kern_lwp.c revision 1.192.2.1 1 /* $NetBSD: kern_lwp.c,v 1.192.2.1 2019/06/10 22:09:03 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.192.2.1 2019/06/10 22:09:03 christos Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219
220 #define _LWP_API_PRIVATE
221
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/fstrans.h>
240 #include <sys/dtrace_bsd.h>
241 #include <sys/sdt.h>
242 #include <sys/xcall.h>
243 #include <sys/uidinfo.h>
244 #include <sys/sysctl.h>
245 #include <sys/psref.h>
246
247 #include <uvm/uvm_extern.h>
248 #include <uvm/uvm_object.h>
249
250 static pool_cache_t lwp_cache __read_mostly;
251 struct lwplist alllwp __cacheline_aligned;
252
253 static void lwp_dtor(void *, void *);
254
255 /* DTrace proc provider probes */
256 SDT_PROVIDER_DEFINE(proc);
257
258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
261
262 struct turnstile turnstile0;
263 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
264 #ifdef LWP0_CPU_INFO
265 .l_cpu = LWP0_CPU_INFO,
266 #endif
267 #ifdef LWP0_MD_INITIALIZER
268 .l_md = LWP0_MD_INITIALIZER,
269 #endif
270 .l_proc = &proc0,
271 .l_lid = 1,
272 .l_flag = LW_SYSTEM,
273 .l_stat = LSONPROC,
274 .l_ts = &turnstile0,
275 .l_syncobj = &sched_syncobj,
276 .l_refcnt = 1,
277 .l_priority = PRI_USER + NPRI_USER - 1,
278 .l_inheritedprio = -1,
279 .l_class = SCHED_OTHER,
280 .l_psid = PS_NONE,
281 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
282 .l_name = __UNCONST("swapper"),
283 .l_fd = &filedesc0,
284 };
285
286 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
287
288 /*
289 * sysctl helper routine for kern.maxlwp. Ensures that the new
290 * values are not too low or too high.
291 */
292 static int
293 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
294 {
295 int error, nmaxlwp;
296 struct sysctlnode node;
297
298 nmaxlwp = maxlwp;
299 node = *rnode;
300 node.sysctl_data = &nmaxlwp;
301 error = sysctl_lookup(SYSCTLFN_CALL(&node));
302 if (error || newp == NULL)
303 return error;
304
305 if (nmaxlwp < 0 || nmaxlwp >= 65536)
306 return EINVAL;
307 if (nmaxlwp > cpu_maxlwp())
308 return EINVAL;
309 maxlwp = nmaxlwp;
310
311 return 0;
312 }
313
314 static void
315 sysctl_kern_lwp_setup(void)
316 {
317 struct sysctllog *clog = NULL;
318
319 sysctl_createv(&clog, 0, NULL, NULL,
320 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
321 CTLTYPE_INT, "maxlwp",
322 SYSCTL_DESCR("Maximum number of simultaneous threads"),
323 sysctl_kern_maxlwp, 0, NULL, 0,
324 CTL_KERN, CTL_CREATE, CTL_EOL);
325 }
326
327 void
328 lwpinit(void)
329 {
330
331 LIST_INIT(&alllwp);
332 lwpinit_specificdata();
333 lwp_sys_init();
334 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
335 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
336
337 maxlwp = cpu_maxlwp();
338 sysctl_kern_lwp_setup();
339 }
340
341 void
342 lwp0_init(void)
343 {
344 struct lwp *l = &lwp0;
345
346 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
347 KASSERT(l->l_lid == proc0.p_nlwpid);
348
349 LIST_INSERT_HEAD(&alllwp, l, l_list);
350
351 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
352 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
353 cv_init(&l->l_sigcv, "sigwait");
354 cv_init(&l->l_waitcv, "vfork");
355
356 kauth_cred_hold(proc0.p_cred);
357 l->l_cred = proc0.p_cred;
358
359 kdtrace_thread_ctor(NULL, l);
360 lwp_initspecific(l);
361
362 SYSCALL_TIME_LWP_INIT(l);
363 }
364
365 static void
366 lwp_dtor(void *arg, void *obj)
367 {
368 lwp_t *l = obj;
369 uint64_t where;
370 (void)l;
371
372 /*
373 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
374 * calls will exit before memory of LWP is returned to the pool, where
375 * KVA of LWP structure might be freed and re-used for other purposes.
376 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
377 * callers, therefore cross-call to all CPUs will do the job. Also,
378 * the value of l->l_cpu must be still valid at this point.
379 */
380 KASSERT(l->l_cpu != NULL);
381 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
382 xc_wait(where);
383 }
384
385 /*
386 * Set an suspended.
387 *
388 * Must be called with p_lock held, and the LWP locked. Will unlock the
389 * LWP before return.
390 */
391 int
392 lwp_suspend(struct lwp *curl, struct lwp *t)
393 {
394 int error;
395
396 KASSERT(mutex_owned(t->l_proc->p_lock));
397 KASSERT(lwp_locked(t, NULL));
398
399 KASSERT(curl != t || curl->l_stat == LSONPROC);
400
401 /*
402 * If the current LWP has been told to exit, we must not suspend anyone
403 * else or deadlock could occur. We won't return to userspace.
404 */
405 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
406 lwp_unlock(t);
407 return (EDEADLK);
408 }
409
410 error = 0;
411
412 switch (t->l_stat) {
413 case LSRUN:
414 case LSONPROC:
415 t->l_flag |= LW_WSUSPEND;
416 lwp_need_userret(t);
417 lwp_unlock(t);
418 break;
419
420 case LSSLEEP:
421 t->l_flag |= LW_WSUSPEND;
422
423 /*
424 * Kick the LWP and try to get it to the kernel boundary
425 * so that it will release any locks that it holds.
426 * setrunnable() will release the lock.
427 */
428 if ((t->l_flag & LW_SINTR) != 0)
429 setrunnable(t);
430 else
431 lwp_unlock(t);
432 break;
433
434 case LSSUSPENDED:
435 lwp_unlock(t);
436 break;
437
438 case LSSTOP:
439 t->l_flag |= LW_WSUSPEND;
440 setrunnable(t);
441 break;
442
443 case LSIDL:
444 case LSZOMB:
445 error = EINTR; /* It's what Solaris does..... */
446 lwp_unlock(t);
447 break;
448 }
449
450 return (error);
451 }
452
453 /*
454 * Restart a suspended LWP.
455 *
456 * Must be called with p_lock held, and the LWP locked. Will unlock the
457 * LWP before return.
