(struct proc *p, lwpid_t id)
   1380 {
   1381 	struct lwp *l;
   1382 
   1383 	KASSERT(mutex_owned(p->p_lock));
   1384 
   1385 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1386 		if (l->l_lid == id)
   1387 			break;
   1388 	}
   1389 
   1390 	/*
   1391 	 * No need to lock - all of these conditions will
   1392 	 * be visible with the process level mutex held.
   1393 	 */
   1394 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1395 		l = NULL;
   1396 
   1397 	return l;
   1398 }
   1399 
   1400 /*
   1401  * Update an LWP's cached credentials to mirror the process' master copy.
   1402  *
   1403  * This happens early in the syscall path, on user trap, and on LWP
   1404  * creation.  A long-running LWP can also voluntarily choose to update
   1405  * its credentials by calling this routine.  This may be called from
   1406  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1407  */
   1408 void
   1409 lwp_update_creds(struct lwp *l)
   1410 {
   1411 	kauth_cred_t oc;
   1412 	struct proc *p;
   1413 
   1414 	p = l->l_proc;
   1415 	oc = l->l_cred;
   1416 
   1417 	mutex_enter(p->p_lock);
   1418 	kauth_cred_hold(p->p_cred);
   1419 	l->l_cred = p->p_cred;
   1420 	l->l_prflag &= ~LPR_CRMOD;
   1421 	mutex_exit(p->p_lock);
   1422 	if (oc != NULL)
   1423 		kauth_cred_free(oc);
   1424 }
   1425 
   1426 /*
   1427  * Verify that an LWP is locked, and optionally verify that the lock matches
   1428  * one we specify.
   1429  */
   1430 int
   1431 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1432 {
   1433 	kmutex_t *cur = l->l_mutex;
   1434 
   1435 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1436 }
   1437 
   1438 /*
   1439  * Lend a new mutex to an LWP.  The old mutex must be held.
   1440  */
   1441 void
   1442 lwp_setlock(struct lwp *l, kmutex_t *mtx)
   1443 {
   1444 
   1445 	KASSERT(mutex_owned(l->l_mutex));
   1446 
   1447 	membar_exit();
   1448 	l->l_mutex = mtx;
   1449 }
   1450 
   1451 /*
   1452  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1453  * must be held.
   1454  */
   1455 void
   1456 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
   1457 {
   1458 	kmutex_t *old;
   1459 
   1460 	KASSERT(lwp_locked(l, NULL));
   1461 
   1462 	old = l->l_mutex;
   1463 	membar_exit();
   1464 	l->l_mutex = mtx;
   1465 	mutex_spin_exit(old);
   1466 }
   1467 
   1468 int
   1469 lwp_trylock(struct lwp *l)
   1470 {
   1471 	kmutex_t *old;
   1472 
   1473 	for (;;) {
   1474 		if (!mutex_tryenter(old = l->l_mutex))
   1475 			return 0;
   1476 		if (__predict_true(l->l_mutex == old))
   1477 			return 1;
   1478 		mutex_spin_exit(old);
   1479 	}
   1480 }
   1481 
   1482 void
   1483 lwp_unsleep(lwp_t *l, bool cleanup)
   1484 {
   1485 
   1486 	KASSERT(mutex_owned(l->l_mutex));
   1487 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
   1488 }
   1489 
   1490 /*
   1491  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1492  * set.
   1493  */
   1494 void
   1495 lwp_userret(struct lwp *l)
   1496 {
   1497 	struct proc *p;
   1498 	int sig;
   1499 
   1500 	KASSERT(l == curlwp);
   1501 	KASSERT(l->l_stat == LSONPROC);
   1502 	p = l->l_proc;
   1503 
   1504 #ifndef __HAVE_FAST_SOFTINTS
   1505 	/* Run pending soft interrupts. */
   1506 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1507 		softint_overlay();
   1508 #endif
   1509 
   1510 	/*
   1511 	 * It is safe to do this read unlocked on a MP system..
   1512 	 */
   1513 	while ((l->l_flag & LW_USERRET) != 0) {
   1514 		/*
   1515 		 * Process pending signals first, unless the process
   1516 		 * is dumping core or exiting, where we will instead
   1517 		 * enter the LW_WSUSPEND case below.
   1518 		 */
   1519 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1520 		    LW_PENDSIG) {
   1521 			mutex_enter(p->p_lock);
   1522 			while ((sig = issignal(l)) != 0)
   1523 				postsig(sig);
   1524 			mutex_exit(p->p_lock);
   1525 		}
   1526 
   1527 		/*
   1528 		 * Core-dump or suspend pending.
