Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.192.2.3
      1 /*	$NetBSD: kern_lwp.c,v 1.192.2.3 2020/04/21 18:42:42 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Nathan J. Williams, and Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Overview
     35  *
     36  *	Lightweight processes (LWPs) are the basic unit or thread of
     37  *	execution within the kernel.  The core state of an LWP is described
     38  *	by "struct lwp", also known as lwp_t.
     39  *
     40  *	Each LWP is contained within a process (described by "struct proc"),
     41  *	Every process contains at least one LWP, but may contain more.  The
     42  *	process describes attributes shared among all of its LWPs such as a
     43  *	private address space, global execution state (stopped, active,
     44  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     45  *	machine, multiple LWPs be executing concurrently in the kernel.
     46  *
     47  * Execution states
     48  *
     49  *	At any given time, an LWP has overall state that is described by
     50  *	lwp::l_stat.  The states are broken into two sets below.  The first
     51  *	set is guaranteed to represent the absolute, current state of the
     52  *	LWP:
     53  *
     54  *	LSONPROC
     55  *
     56  *		On processor: the LWP is executing on a CPU, either in the
     57  *		kernel or in user space.
     58  *
     59  *	LSRUN
     60  *
     61  *		Runnable: the LWP is parked on a run queue, and may soon be
     62  *		chosen to run by an idle processor, or by a processor that
     63  *		has been asked to preempt a currently runnning but lower
     64  *		priority LWP.
     65  *
     66  *	LSIDL
     67  *
     68  *		Idle: the LWP has been created but has not yet executed,
     69  *		or it has ceased executing a unit of work and is waiting
     70  *		to be started again.
     71  *
     72  *	LSSUSPENDED:
     73  *
     74  *		Suspended: the LWP has had its execution suspended by
     75  *		another LWP in the same process using the _lwp_suspend()
     76  *		system call.  User-level LWPs also enter the suspended
     77  *		state when the system is shutting down.
     78  *
     79  *	The second set represent a "statement of intent" on behalf of the
     80  *	LWP.  The LWP may in fact be executing on a processor, may be
     81  *	sleeping or idle. It is expected to take the necessary action to
     82  *	stop executing or become "running" again within a short timeframe.
     83  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     84  *	Importantly, it indicates that its state is tied to a CPU.
     85  *
     86  *	LSZOMB:
     87  *
     88  *		Dead or dying: the LWP has released most of its resources
     89  *		and is about to switch away into oblivion, or has already
     90  *		switched away.  When it switches away, its few remaining
     91  *		resources can be collected.
     92  *
     93  *	LSSLEEP:
     94  *
     95  *		Sleeping: the LWP has entered itself onto a sleep queue, and
     96  *		has switched away or will switch away shortly to allow other
     97  *		LWPs to run on the CPU.
     98  *
     99  *	LSSTOP:
    100  *
    101  *		Stopped: the LWP has been stopped as a result of a job
    102  *		control signal, or as a result of the ptrace() interface.
    103  *
    104  *		Stopped LWPs may run briefly within the kernel to handle
    105  *		signals that they receive, but will not return to user space
    106  *		until their process' state is changed away from stopped.
    107  *
    108  *		Single LWPs within a process can not be set stopped
    109  *		selectively: all actions that can stop or continue LWPs
    110  *		occur at the process level.
    111  *
    112  * State transitions
    113  *
    114  *	Note that the LSSTOP state may only be set when returning to
    115  *	user space in userret(), or when sleeping interruptably.  The
    116  *	LSSUSPENDED state may only be set in userret().  Before setting
    117  *	those states, we try to ensure that the LWPs will release all
    118  *	locks that they hold, and at a minimum try to ensure that the
    119  *	LWP can be set runnable again by a signal.
    120  *
    121  *	LWPs may transition states in the following ways:
    122  *
    123  *	 RUN -------> ONPROC		ONPROC -----> RUN
    124  *		    				    > SLEEP
    125  *		    				    > STOPPED
    126  *						    > SUSPENDED
    127  *						    > ZOMB
    128  *						    > IDL (special cases)
    129  *
    130  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    131  *	            > SLEEP
    132  *
    133  *	 SLEEP -----> ONPROC		IDL --------> RUN
    134  *		    > RUN			    > SUSPENDED
    135  *		    > STOPPED			    > STOPPED
    136  *						    > ONPROC (special cases)
    137  *
    138  *	Some state transitions are only possible with kernel threads (eg
    139  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    140  *	free of unwanted side effects.
    141  *
    142  * Migration
    143  *
    144  *	Migration of threads from one CPU to another could be performed
    145  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    146  *	functions.  The universal lwp_migrate() function should be used for
    147  *	any other cases.  Subsystems in the kernel must be aware that CPU
    148  *	of LWP may change, while it is not locked.
    149  *
    150  * Locking
    151  *
    152  *	The majority of fields in 'struct lwp' are covered by a single,
    153  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    154  *	each field are documented in sys/lwp.h.
    155  *
    156  *	State transitions must be made with the LWP's general lock held,
    157  *	and may cause the LWP's lock pointer to change.  Manipulation of
    158  *	the general lock is not performed directly, but through calls to
    159  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    160  *	adaptive locks are not allowed to be released while the LWP's lock
    161  *	is being held (unlike for other spin-locks).
    162  *
    163  *	States and their associated locks:
    164  *
    165  *	LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
    166  *
    167  *		Always covered by spc_lwplock, which protects LWPs not
    168  *		associated with any other sync object.  This is a per-CPU
    169  *		lock and matches lwp::l_cpu.
    170  *
    171  *	LSRUN:
    172  *
    173  *		Always covered by spc_mutex, which protects the run queues.
    174  *		This is a per-CPU lock and matches lwp::l_cpu.
    175  *
    176  *	LSSLEEP:
    177  *
    178  *		Covered by a lock associated with the sleep queue (sometimes
    179  *		a turnstile sleep queue) that the LWP resides on.  This can
    180  *		be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
    181  *
    182  *	LSSTOP:
    183  *
    184  *		If the LWP was previously sleeping (l_wchan != NULL), then
    185  *		l_mutex references the sleep queue lock.  If the LWP was
    186  *		runnable or on the CPU when halted, or has been removed from
    187  *		the sleep queue since halted, then the lock is spc_lwplock.
    188  *
    189  *	The lock order is as follows:
    190  *
    191  *		sleepq -> turnstile -> spc_lwplock -> spc_mutex
    192  *
    193  *	Each process has an scheduler state lock (proc::p_lock), and a
    194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195  *	so on.  When an LWP is to be entered into or removed from one of the
    196  *	following states, p_lock must be held and the process wide counters
    197  *	adjusted:
    198  *
    199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200  *
    201  *	(But not always for kernel threads.  There are some special cases
    202  *	as mentioned above: soft interrupts, and the idle loops.)
    203  *
    204  *	Note that an LWP is considered running or likely to run soon if in
    205  *	one of the following states.  This affects the value of p_nrlwps:
    206  *
    207  *		LSRUN, LSONPROC, LSSLEEP
    208  *
    209  *	p_lock does not need to be held when transitioning among these
    210  *	three states, hence p_lock is rarely taken for state transitions.
    211  */
    212 
    213 #include <sys/cdefs.h>
    214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.192.2.3 2020/04/21 18:42:42 martin Exp $");
    215 
    216 #include "opt_ddb.h"
    217 #include "opt_lockdebug.h"
    218 #include "opt_dtrace.h"
    219 
    220 #define _LWP_API_PRIVATE
    221 
    222 #include <sys/param.h>
    223 #include <sys/systm.h>
    224 #include <sys/cpu.h>
    225 #include <sys/pool.h>
    226 #include <sys/proc.h>
    227 #include <sys/syscallargs.h>
    228 #include <sys/syscall_stats.h>
    229 #include <sys/kauth.h>
    230 #include <sys/sleepq.h>
    231 #include <sys/lockdebug.h>
    232 #include <sys/kmem.h>
    233 #include <sys/pset.h>
    234 #include <sys/intr.h>
    235 #include <sys/lwpctl.h>
    236 #include <sys/atomic.h>
    237 #include <sys/filedesc.h>
    238 #include <sys/fstrans.h>
    239 #include <sys/dtrace_bsd.h>
    240 #include <sys/sdt.h>
    241 #include <sys/ptrace.h>
    242 #include <sys/xcall.h>
    243 #include <sys/uidinfo.h>
    244 #include <sys/sysctl.h>
    245 #include <sys/psref.h>
    246 #include <sys/msan.h>
    247 #include <sys/kcov.h>
    248 #include <sys/thmap.h>
    249 #include <sys/cprng.h>
    250 
    251 #include <uvm/uvm_extern.h>
    252 #include <uvm/uvm_object.h>
    253 
    254 static pool_cache_t	lwp_cache	__read_mostly;
    255 struct lwplist		alllwp		__cacheline_aligned;
    256 
    257 /*
    258  * Lookups by global thread ID operate outside of the normal LWP
    259  * locking protocol.
    260  *
    261  * We are using a thmap, which internally can perform lookups lock-free.
    262  * However, we still need to serialize lookups against LWP exit.  We
    263  * achieve this as follows:
    264  *
    265  * => Assignment of TID is performed lazily by the LWP itself, when it
    266  *    is first requested.  Insertion into the thmap is done completely
    267  *    lock-free (other than the internal locking performed by thmap itself).
    268  *    Once the TID is published in the map, the l___tid field in the LWP
    269  *    is protected by p_lock.
    270  *
    271  * => When we look up an LWP in the thmap, we take lwp_threadid_lock as
    272  *    a READER.  While still holding the lock, we add a reference to
    273  *    the LWP (using atomics).  After adding the reference, we drop the
    274  *    lwp_threadid_lock.  We now take p_lock and check the state of the
    275  *    LWP.  If the LWP is draining its references or if the l___tid field
    276  *    has been invalidated, we drop the reference we took and return NULL.
    277  *    Otherwise, the lookup has succeeded and the LWP is returned with a
    278  *    reference count that the caller is responsible for dropping.
    279  *
    280  * => When a LWP is exiting it releases its TID.  While holding the
    281  *    p_lock, the entry is deleted from the thmap and the l___tid field
    282  *    invalidated.  Once the field is invalidated, p_lock is released.
    283  *    It is done in this sequence because the l___tid field is used as
    284  *    the lookup key storage in the thmap in order to conserve memory.
