kern_lwp.c revision 1.196 1 /* $NetBSD: kern_lwp.c,v 1.196 2019/03/01 09:02:03 hannken Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.196 2019/03/01 09:02:03 hannken Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219
220 #define _LWP_API_PRIVATE
221
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/fstrans.h>
240 #include <sys/dtrace_bsd.h>
241 #include <sys/sdt.h>
242 #include <sys/xcall.h>
243 #include <sys/uidinfo.h>
244 #include <sys/sysctl.h>
245
246 #include <uvm/uvm_extern.h>
247 #include <uvm/uvm_object.h>
248
249 static pool_cache_t lwp_cache __read_mostly;
250 struct lwplist alllwp __cacheline_aligned;
251
252 static void lwp_dtor(void *, void *);
253
254 /* DTrace proc provider probes */
255 SDT_PROVIDER_DEFINE(proc);
256
257 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
260
261 struct turnstile turnstile0;
262 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
263 #ifdef LWP0_CPU_INFO
264 .l_cpu = LWP0_CPU_INFO,
265 #endif
266 #ifdef LWP0_MD_INITIALIZER
267 .l_md = LWP0_MD_INITIALIZER,
268 #endif
269 .l_proc = &proc0,
270 .l_lid = 1,
271 .l_flag = LW_SYSTEM,
272 .l_stat = LSONPROC,
273 .l_ts = &turnstile0,
274 .l_syncobj = &sched_syncobj,
275 .l_refcnt = 1,
276 .l_priority = PRI_USER + NPRI_USER - 1,
277 .l_inheritedprio = -1,
278 .l_class = SCHED_OTHER,
279 .l_psid = PS_NONE,
280 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
281 .l_name = __UNCONST("swapper"),
282 .l_fd = &filedesc0,
283 };
284
285 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
286
287 /*
288 * sysctl helper routine for kern.maxlwp. Ensures that the new
289 * values are not too low or too high.
290 */
291 static int
292 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
293 {
294 int error, nmaxlwp;
295 struct sysctlnode node;
296
297 nmaxlwp = maxlwp;
298 node = *rnode;
299 node.sysctl_data = &nmaxlwp;
300 error = sysctl_lookup(SYSCTLFN_CALL(&node));
301 if (error || newp == NULL)
302 return error;
303
304 if (nmaxlwp < 0 || nmaxlwp >= 65536)
305 return EINVAL;
306 if (nmaxlwp > cpu_maxlwp())
307 return EINVAL;
308 maxlwp = nmaxlwp;
309
310 return 0;
311 }
312
313 static void
314 sysctl_kern_lwp_setup(void)
315 {
316 struct sysctllog *clog = NULL;
317
318 sysctl_createv(&clog, 0, NULL, NULL,
319 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
320 CTLTYPE_INT, "maxlwp",
321 SYSCTL_DESCR("Maximum number of simultaneous threads"),
322 sysctl_kern_maxlwp, 0, NULL, 0,
323 CTL_KERN, CTL_CREATE, CTL_EOL);
324 }
325
326 void
327 lwpinit(void)
328 {
329
330 LIST_INIT(&alllwp);
331 lwpinit_specificdata();
332 lwp_sys_init();
333 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
334 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
335
336 maxlwp = cpu_maxlwp();
337 sysctl_kern_lwp_setup();
338 }
339
340 void
341 lwp0_init(void)
342 {
343 struct lwp *l = &lwp0;
344
345 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
346 KASSERT(l->l_lid == proc0.p_nlwpid);
347
348 LIST_INSERT_HEAD(&alllwp, l, l_list);
349
350 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
351 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
352 cv_init(&l->l_sigcv, "sigwait");
353 cv_init(&l->l_waitcv, "vfork");
354
355 kauth_cred_hold(proc0.p_cred);
356 l->l_cred = proc0.p_cred;
357
358 kdtrace_thread_ctor(NULL, l);
359 lwp_initspecific(l);
360
361 SYSCALL_TIME_LWP_INIT(l);
362 }
363
364 static void
365 lwp_dtor(void *arg, void *obj)
366 {
367 lwp_t *l = obj;
368 uint64_t where;
369 (void)l;
370
371 /*
372 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
373 * calls will exit before memory of LWP is returned to the pool, where
374 * KVA of LWP structure might be freed and re-used for other purposes.
375 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
376 * callers, therefore cross-call to all CPUs will do the job. Also,
377 * the value of l->l_cpu must be still valid at this point.
378 */
379 KASSERT(l->l_cpu != NULL);
380 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
381 xc_wait(where);
382 }
383
384 /*
385 * Set an suspended.
386 *
387 * Must be called with p_lock held, and the LWP locked. Will unlock the
388 * LWP before return.