   1529 		 *
   1530 		 * In case of core dump, suspend ourselves, so that the kernel
   1531 		 * stack and therefore the userland registers saved in the
   1532 		 * trapframe are around for coredump() to write them out.
   1533 		 * We also need to save any PCU resources that we have so that
   1534 		 * they accessible for coredump().  We issue a wakeup on
   1535 		 * p->p_lwpcv so that sigexit() will write the core file out
   1536 		 * once all other LWPs are suspended.
   1537 		 */
   1538 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1539 			pcu_save_all(l);
   1540 			mutex_enter(p->p_lock);
   1541 			p->p_nrlwps--;
   1542 			cv_broadcast(&p->p_lwpcv);
   1543 			lwp_lock(l);
   1544 			l->l_stat = LSSUSPENDED;
   1545 			lwp_unlock(l);
   1546 			mutex_exit(p->p_lock);
   1547 			lwp_lock(l);
   1548 			mi_switch(l);
   1549 		}
   1550 
   1551 		/* Process is exiting. */
   1552 		if ((l->l_flag & LW_WEXIT) != 0) {
   1553 			lwp_exit(l);
   1554 			KASSERT(0);
   1555 			/* NOTREACHED */
   1556 		}
   1557 
   1558 		/* update lwpctl processor (for vfork child_return) */
   1559 		if (l->l_flag & LW_LWPCTL) {
   1560 			lwp_lock(l);
   1561 			KASSERT(kpreempt_disabled());
   1562 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1563 			l->l_lwpctl->lc_pctr++;
   1564 			l->l_flag &= ~LW_LWPCTL;
   1565 			lwp_unlock(l);
   1566 		}
   1567 	}
   1568 }
   1569 
   1570 /*
   1571  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1572  */
   1573 void
   1574 lwp_need_userret(struct lwp *l)
   1575 {
   1576 	KASSERT(lwp_locked(l, NULL));
   1577 
   1578 	/*
   1579 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1580 	 * that the condition will be seen before forcing the LWP to enter
   1581 	 * kernel mode.
   1582 	 */
   1583 	membar_producer();
   1584 	cpu_signotify(l);
   1585 }
   1586 
   1587 /*
   1588  * Add one reference to an LWP.  This will prevent the LWP from
   1589  * exiting, thus keep the lwp structure and PCB around to inspect.
   1590  */
   1591 void
   1592 lwp_addref(struct lwp *l)
   1593 {
   1594 
   1595 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1596 	KASSERT(l->l_stat != LSZOMB);
   1597 	KASSERT(l->l_refcnt != 0);
   1598 
   1599 	l->l_refcnt++;
   1600 }
   1601 
   1602 /*
   1603  * Remove one reference to an LWP.  If this is the last reference,
   1604  * then we must finalize the LWP's death.
   1605  */
   1606 void
   1607 lwp_delref(struct lwp *l)
   1608 {
   1609 	struct proc *p = l->l_proc;
   1610 
   1611 	mutex_enter(p->p_lock);
   1612 	lwp_delref2(l);
   1613 	mutex_exit(p->p_lock);
   1614 }
   1615 
   1616 /*
   1617  * Remove one reference to an LWP.  If this is the last reference,
   1618  * then we must finalize the LWP's death.  The proc mutex is held
   1619  * on entry.
   1620  */
   1621 void
   1622 lwp_delref2(struct lwp *l)
   1623 {
   1624 	struct proc *p = l->l_proc;
   1625 
   1626 	KASSERT(mutex_owned(p->p_lock));
   1627 	KASSERT(l->l_stat != LSZOMB);
   1628 	KASSERT(l->l_refcnt > 0);
   1629 	if (--l->l_refcnt == 0)
   1630 		cv_broadcast(&p->p_lwpcv);
   1631 }
   1632 
   1633 /*
   1634  * Drain all references to the current LWP.
   1635  */
   1636 void
   1637 lwp_drainrefs(struct lwp *l)
   1638 {
   1639 	struct proc *p = l->l_proc;
   1640 
   1641 	KASSERT(mutex_owned(p->p_lock));
   1642 	KASSERT(l->l_refcnt != 0);
   1643 
   1644 	l->l_refcnt--;
   1645 	while (l->l_refcnt != 0)
   1646 		cv_wait(&p->p_lwpcv, p->p_lock);
   1647 }
   1648 
   1649 /*
   1650  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1651  * be held.