    285  *    Even if a lookup races with this process and succeeds only to have
    286  *    the TID invalidated, it's OK because it also results in a reference
    287  *    that will be drained later.
    288  *
    289  * => Deleting a node also requires GC of now-unused thmap nodes.  The
    290  *    serialization point between stage_gc and gc is performed by simply
    291  *    taking the lwp_threadid_lock as a WRITER and immediately releasing
    292  *    it.  By doing this, we know that any busy readers will have drained.
    293  *
    294  * => When a LWP is exiting, it also drains off any references being
    295  *    held by others.  However, the reference in the lookup path is taken
    296  *    outside the normal locking protocol.  There needs to be additional
    297  *    serialization so that EITHER lwp_drainrefs() sees the incremented
    298  *    reference count so that it knows to wait, OR lwp_getref_tid() sees
    299  *    that the LWP is waiting to drain and thus drops the reference
    300  *    immediately.  This is achieved by taking lwp_threadid_lock as a
    301  *    WRITER when setting LPR_DRAINING.  Note the locking order:
    302  *
    303  *		p_lock -> lwp_threadid_lock
    304  *
    305  * Note that this scheme could easily use pserialize(9) in place of the
    306  * lwp_threadid_lock rwlock lock.  However, this would require placing a
    307  * pserialize_perform() call in the LWP exit path, which is arguably more
    308  * expensive than briefly taking a global lock that should be relatively
    309  * uncontended.  This issue can be revisited if the rwlock proves to be
    310  * a performance problem.
    311  */
    312 static krwlock_t	lwp_threadid_lock	__cacheline_aligned;
    313 static thmap_t *	lwp_threadid_map	__read_mostly;
    314 
    315 static void		lwp_dtor(void *, void *);
    316 
    317 /* DTrace proc provider probes */
    318 SDT_PROVIDER_DEFINE(proc);
    319 
    320 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
    321 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
    322 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
    323 
    324 struct turnstile turnstile0 __cacheline_aligned;
    325 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    326 #ifdef LWP0_CPU_INFO
    327 	.l_cpu = LWP0_CPU_INFO,
    328 #endif
    329 #ifdef LWP0_MD_INITIALIZER
    330 	.l_md = LWP0_MD_INITIALIZER,
    331 #endif
    332 	.l_proc = &proc0,
    333 	.l_lid = 1,
    334 	.l_flag = LW_SYSTEM,
    335 	.l_stat = LSONPROC,
    336 	.l_ts = &turnstile0,
    337 	.l_syncobj = &sched_syncobj,
    338 	.l_refcnt = 0,
    339 	.l_priority = PRI_USER + NPRI_USER - 1,
    340 	.l_inheritedprio = -1,
    341 	.l_class = SCHED_OTHER,
    342 	.l_psid = PS_NONE,
    343 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    344 	.l_name = __UNCONST("swapper"),
    345 	.l_fd = &filedesc0,
    346 };
    347 
    348 static void lwp_threadid_init(void);
    349 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
    350 
    351 /*
    352  * sysctl helper routine for kern.maxlwp. Ensures that the new
    353  * values are not too low or too high.
    354  */
    355 static int
    356 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
    357 {
    358 	int error, nmaxlwp;
    359 	struct sysctlnode node;
    360 
    361 	nmaxlwp = maxlwp;
    362 	node = *rnode;
    363 	node.sysctl_data = &nmaxlwp;
    364 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    365 	if (error || newp == NULL)
    366 		return error;
    367 
    368 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
    369 		return EINVAL;
    370 	if (nmaxlwp > cpu_maxlwp())
    371 		return EINVAL;
    372 	maxlwp = nmaxlwp;
    373 
    374 	return 0;
    375 }
    376 
    377 static void
    378 sysctl_kern_lwp_setup(void)
    379 {
    380 	struct sysctllog *clog = NULL;
    381 
    382 	sysctl_createv(&clog, 0, NULL, NULL,
    383 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    384 		       CTLTYPE_INT, "maxlwp",
    385 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
    386 		       sysctl_kern_maxlwp, 0, NULL, 0,
    387 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    388 }
    389 
    390 void
    391 lwpinit(void)
    392 {
    393 
    394 	LIST_INIT(&alllwp);
    395 	lwpinit_specificdata();
    396 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    397 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
    398 
    399 	maxlwp = cpu_maxlwp();
    400 	sysctl_kern_lwp_setup();
    401 	lwp_threadid_init();
    402 }
    403 
    404 void
    405 lwp0_init(void)
    406 {
    407 	struct lwp *l = &lwp0;
    408 
    409 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    410 	KASSERT(l->l_lid == proc0.p_nlwpid);
    411 
    412 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    413 
    414 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    415 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    416 	cv_init(&l->l_sigcv, "sigwait");
    417 	cv_init(&l->l_waitcv, "vfork");
    418 
    419 	kauth_cred_hold(proc0.p_cred);
    420 	l->l_cred = proc0.p_cred;
    421 
    422 	kdtrace_thread_ctor(NULL, l);
    423 	lwp_initspecific(l);
    424 
    425 	SYSCALL_TIME_LWP_INIT(l);
    426 }
    427 
    428 static void
    429 lwp_dtor(void *arg, void *obj)
    430 {
    431 	lwp_t *l = obj;
    432 	(void)l;
    433 
    434 	/*
    435 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    436 	 * calls will exit before memory of LWP is returned to the pool, where
    437 	 * KVA of LWP structure might be freed and re-used for other purposes.
    438 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    439 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
    440 	 * the value of l->l_cpu must be still valid at this point.
    441 	 */
    442 	KASSERT(l->l_cpu != NULL);
    443 	xc_barrier(0);
    444 }
    445 
    446 /*
    447  * Set an suspended.
    448  *
    449  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    450  * LWP before return.
    451  */
    452 int
    453 lwp_suspend(struct lwp *curl, struct lwp *t)
    454 {
    455 	int error;
    456 
    457 	KASSERT(mutex_owned(t->l_proc->p_lock));
    458 	KASSERT(lwp_locked(t, NULL));
    459 
    460 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    461 
    462 	/*
    463 	 * If the current LWP has been told to exit, we must not suspend anyone
    464 	 * else or deadlock could occur.  We won't return to userspace.
    465 	 */
    466 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    467 		lwp_unlock(t);
    468 		return (EDEADLK);
    469 	}
    470 
    471 	if ((t->l_flag & LW_DBGSUSPEND) != 0) {
    472 		lwp_unlock(t);
    473 		return 0;
    474 	}
    475 
    476 	error = 0;
    477 
    478 	switch (t->l_stat) {
    479 	case LSRUN:
    480 	case LSONPROC:
    481 		t->l_flag |= LW_WSUSPEND;
    482 		lwp_need_userret(t);
    483 		lwp_unlock(t);
    484 		break;
    485 
    486 	case LSSLEEP:
    487 		t->l_flag |= LW_WSUSPEND;
    488 
    489 		/*
    490 		 * Kick the LWP and try to get it to the kernel boundary
    491 		 * so that it will release any locks that it holds.
    492 		 * setrunnable() will release the lock.
    493 		 */
    494 		if ((t->l_flag & LW_SINTR) != 0)
    495 			setrunnable(t);
    496 		else
    497 			lwp_unlock(t);
    498 		break;
    499 
    500 	case LSSUSPENDED:
    501 		lwp_unlock(t);
    502 		break;
    503 
    504 	case LSSTOP:
    505 		t->l_flag |= LW_WSUSPEND;
    506 		setrunnable(t);
    507 		break;
    508 
    509 	case LSIDL:
    510 	case LSZOMB:
    511 		error = EINTR; /* It's what Solaris does..... */
    512 		lwp_unlock(t);
    513 		break;
    514 	}
    515 
    516 	return (error);
    517 }
    518 
    519 /*
    520  * Restart a suspended LWP.
    521  *
    522  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    523  * LWP before return.
    524  */
    525 void
    526 lwp_continue(struct lwp *l)
    527 {
    528 
    529 	KASSERT(mutex_owned(l->l_proc->p_lock));
    530 	KASSERT(lwp_locked(l, NULL));
    531 
    532 	/* If rebooting or not suspended, then just bail out. */
    533 	if ((l->l_flag & LW_WREBOOT) != 0) {
    534 		lwp_unlock(l);
    535 		return;
    536 	}
    537 
    538 	l->l_flag &= ~LW_WSUSPEND;
    539 
    540 	if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
    541 		lwp_unlock(l);
    542 		return;
    543 	}
    544 
    545 	/* setrunnable() will release the lock. */
    546 	setrunnable(l);
    547 }
    548 
    549 /*
    550  * Restart a stopped LWP.
    551  *
    552  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    553  * LWP before return.
    554  */
    555 void
    556 lwp_unstop(struct lwp *l)
    557 {
    558 	struct proc *p = l->l_proc;
    559 
    560 	KASSERT(mutex_owned(proc_lock));
    561 	KASSERT(mutex_owned(p->p_lock));
    562 
    563 	lwp_lock(l);
    564 
    565 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    566 
    567 	/* If not stopped, then just bail out. */
    568 	if (l->l_stat != LSSTOP) {
    569 		lwp_unlock(l);
    570 		return;
    571 	}
    572 
    573 	p->p_stat = SACTIVE;
    574 	p->p_sflag &= ~PS_STOPPING;
    575 
    576 	if (!p->p_waited)
    577 		p->p_pptr->p_nstopchild--;
    578 
    579 	if (l->l_wchan == NULL) {
    580 		/* setrunnable() will release the lock. */
    581 		setrunnable(l);
    582 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
    583 		/* setrunnable() so we can receive the signal */
    584 		setrunnable(l);
    585 	} else {
    586 		l->l_stat = LSSLEEP;
    587 		p->p_nrlwps++;
    588 		lwp_unlock(l);
    589 	}
    590 }
    591 
    592 /*
    593  * Wait for an LWP within the current process to exit.  If 'lid' is
    594  * non-zero, we are waiting for a specific LWP.
    595  *
    596  * Must be called with p->p_lock held.