389 */
390 int
391 lwp_suspend(struct lwp *curl, struct lwp *t)
392 {
393 int error;
394
395 KASSERT(mutex_owned(t->l_proc->p_lock));
396 KASSERT(lwp_locked(t, NULL));
397
398 KASSERT(curl != t || curl->l_stat == LSONPROC);
399
400 /*
401 * If the current LWP has been told to exit, we must not suspend anyone
402 * else or deadlock could occur. We won't return to userspace.
403 */
404 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
405 lwp_unlock(t);
406 return (EDEADLK);
407 }
408
409 error = 0;
410
411 switch (t->l_stat) {
412 case LSRUN:
413 case LSONPROC:
414 t->l_flag |= LW_WSUSPEND;
415 lwp_need_userret(t);
416 lwp_unlock(t);
417 break;
418
419 case LSSLEEP:
420 t->l_flag |= LW_WSUSPEND;
421
422 /*
423 * Kick the LWP and try to get it to the kernel boundary
424 * so that it will release any locks that it holds.
425 * setrunnable() will release the lock.
426 */
427 if ((t->l_flag & LW_SINTR) != 0)
428 setrunnable(t);
429 else
430 lwp_unlock(t);
431 break;
432
433 case LSSUSPENDED:
434 lwp_unlock(t);
435 break;
436
437 case LSSTOP:
438 t->l_flag |= LW_WSUSPEND;
439 setrunnable(t);
440 break;
441
442 case LSIDL:
443 case LSZOMB:
444 error = EINTR; /* It's what Solaris does..... */
445 lwp_unlock(t);
446 break;
447 }
448
449 return (error);
450 }
451
452 /*
453 * Restart a suspended LWP.
454 *
455 * Must be called with p_lock held, and the LWP locked. Will unlock the
456 * LWP before return.
457 */
458 void
459 lwp_continue(struct lwp *l)
460 {
461
462 KASSERT(mutex_owned(l->l_proc->p_lock));
463 KASSERT(lwp_locked(l, NULL));
464
465 /* If rebooting or not suspended, then just bail out. */
466 if ((l->l_flag & LW_WREBOOT) != 0) {
467 lwp_unlock(l);
468 return;
469 }
470
471 l->l_flag &= ~LW_WSUSPEND;
472
473 if (l->l_stat != LSSUSPENDED) {
474 lwp_unlock(l);
475 return;
476 }
477
478 /* setrunnable() will release the lock. */
479 setrunnable(l);
480 }
481
482 /*
483 * Restart a stopped LWP.
484 *
485 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
486 * LWP before return.
487 */
488 void
489 lwp_unstop(struct lwp *l)
490 {
491 struct proc *p = l->l_proc;
492
493 KASSERT(mutex_owned(proc_lock));
494 KASSERT(mutex_owned(p->p_lock));
495
496 lwp_lock(l);
497
498 /* If not stopped, then just bail out. */
499 if (l->l_stat != LSSTOP) {
500 lwp_unlock(l);
501 return;
502 }
503
504 p->p_stat = SACTIVE;
505 p->p_sflag &= ~PS_STOPPING;
506
507 if (!p->p_waited)
508 p->p_pptr->p_nstopchild--;
509
510 if (l->l_wchan == NULL) {
511 /* setrunnable() will release the lock. */
512 setrunnable(l);
513 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
514 /* setrunnable() so we can receive the signal */
515 setrunnable(l);
516 } else {
517 l->l_stat = LSSLEEP;
518 p->p_nrlwps++;
519 lwp_unlock(l);
520 }
521 }
522
523 /*
524 * Wait for an LWP within the current process to exit. If 'lid' is
525 * non-zero, we are waiting for a specific LWP.
526 *
527 * Must be called with p->p_lock held.
528 */
529 int
530 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
531 {
532 const lwpid_t curlid = l->l_lid;
533 proc_t *p = l->l_proc;
534 lwp_t *l2;
535 int error;
536
537 KASSERT(mutex_owned(p->p_lock));
538
539 p->p_nlwpwait++;
540 l->l_waitingfor = lid;
541
542 for (;;) {
543 int nfound;
544
545 /*
546 * Avoid a race between exit1() and sigexit(): if the
547 * process is dumping core, then we need to bail out: call
548 * into lwp_userret() where we will be suspended until the
549 * deed is done.
550 */
551 if ((p->p_sflag & PS_WCORE) != 0) {
552 mutex_exit(p->p_lock);
553 lwp_userret(l);
554 KASSERT(false);
555 }
556
557 /*
558 * First off, drain any detached LWP that is waiting to be
559 * reaped.
560 */
561 while ((l2 = p->p_zomblwp) != NULL) {
562 p->p_zomblwp = NULL;
563 lwp_free(l2, false, false);/* releases proc mutex */
564 mutex_enter(p->p_lock);
565 }
566
567 /*
568 * Now look for an LWP to collect. If the whole process is
569 * exiting, count detached LWPs as eligible to be collected,
570 * but don't drain them here.