458 */
459 void
460 lwp_continue(struct lwp *l)
461 {
462
463 KASSERT(mutex_owned(l->l_proc->p_lock));
464 KASSERT(lwp_locked(l, NULL));
465
466 /* If rebooting or not suspended, then just bail out. */
467 if ((l->l_flag & LW_WREBOOT) != 0) {
468 lwp_unlock(l);
469 return;
470 }
471
472 l->l_flag &= ~LW_WSUSPEND;
473
474 if (l->l_stat != LSSUSPENDED) {
475 lwp_unlock(l);
476 return;
477 }
478
479 /* setrunnable() will release the lock. */
480 setrunnable(l);
481 }
482
483 /*
484 * Restart a stopped LWP.
485 *
486 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
487 * LWP before return.
488 */
489 void
490 lwp_unstop(struct lwp *l)
491 {
492 struct proc *p = l->l_proc;
493
494 KASSERT(mutex_owned(proc_lock));
495 KASSERT(mutex_owned(p->p_lock));
496
497 lwp_lock(l);
498
499 /* If not stopped, then just bail out. */
500 if (l->l_stat != LSSTOP) {
501 lwp_unlock(l);
502 return;
503 }
504
505 p->p_stat = SACTIVE;
506 p->p_sflag &= ~PS_STOPPING;
507
508 if (!p->p_waited)
509 p->p_pptr->p_nstopchild--;
510
511 if (l->l_wchan == NULL) {
512 /* setrunnable() will release the lock. */
513 setrunnable(l);
514 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
515 /* setrunnable() so we can receive the signal */
516 setrunnable(l);
517 } else {
518 l->l_stat = LSSLEEP;
519 p->p_nrlwps++;
520 lwp_unlock(l);
521 }
522 }
523
524 /*
525 * Wait for an LWP within the current process to exit. If 'lid' is
526 * non-zero, we are waiting for a specific LWP.
527 *
528 * Must be called with p->p_lock held.
529 */
530 int
531 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
532 {
533 const lwpid_t curlid = l->l_lid;
534 proc_t *p = l->l_proc;
535 lwp_t *l2;
536 int error;
537
538 KASSERT(mutex_owned(p->p_lock));
539
540 p->p_nlwpwait++;
541 l->l_waitingfor = lid;
542
543 for (;;) {
544 int nfound;
545
546 /*
547 * Avoid a race between exit1() and sigexit(): if the
548 * process is dumping core, then we need to bail out: call
549 * into lwp_userret() where we will be suspended until the
550 * deed is done.
551 */
552 if ((p->p_sflag & PS_WCORE) != 0) {
553 mutex_exit(p->p_lock);
554 lwp_userret(l);
555 KASSERT(false);
556 }
557
558 /*
559 * First off, drain any detached LWP that is waiting to be
560 * reaped.
561 */
562 while ((l2 = p->p_zomblwp) != NULL) {
563 p->p_zomblwp = NULL;
564 lwp_free(l2, false, false);/* releases proc mutex */
565 mutex_enter(p->p_lock);
566 }
567
568 /*
569 * Now look for an LWP to collect. If the whole process is
570 * exiting, count detached LWPs as eligible to be collected,
571 * but don't drain them here.
572 */
573 nfound = 0;
574 error = 0;
575 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
576 /*
577 * If a specific wait and the target is waiting on
578 * us, then avoid deadlock. This also traps LWPs
579 * that try to wait on themselves.
580 *
581 * Note that this does not handle more complicated
582 * cycles, like: t1 -> t2 -> t3 -> t1. The process
583 * can still be killed so it is not a major problem.
584 */
585 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
586 error = EDEADLK;
587 break;
588 }
589 if (l2 == l)
590 continue;
591 if ((l2->l_prflag & LPR_DETACHED) != 0) {
592 nfound += exiting;
593 continue;
594 }
595 if (lid != 0) {
596 if (l2->l_lid != lid)
597 continue;
598 /*
599 * Mark this LWP as the first waiter, if there
600 * is no other.
601 */
602 if (l2->l_waiter == 0)
603 l2->l_waiter = curlid;
604 } else if (l2->l_waiter != 0) {
605 /*
606 * It already has a waiter - so don't
607 * collect it. If the waiter doesn't
608 * grab it we'll get another chance
609 * later.
610 */
611 nfound++;
612 continue;
613 }
614 nfound++;
615
616 /* No need to lock the LWP in order to see LSZOMB. */
617 if (l2->l_stat != LSZOMB)
618 continue;
619
620 /*
621 * We're no longer waiting. Reset the "first waiter"
622 * pointer on the target, in case it was us.
623 */
624 l->l_waitingfor = 0;
625 l2->l_waiter = 0;
626 p->p_nlwpwait--;
627 if (departed)
628 *departed = l2->l_lid;
629 sched_lwp_collect(l2);
630
631 /* lwp_free() releases the proc lock. */
632 lwp_free(l2, false, false);
633 mutex_enter(p->p_lock);
634 return 0;
635 }
636
637 if (error != 0)
638 break;
639 if (nfound == 0) {
640 error = ESRCH;
641 break;
642 }
643
644 /*
645 * Note: since the lock will be dropped, need to restart on
646 * wakeup to run all LWPs again, e.g. there may be new LWPs.
647 */
648 if (exiting) {
649 KASSERT(p->p_nlwps > 1);
650 cv_wait(&p->p_lwpcv, p->p_lock);
651 error = EAGAIN;
652 break;
653 }
654
655 /*
656 * If all other LWPs are waiting for exits or suspends
657 * and the supply of zombies and potential zombies is
658 * exhausted, then we are about to deadlock.
659 *
660 * If the process is exiting (and this LWP is not the one
661 * that is coordinating the exit) then bail out now.
662 */
663 if ((p->p_sflag & PS_WEXIT) != 0 ||
664 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
665 error = EDEADLK;
666 break;
667 }
668
669 /*
670 * Sit around and wait for something to happen. We'll be
671 * awoken if any of the conditions examined change: if an
672 * LWP exits, is collected, or is detached.
673 */
674 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
675 break;
676 }
677
678 /*
679 * We didn't find any LWPs to collect, we may have received a
680 * signal, or some other condition has caused us to bail out.
681 *
682 * If waiting on a specific LWP, clear the waiters marker: some
683 * other LWP may want it. Then, kick all the remaining waiters
684 * so that they can re-check for zombies and for deadlock.