    597  */
    598 int
    599 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
    600 {
    601 	const lwpid_t curlid = l->l_lid;
    602 	proc_t *p = l->l_proc;
    603 	lwp_t *l2, *next;
    604 	int error;
    605 
    606 	KASSERT(mutex_owned(p->p_lock));
    607 
    608 	p->p_nlwpwait++;
    609 	l->l_waitingfor = lid;
    610 
    611 	for (;;) {
    612 		int nfound;
    613 
    614 		/*
    615 		 * Avoid a race between exit1() and sigexit(): if the
    616 		 * process is dumping core, then we need to bail out: call
    617 		 * into lwp_userret() where we will be suspended until the
    618 		 * deed is done.
    619 		 */
    620 		if ((p->p_sflag & PS_WCORE) != 0) {
    621 			mutex_exit(p->p_lock);
    622 			lwp_userret(l);
    623 			KASSERT(false);
    624 		}
    625 
    626 		/*
    627 		 * First off, drain any detached LWP that is waiting to be
    628 		 * reaped.
    629 		 */
    630 		while ((l2 = p->p_zomblwp) != NULL) {
    631 			p->p_zomblwp = NULL;
    632 			lwp_free(l2, false, false);/* releases proc mutex */
    633 			mutex_enter(p->p_lock);
    634 		}
    635 
    636 		/*
    637 		 * Now look for an LWP to collect.  If the whole process is
    638 		 * exiting, count detached LWPs as eligible to be collected,
    639 		 * but don't drain them here.
    640 		 */
    641 		nfound = 0;
    642 		error = 0;
    643 
    644 		/*
    645 		 * If given a specific LID, go via the tree and make sure
    646 		 * it's not detached.
    647 		 */
    648 		if (lid != 0) {
    649 			l2 = radix_tree_lookup_node(&p->p_lwptree,
    650 			    (uint64_t)(lid - 1));
    651 			if (l2 == NULL) {
    652 				error = ESRCH;
    653 				break;
    654 			}
    655 			KASSERT(l2->l_lid == lid);
    656 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    657 				error = EINVAL;
    658 				break;
    659 			}
    660 		} else {
    661 			l2 = LIST_FIRST(&p->p_lwps);
    662 		}
    663 		for (; l2 != NULL; l2 = next) {
    664 			next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
    665 
    666 			/*
    667 			 * If a specific wait and the target is waiting on
    668 			 * us, then avoid deadlock.  This also traps LWPs
    669 			 * that try to wait on themselves.
    670 			 *
    671 			 * Note that this does not handle more complicated
    672 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    673 			 * can still be killed so it is not a major problem.
    674 			 */
    675 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    676 				error = EDEADLK;
    677 				break;
    678 			}
    679 			if (l2 == l)
    680 				continue;
    681 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    682 				nfound += exiting;
    683 				continue;
    684 			}
    685 			if (lid != 0) {
    686 				/*
    687 				 * Mark this LWP as the first waiter, if there
    688 				 * is no other.
    689 				 */
    690 				if (l2->l_waiter == 0)
    691 					l2->l_waiter = curlid;
    692 			} else if (l2->l_waiter != 0) {
    693 				/*
    694 				 * It already has a waiter - so don't
    695 				 * collect it.  If the waiter doesn't
    696 				 * grab it we'll get another chance
    697 				 * later.
    698 				 */
    699 				nfound++;
    700 				continue;
    701 			}
    702 			nfound++;
    703 
    704 			/* No need to lock the LWP in order to see LSZOMB. */
    705 			if (l2->l_stat != LSZOMB)
    706 				continue;
    707 
    708 			/*
    709 			 * We're no longer waiting.  Reset the "first waiter"
    710 			 * pointer on the target, in case it was us.
    711 			 */
    712 			l->l_waitingfor = 0;
    713 			l2->l_waiter = 0;
    714 			p->p_nlwpwait--;
    715 			if (departed)
    716 				*departed = l2->l_lid;
    717 			sched_lwp_collect(l2);
    718 
    719 			/* lwp_free() releases the proc lock. */
    720 			lwp_free(l2, false, false);
    721 			mutex_enter(p->p_lock);
    722 			return 0;
    723 		}
    724 
    725 		if (error != 0)
    726 			break;
    727 		if (nfound == 0) {
    728 			error = ESRCH;
    729 			break;
    730 		}
    731 
    732 		/*
    733 		 * Note: since the lock will be dropped, need to restart on
    734 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
    735 		 */
    736 		if (exiting) {
    737 			KASSERT(p->p_nlwps > 1);
    738 			error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
    739 			break;
    740 		}
    741 
    742 		/*
    743 		 * Break out if all LWPs are in _lwp_wait().  There are
    744 		 * other ways to hang the process with _lwp_wait(), but the
    745 		 * sleep is interruptable so little point checking for them.
    746 		 */
    747 		if (p->p_nlwpwait == p->p_nlwps) {
    748 			error = EDEADLK;
    749 			break;
    750 		}
    751 
    752 		/*
    753 		 * Sit around and wait for something to happen.  We'll be
    754 		 * awoken if any of the conditions examined change: if an
    755 		 * LWP exits, is collected, or is detached.
    756 		 */
    757 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    758 			break;
    759 	}
    760 
    761 	/*
    762 	 * We didn't find any LWPs to collect, we may have received a
    763 	 * signal, or some other condition has caused us to bail out.
    764 	 *
    765 	 * If waiting on a specific LWP, clear the waiters marker: some
    766 	 * other LWP may want it.  Then, kick all the remaining waiters
    767 	 * so that they can re-check for zombies and for deadlock.
    768 	 */
    769 	if (lid != 0) {
    770 		l2 = radix_tree_lookup_node(&p->p_lwptree,
    771 		    (uint64_t)(lid - 1));
    772 		KASSERT(l2 == NULL || l2->l_lid == lid);
    773 
    774 		if (l2 != NULL && l2->l_waiter == curlid)
    775 			l2->l_waiter = 0;
    776 	}
    777 	p->p_nlwpwait--;
    778 	l->l_waitingfor = 0;
    779 	cv_broadcast(&p->p_lwpcv);
    780 
    781 	return error;
    782 }
    783 
    784 /*
    785  * Find an unused LID for a new LWP.
    786  */
    787 static lwpid_t
    788 lwp_find_free_lid(struct proc *p)
    789 {
    790 	struct lwp *gang[32];
    791 	lwpid_t lid;
    792 	unsigned n;
    793 
    794 	KASSERT(mutex_owned(p->p_lock));
    795 	KASSERT(p->p_nlwpid > 0);
    796 
    797 	/*
    798 	 * Scoot forward through the tree in blocks of LIDs doing gang
    799 	 * lookup with dense=true, meaning the lookup will terminate the
    800 	 * instant a hole is encountered.  Most of the time the first entry
    801 	 * (p->p_nlwpid) is free and the lookup fails fast.
    802 	 */
    803 	for (lid = p->p_nlwpid;;) {
    804 		n = radix_tree_gang_lookup_node(&p->p_lwptree, lid - 1,
    805 		    (void **)gang, __arraycount(gang), true);
    806 		if (n == 0) {
    807 			/* Start point was empty. */
    808 			break;
    809 		}
    810 		KASSERT(gang[0]->l_lid == lid);
    811 		lid = gang[n - 1]->l_lid + 1;
    812 		if (n < __arraycount(gang)) {
    813 			/* Scan encountered a hole. */
    814 			break;
    815 		}
    816 	}
    817 
    818 	return (lwpid_t)lid;
    819 }
    820 
    821 /*
    822  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    823  * The new LWP is created in state LSIDL and must be set running,
    824  * suspended, or stopped by the caller.
    825  */
    826 int
    827 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    828     void *stack, size_t stacksize, void (*func)(void *), void *arg,
    829     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
    830     const stack_t *sigstk)
    831 {
    832 	struct lwp *l2;
    833 	turnstile_t *ts;
    834 	lwpid_t lid;
    835 
    836 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    837 
    838 	/*
    839 	 * Enforce limits, excluding the first lwp and kthreads.  We must
    840 	 * use the process credentials here when adjusting the limit, as
    841 	 * they are what's tied to the accounting entity.  However for
    842 	 * authorizing the action, we'll use the LWP's credentials.
    843 	 */
    844 	mutex_enter(p2->p_lock);
    845 	if (p2->p_nlwps != 0 && p2 != &proc0) {
    846 		uid_t uid = kauth_cred_getuid(p2->p_cred);
    847 		int count = chglwpcnt(uid, 1);
    848 		if (__predict_false(count >
    849 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
    850 			if (kauth_authorize_process(l1->l_cred,
    851 			    KAUTH_PROCESS_RLIMIT, p2,
    852 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    853 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
    854 			    != 0) {
    855 				(void)chglwpcnt(uid, -1);
    856 				mutex_exit(p2->p_lock);
    857 				return EAGAIN;
    858 			}
    859 		}
    860 	}
    861 
    862 	/*
    863 	 * First off, reap any detached LWP waiting to be collected.
    864 	 * We can re-use its LWP structure and turnstile.
    865 	 */
    866 	if ((l2 = p2->p_zomblwp) != NULL) {
    867 		p2->p_zomblwp = NULL;
    868 		lwp_free(l2, true, false);
    869 		/* p2 now unlocked by lwp_free() */
    870 		ts = l2->l_ts;
    871 		KASSERT(l2->l_inheritedprio == -1);
    872 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    873 		memset(l2, 0, sizeof(*l2));
    874 		l2->l_ts = ts;
    875 	} else {
    876 		mutex_exit(p2->p_lock);
    877 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    878 		memset(l2, 0, sizeof(*l2));
    879 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    880 		SLIST_INIT(&l2->l_pi_lenders);
    881 	}
    882 
    883 	l2->l_stat = LSIDL;
    884 	l2->l_proc = p2;
    885 	l2->l_refcnt = 0;
    886 	l2->l_class = sclass;
    887 
    888 	/*
    889 	 * If vfork(), we want the LWP to run fast and on the same CPU
    890 	 * as its parent, so that it can reuse the VM context and cache
    891 	 * footprint on the local CPU.
    892 	 */
    893 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    894 	l2->l_kpribase = PRI_KERNEL;
    895 	l2->l_priority = l1->l_priority;
    896 	l2->l_inheritedprio = -1;
    897 	l2->l_protectprio = -1;
    898 	l2->l_auxprio = -1;
    899 	l2->l_flag = 0;
    900 	l2->l_pflag = LP_MPSAFE;
    901 	TAILQ_INIT(&l2->l_ld_locks);
    902 	l2->l_psrefs = 0;
    903 	kmsan_lwp_alloc(l2);
    904 
    905 	/*
    906 	 * For vfork, borrow parent's lwpctl context if it exists.