571 */
572 nfound = 0;
573 error = 0;
574 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
575 /*
576 * If a specific wait and the target is waiting on
577 * us, then avoid deadlock. This also traps LWPs
578 * that try to wait on themselves.
579 *
580 * Note that this does not handle more complicated
581 * cycles, like: t1 -> t2 -> t3 -> t1. The process
582 * can still be killed so it is not a major problem.
583 */
584 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
585 error = EDEADLK;
586 break;
587 }
588 if (l2 == l)
589 continue;
590 if ((l2->l_prflag & LPR_DETACHED) != 0) {
591 nfound += exiting;
592 continue;
593 }
594 if (lid != 0) {
595 if (l2->l_lid != lid)
596 continue;
597 /*
598 * Mark this LWP as the first waiter, if there
599 * is no other.
600 */
601 if (l2->l_waiter == 0)
602 l2->l_waiter = curlid;
603 } else if (l2->l_waiter != 0) {
604 /*
605 * It already has a waiter - so don't
606 * collect it. If the waiter doesn't
607 * grab it we'll get another chance
608 * later.
609 */
610 nfound++;
611 continue;
612 }
613 nfound++;
614
615 /* No need to lock the LWP in order to see LSZOMB. */
616 if (l2->l_stat != LSZOMB)
617 continue;
618
619 /*
620 * We're no longer waiting. Reset the "first waiter"
621 * pointer on the target, in case it was us.
622 */
623 l->l_waitingfor = 0;
624 l2->l_waiter = 0;
625 p->p_nlwpwait--;
626 if (departed)
627 *departed = l2->l_lid;
628 sched_lwp_collect(l2);
629
630 /* lwp_free() releases the proc lock. */
631 lwp_free(l2, false, false);
632 mutex_enter(p->p_lock);
633 return 0;
634 }
635
636 if (error != 0)
637 break;
638 if (nfound == 0) {
639 error = ESRCH;
640 break;
641 }
642
643 /*
644 * Note: since the lock will be dropped, need to restart on
645 * wakeup to run all LWPs again, e.g. there may be new LWPs.
646 */
647 if (exiting) {
648 KASSERT(p->p_nlwps > 1);
649 cv_wait(&p->p_lwpcv, p->p_lock);
650 error = EAGAIN;
651 break;
652 }
653
654 /*
655 * If all other LWPs are waiting for exits or suspends
656 * and the supply of zombies and potential zombies is
657 * exhausted, then we are about to deadlock.
658 *
659 * If the process is exiting (and this LWP is not the one
660 * that is coordinating the exit) then bail out now.
661 */
662 if ((p->p_sflag & PS_WEXIT) != 0 ||
663 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
664 error = EDEADLK;
665 break;
666 }
667
668 /*
669 * Sit around and wait for something to happen. We'll be
670 * awoken if any of the conditions examined change: if an
671 * LWP exits, is collected, or is detached.
672 */
673 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
674 break;
675 }
676
677 /*
678 * We didn't find any LWPs to collect, we may have received a
679 * signal, or some other condition has caused us to bail out.
680 *
681 * If waiting on a specific LWP, clear the waiters marker: some
682 * other LWP may want it. Then, kick all the remaining waiters
683 * so that they can re-check for zombies and for deadlock.
684 */
685 if (lid != 0) {
686 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
687 if (l2->l_lid == lid) {
688 if (l2->l_waiter == curlid)
689 l2->l_waiter = 0;
690 break;
691 }
692 }
693 }
694 p->p_nlwpwait--;
695 l->l_waitingfor = 0;
696 cv_broadcast(&p->p_lwpcv);
697
698 return error;
699 }
700
701 static lwpid_t
702 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
703 {
704 #define LID_SCAN (1u << 31)
705 lwp_t *scan, *free_before;
706 lwpid_t nxt_lid;
707
708 /*
709 * We want the first unused lid greater than or equal to
710 * try_lid (modulo 2^31).
711 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
712 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
713 * the outer test easier.
714 * This would be much easier if the list were sorted in
715 * increasing order.
716 * The list is kept sorted in decreasing order.
717 * This code is only used after a process has generated 2^31 lwp.
718 *
719 * Code assumes it can always find an id.