685 */
686 if (lid != 0) {
687 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
688 if (l2->l_lid == lid) {
689 if (l2->l_waiter == curlid)
690 l2->l_waiter = 0;
691 break;
692 }
693 }
694 }
695 p->p_nlwpwait--;
696 l->l_waitingfor = 0;
697 cv_broadcast(&p->p_lwpcv);
698
699 return error;
700 }
701
702 static lwpid_t
703 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
704 {
705 #define LID_SCAN (1u << 31)
706 lwp_t *scan, *free_before;
707 lwpid_t nxt_lid;
708
709 /*
710 * We want the first unused lid greater than or equal to
711 * try_lid (modulo 2^31).
712 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
713 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
714 * the outer test easier.
715 * This would be much easier if the list were sorted in
716 * increasing order.
717 * The list is kept sorted in decreasing order.
718 * This code is only used after a process has generated 2^31 lwp.
719 *
720 * Code assumes it can always find an id.
721 */
722
723 try_lid &= LID_SCAN - 1;
724 if (try_lid <= 1)
725 try_lid = 2;
726
727 free_before = NULL;
728 nxt_lid = LID_SCAN - 1;
729 LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
730 if (scan->l_lid != nxt_lid) {
731 /* There are available lid before this entry */
732 free_before = scan;
733 if (try_lid > scan->l_lid)
734 break;
735 }
736 if (try_lid == scan->l_lid) {
737 /* The ideal lid is busy, take a higher one */
738 if (free_before != NULL) {
739 try_lid = free_before->l_lid + 1;
740 break;
741 }
742 /* No higher ones, reuse low numbers */
743 try_lid = 2;
744 }
745
746 nxt_lid = scan->l_lid - 1;
747 if (LIST_NEXT(scan, l_sibling) == NULL) {
748 /* The value we have is lower than any existing lwp */
749 LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
750 return try_lid;
751 }
752 }
753
754 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
755 return try_lid;
756 }
757
758 /*
759 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
760 * The new LWP is created in state LSIDL and must be set running,
761 * suspended, or stopped by the caller.
762 */
763 int
764 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
765 void *stack, size_t stacksize, void (*func)(void *), void *arg,
766 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
767 const stack_t *sigstk)
768 {
769 struct lwp *l2, *isfree;
770 turnstile_t *ts;
771 lwpid_t lid;
772
773 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
774
775 /*
776 * Enforce limits, excluding the first lwp and kthreads.
777 */
778 if (p2->p_nlwps != 0 && p2 != &proc0) {
779 uid_t uid = kauth_cred_getuid(l1->l_cred);
780 int count = chglwpcnt(uid, 1);
781 if (__predict_false(count >
782 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
783 if (kauth_authorize_process(l1->l_cred,
784 KAUTH_PROCESS_RLIMIT, p2,
785 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
786 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
787 != 0) {
788 (void)chglwpcnt(uid, -1);
789 return EAGAIN;
790 }
791 }
792 }
793
794 /*
795 * First off, reap any detached LWP waiting to be collected.
796 * We can re-use its LWP structure and turnstile.
797 */
798 isfree = NULL;
799 if (p2->p_zomblwp != NULL) {
800 mutex_enter(p2->p_lock);
801 if ((isfree = p2->p_zomblwp) != NULL) {
802 p2->p_zomblwp = NULL;
803 lwp_free(isfree, true, false);/* releases proc mutex */
804 } else
805 mutex_exit(p2->p_lock);
806 }
807 if (isfree == NULL) {
808 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
809 memset(l2, 0, sizeof(*l2));
810 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
811 SLIST_INIT(&l2->l_pi_lenders);
812 } else {
813 l2 = isfree;
814 ts = l2->l_ts;
815 KASSERT(l2->l_inheritedprio == -1);
816 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
817 memset(l2, 0, sizeof(*l2));
818 l2->l_ts = ts;
819 }
820
821 l2->l_stat = LSIDL;
822 l2->l_proc = p2;
823 l2->l_refcnt = 1;
824 l2->l_class = sclass;
825
826 /*
827 * If vfork(), we want the LWP to run fast and on the same CPU
828 * as its parent, so that it can reuse the VM context and cache
829 * footprint on the local CPU.
830 */
831 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
832 l2->l_kpribase = PRI_KERNEL;
833 l2->l_priority = l1->l_priority;
834 l2->l_inheritedprio = -1;
835 l2->l_protectprio = -1;
836 l2->l_auxprio = -1;
837 l2->l_flag = 0;
838 l2->l_pflag = LP_MPSAFE;
839 TAILQ_INIT(&l2->l_ld_locks);
840 l2->l_psrefs = 0;
841
842 /*
843 * For vfork, borrow parent's lwpctl context if it exists.
844 * This also causes us to return via lwp_userret.
845 */
846 if (flags & LWP_VFORK && l1->l_lwpctl) {
847 l2->l_lwpctl = l1->l_lwpctl;
848 l2->l_flag |= LW_LWPCTL;
849 }
850
851 /*
852 * If not the first LWP in the process, grab a reference to the
853 * descriptor table.
854 */
855 l2->l_fd = p2->p_fd;
856 if (p2->p_nlwps != 0) {
857 KASSERT(l1->l_proc == p2);
858 fd_hold(l2);
859 } else {
860 KASSERT(l1->l_proc != p2);
861 }
862
863 if (p2->p_flag & PK_SYSTEM) {
864 /* Mark it as a system LWP. */
865 l2->l_flag |= LW_SYSTEM;
866 }
867
868 kpreempt_disable();
869 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
870 l2->l_cpu = l1->l_cpu;
871 kpreempt_enable();
872
873 kdtrace_thread_ctor(NULL, l2);
874 lwp_initspecific(l2);
875 sched_lwp_fork(l1, l2);
876 lwp_update_creds(l2);
877 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
878 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
879 cv_init(&l2->l_sigcv, "sigwait");
880 cv_init(&l2->l_waitcv, "vfork");
881 l2->l_syncobj = &sched_syncobj;
882 PSREF_DEBUG_INIT_LWP(l2);
883
884 if (rnewlwpp != NULL)
885 *rnewlwpp = l2;
886
887 /*
888 * PCU state needs to be saved before calling uvm_lwp_fork() so that
889 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
890 */
891 pcu_save_all(l1);
892
893 uvm_lwp_setuarea(l2, uaddr);
894 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
895
896 if ((flags & LWP_PIDLID) != 0) {
897 lid = proc_alloc_pid(p2);
898 l2->l_pflag |= LP_PIDLID;
899 } else {
900 lid = 0;
901 }
902
903 mutex_enter(p2->p_lock);
904
905 if ((flags & LWP_DETACHED) != 0) {
906 l2->l_prflag = LPR_DETACHED;
907 p2->p_ndlwps++;
908 } else
909 l2->l_prflag = 0;
910
911 l2->l_sigstk = *sigstk;
912 l2->l_sigmask = *sigmask;
913 TAILQ_INIT(&l2->l_sigpend.sp_info);
914 sigemptyset(&l2->l_sigpend.sp_set);
915
916 if (__predict_true(lid == 0)) {
917 /*
918 * XXX: l_lid are expected to be unique (for a process)
919 * if LWP_PIDLID is sometimes set this won't be true.