    907 	 * This also causes us to return via lwp_userret.
    908 	 */
    909 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    910 		l2->l_lwpctl = l1->l_lwpctl;
    911 		l2->l_flag |= LW_LWPCTL;
    912 	}
    913 
    914 	/*
    915 	 * If not the first LWP in the process, grab a reference to the
    916 	 * descriptor table.
    917 	 */
    918 	l2->l_fd = p2->p_fd;
    919 	if (p2->p_nlwps != 0) {
    920 		KASSERT(l1->l_proc == p2);
    921 		fd_hold(l2);
    922 	} else {
    923 		KASSERT(l1->l_proc != p2);
    924 	}
    925 
    926 	if (p2->p_flag & PK_SYSTEM) {
    927 		/* Mark it as a system LWP. */
    928 		l2->l_flag |= LW_SYSTEM;
    929 	}
    930 
    931 	kpreempt_disable();
    932 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
    933 	l2->l_cpu = l1->l_cpu;
    934 	kpreempt_enable();
    935 
    936 	kdtrace_thread_ctor(NULL, l2);
    937 	lwp_initspecific(l2);
    938 	sched_lwp_fork(l1, l2);
    939 	lwp_update_creds(l2);
    940 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    941 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    942 	cv_init(&l2->l_sigcv, "sigwait");
    943 	cv_init(&l2->l_waitcv, "vfork");
    944 	l2->l_syncobj = &sched_syncobj;
    945 	PSREF_DEBUG_INIT_LWP(l2);
    946 
    947 	if (rnewlwpp != NULL)
    948 		*rnewlwpp = l2;
    949 
    950 	/*
    951 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    952 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    953 	 */
    954 	pcu_save_all(l1);
    955 #if PCU_UNIT_COUNT > 0
    956 	l2->l_pcu_valid = l1->l_pcu_valid;
    957 #endif
    958 
    959 	uvm_lwp_setuarea(l2, uaddr);
    960 	uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
    961 
    962 	if ((flags & LWP_PIDLID) != 0) {
    963 		/* Linux threads: use a PID. */
    964 		lid = proc_alloc_pid(p2);
    965 		l2->l_pflag |= LP_PIDLID;
    966 	} else if (p2->p_nlwps == 0) {
    967 		/*
    968 		 * First LWP in process.  Copy the parent's LID to avoid
    969 		 * causing problems for fork() + threads.  Don't give
    970 		 * subsequent threads the distinction of using LID 1.
    971 		 */
    972 		lid = l1->l_lid;
    973 		p2->p_nlwpid = 2;
    974 	} else {
    975 		/* Scan the radix tree for a free LID. */
    976 		lid = 0;
    977 	}
    978 
    979 	/*
    980 	 * Allocate LID if needed, and insert into the radix tree.  The
    981 	 * first LWP in most processes has a LID of 1.  It turns out that if
    982 	 * you insert an item with a key of zero to a radixtree, it's stored
    983 	 * directly in the root (p_lwptree) and no extra memory is
    984 	 * allocated.  We therefore always subtract 1 from the LID, which
    985 	 * means no memory is allocated for the tree unless the program is
    986 	 * using threads.  NB: the allocation and insert must take place
    987 	 * under the same hold of p_lock.
    988 	 */
    989 	mutex_enter(p2->p_lock);
    990 	for (;;) {
    991 		int error;
    992 
    993 		l2->l_lid = (lid == 0 ? lwp_find_free_lid(p2) : lid);
    994 
    995 		rw_enter(&p2->p_treelock, RW_WRITER);
    996 		error = radix_tree_insert_node(&p2->p_lwptree,
    997 		    (uint64_t)(l2->l_lid - 1), l2);
    998 		rw_exit(&p2->p_treelock);
    999 
   1000 		if (__predict_true(error == 0)) {
   1001 			if (lid == 0)
   1002 				p2->p_nlwpid = l2->l_lid + 1;
   1003 			break;
   1004 		}
   1005 
   1006 		KASSERT(error == ENOMEM);
   1007 		mutex_exit(p2->p_lock);
   1008 		radix_tree_await_memory();
   1009 		mutex_enter(p2->p_lock);
   1010 	}
   1011 
   1012 	if ((flags & LWP_DETACHED) != 0) {
   1013 		l2->l_prflag = LPR_DETACHED;
   1014 		p2->p_ndlwps++;
   1015 	} else
   1016 		l2->l_prflag = 0;
   1017 
   1018 	if (l1->l_proc == p2) {
   1019 		/*
   1020 		 * These flags are set while p_lock is held.  Copy with
   1021 		 * p_lock held too, so the LWP doesn't sneak into the
   1022 		 * process without them being set.
   1023 		 */
   1024 		l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
   1025 	} else {
   1026 		/* fork(): pending core/exit doesn't apply to child. */
   1027 		l2->l_flag |= (l1->l_flag & LW_WREBOOT);
   1028 	}
   1029 
   1030 	l2->l_sigstk = *sigstk;
   1031 	l2->l_sigmask = *sigmask;
   1032 	TAILQ_INIT(&l2->l_sigpend.sp_info);
   1033 	sigemptyset(&l2->l_sigpend.sp_set);
   1034 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
   1035 	p2->p_nlwps++;
   1036 	p2->p_nrlwps++;
   1037 
   1038 	KASSERT(l2->l_affinity == NULL);
   1039 
   1040 	/* Inherit the affinity mask. */
   1041 	if (l1->l_affinity) {
   1042 		/*
   1043 		 * Note that we hold the state lock while inheriting
   1044 		 * the affinity to avoid race with sched_setaffinity().
   1045 		 */
   1046 		lwp_lock(l1);
   1047 		if (l1->l_affinity) {
   1048 			kcpuset_use(l1->l_affinity);
   1049 			l2->l_affinity = l1->l_affinity;
   1050 		}
   1051 		lwp_unlock(l1);
   1052 	}
   1053 
   1054 	/* This marks the end of the "must be atomic" section. */
   1055 	mutex_exit(p2->p_lock);
   1056 
   1057 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
   1058 
   1059 	mutex_enter(proc_lock);
   1060 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
   1061 	/* Inherit a processor-set */
   1062 	l2->l_psid = l1->l_psid;
   1063 	mutex_exit(proc_lock);
   1064 
   1065 	SYSCALL_TIME_LWP_INIT(l2);
   1066 
   1067 	if (p2->p_emul->e_lwp_fork)
   1068 		(*p2->p_emul->e_lwp_fork)(l1, l2);
   1069 
   1070 	return (0);
   1071 }
   1072 
   1073 /*
   1074  * Set a new LWP running.  If the process is stopping, then the LWP is
   1075  * created stopped.
   1076  */
   1077 void
   1078 lwp_start(lwp_t *l, int flags)
   1079 {
   1080 	proc_t *p = l->l_proc;
   1081 
   1082 	mutex_enter(p->p_lock);
   1083 	lwp_lock(l);
   1084 	KASSERT(l->l_stat == LSIDL);
   1085 	if ((flags & LWP_SUSPENDED) != 0) {
   1086 		/* It'll suspend itself in lwp_userret(). */
   1087 		l->l_flag |= LW_WSUSPEND;
   1088 	}
   1089 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
   1090 		KASSERT(l->l_wchan == NULL);
   1091 	    	l->l_stat = LSSTOP;
   1092 		p->p_nrlwps--;
   1093 		lwp_unlock(l);
   1094 	} else {
   1095 		setrunnable(l);
   1096 		/* LWP now unlocked */
   1097 	}
   1098 	mutex_exit(p->p_lock);
   1099 }
   1100 
   1101 /*
   1102  * Called by MD code when a new LWP begins execution.  Must be called
   1103  * with the previous LWP locked (so at splsched), or if there is no
   1104  * previous LWP, at splsched.
   1105  */
   1106 void
   1107 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
   1108 {
   1109 	kmutex_t *lock;
   1110 
   1111 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
   1112 	KASSERT(kpreempt_disabled());
   1113 	KASSERT(prev != NULL);
   1114 	KASSERT((prev->l_pflag & LP_RUNNING) != 0);
   1115 	KASSERT(curcpu()->ci_mtx_count == -2);
   1116 
   1117 	/*
   1118 	 * Immediately mark the previous LWP as no longer running and unlock
   1119 	 * (to keep lock wait times short as possible).  If a zombie, don't
   1120 	 * touch after clearing LP_RUNNING as it could be reaped by another
   1121 	 * CPU.  Issue a memory barrier to ensure this.
   1122 	 */
   1123 	lock = prev->l_mutex;
   1124 	if (__predict_false(prev->l_stat == LSZOMB)) {
   1125 		membar_sync();
   1126 	}
   1127 	prev->l_pflag &= ~LP_RUNNING;
   1128 	mutex_spin_exit(lock);
   1129 
   1130 	/* Correct spin mutex count after mi_switch(). */
   1131 	curcpu()->ci_mtx_count = 0;
   1132 
   1133 	/* Install new VM context. */
   1134 	if (__predict_true(new_lwp->l_proc->p_vmspace)) {
   1135 		pmap_activate(new_lwp);
   1136 	}
   1137 
   1138 	/* We remain at IPL_SCHED from mi_switch() - reset it. */
   1139 	spl0();
   1140 
   1141 	LOCKDEBUG_BARRIER(NULL, 0);
   1142 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
   1143 
   1144 	/* For kthreads, acquire kernel lock if not MPSAFE. */
   1145 	if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
   1146 		KERNEL_LOCK(1, new_lwp);
   1147 	}
   1148 }
   1149 
   1150 /*
   1151  * Exit an LWP.
   1152  */
   1153 void
   1154 lwp_exit(struct lwp *l)
   1155 {
   1156 	struct proc *p = l->l_proc;
   1157 	struct lwp *l2;
   1158 	bool current;
   1159 
   1160 	current = (l == curlwp);
   1161 
   1162 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
   1163 	KASSERT(p == curproc);
   1164 
   1165 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
   1166 
   1167 	/* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
   1168 	LOCKDEBUG_BARRIER(NULL, 0);
   1169 	KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
   1170 
   1171 	/*
   1172 	 * If we are the last live LWP in a process, we need to exit the
   1173 	 * entire process.  We do so with an exit status of zero, because
   1174 	 * it's a "controlled" exit, and because that's what Solaris does.