   1652  */
   1653 bool
   1654 lwp_alive(lwp_t *l)
   1655 {
   1656 
   1657 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1658 
   1659 	switch (l->l_stat) {
   1660 	case LSSLEEP:
   1661 	case LSRUN:
   1662 	case LSONPROC:
   1663 	case LSSTOP:
   1664 	case LSSUSPENDED:
   1665 		return true;
   1666 	default:
   1667 		return false;
   1668 	}
   1669 }
   1670 
   1671 /*
   1672  * Return first live LWP in the process.
   1673  */
   1674 lwp_t *
   1675 lwp_find_first(proc_t *p)
   1676 {
   1677 	lwp_t *l;
   1678 
   1679 	KASSERT(mutex_owned(p->p_lock));
   1680 
   1681 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1682 		if (lwp_alive(l)) {
   1683 			return l;
   1684 		}
   1685 	}
   1686 
   1687 	return NULL;
   1688 }
   1689 
   1690 /*
   1691  * Allocate a new lwpctl structure for a user LWP.
   1692  */
   1693 int
   1694 lwp_ctl_alloc(vaddr_t *uaddr)
   1695 {
   1696 	lcproc_t *lp;
   1697 	u_int bit, i, offset;
   1698 	struct uvm_object *uao;
   1699 	int error;
   1700 	lcpage_t *lcp;
   1701 	proc_t *p;
   1702 	lwp_t *l;
   1703 
   1704 	l = curlwp;
   1705 	p = l->l_proc;
   1706 
   1707 	/* don't allow a vforked process to create lwp ctls */
   1708 	if (p->p_lflag & PL_PPWAIT)
   1709 		return EBUSY;
   1710 
   1711 	if (l->l_lcpage != NULL) {
   1712 		lcp = l->l_lcpage;
   1713 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1714 		return 0;
   1715 	}
   1716 
   1717 	/* First time around, allocate header structure for the process. */
   1718 	if ((lp = p->p_lwpctl) == NULL) {
   1719 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1720 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1721 		lp->lp_uao = NULL;
   1722 		TAILQ_INIT(&lp->lp_pages);
   1723 		mutex_enter(p->p_lock);
   1724 		if (p->p_lwpctl == NULL) {
   1725 			p->p_lwpctl = lp;
   1726 			mutex_exit(p->p_lock);
   1727 		} else {
   1728 			mutex_exit(p->p_lock);
   1729 			mutex_destroy(&lp->lp_lock);
   1730 			kmem_free(lp, sizeof(*lp));
   1731 			lp = p->p_lwpctl;
   1732 		}
   1733 	}
   1734 
   1735  	/*
   1736  	 * Set up an anonymous memory region to hold the shared pages.
   1737  	 * Map them into the process' address space.  The user vmspace
   1738  	 * gets the first reference on the UAO.
   1739  	 */
   1740 	mutex_enter(&lp->lp_lock);
   1741 	if (lp->lp_uao == NULL) {
   1742 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1743 		lp->lp_cur = 0;
   1744 		lp->lp_max = LWPCTL_UAREA_SZ;
   1745 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1746 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
   1747 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1748 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1749 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1750 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1751 		if (error != 0) {
   1752 			uao_detach(lp->lp_uao);
   1753 			lp->lp_uao = NULL;
   1754 			mutex_exit(&lp->lp_lock);
   1755 			return error;
   1756 		}
   1757 	}
   1758 
   1759 	/* Get a free block and allocate for this LWP. */
   1760 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1761 		if (lcp->lcp_nfree != 0)
   1762 			break;
   1763 	}
   1764 	if (lcp == NULL) {
   1765 		/* Nothing available - try to set up a free page. */
   1766 		if (lp->lp_cur == lp->lp_max) {
   1767 			mutex_exit(&lp->lp_lock);
   1768 			return ENOMEM;
   1769 		}
   1770 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1771 		if (lcp == NULL) {
   1772 			mutex_exit(&lp->lp_lock);
   1773 			return ENOMEM;
   1774 		}
   1775 		/*
   1776 		 * Wire the next page down in kernel space.  Since this
   1777 		 * is a new mapping, we must add a reference.