920 * Once 2^31 threads have been allocated we have to
921 * scan to ensure we allocate a unique value.
922 */
923 lid = ++p2->p_nlwpid;
924 if (__predict_false(lid & LID_SCAN)) {
925 lid = lwp_find_free_lid(lid, l2, p2);
926 p2->p_nlwpid = lid | LID_SCAN;
927 /* l2 as been inserted into p_lwps in order */
928 goto skip_insert;
929 }
930 p2->p_nlwpid = lid;
931 }
932 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
933 skip_insert:
934 l2->l_lid = lid;
935 p2->p_nlwps++;
936 p2->p_nrlwps++;
937
938 KASSERT(l2->l_affinity == NULL);
939
940 if ((p2->p_flag & PK_SYSTEM) == 0) {
941 /* Inherit the affinity mask. */
942 if (l1->l_affinity) {
943 /*
944 * Note that we hold the state lock while inheriting
945 * the affinity to avoid race with sched_setaffinity().
946 */
947 lwp_lock(l1);
948 if (l1->l_affinity) {
949 kcpuset_use(l1->l_affinity);
950 l2->l_affinity = l1->l_affinity;
951 }
952 lwp_unlock(l1);
953 }
954 lwp_lock(l2);
955 /* Inherit a processor-set */
956 l2->l_psid = l1->l_psid;
957 /* Look for a CPU to start */
958 l2->l_cpu = sched_takecpu(l2);
959 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
960 }
961 mutex_exit(p2->p_lock);
962
963 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
964
965 mutex_enter(proc_lock);
966 LIST_INSERT_HEAD(&alllwp, l2, l_list);
967 mutex_exit(proc_lock);
968
969 SYSCALL_TIME_LWP_INIT(l2);
970
971 if (p2->p_emul->e_lwp_fork)
972 (*p2->p_emul->e_lwp_fork)(l1, l2);
973
974 return (0);
975 }
976
977 /*
978 * Called by MD code when a new LWP begins execution. Must be called
979 * with the previous LWP locked (so at splsched), or if there is no
980 * previous LWP, at splsched.
981 */
982 void
983 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
984 {
985 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
986
987 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
988
989 KASSERT(kpreempt_disabled());
990 if (prev != NULL) {
991 /*
992 * Normalize the count of the spin-mutexes, it was
993 * increased in mi_switch(). Unmark the state of
994 * context switch - it is finished for previous LWP.
995 */
996 curcpu()->ci_mtx_count++;
997 membar_exit();
998 prev->l_ctxswtch = 0;
999 }
1000 KPREEMPT_DISABLE(new_lwp);
1001 if (__predict_true(new_lwp->l_proc->p_vmspace))
1002 pmap_activate(new_lwp);
1003 spl0();
1004
1005 /* Note trip through cpu_switchto(). */
1006 pserialize_switchpoint();
1007
1008 LOCKDEBUG_BARRIER(NULL, 0);
1009 KPREEMPT_ENABLE(new_lwp);
1010 if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1011 KERNEL_LOCK(1, new_lwp);
1012 }
1013 }
1014
1015 /*
1016 * Exit an LWP.
1017 */
1018 void
1019 lwp_exit(struct lwp *l)
1020 {
1021 struct proc *p = l->l_proc;
1022 struct lwp *l2;
1023 bool current;
1024
1025 current = (l == curlwp);
1026
1027 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1028 KASSERT(p == curproc);
1029
1030 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1031
1032 /*
1033 * Verify that we hold no locks other than the kernel lock.
1034 */
1035 LOCKDEBUG_BARRIER(&kernel_lock, 0);
1036
1037 /*
1038 * If we are the last live LWP in a process, we need to exit the
1039 * entire process. We do so with an exit status of zero, because
1040 * it's a "controlled" exit, and because that's what Solaris does.
1041 *
1042 * We are not quite a zombie yet, but for accounting purposes we
1043 * must increment the count of zombies here.
1044 *
1045 * Note: the last LWP's specificdata will be deleted here.
1046 */
1047 mutex_enter(p->p_lock);
1048 if (p->p_nlwps - p->p_nzlwps == 1) {
1049 KASSERT(current == true);
1050 KASSERT(p != &proc0);
1051 /* XXXSMP kernel_lock not held */
1052 exit1(l, 0, 0);
1053 /* NOTREACHED */
1054 }
1055 p->p_nzlwps++;
1056 mutex_exit(p->p_lock);
1057
1058 if (p->p_emul->e_lwp_exit)
1059 (*p->p_emul->e_lwp_exit)(l);
1060
1061 /* Drop filedesc reference. */
1062 fd_free();
1063
1064 /* Release fstrans private data. */
1065 fstrans_lwp_dtor(l);
1066
1067 /* Delete the specificdata while it's still safe to sleep. */
1068 lwp_finispecific(l);
1069
1070 /*
1071 * Release our cached credentials.
1072 */
1073 kauth_cred_free(l->l_cred);
1074 callout_destroy(&l->l_timeout_ch);
1075
1076 /*
1077 * If traced, report LWP exit event to the debugger.
1078 *
1079 * Remove the LWP from the global list.
1080 * Free its LID from the PID namespace if needed.
1081 */
1082 mutex_enter(proc_lock);
1083
1084 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1085 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1086 mutex_enter(p->p_lock);
1087 if (ISSET(p->p_sflag, PS_WEXIT)) {
1088 mutex_exit(p->p_lock);
1089 /*
1090 * We are exiting, bail out without informing parent
1091 * about a terminating LWP as it would deadlock.
1092 */
1093 } else {
1094 p->p_lwp_exited = l->l_lid;
1095 eventswitch(TRAP_LWP);
1096 mutex_enter(proc_lock);
1097 }
1098 }
1099
1100 LIST_REMOVE(l, l_list);
1101 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1102 proc_free_pid(l->l_lid);
1103 }
1104 mutex_exit(proc_lock);
1105
1106 /*
1107 * Get rid of all references to the LWP that others (e.g. procfs)
1108 * may have, and mark the LWP as a zombie. If the LWP is detached,
1109 * mark it waiting for collection in the proc structure. Note that
1110 * before we can do that, we need to free any other dead, deatched
1111 * LWP waiting to meet its maker.