   1175 	 *
   1176 	 * We are not quite a zombie yet, but for accounting purposes we
   1177 	 * must increment the count of zombies here.
   1178 	 *
   1179 	 * Note: the last LWP's specificdata will be deleted here.
   1180 	 */
   1181 	mutex_enter(p->p_lock);
   1182 	if (p->p_nlwps - p->p_nzlwps == 1) {
   1183 		KASSERT(current == true);
   1184 		KASSERT(p != &proc0);
   1185 		exit1(l, 0, 0);
   1186 		/* NOTREACHED */
   1187 	}
   1188 	p->p_nzlwps++;
   1189 
   1190 	/*
   1191 	 * Perform any required thread cleanup.  Do this early so
   1192 	 * anyone wanting to look us up by our global thread ID
   1193 	 * will fail to find us.
   1194 	 *
   1195 	 * N.B. this will unlock p->p_lock on our behalf.
   1196 	 */
   1197 	lwp_thread_cleanup(l);
   1198 
   1199 	if (p->p_emul->e_lwp_exit)
   1200 		(*p->p_emul->e_lwp_exit)(l);
   1201 
   1202 	/* Drop filedesc reference. */
   1203 	fd_free();
   1204 
   1205 	/* Release fstrans private data. */
   1206 	fstrans_lwp_dtor(l);
   1207 
   1208 	/* Delete the specificdata while it's still safe to sleep. */
   1209 	lwp_finispecific(l);
   1210 
   1211 	/*
   1212 	 * Release our cached credentials.
   1213 	 */
   1214 	kauth_cred_free(l->l_cred);
   1215 	callout_destroy(&l->l_timeout_ch);
   1216 
   1217 	/*
   1218 	 * If traced, report LWP exit event to the debugger.
   1219 	 *
   1220 	 * Remove the LWP from the global list.
   1221 	 * Free its LID from the PID namespace if needed.
   1222 	 */
   1223 	mutex_enter(proc_lock);
   1224 
   1225 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
   1226 	    (PSL_TRACED|PSL_TRACELWP_EXIT)) {
   1227 		mutex_enter(p->p_lock);
   1228 		if (ISSET(p->p_sflag, PS_WEXIT)) {
   1229 			mutex_exit(p->p_lock);
   1230 			/*
   1231 			 * We are exiting, bail out without informing parent
   1232 			 * about a terminating LWP as it would deadlock.
   1233 			 */
   1234 		} else {
   1235 			eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
   1236 			mutex_enter(proc_lock);
   1237 		}
   1238 	}
   1239 
   1240 	LIST_REMOVE(l, l_list);
   1241 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
   1242 		proc_free_pid(l->l_lid);
   1243 	}
   1244 	mutex_exit(proc_lock);
   1245 
   1246 	/*
   1247 	 * Get rid of all references to the LWP that others (e.g. procfs)
   1248 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
   1249 	 * mark it waiting for collection in the proc structure.  Note that
   1250 	 * before we can do that, we need to free any other dead, deatched
   1251 	 * LWP waiting to meet its maker.
   1252 	 *
   1253 	 * All conditions need to be observed upon under the same hold of
   1254 	 * p_lock, because if the lock is dropped any of them can change.
   1255 	 */
   1256 	mutex_enter(p->p_lock);
   1257 	for (;;) {
   1258 		if (lwp_drainrefs(l))
   1259 			continue;
   1260 		if ((l->l_prflag & LPR_DETACHED) != 0) {
   1261 			if ((l2 = p->p_zomblwp) != NULL) {
   1262 				p->p_zomblwp = NULL;
   1263 				lwp_free(l2, false, false);
   1264 				/* proc now unlocked */
   1265 				mutex_enter(p->p_lock);
   1266 				continue;
   1267 			}
   1268 			p->p_zomblwp = l;
   1269 		}
   1270 		break;
   1271 	}
   1272 
   1273 	/*
   1274 	 * If we find a pending signal for the process and we have been
   1275 	 * asked to check for signals, then we lose: arrange to have
   1276 	 * all other LWPs in the process check for signals.
   1277 	 */
   1278 	if ((l->l_flag & LW_PENDSIG) != 0 &&
   1279 	    firstsig(&p->p_sigpend.sp_set) != 0) {
   1280 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1281 			lwp_lock(l2);
   1282 			signotify(l2);
   1283 			lwp_unlock(l2);
   1284 		}
   1285 	}
   1286 
   1287 	/*
   1288 	 * Release any PCU resources before becoming a zombie.
   1289 	 */
   1290 	pcu_discard_all(l);
   1291 
   1292 	lwp_lock(l);
   1293 	l->l_stat = LSZOMB;
   1294 	if (l->l_name != NULL) {
   1295 		strcpy(l->l_name, "(zombie)");
   1296 	}
   1297 	lwp_unlock(l);
   1298 	p->p_nrlwps--;
   1299 	cv_broadcast(&p->p_lwpcv);
   1300 	if (l->l_lwpctl != NULL)
   1301 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
   1302 	mutex_exit(p->p_lock);
   1303 
   1304 	/*
   1305 	 * We can no longer block.  At this point, lwp_free() may already
   1306 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1307 	 *
   1308 	 * Free MD LWP resources.
   1309 	 */
   1310 	cpu_lwp_free(l, 0);
   1311 
   1312 	if (current) {
   1313 		/* Switch away into oblivion. */
   1314 		lwp_lock(l);
   1315 		spc_lock(l->l_cpu);
   1316 		mi_switch(l);
   1317 		panic("lwp_exit");
   1318 	}
   1319 }
   1320 
   1321 /*
   1322  * Free a dead LWP's remaining resources.
   1323  *
   1324  * XXXLWP limits.
   1325  */
   1326 void
   1327 lwp_free(struct lwp *l, bool recycle, bool last)
   1328 {
   1329 	struct proc *p = l->l_proc;
   1330 	struct rusage *ru;
   1331 	struct lwp *l2 __diagused;
   1332 	ksiginfoq_t kq;
   1333 
   1334 	KASSERT(l != curlwp);
   1335 	KASSERT(last || mutex_owned(p->p_lock));
   1336 
   1337 	/*
   1338 	 * We use the process credentials instead of the lwp credentials here
   1339 	 * because the lwp credentials maybe cached (just after a setuid call)
   1340 	 * and we don't want pay for syncing, since the lwp is going away
   1341 	 * anyway
   1342 	 */
   1343 	if (p != &proc0 && p->p_nlwps != 1)
   1344 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
   1345 
   1346 	/*
   1347 	 * If this was not the last LWP in the process, then adjust counters
   1348 	 * and unlock.  This is done differently for the last LWP in exit1().
   1349 	 */
   1350 	if (!last) {
   1351 		/*
   1352 		 * Add the LWP's run time to the process' base value.
   1353 		 * This needs to co-incide with coming off p_lwps.
   1354 		 */
   1355 		bintime_add(&p->p_rtime, &l->l_rtime);
   1356 		p->p_pctcpu += l->l_pctcpu;
   1357 		ru = &p->p_stats->p_ru;
   1358 		ruadd(ru, &l->l_ru);
   1359 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1360 		ru->ru_nivcsw += l->l_nivcsw;
   1361 		LIST_REMOVE(l, l_sibling);
   1362 		p->p_nlwps--;
   1363 		p->p_nzlwps--;
   1364 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1365 			p->p_ndlwps--;
   1366 
   1367 		/* Make note of the LID being free, and remove from tree. */
   1368 		if (l->l_lid < p->p_nlwpid)
   1369 			p->p_nlwpid = l->l_lid;
   1370 		rw_enter(&p->p_treelock, RW_WRITER);
   1371 		l2 = radix_tree_remove_node(&p->p_lwptree,
   1372 		    (uint64_t)(l->l_lid - 1));
   1373 		KASSERT(l2 == l);
   1374 		rw_exit(&p->p_treelock);
   1375 
   1376 		/*
   1377 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1378 		 * deadlock.
   1379 		 */
   1380 		cv_broadcast(&p->p_lwpcv);
   1381 		mutex_exit(p->p_lock);
   1382 	}
   1383 
   1384 	/*
   1385 	 * In the unlikely event that the LWP is still on the CPU,
   1386 	 * then spin until it has switched away.
   1387 	 */
   1388 	membar_consumer();
   1389 	while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) {
   1390 		SPINLOCK_BACKOFF_HOOK;
   1391 	}
   1392 
   1393 	/*
   1394 	 * Destroy the LWP's remaining signal information.
   1395 	 */
   1396 	ksiginfo_queue_init(&kq);
   1397 	sigclear(&l->l_sigpend, NULL, &kq);
   1398 	ksiginfo_queue_drain(&kq);
   1399 	cv_destroy(&l->l_sigcv);
   1400 	cv_destroy(&l->l_waitcv);
   1401 
   1402 	/*
   1403 	 * Free lwpctl structure and affinity.
   1404 	 */
   1405 	if (l->l_lwpctl) {
   1406 		lwp_ctl_free(l);
   1407 	}
   1408 	if (l->l_affinity) {
   1409 		kcpuset_unuse(l->l_affinity, NULL);
   1410 		l->l_affinity = NULL;
   1411 	}
   1412 
   1413 	/*
   1414 	 * Free the LWP's turnstile and the LWP structure itself unless the
   1415 	 * caller wants to recycle them.  Also, free the scheduler specific
   1416 	 * data.
   1417 	 *
   1418 	 * We can't return turnstile0 to the pool (it didn't come from it),
   1419 	 * so if it comes up just drop it quietly and move on.
   1420 	 *
   1421 	 * We don't recycle the VM resources at this time.
   1422 	 */
   1423 
   1424 	if (!recycle && l->l_ts != &turnstile0)
   1425 		pool_cache_put(turnstile_cache, l->l_ts);
   1426 	if (l->l_name != NULL)
   1427 		kmem_free(l->l_name, MAXCOMLEN);
   1428 
   1429 	kmsan_lwp_free(l);
   1430 	kcov_lwp_free(l);
   1431 	cpu_lwp_free2(l);
   1432 	uvm_lwp_exit(l);
   1433 
   1434 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1435 	KASSERT(l->l_inheritedprio == -1);
   1436 	KASSERT(l->l_blcnt == 0);
   1437 	kdtrace_thread_dtor(NULL, l);
   1438 	if (!recycle)
   1439 		pool_cache_put(lwp_cache, l);
   1440 }
   1441 
   1442 /*
   1443  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1444  */
   1445 void
   1446 lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1447 {
   1448 	struct schedstate_percpu *tspc;
   1449 	int lstat = l->l_stat;
   1450 
   1451 	KASSERT(lwp_locked(l, NULL));
   1452 	KASSERT(tci != NULL);
   1453 
   1454 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1455 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1456 		lstat = LSONPROC;
   1457 	}
   1458 
   1459 	/*
   1460 	 * The destination CPU could be changed while previous migration
   1461 	 * was not finished.