   1778 		 */
   1779 		uao = lp->lp_uao;
   1780 		(*uao->pgops->pgo_reference)(uao);
   1781 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1782 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1783 		    uao, lp->lp_cur, PAGE_SIZE,
   1784 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1785 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1786 		if (error != 0) {
   1787 			mutex_exit(&lp->lp_lock);
   1788 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1789 			(*uao->pgops->pgo_detach)(uao);
   1790 			return error;
   1791 		}
   1792 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1793 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1794 		if (error != 0) {
   1795 			mutex_exit(&lp->lp_lock);
   1796 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1797 			    lcp->lcp_kaddr + PAGE_SIZE);
   1798 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1799 			return error;
   1800 		}
   1801 		/* Prepare the page descriptor and link into the list. */
   1802 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1803 		lp->lp_cur += PAGE_SIZE;
   1804 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1805 		lcp->lcp_rotor = 0;
   1806 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1807 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1808 	}
   1809 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1810 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1811 			i = 0;
   1812 	}
   1813 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1814 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1815 	lcp->lcp_rotor = i;
   1816 	lcp->lcp_nfree--;
   1817 	l->l_lcpage = lcp;
   1818 	offset = (i << 5) + bit;
   1819 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1820 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1821 	mutex_exit(&lp->lp_lock);
   1822 
   1823 	KPREEMPT_DISABLE(l);
   1824 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
   1825 	KPREEMPT_ENABLE(l);
   1826 
   1827 	return 0;
   1828 }
   1829 
   1830 /*
   1831  * Free an lwpctl structure back to the per-process list.
   1832  */
   1833 void
   1834 lwp_ctl_free(lwp_t *l)
   1835 {
   1836 	struct proc *p = l->l_proc;
   1837 	lcproc_t *lp;
   1838 	lcpage_t *lcp;
   1839 	u_int map, offset;
   1840 
   1841 	/* don't free a lwp context we borrowed for vfork */
   1842 	if (p->p_lflag & PL_PPWAIT) {
   1843 		l->l_lwpctl = NULL;
   1844 		return;
   1845 	}
   1846 
   1847 	lp = p->p_lwpctl;
   1848 	KASSERT(lp != NULL);
   1849 
   1850 	lcp = l->l_lcpage;
   1851 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1852 	KASSERT(offset < LWPCTL_PER_PAGE);
   1853 
   1854 	mutex_enter(&lp->lp_lock);
   1855 	lcp->lcp_nfree++;
   1856 	map = offset >> 5;
   1857 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1858 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1859 		lcp->lcp_rotor = map;
   1860 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1861 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1862 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1863 	}
   1864 	mutex_exit(&lp->lp_lock);
   1865 }
   1866 
   1867 /*
   1868  * Process is exiting; tear down lwpctl state.  This can only be safely
   1869  * called by the last LWP in the process.
   1870  */
   1871 void
   1872 lwp_ctl_exit(void)
   1873 {
   1874 	lcpage_t *lcp, *next;
   1875 	lcproc_t *lp;
   1876 	proc_t *p;
   1877 	lwp_t *l;
   1878 
   1879 	l = curlwp;
   1880 	l->l_lwpctl = NULL;
   1881 	l->l_lcpage = NULL;
   1882 	p = l->l_proc;
   1883 	lp = p->p_lwpctl;
   1884 
   1885 	KASSERT(lp != NULL);
   1886 	KASSERT(p->p_nlwps == 1);
   1887 
   1888 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1889 		next = TAILQ_NEXT(lcp, lcp_chain);
   1890 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1891 		    lcp->lcp_kaddr + PAGE_SIZE);
   1892 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1893 	}
   1894 
   1895 	if (lp->lp_uao != NULL) {
   1896 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1897 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1898 	}
   1899 
   1900 	mutex_destroy(&lp->lp_lock);
   1901 	kmem_free(lp, sizeof(*lp));
   1902 	p->p_lwpctl = NULL;
   1903 }
   1904 
   1905 /*
   1906  * Return the current LWP's "preemption counter".  Used to detect
   1907  * preemption across operations that can tolerate preemption without
   1908  * crashing, but which may generate incorrect results if preempted.
   1909  */
   1910 uint64_t
   1911 lwp_pctr(void)
   1912 {
   1913 
   1914 	return curlwp->l_ncsw;
   1915 }
   1916 
   1917 /*
   1918  * Set an LWP's private data pointer.
   1919  */
   1920 int
   1921 lwp_setprivate(struct lwp *l, void *ptr)
   1922 {
   1923 	int error = 0;
   1924 
   1925 	l->l_private = ptr;
   1926 #ifdef __HAVE_CPU_LWP_SETPRIVATE
   1927 	error = cpu_lwp_setprivate(l, ptr);
   1928 #endif
   1929 	return error;
   1930 }
   1931 
   1932 #if defined(DDB)
   1933 #include <machine/pcb.h>
   1934 
   1935 void
   1936 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1937 {
   1938 	lwp_t *l;
   1939 
   1940 	LIST_FOREACH(l, &alllwp, l_list) {
   1941 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   1942 
   1943 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   1944 			continue;
   1945 		}
   1946 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   1947 		    (void *)addr, (void *)stack,
   1948 		    (size_t)(addr - stack), l);
   1949 	}
   1950 }
   1951 #endif /* defined(DDB) */
   1952