1112 */
1113 mutex_enter(p->p_lock);
1114 lwp_drainrefs(l);
1115
1116 if ((l->l_prflag & LPR_DETACHED) != 0) {
1117 while ((l2 = p->p_zomblwp) != NULL) {
1118 p->p_zomblwp = NULL;
1119 lwp_free(l2, false, false);/* releases proc mutex */
1120 mutex_enter(p->p_lock);
1121 l->l_refcnt++;
1122 lwp_drainrefs(l);
1123 }
1124 p->p_zomblwp = l;
1125 }
1126
1127 /*
1128 * If we find a pending signal for the process and we have been
1129 * asked to check for signals, then we lose: arrange to have
1130 * all other LWPs in the process check for signals.
1131 */
1132 if ((l->l_flag & LW_PENDSIG) != 0 &&
1133 firstsig(&p->p_sigpend.sp_set) != 0) {
1134 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1135 lwp_lock(l2);
1136 l2->l_flag |= LW_PENDSIG;
1137 lwp_unlock(l2);
1138 }
1139 }
1140
1141 /*
1142 * Release any PCU resources before becoming a zombie.
1143 */
1144 pcu_discard_all(l);
1145
1146 lwp_lock(l);
1147 l->l_stat = LSZOMB;
1148 if (l->l_name != NULL) {
1149 strcpy(l->l_name, "(zombie)");
1150 }
1151 lwp_unlock(l);
1152 p->p_nrlwps--;
1153 cv_broadcast(&p->p_lwpcv);
1154 if (l->l_lwpctl != NULL)
1155 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1156 mutex_exit(p->p_lock);
1157
1158 /*
1159 * We can no longer block. At this point, lwp_free() may already
1160 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1161 *
1162 * Free MD LWP resources.
1163 */
1164 cpu_lwp_free(l, 0);
1165
1166 if (current) {
1167 pmap_deactivate(l);
1168
1169 /*
1170 * Release the kernel lock, and switch away into
1171 * oblivion.
1172 */
1173 #ifdef notyet
1174 /* XXXSMP hold in lwp_userret() */
1175 KERNEL_UNLOCK_LAST(l);
1176 #else
1177 KERNEL_UNLOCK_ALL(l, NULL);
1178 #endif
1179 lwp_exit_switchaway(l);
1180 }
1181 }
1182
1183 /*
1184 * Free a dead LWP's remaining resources.
1185 *
1186 * XXXLWP limits.
1187 */
1188 void
1189 lwp_free(struct lwp *l, bool recycle, bool last)
1190 {
1191 struct proc *p = l->l_proc;
1192 struct rusage *ru;
1193 ksiginfoq_t kq;
1194
1195 KASSERT(l != curlwp);
1196 KASSERT(last || mutex_owned(p->p_lock));
1197
1198 /*
1199 * We use the process credentials instead of the lwp credentials here
1200 * because the lwp credentials maybe cached (just after a setuid call)
1201 * and we don't want pay for syncing, since the lwp is going away
1202 * anyway
1203 */
1204 if (p != &proc0 && p->p_nlwps != 1)
1205 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1206 /*
1207 * If this was not the last LWP in the process, then adjust
1208 * counters and unlock.
1209 */
1210 if (!last) {
1211 /*
1212 * Add the LWP's run time to the process' base value.
1213 * This needs to co-incide with coming off p_lwps.
1214 */
1215 bintime_add(&p->p_rtime, &l->l_rtime);
1216 p->p_pctcpu += l->l_pctcpu;
1217 ru = &p->p_stats->p_ru;
1218 ruadd(ru, &l->l_ru);
1219 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1220 ru->ru_nivcsw += l->l_nivcsw;
1221 LIST_REMOVE(l, l_sibling);
1222 p->p_nlwps--;
1223 p->p_nzlwps--;
1224 if ((l->l_prflag & LPR_DETACHED) != 0)
1225 p->p_ndlwps--;
1226
1227 /*
1228 * Have any LWPs sleeping in lwp_wait() recheck for
1229 * deadlock.
1230 */
1231 cv_broadcast(&p->p_lwpcv);
1232 mutex_exit(p->p_lock);
1233 }
1234
1235 #ifdef MULTIPROCESSOR
1236 /*
1237 * In the unlikely event that the LWP is still on the CPU,
1238 * then spin until it has switched away. We need to release
1239 * all locks to avoid deadlock against interrupt handlers on
1240 * the target CPU.
1241 */
1242 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1243 int count;
1244 (void)count; /* XXXgcc */
1245 KERNEL_UNLOCK_ALL(curlwp, &count);
1246 while ((l->l_pflag & LP_RUNNING) != 0 ||
1247 l->l_cpu->ci_curlwp == l)
1248 SPINLOCK_BACKOFF_HOOK;
1249 KERNEL_LOCK(count, curlwp);
1250 }
1251 #endif
1252
1253 /*
1254 * Destroy the LWP's remaining signal information.
1255 */
1256 ksiginfo_queue_init(&kq);
1257 sigclear(&l->l_sigpend, NULL, &kq);
1258 ksiginfo_queue_drain(&kq);
1259 cv_destroy(&l->l_sigcv);
1260 cv_destroy(&l->l_waitcv);
1261
1262 /*
1263 * Free lwpctl structure and affinity.
1264 */
1265 if (l->l_lwpctl) {
1266 lwp_ctl_free(l);
1267 }
1268 if (l->l_affinity) {
1269 kcpuset_unuse(l->l_affinity, NULL);
1270 l->l_affinity = NULL;
1271 }
1272
1273 /*
1274 * Free the LWP's turnstile and the LWP structure itself unless the
1275 * caller wants to recycle them. Also, free the scheduler specific
1276 * data.
1277 *
1278 * We can't return turnstile0 to the pool (it didn't come from it),
1279 * so if it comes up just drop it quietly and move on.
1280 *
1281 * We don't recycle the VM resources at this time.
1282 */
1283
1284 if (!recycle && l->l_ts != &turnstile0)
1285 pool_cache_put(turnstile_cache, l->l_ts);
1286 if (l->l_name != NULL)
1287 kmem_free(l->l_name, MAXCOMLEN);
1288
1289 cpu_lwp_free2(l);
1290 uvm_lwp_exit(l);
1291
1292 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1293 KASSERT(l->l_inheritedprio == -1);
1294 KASSERT(l->l_blcnt == 0);
1295 kdtrace_thread_dtor(NULL, l);
1296 if (!recycle)
1297 pool_cache_put(lwp_cache, l);
1298 }
1299
1300 /*
1301 * Migrate the LWP to the another CPU. Unlocks the LWP.