   1462 	 */
   1463 	if (l->l_target_cpu != NULL) {
   1464 		l->l_target_cpu = tci;
   1465 		lwp_unlock(l);
   1466 		return;
   1467 	}
   1468 
   1469 	/* Nothing to do if trying to migrate to the same CPU */
   1470 	if (l->l_cpu == tci) {
   1471 		lwp_unlock(l);
   1472 		return;
   1473 	}
   1474 
   1475 	KASSERT(l->l_target_cpu == NULL);
   1476 	tspc = &tci->ci_schedstate;
   1477 	switch (lstat) {
   1478 	case LSRUN:
   1479 		l->l_target_cpu = tci;
   1480 		break;
   1481 	case LSSLEEP:
   1482 		l->l_cpu = tci;
   1483 		break;
   1484 	case LSIDL:
   1485 	case LSSTOP:
   1486 	case LSSUSPENDED:
   1487 		l->l_cpu = tci;
   1488 		if (l->l_wchan == NULL) {
   1489 			lwp_unlock_to(l, tspc->spc_lwplock);
   1490 			return;
   1491 		}
   1492 		break;
   1493 	case LSONPROC:
   1494 		l->l_target_cpu = tci;
   1495 		spc_lock(l->l_cpu);
   1496 		sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
   1497 		/* spc now unlocked */
   1498 		break;
   1499 	}
   1500 	lwp_unlock(l);
   1501 }
   1502 
   1503 /*
   1504  * Find the LWP in the process.  Arguments may be zero, in such case,
   1505  * the calling process and first LWP in the list will be used.
   1506  * On success - returns proc locked.
   1507  */
   1508 struct lwp *
   1509 lwp_find2(pid_t pid, lwpid_t lid)
   1510 {
   1511 	proc_t *p;
   1512 	lwp_t *l;
   1513 
   1514 	/* Find the process. */
   1515 	if (pid != 0) {
   1516 		mutex_enter(proc_lock);
   1517 		p = proc_find(pid);
   1518 		if (p == NULL) {
   1519 			mutex_exit(proc_lock);
   1520 			return NULL;
   1521 		}
   1522 		mutex_enter(p->p_lock);
   1523 		mutex_exit(proc_lock);
   1524 	} else {
   1525 		p = curlwp->l_proc;
   1526 		mutex_enter(p->p_lock);
   1527 	}
   1528 	/* Find the thread. */
   1529 	if (lid != 0) {
   1530 		l = lwp_find(p, lid);
   1531 	} else {
   1532 		l = LIST_FIRST(&p->p_lwps);
   1533 	}
   1534 	if (l == NULL) {
   1535 		mutex_exit(p->p_lock);
   1536 	}
   1537 	return l;
   1538 }
   1539 
   1540 /*
   1541  * Look up a live LWP within the specified process.
   1542  *
   1543  * Must be called with p->p_lock held (as it looks at the radix tree,
   1544  * and also wants to exclude idle and zombie LWPs).
   1545  */
   1546 struct lwp *
   1547 lwp_find(struct proc *p, lwpid_t id)
   1548 {
   1549 	struct lwp *l;
   1550 
   1551 	KASSERT(mutex_owned(p->p_lock));
   1552 
   1553 	l = radix_tree_lookup_node(&p->p_lwptree, (uint64_t)(id - 1));
   1554 	KASSERT(l == NULL || l->l_lid == id);
   1555 
   1556 	/*
   1557 	 * No need to lock - all of these conditions will
   1558 	 * be visible with the process level mutex held.
   1559 	 */
   1560 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1561 		l = NULL;
   1562 
   1563 	return l;
   1564 }
   1565 
   1566 /*
   1567  * Update an LWP's cached credentials to mirror the process' master copy.
   1568  *
   1569  * This happens early in the syscall path, on user trap, and on LWP
   1570  * creation.  A long-running LWP can also voluntarily choose to update
   1571  * its credentials by calling this routine.  This may be called from
   1572  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1573  */
   1574 void
   1575 lwp_update_creds(struct lwp *l)
   1576 {
   1577 	kauth_cred_t oc;
   1578 	struct proc *p;
   1579 
   1580 	p = l->l_proc;
   1581 	oc = l->l_cred;
   1582 
   1583 	mutex_enter(p->p_lock);
   1584 	kauth_cred_hold(p->p_cred);
   1585 	l->l_cred = p->p_cred;
   1586 	l->l_prflag &= ~LPR_CRMOD;
   1587 	mutex_exit(p->p_lock);
   1588 	if (oc != NULL)
   1589 		kauth_cred_free(oc);
   1590 }
   1591 
   1592 /*
   1593  * Verify that an LWP is locked, and optionally verify that the lock matches
   1594  * one we specify.
   1595  */
   1596 int
   1597 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1598 {
   1599 	kmutex_t *cur = l->l_mutex;
   1600 
   1601 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1602 }
   1603 
   1604 /*
   1605  * Lend a new mutex to an LWP.  The old mutex must be held.
   1606  */
   1607 kmutex_t *
   1608 lwp_setlock(struct lwp *l, kmutex_t *mtx)
   1609 {
   1610 	kmutex_t *oldmtx = l->l_mutex;
   1611 
   1612 	KASSERT(mutex_owned(oldmtx));
   1613 
   1614 	membar_exit();
   1615 	l->l_mutex = mtx;
   1616 	return oldmtx;
   1617 }
   1618 
   1619 /*
   1620  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1621  * must be held.
   1622  */
   1623 void
   1624 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
   1625 {
   1626 	kmutex_t *old;
   1627 
   1628 	KASSERT(lwp_locked(l, NULL));
   1629 
   1630 	old = l->l_mutex;
   1631 	membar_exit();
   1632 	l->l_mutex = mtx;
   1633 	mutex_spin_exit(old);
   1634 }
   1635 
   1636 int
   1637 lwp_trylock(struct lwp *l)
   1638 {
   1639 	kmutex_t *old;
   1640 
   1641 	for (;;) {
   1642 		if (!mutex_tryenter(old = l->l_mutex))
   1643 			return 0;
   1644 		if (__predict_true(l->l_mutex == old))
   1645 			return 1;
   1646 		mutex_spin_exit(old);
   1647 	}
   1648 }
   1649 
   1650 void
   1651 lwp_unsleep(lwp_t *l, bool unlock)
   1652 {
   1653 
   1654 	KASSERT(mutex_owned(l->l_mutex));
   1655 	(*l->l_syncobj->sobj_unsleep)(l, unlock);
   1656 }
   1657 
   1658 /*
   1659  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1660  * set.
   1661  */
   1662 void
   1663 lwp_userret(struct lwp *l)
   1664 {
   1665 	struct proc *p;
   1666 	int sig;
   1667 
   1668 	KASSERT(l == curlwp);
   1669 	KASSERT(l->l_stat == LSONPROC);
   1670 	p = l->l_proc;
   1671 
   1672 	/*
   1673 	 * It is safe to do this read unlocked on a MP system..
   1674 	 */
   1675 	while ((l->l_flag & LW_USERRET) != 0) {
   1676 		/*
   1677 		 * Process pending signals first, unless the process
   1678 		 * is dumping core or exiting, where we will instead
   1679 		 * enter the LW_WSUSPEND case below.
   1680 		 */
   1681 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1682 		    LW_PENDSIG) {
   1683 			mutex_enter(p->p_lock);
   1684 			while ((sig = issignal(l)) != 0)
   1685 				postsig(sig);
   1686 			mutex_exit(p->p_lock);
   1687 		}
   1688 
   1689 		/*
   1690 		 * Core-dump or suspend pending.
   1691 		 *
   1692 		 * In case of core dump, suspend ourselves, so that the kernel
   1693 		 * stack and therefore the userland registers saved in the
   1694 		 * trapframe are around for coredump() to write them out.
   1695 		 * We also need to save any PCU resources that we have so that
   1696 		 * they accessible for coredump().  We issue a wakeup on
   1697 		 * p->p_lwpcv so that sigexit() will write the core file out
   1698 		 * once all other LWPs are suspended.
   1699 		 */
   1700 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1701 			pcu_save_all(l);
   1702 			mutex_enter(p->p_lock);
   1703 			p->p_nrlwps--;
   1704 			cv_broadcast(&p->p_lwpcv);
   1705 			lwp_lock(l);
   1706 			l->l_stat = LSSUSPENDED;
   1707 			lwp_unlock(l);
   1708 			mutex_exit(p->p_lock);
   1709 			lwp_lock(l);
   1710 			spc_lock(l->l_cpu);
   1711 			mi_switch(l);
   1712 		}
   1713 
   1714 		/* Process is exiting. */
   1715 		if ((l->l_flag & LW_WEXIT) != 0) {
   1716 			lwp_exit(l);
   1717 			KASSERT(0);
   1718 			/* NOTREACHED */
   1719 		}
   1720 
   1721 		/* update lwpctl processor (for vfork child_return) */
   1722 		if (l->l_flag & LW_LWPCTL) {
   1723 			lwp_lock(l);
   1724 			KASSERT(kpreempt_disabled());
   1725 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1726 			l->l_lwpctl->lc_pctr++;
   1727 			l->l_flag &= ~LW_LWPCTL;
   1728 			lwp_unlock(l);
   1729 		}
   1730 	}
   1731 }
   1732 
   1733 /*
   1734  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1735  */
   1736 void
   1737 lwp_need_userret(struct lwp *l)
   1738 {
   1739 
   1740 	KASSERT(!cpu_intr_p());
   1741 	KASSERT(lwp_locked(l, NULL));
   1742 
   1743 	/*
   1744 	 * If the LWP is in any state other than LSONPROC, we know that it
   1745 	 * is executing in-kernel and will hit userret() on the way out.
   1746 	 *
   1747 	 * If the LWP is curlwp, then we know we'll be back out to userspace
   1748 	 * soon (can't be called from a hardware interrupt here).