1302 */
1303 void
1304 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1305 {
1306 struct schedstate_percpu *tspc;
1307 int lstat = l->l_stat;
1308
1309 KASSERT(lwp_locked(l, NULL));
1310 KASSERT(tci != NULL);
1311
1312 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1313 if ((l->l_pflag & LP_RUNNING) != 0) {
1314 lstat = LSONPROC;
1315 }
1316
1317 /*
1318 * The destination CPU could be changed while previous migration
1319 * was not finished.
1320 */
1321 if (l->l_target_cpu != NULL) {
1322 l->l_target_cpu = tci;
1323 lwp_unlock(l);
1324 return;
1325 }
1326
1327 /* Nothing to do if trying to migrate to the same CPU */
1328 if (l->l_cpu == tci) {
1329 lwp_unlock(l);
1330 return;
1331 }
1332
1333 KASSERT(l->l_target_cpu == NULL);
1334 tspc = &tci->ci_schedstate;
1335 switch (lstat) {
1336 case LSRUN:
1337 l->l_target_cpu = tci;
1338 break;
1339 case LSIDL:
1340 l->l_cpu = tci;
1341 lwp_unlock_to(l, tspc->spc_mutex);
1342 return;
1343 case LSSLEEP:
1344 l->l_cpu = tci;
1345 break;
1346 case LSSTOP:
1347 case LSSUSPENDED:
1348 l->l_cpu = tci;
1349 if (l->l_wchan == NULL) {
1350 lwp_unlock_to(l, tspc->spc_lwplock);
1351 return;
1352 }
1353 break;
1354 case LSONPROC:
1355 l->l_target_cpu = tci;
1356 spc_lock(l->l_cpu);
1357 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1358 spc_unlock(l->l_cpu);
1359 break;
1360 }
1361 lwp_unlock(l);
1362 }
1363
1364 /*
1365 * Find the LWP in the process. Arguments may be zero, in such case,
1366 * the calling process and first LWP in the list will be used.
1367 * On success - returns proc locked.
1368 */
1369 struct lwp *
1370 lwp_find2(pid_t pid, lwpid_t lid)
1371 {
1372 proc_t *p;
1373 lwp_t *l;
1374
1375 /* Find the process. */
1376 if (pid != 0) {
1377 mutex_enter(proc_lock);
1378 p = proc_find(pid);
1379 if (p == NULL) {
1380 mutex_exit(proc_lock);
1381 return NULL;
1382 }
1383 mutex_enter(p->p_lock);
1384 mutex_exit(proc_lock);
1385 } else {
1386 p = curlwp->l_proc;
1387 mutex_enter(p->p_lock);
1388 }
1389 /* Find the thread. */
1390 if (lid != 0) {
1391 l = lwp_find(p, lid);
1392 } else {
1393 l = LIST_FIRST(&p->p_lwps);
1394 }
1395 if (l == NULL) {
1396 mutex_exit(p->p_lock);
1397 }
1398 return l;
1399 }
1400
1401 /*
1402 * Look up a live LWP within the specified process.
1403 *
1404 * Must be called with p->p_lock held.
1405 */
1406 struct lwp *
1407 lwp_find(struct proc *p, lwpid_t id)
1408 {
1409 struct lwp *l;
1410
1411 KASSERT(mutex_owned(p->p_lock));
1412
1413 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1414 if (l->l_lid == id)
1415 break;
1416 }
1417
1418 /*
1419 * No need to lock - all of these conditions will
1420 * be visible with the process level mutex held.
1421 */
1422 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1423 l = NULL;
1424
1425 return l;
1426 }
1427
1428 /*
1429 * Update an LWP's cached credentials to mirror the process' master copy.
1430 *
1431 * This happens early in the syscall path, on user trap, and on LWP
1432 * creation. A long-running LWP can also voluntarily choose to update
1433 * its credentials by calling this routine. This may be called from
1434 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1435 */
1436 void
1437 lwp_update_creds(struct lwp *l)
1438 {
1439 kauth_cred_t oc;
1440 struct proc *p;
1441
1442 p = l->l_proc;
1443 oc = l->l_cred;
1444
1445 mutex_enter(p->p_lock);
1446 kauth_cred_hold(p->p_cred);
1447 l->l_cred = p->p_cred;
1448 l->l_prflag &= ~LPR_CRMOD;
1449 mutex_exit(p->p_lock);
1450 if (oc != NULL)
1451 kauth_cred_free(oc);
1452 }
1453
1454 /*
1455 * Verify that an LWP is locked, and optionally verify that the lock matches
1456 * one we specify.
1457 */
1458 int
1459 lwp_locked(struct lwp *l, kmutex_t *mtx)
1460 {
1461 kmutex_t *cur = l->l_mutex;
1462
1463 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1464 }
1465
1466 /*
1467 * Lend a new mutex to an LWP. The old mutex must be held.
1468 */
1469 void
1470 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1471 {
1472
1473 KASSERT(mutex_owned(l->l_mutex));
1474
1475 membar_exit();
1476 l->l_mutex = mtx;
1477 }
1478
1479 /*
1480 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1481 * must be held.
1482 */
1483 void
1484 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1485 {
1486 kmutex_t *old;
1487
1488 KASSERT(lwp_locked(l, NULL));
1489
1490 old = l->l_mutex;
1491 membar_exit();
1492 l->l_mutex = mtx;
1493 mutex_spin_exit(old);
1494 }
1495
1496 int
1497 lwp_trylock(struct lwp *l)
1498 {
1499 kmutex_t *old;
1500
1501 for (;;) {
1502 if (!mutex_tryenter(old = l->l_mutex))
1503 return 0;
1504 if (__predict_true(l->l_mutex == old))
1505 return 1;
1506 mutex_spin_exit(old);
1507 }
1508 }
1509
1510 void
1511 lwp_unsleep(lwp_t *l, bool cleanup)
1512 {
1513
1514 KASSERT(mutex_owned(l->l_mutex));
1515 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1516 }
1517
1518 /*
1519 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1520 * set.
1521 */
1522 void
1523 lwp_userret(struct lwp *l)
1524 {
1525 struct proc *p;
1526 int sig;
1527
1528 KASSERT(l == curlwp);
1529 KASSERT(l->l_stat == LSONPROC);
1530 p = l->l_proc;
1531
1532 #ifndef __HAVE_FAST_SOFTINTS
1533 /* Run pending soft interrupts. */
1534 if (l->l_cpu->ci_data.cpu_softints != 0)
1535 softint_overlay();
1536 #endif
1537
1538 /*
1539 * It is safe to do this read unlocked on a MP system..