   1749 	 *
   1750 	 * Otherwise, we can't be sure what the LWP is doing, so first make
   1751 	 * sure the update to l_flag will be globally visible, and then
   1752 	 * force the LWP to take a trip through trap() where it will do
   1753 	 * userret().
   1754 	 */
   1755 	if (l->l_stat == LSONPROC && l != curlwp) {
   1756 		membar_producer();
   1757 		cpu_signotify(l);
   1758 	}
   1759 }
   1760 
   1761 /*
   1762  * Add one reference to an LWP.  Interlocked against lwp_drainrefs()
   1763  * either by holding the proc's lock or by holding lwp_threadid_lock.
   1764  */
   1765 static void
   1766 lwp_addref2(struct lwp *l)
   1767 {
   1768 
   1769 	KASSERT(l->l_stat != LSZOMB);
   1770 
   1771 	atomic_inc_uint(&l->l_refcnt);
   1772 }
   1773 
   1774 /*
   1775  * Add one reference to an LWP.  This will prevent the LWP from
   1776  * exiting, thus keep the lwp structure and PCB around to inspect.
   1777  */
   1778 void
   1779 lwp_addref(struct lwp *l)
   1780 {
   1781 
   1782 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1783 	lwp_addref2(l);
   1784 }
   1785 
   1786 /*
   1787  * Remove one reference to an LWP.  If this is the last reference,
   1788  * then we must finalize the LWP's death.
   1789  */
   1790 void
   1791 lwp_delref(struct lwp *l)
   1792 {
   1793 	struct proc *p = l->l_proc;
   1794 
   1795 	mutex_enter(p->p_lock);
   1796 	lwp_delref2(l);
   1797 	mutex_exit(p->p_lock);
   1798 }
   1799 
   1800 /*
   1801  * Remove one reference to an LWP.  If this is the last reference,
   1802  * then we must finalize the LWP's death.  The proc mutex is held
   1803  * on entry.
   1804  */
   1805 void
   1806 lwp_delref2(struct lwp *l)
   1807 {
   1808 	struct proc *p = l->l_proc;
   1809 
   1810 	KASSERT(mutex_owned(p->p_lock));
   1811 	KASSERT(l->l_stat != LSZOMB);
   1812 	KASSERT(atomic_load_relaxed(&l->l_refcnt) > 0);
   1813 
   1814 	if (atomic_dec_uint_nv(&l->l_refcnt) == 0)
   1815 		cv_broadcast(&p->p_lwpcv);
   1816 }
   1817 
   1818 /*
   1819  * Drain all references to the current LWP.  Returns true if
   1820  * we blocked.
   1821  */
   1822 bool
   1823 lwp_drainrefs(struct lwp *l)
   1824 {
   1825 	struct proc *p = l->l_proc;
   1826 	bool rv = false;
   1827 
   1828 	KASSERT(mutex_owned(p->p_lock));
   1829 
   1830 	/*
   1831 	 * Lookups in the lwp_threadid_map hold lwp_threadid_lock
   1832 	 * as a reader, increase l_refcnt, release it, and then
   1833 	 * acquire p_lock to check for LPR_DRAINING.  By taking
   1834 	 * lwp_threadid_lock as a writer here we ensure that either
   1835 	 * we see the increase in l_refcnt or that they see LPR_DRAINING.
   1836 	 */
   1837 	rw_enter(&lwp_threadid_lock, RW_WRITER);
   1838 	l->l_prflag |= LPR_DRAINING;
   1839 	rw_exit(&lwp_threadid_lock);
   1840 
   1841 	while (atomic_load_relaxed(&l->l_refcnt) > 0) {
   1842 		rv = true;
   1843 		cv_wait(&p->p_lwpcv, p->p_lock);
   1844 	}
   1845 	return rv;
   1846 }
   1847 
   1848 /*
   1849  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1850  * be held.
   1851  */
   1852 bool
   1853 lwp_alive(lwp_t *l)
   1854 {
   1855 
   1856 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1857 
   1858 	switch (l->l_stat) {
   1859 	case LSSLEEP:
   1860 	case LSRUN:
   1861 	case LSONPROC:
   1862 	case LSSTOP:
   1863 	case LSSUSPENDED:
   1864 		return true;
   1865 	default:
   1866 		return false;
   1867 	}
   1868 }
   1869 
   1870 /*
   1871  * Return first live LWP in the process.
   1872  */
   1873 lwp_t *
   1874 lwp_find_first(proc_t *p)
   1875 {
   1876 	lwp_t *l;
   1877 
   1878 	KASSERT(mutex_owned(p->p_lock));
   1879 
   1880 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1881 		if (lwp_alive(l)) {
   1882 			return l;
   1883 		}
   1884 	}
   1885 
   1886 	return NULL;
   1887 }
   1888 
   1889 /*
   1890  * Allocate a new lwpctl structure for a user LWP.
   1891  */
   1892 int
   1893 lwp_ctl_alloc(vaddr_t *uaddr)
   1894 {
   1895 	lcproc_t *lp;
   1896 	u_int bit, i, offset;
   1897 	struct uvm_object *uao;
   1898 	int error;
   1899 	lcpage_t *lcp;
   1900 	proc_t *p;
   1901 	lwp_t *l;
   1902 
   1903 	l = curlwp;
   1904 	p = l->l_proc;
   1905 
   1906 	/* don't allow a vforked process to create lwp ctls */
   1907 	if (p->p_lflag & PL_PPWAIT)
   1908 		return EBUSY;
   1909 
   1910 	if (l->l_lcpage != NULL) {
   1911 		lcp = l->l_lcpage;
   1912 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1913 		return 0;
   1914 	}
   1915 
   1916 	/* First time around, allocate header structure for the process. */
   1917 	if ((lp = p->p_lwpctl) == NULL) {
   1918 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1919 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1920 		lp->lp_uao = NULL;
   1921 		TAILQ_INIT(&lp->lp_pages);
   1922 		mutex_enter(p->p_lock);
   1923 		if (p->p_lwpctl == NULL) {
   1924 			p->p_lwpctl = lp;
   1925 			mutex_exit(p->p_lock);
   1926 		} else {
   1927 			mutex_exit(p->p_lock);
   1928 			mutex_destroy(&lp->lp_lock);
   1929 			kmem_free(lp, sizeof(*lp));
   1930 			lp = p->p_lwpctl;
   1931 		}
   1932 	}
   1933 
   1934  	/*
   1935  	 * Set up an anonymous memory region to hold the shared pages.
   1936  	 * Map them into the process' address space.  The user vmspace
   1937  	 * gets the first reference on the UAO.
   1938  	 */
   1939 	mutex_enter(&lp->lp_lock);
   1940 	if (lp->lp_uao == NULL) {
   1941 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1942 		lp->lp_cur = 0;
   1943 		lp->lp_max = LWPCTL_UAREA_SZ;
   1944 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1945 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
   1946 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1947 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1948 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1949 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1950 		if (error != 0) {
   1951 			uao_detach(lp->lp_uao);
   1952 			lp->lp_uao = NULL;
   1953 			mutex_exit(&lp->lp_lock);
   1954 			return error;
   1955 		}
   1956 	}
   1957 
   1958 	/* Get a free block and allocate for this LWP. */
   1959 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1960 		if (lcp->lcp_nfree != 0)
   1961 			break;
   1962 	}
   1963 	if (lcp == NULL) {
   1964 		/* Nothing available - try to set up a free page. */
   1965 		if (lp->lp_cur == lp->lp_max) {
   1966 			mutex_exit(&lp->lp_lock);
   1967 			return ENOMEM;
   1968 		}
   1969 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1970 
   1971 		/*
   1972 		 * Wire the next page down in kernel space.  Since this
   1973 		 * is a new mapping, we must add a reference.
   1974 		 */
   1975 		uao = lp->lp_uao;
   1976 		(*uao->pgops->pgo_reference)(uao);
   1977 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1978 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1979 		    uao, lp->lp_cur, PAGE_SIZE,
   1980 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1981 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1982 		if (error != 0) {
   1983 			mutex_exit(&lp->lp_lock);
   1984 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1985 			(*uao->pgops->pgo_detach)(uao);
   1986 			return error;
   1987 		}
   1988 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1989 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1990 		if (error != 0) {
   1991 			mutex_exit(&lp->lp_lock);
   1992 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1993 			    lcp->lcp_kaddr + PAGE_SIZE);
   1994 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1995 			return error;
   1996 		}
   1997 		/* Prepare the page descriptor and link into the list. */
   1998 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1999 		lp->lp_cur += PAGE_SIZE;
   2000 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   2001 		lcp->lcp_rotor = 0;
   2002 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   2003 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   2004 	}
   2005 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   2006 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   2007 			i = 0;
   2008 	}
   2009 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   2010 	lcp->lcp_bitmap[i] ^= (1U << bit);
   2011 	lcp->lcp_rotor = i;
   2012 	lcp->lcp_nfree--;
   2013 	l->l_lcpage = lcp;
   2014 	offset = (i << 5) + bit;
   2015 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   2016 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   2017 	mutex_exit(&lp->lp_lock);
   2018 
   2019 	KPREEMPT_DISABLE(l);
   2020 	l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
   2021 	KPREEMPT_ENABLE(l);
   2022 
   2023 	return 0;
   2024 }
   2025 
   2026 /*
   2027  * Free an lwpctl structure back to the per-process list.
   2028  */
   2029 void
   2030 lwp_ctl_free(lwp_t *l)
   2031 {
   2032 	struct proc *p = l->l_proc;
   2033 	lcproc_t *lp;
   2034 	lcpage_t *lcp;
   2035 	u_int map, offset;
   2036 
   2037 	/* don't free a lwp context we borrowed for vfork */
   2038 	if (p->p_lflag & PL_PPWAIT) {
   2039 		l->l_lwpctl = NULL;
   2040 		return;
   2041 	}
   2042 
   2043 	lp = p->p_lwpctl;
   2044 	KASSERT(lp != NULL);
   2045 
   2046 	lcp = l->l_lcpage;
   2047 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   2048 	KASSERT(offset < LWPCTL_PER_PAGE);
   2049 
   2050 	mutex_enter(&lp->lp_lock);
   2051 	lcp->lcp_nfree++;
   2052 	map = offset >> 5;
   2053 	lcp->lcp_bitmap[map] |= (1U << (offset & 31));
   2054 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   2055 		lcp->lcp_rotor = map;
   2056 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   2057 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   2058 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   2059 	}
   2060 	mutex_exit(&lp->lp_lock);
   2061 }
   2062 
   2063 /*
   2064  * Process is exiting; tear down lwpctl state.  This can only be safely
   2065  * called by the last LWP in the process.