1540 */
1541 while ((l->l_flag & LW_USERRET) != 0) {
1542 /*
1543 * Process pending signals first, unless the process
1544 * is dumping core or exiting, where we will instead
1545 * enter the LW_WSUSPEND case below.
1546 */
1547 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1548 LW_PENDSIG) {
1549 mutex_enter(p->p_lock);
1550 while ((sig = issignal(l)) != 0)
1551 postsig(sig);
1552 mutex_exit(p->p_lock);
1553 }
1554
1555 /*
1556 * Core-dump or suspend pending.
1557 *
1558 * In case of core dump, suspend ourselves, so that the kernel
1559 * stack and therefore the userland registers saved in the
1560 * trapframe are around for coredump() to write them out.
1561 * We also need to save any PCU resources that we have so that
1562 * they accessible for coredump(). We issue a wakeup on
1563 * p->p_lwpcv so that sigexit() will write the core file out
1564 * once all other LWPs are suspended.
1565 */
1566 if ((l->l_flag & LW_WSUSPEND) != 0) {
1567 pcu_save_all(l);
1568 mutex_enter(p->p_lock);
1569 p->p_nrlwps--;
1570 cv_broadcast(&p->p_lwpcv);
1571 lwp_lock(l);
1572 l->l_stat = LSSUSPENDED;
1573 lwp_unlock(l);
1574 mutex_exit(p->p_lock);
1575 lwp_lock(l);
1576 mi_switch(l);
1577 }
1578
1579 /* Process is exiting. */
1580 if ((l->l_flag & LW_WEXIT) != 0) {
1581 lwp_exit(l);
1582 KASSERT(0);
1583 /* NOTREACHED */
1584 }
1585
1586 /* update lwpctl processor (for vfork child_return) */
1587 if (l->l_flag & LW_LWPCTL) {
1588 lwp_lock(l);
1589 KASSERT(kpreempt_disabled());
1590 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1591 l->l_lwpctl->lc_pctr++;
1592 l->l_flag &= ~LW_LWPCTL;
1593 lwp_unlock(l);
1594 }
1595 }
1596 }
1597
1598 /*
1599 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1600 */
1601 void
1602 lwp_need_userret(struct lwp *l)
1603 {
1604 KASSERT(lwp_locked(l, NULL));
1605
1606 /*
1607 * Since the tests in lwp_userret() are done unlocked, make sure
1608 * that the condition will be seen before forcing the LWP to enter
1609 * kernel mode.
1610 */
1611 membar_producer();
1612 cpu_signotify(l);
1613 }
1614
1615 /*
1616 * Add one reference to an LWP. This will prevent the LWP from
1617 * exiting, thus keep the lwp structure and PCB around to inspect.
1618 */
1619 void
1620 lwp_addref(struct lwp *l)
1621 {
1622
1623 KASSERT(mutex_owned(l->l_proc->p_lock));
1624 KASSERT(l->l_stat != LSZOMB);
1625 KASSERT(l->l_refcnt != 0);
1626
1627 l->l_refcnt++;
1628 }
1629
1630 /*
1631 * Remove one reference to an LWP. If this is the last reference,
1632 * then we must finalize the LWP's death.
1633 */
1634 void
1635 lwp_delref(struct lwp *l)
1636 {
1637 struct proc *p = l->l_proc;
1638
1639 mutex_enter(p->p_lock);
1640 lwp_delref2(l);
1641 mutex_exit(p->p_lock);
1642 }
1643
1644 /*
1645 * Remove one reference to an LWP. If this is the last reference,
1646 * then we must finalize the LWP's death. The proc mutex is held
1647 * on entry.
1648 */
1649 void
1650 lwp_delref2(struct lwp *l)
1651 {
1652 struct proc *p = l->l_proc;
1653
1654 KASSERT(mutex_owned(p->p_lock));
1655 KASSERT(l->l_stat != LSZOMB);
1656 KASSERT(l->l_refcnt > 0);
1657 if (--l->l_refcnt == 0)
1658 cv_broadcast(&p->p_lwpcv);
1659 }
1660
1661 /*
1662 * Drain all references to the current LWP.
1663 */
1664 void
1665 lwp_drainrefs(struct lwp *l)
1666 {
1667 struct proc *p = l->l_proc;
1668
1669 KASSERT(mutex_owned(p->p_lock));
1670 KASSERT(l->l_refcnt != 0);
1671
1672 l->l_refcnt--;
1673 while (l->l_refcnt != 0)
1674 cv_wait(&p->p_lwpcv, p->p_lock);
1675 }
1676
1677 /*
1678 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1679 * be held.
1680 */
1681 bool
1682 lwp_alive(lwp_t *l)
1683 {
1684
1685 KASSERT(mutex_owned(l->l_proc->p_lock));
1686
1687 switch (l->l_stat) {
1688 case LSSLEEP:
1689 case LSRUN:
1690 case LSONPROC:
1691 case LSSTOP:
1692 case LSSUSPENDED:
1693 return true;
1694 default:
1695 return false;
1696 }
1697 }
1698
1699 /*
1700 * Return first live LWP in the process.
1701 */
1702 lwp_t *
1703 lwp_find_first(proc_t *p)
1704 {
1705 lwp_t *l;
1706
1707 KASSERT(mutex_owned(p->p_lock));
1708
1709 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1710 if (lwp_alive(l)) {
1711 return l;
1712 }
1713 }
1714
1715 return NULL;
1716 }
1717
1718 /*
1719 * Allocate a new lwpctl structure for a user LWP.
1720 */
1721 int
1722 lwp_ctl_alloc(vaddr_t *uaddr)
1723 {
1724 lcproc_t *lp;
1725 u_int bit, i, offset;
1726 struct uvm_object *uao;
1727 int error;
1728 lcpage_t *lcp;
1729 proc_t *p;
1730 lwp_t *l;
1731
1732 l = curlwp;
1733 p = l->l_proc;
1734
1735 /* don't allow a vforked process to create lwp ctls */
1736 if (p->p_lflag & PL_PPWAIT)
1737 return EBUSY;
1738
1739 if (l->l_lcpage != NULL) {
1740 lcp = l->l_lcpage;
1741 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1742 return 0;
1743 }
1744
1745 /* First time around, allocate header structure for the process. */
1746 if ((lp = p->p_lwpctl) == NULL) {
1747 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1748 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1749 lp->lp_uao = NULL;
1750 TAILQ_INIT(&lp->lp_pages);
1751 mutex_enter(p->p_lock);
1752 if (p->p_lwpctl == NULL) {
1753 p->p_lwpctl = lp;
1754 mutex_exit(p->p_lock);
1755 } else {
1756 mutex_exit(p->p_lock);
1757 mutex_destroy(&lp->lp_lock);
1758 kmem_free(lp, sizeof(*lp));
1759 lp = p->p_lwpctl;
1760 }
1761 }
1762
1763 /*
1764 * Set up an anonymous memory region to hold the shared pages.