   2066  */
   2067 void
   2068 lwp_ctl_exit(void)
   2069 {
   2070 	lcpage_t *lcp, *next;
   2071 	lcproc_t *lp;
   2072 	proc_t *p;
   2073 	lwp_t *l;
   2074 
   2075 	l = curlwp;
   2076 	l->l_lwpctl = NULL;
   2077 	l->l_lcpage = NULL;
   2078 	p = l->l_proc;
   2079 	lp = p->p_lwpctl;
   2080 
   2081 	KASSERT(lp != NULL);
   2082 	KASSERT(p->p_nlwps == 1);
   2083 
   2084 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   2085 		next = TAILQ_NEXT(lcp, lcp_chain);
   2086 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   2087 		    lcp->lcp_kaddr + PAGE_SIZE);
   2088 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   2089 	}
   2090 
   2091 	if (lp->lp_uao != NULL) {
   2092 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   2093 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   2094 	}
   2095 
   2096 	mutex_destroy(&lp->lp_lock);
   2097 	kmem_free(lp, sizeof(*lp));
   2098 	p->p_lwpctl = NULL;
   2099 }
   2100 
   2101 /*
   2102  * Return the current LWP's "preemption counter".  Used to detect
   2103  * preemption across operations that can tolerate preemption without
   2104  * crashing, but which may generate incorrect results if preempted.
   2105  */
   2106 uint64_t
   2107 lwp_pctr(void)
   2108 {
   2109 
   2110 	return curlwp->l_ncsw;
   2111 }
   2112 
   2113 /*
   2114  * Set an LWP's private data pointer.
   2115  */
   2116 int
   2117 lwp_setprivate(struct lwp *l, void *ptr)
   2118 {
   2119 	int error = 0;
   2120 
   2121 	l->l_private = ptr;
   2122 #ifdef __HAVE_CPU_LWP_SETPRIVATE
   2123 	error = cpu_lwp_setprivate(l, ptr);
   2124 #endif
   2125 	return error;
   2126 }
   2127 
   2128 /*
   2129  * Renumber the first and only LWP in a process on exec() or fork().
   2130  * Don't bother with p_treelock here as this is the only live LWP in
   2131  * the proc right now.
   2132  */
   2133 void
   2134 lwp_renumber(lwp_t *l, lwpid_t lid)
   2135 {
   2136 	lwp_t *l2 __diagused;
   2137 	proc_t *p = l->l_proc;
   2138 	int error;
   2139 
   2140 	KASSERT(p->p_nlwps == 1);
   2141 
   2142 	while (l->l_lid != lid) {
   2143 		mutex_enter(p->p_lock);
   2144 		error = radix_tree_insert_node(&p->p_lwptree, lid - 1, l);
   2145 		if (error == 0) {
   2146 			l2 = radix_tree_remove_node(&p->p_lwptree,
   2147 			    (uint64_t)(l->l_lid - 1));
   2148 			KASSERT(l2 == l);
   2149 			p->p_nlwpid = lid + 1;
   2150 			l->l_lid = lid;
   2151 		}
   2152 		mutex_exit(p->p_lock);
   2153 
   2154 		if (error == 0)
   2155 			break;
   2156 
   2157 		KASSERT(error == ENOMEM);
   2158 		radix_tree_await_memory();
   2159 	}
   2160 }
   2161 
   2162 #define	LWP_TID_MASK	0x3fffffff		/* placeholder */
   2163 
   2164 static void
   2165 lwp_threadid_init(void)
   2166 {
   2167 	rw_init(&lwp_threadid_lock);
   2168 	lwp_threadid_map = thmap_create(0, NULL, THMAP_NOCOPY);
   2169 }
   2170 
   2171 static void
   2172 lwp_threadid_alloc(struct lwp * const l)
   2173 {
   2174 
   2175 	KASSERT(l == curlwp);
   2176 	KASSERT(l->l___tid == 0);
   2177 
   2178 	for (;;) {
   2179 		l->l___tid = cprng_fast32() & LWP_TID_MASK;
   2180 		if (l->l___tid != 0 &&
   2181 		    /*
   2182 		     * There is no need to take the lwp_threadid_lock
   2183 		     * while inserting into the map: internally, the
   2184 		     * map is already concurrency-safe, and the lock
   2185 		     * is only needed to serialize removal with respect
   2186 		     * to lookup.
   2187 		     */
   2188 		    thmap_put(lwp_threadid_map,
   2189 			      &l->l___tid, sizeof(l->l___tid), l) == l) {
   2190 			/* claimed! */
   2191 			return;
   2192 		}
   2193 		preempt_point();
   2194 	}
   2195 }
   2196 
   2197 static inline void
   2198 lwp_threadid_gc_serialize(void)
   2199 {
   2200 
   2201 	/*
   2202 	 * By acquiring the lock as a writer, we will know that
   2203 	 * all of the existing readers have drained away and thus
   2204 	 * the GC is safe.
   2205 	 */
   2206 	rw_enter(&lwp_threadid_lock, RW_WRITER);
   2207 	rw_exit(&lwp_threadid_lock);
   2208 }
   2209 
   2210 static void
   2211 lwp_threadid_free(struct lwp * const l)
   2212 {
   2213 
   2214 	KASSERT(l == curlwp);
   2215 	KASSERT(l->l___tid != 0);
   2216 
   2217 	/*
   2218 	 * Ensure that anyone who finds this entry in the lock-free lookup
   2219 	 * path sees that the key has been deleted by serialzing with the
   2220 	 * examination of l___tid.
   2221 	 *
   2222 	 * N.B. l___tid field must be zapped *after* deleting from the map
   2223 	 * because that field is being used as the key storage by thmap.
   2224 	 */
   2225 	KASSERT(mutex_owned(l->l_proc->p_lock));
   2226 	struct lwp * const ldiag __diagused = thmap_del(lwp_threadid_map,
   2227 	    &l->l___tid, sizeof(l->l___tid));
   2228 	l->l___tid = 0;
   2229 	mutex_exit(l->l_proc->p_lock);
   2230 
   2231 	KASSERT(l == ldiag);
   2232 
   2233 	void * const gc_ref = thmap_stage_gc(lwp_threadid_map);
   2234 	lwp_threadid_gc_serialize();
   2235 	thmap_gc(lwp_threadid_map, gc_ref);
   2236 }
   2237 
   2238 /*
   2239  * Return the current LWP's global thread ID.  Only the current LWP
   2240  * should ever use this value, unless it is guaranteed that the LWP
   2241  * is paused (and then it should be accessed directly, rather than
   2242  * by this accessor).
   2243  */
   2244 lwpid_t
   2245 lwp_gettid(void)
   2246 {
   2247 	struct lwp * const l = curlwp;
   2248 
   2249 	if (l->l___tid == 0)
   2250 		lwp_threadid_alloc(l);
   2251 
   2252 	return l->l___tid;
   2253 }
   2254 
   2255 /*
   2256  * Lookup an LWP by global thread ID.  Care must be taken because
   2257  * callers of this are operating outside the normal locking protocol.
   2258  * We return the LWP with an additional reference that must be dropped
   2259  * with lwp_delref().
   2260  */
   2261 struct lwp *
   2262 lwp_getref_tid(lwpid_t tid)
   2263 {
   2264 	struct lwp *l, *rv;
   2265 
   2266 	rw_enter(&lwp_threadid_lock, RW_READER);
   2267 	l = thmap_get(lwp_threadid_map, &tid, sizeof(&tid));
   2268 	if (__predict_false(l == NULL)) {
   2269 		rw_exit(&lwp_threadid_lock);
   2270 		return NULL;
   2271 	}
   2272 
   2273 	/*
   2274 	 * Acquire a reference on the lwp.  It is safe to do this unlocked
   2275 	 * here because lwp_drainrefs() serializes with us by taking the
   2276 	 * lwp_threadid_lock as a writer.
   2277 	 */
   2278 	lwp_addref2(l);
   2279 	rw_exit(&lwp_threadid_lock);
   2280 
   2281 	/*
   2282 	 * Now verify that our reference is valid.
   2283 	 */
   2284 	mutex_enter(l->l_proc->p_lock);
   2285 	if (__predict_false((l->l_prflag & LPR_DRAINING) != 0 ||
   2286 			    l->l___tid == 0)) {
   2287 		lwp_delref2(l);
   2288 		rv = NULL;
   2289 	} else {
   2290 		rv = l;
   2291 	}
   2292 	mutex_exit(l->l_proc->p_lock);
   2293 
   2294 	return rv;
   2295 }
   2296 
   2297 /*
   2298  * Perform any thread-related cleanup on LWP exit.
   2299  * N.B. l->l_proc->p_lock must be HELD on entry but will
   2300  * be released before returning!
   2301  */
   2302 void
   2303 lwp_thread_cleanup(struct lwp *l)
   2304 {
   2305 	KASSERT(l == curlwp);
   2306 	const lwpid_t tid = l->l___tid;
   2307 
   2308 	KASSERT(mutex_owned(l->l_proc->p_lock));
   2309 
   2310 	if (__predict_false(tid != 0)) {
   2311 		/*
   2312 		 * Drop our thread ID.  This will also unlock
   2313 		 * our proc.
   2314 		 */
   2315 		lwp_threadid_free(l);
   2316 	} else {
   2317 		/*
   2318 		 * No thread cleanup was required; just unlock
   2319 		 * the proc.
   2320 		 */
   2321 		mutex_exit(l->l_proc->p_lock);
   2322 	}
   2323 }
   2324 
   2325 #if defined(DDB)
   2326 #include <machine/pcb.h>
   2327 
   2328 void
   2329 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2330 {
   2331 	lwp_t *l;
   2332 
   2333 	LIST_FOREACH(l, &alllwp, l_list) {
   2334 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   2335 
   2336 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   2337 			continue;
   2338 		}
   2339 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   2340 		    (void *)addr, (void *)stack,
   2341 		    (size_t)(addr - stack), l);
   2342 	}
   2343 }
   2344 #endif /* defined(DDB) */
   2345