1765 * Map them into the process' address space. The user vmspace
1766 * gets the first reference on the UAO.
1767 */
1768 mutex_enter(&lp->lp_lock);
1769 if (lp->lp_uao == NULL) {
1770 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1771 lp->lp_cur = 0;
1772 lp->lp_max = LWPCTL_UAREA_SZ;
1773 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1774 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1775 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1776 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1777 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1778 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1779 if (error != 0) {
1780 uao_detach(lp->lp_uao);
1781 lp->lp_uao = NULL;
1782 mutex_exit(&lp->lp_lock);
1783 return error;
1784 }
1785 }
1786
1787 /* Get a free block and allocate for this LWP. */
1788 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1789 if (lcp->lcp_nfree != 0)
1790 break;
1791 }
1792 if (lcp == NULL) {
1793 /* Nothing available - try to set up a free page. */
1794 if (lp->lp_cur == lp->lp_max) {
1795 mutex_exit(&lp->lp_lock);
1796 return ENOMEM;
1797 }
1798 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1799
1800 /*
1801 * Wire the next page down in kernel space. Since this
1802 * is a new mapping, we must add a reference.
1803 */
1804 uao = lp->lp_uao;
1805 (*uao->pgops->pgo_reference)(uao);
1806 lcp->lcp_kaddr = vm_map_min(kernel_map);
1807 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1808 uao, lp->lp_cur, PAGE_SIZE,
1809 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1810 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1811 if (error != 0) {
1812 mutex_exit(&lp->lp_lock);
1813 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1814 (*uao->pgops->pgo_detach)(uao);
1815 return error;
1816 }
1817 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1818 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1819 if (error != 0) {
1820 mutex_exit(&lp->lp_lock);
1821 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1822 lcp->lcp_kaddr + PAGE_SIZE);
1823 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1824 return error;
1825 }
1826 /* Prepare the page descriptor and link into the list. */
1827 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1828 lp->lp_cur += PAGE_SIZE;
1829 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1830 lcp->lcp_rotor = 0;
1831 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1832 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1833 }
1834 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1835 if (++i >= LWPCTL_BITMAP_ENTRIES)
1836 i = 0;
1837 }
1838 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1839 lcp->lcp_bitmap[i] ^= (1U << bit);
1840 lcp->lcp_rotor = i;
1841 lcp->lcp_nfree--;
1842 l->l_lcpage = lcp;
1843 offset = (i << 5) + bit;
1844 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1845 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1846 mutex_exit(&lp->lp_lock);
1847
1848 KPREEMPT_DISABLE(l);
1849 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1850 KPREEMPT_ENABLE(l);
1851
1852 return 0;
1853 }
1854
1855 /*
1856 * Free an lwpctl structure back to the per-process list.
1857 */
1858 void
1859 lwp_ctl_free(lwp_t *l)
1860 {
1861 struct proc *p = l->l_proc;
1862 lcproc_t *lp;
1863 lcpage_t *lcp;
1864 u_int map, offset;
1865
1866 /* don't free a lwp context we borrowed for vfork */
1867 if (p->p_lflag & PL_PPWAIT) {
1868 l->l_lwpctl = NULL;
1869 return;
1870 }
1871
1872 lp = p->p_lwpctl;
1873 KASSERT(lp != NULL);
1874
1875 lcp = l->l_lcpage;
1876 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1877 KASSERT(offset < LWPCTL_PER_PAGE);
1878
1879 mutex_enter(&lp->lp_lock);
1880 lcp->lcp_nfree++;
1881 map = offset >> 5;
1882 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1883 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1884 lcp->lcp_rotor = map;
1885 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1886 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1887 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1888 }
1889 mutex_exit(&lp->lp_lock);
1890 }
1891
1892 /*
1893 * Process is exiting; tear down lwpctl state. This can only be safely
1894 * called by the last LWP in the process.
1895 */
1896 void
1897 lwp_ctl_exit(void)
1898 {
1899 lcpage_t *lcp, *next;
1900 lcproc_t *lp;
1901 proc_t *p;
1902 lwp_t *l;
1903
1904 l = curlwp;
1905 l->l_lwpctl = NULL;
1906 l->l_lcpage = NULL;
1907 p = l->l_proc;
1908 lp = p->p_lwpctl;
1909
1910 KASSERT(lp != NULL);
1911 KASSERT(p->p_nlwps == 1);
1912
1913 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1914 next = TAILQ_NEXT(lcp, lcp_chain);
1915 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1916 lcp->lcp_kaddr + PAGE_SIZE);
1917 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1918 }
1919
1920 if (lp->lp_uao != NULL) {
1921 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1922 lp->lp_uva + LWPCTL_UAREA_SZ);
1923 }
1924
1925 mutex_destroy(&lp->lp_lock);
1926 kmem_free(lp, sizeof(*lp));
1927 p->p_lwpctl = NULL;
1928 }
1929
1930 /*
1931 * Return the current LWP's "preemption counter". Used to detect
1932 * preemption across operations that can tolerate preemption without
1933 * crashing, but which may generate incorrect results if preempted.
1934 */
1935 uint64_t
1936 lwp_pctr(void)
1937 {
1938
1939 return curlwp->l_ncsw;
1940 }
1941
1942 /*
1943 * Set an LWP's private data pointer.
1944 */
1945 int
1946 lwp_setprivate(struct lwp *l, void *ptr)
1947 {
1948 int error = 0;
1949
1950 l->l_private = ptr;
1951 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1952 error = cpu_lwp_setprivate(l, ptr);
1953 #endif
1954 return error;
1955 }
1956
1957 #if defined(DDB)
1958 #include <machine/pcb.h>
1959
1960 void
1961 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1962 {
1963 lwp_t *l;
1964
1965 LIST_FOREACH(l, &alllwp, l_list) {
1966 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1967
1968 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1969 continue;
1970 }
1971 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1972 (void *)addr, (void *)stack,
1973 (size_t)(addr - stack), l);
1974 }
1975 }
1976 #endif /* defined(DDB) */
1977