720 */
721
722 try_lid &= LID_SCAN - 1;
723 if (try_lid <= 1)
724 try_lid = 2;
725
726 free_before = NULL;
727 nxt_lid = LID_SCAN - 1;
728 LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
729 if (scan->l_lid != nxt_lid) {
730 /* There are available lid before this entry */
731 free_before = scan;
732 if (try_lid > scan->l_lid)
733 break;
734 }
735 if (try_lid == scan->l_lid) {
736 /* The ideal lid is busy, take a higher one */
737 if (free_before != NULL) {
738 try_lid = free_before->l_lid + 1;
739 break;
740 }
741 /* No higher ones, reuse low numbers */
742 try_lid = 2;
743 }
744
745 nxt_lid = scan->l_lid - 1;
746 if (LIST_NEXT(scan, l_sibling) == NULL) {
747 /* The value we have is lower than any existing lwp */
748 LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
749 return try_lid;
750 }
751 }
752
753 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
754 return try_lid;
755 }
756
757 /*
758 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
759 * The new LWP is created in state LSIDL and must be set running,
760 * suspended, or stopped by the caller.
761 */
762 int
763 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
764 void *stack, size_t stacksize, void (*func)(void *), void *arg,
765 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
766 const stack_t *sigstk)
767 {
768 struct lwp *l2, *isfree;
769 turnstile_t *ts;
770 lwpid_t lid;
771
772 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
773
774 /*
775 * Enforce limits, excluding the first lwp and kthreads.
776 */
777 if (p2->p_nlwps != 0 && p2 != &proc0) {
778 uid_t uid = kauth_cred_getuid(l1->l_cred);
779 int count = chglwpcnt(uid, 1);
780 if (__predict_false(count >
781 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
782 if (kauth_authorize_process(l1->l_cred,
783 KAUTH_PROCESS_RLIMIT, p2,
784 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
785 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
786 != 0) {
787 (void)chglwpcnt(uid, -1);
788 return EAGAIN;
789 }
790 }
791 }
792
793 /*
794 * First off, reap any detached LWP waiting to be collected.
795 * We can re-use its LWP structure and turnstile.
796 */
797 isfree = NULL;
798 if (p2->p_zomblwp != NULL) {
799 mutex_enter(p2->p_lock);
800 if ((isfree = p2->p_zomblwp) != NULL) {
801 p2->p_zomblwp = NULL;
802 lwp_free(isfree, true, false);/* releases proc mutex */
803 } else
804 mutex_exit(p2->p_lock);
805 }
806 if (isfree == NULL) {
807 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
808 memset(l2, 0, sizeof(*l2));
809 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
810 SLIST_INIT(&l2->l_pi_lenders);
811 } else {
812 l2 = isfree;
813 ts = l2->l_ts;
814 KASSERT(l2->l_inheritedprio == -1);
815 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
816 memset(l2, 0, sizeof(*l2));
817 l2->l_ts = ts;
818 }
819
820 l2->l_stat = LSIDL;
821 l2->l_proc = p2;
822 l2->l_refcnt = 1;
823 l2->l_class = sclass;
824
825 /*
826 * If vfork(), we want the LWP to run fast and on the same CPU
827 * as its parent, so that it can reuse the VM context and cache
828 * footprint on the local CPU.
829 */
830 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
831 l2->l_kpribase = PRI_KERNEL;
832 l2->l_priority = l1->l_priority;
833 l2->l_inheritedprio = -1;
834 l2->l_protectprio = -1;
835 l2->l_auxprio = -1;
836 l2->l_flag = 0;
837 l2->l_pflag = LP_MPSAFE;
838 TAILQ_INIT(&l2->l_ld_locks);
839
840 /*
841 * For vfork, borrow parent's lwpctl context if it exists.
842 * This also causes us to return via lwp_userret.
843 */
844 if (flags & LWP_VFORK && l1->l_lwpctl) {
845 l2->l_lwpctl = l1->l_lwpctl;
846 l2->l_flag |= LW_LWPCTL;
847 }
848
849 /*
850 * If not the first LWP in the process, grab a reference to the
851 * descriptor table.
852 */
853 l2->l_fd = p2->p_fd;
854 if (p2->p_nlwps != 0) {
855 KASSERT(l1->l_proc == p2);
856 fd_hold(l2);
857 } else {
858 KASSERT(l1->l_proc != p2);
859 }
860
861 if (p2->p_flag & PK_SYSTEM) {
862 /* Mark it as a system LWP. */
863 l2->l_flag |= LW_SYSTEM;
864 }
865
866 kpreempt_disable();
867 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
868 l2->l_cpu = l1->l_cpu;
869 kpreempt_enable();
870
871 kdtrace_thread_ctor(NULL, l2);
872 lwp_initspecific(l2);
873 sched_lwp_fork(l1, l2);
874 lwp_update_creds(l2);
875 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
876 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
877 cv_init(&l2->l_sigcv, "sigwait");
878 cv_init(&l2->l_waitcv, "vfork");
879 l2->l_syncobj = &sched_syncobj;
880
881 if (rnewlwpp != NULL)
882 *rnewlwpp = l2;
883
884 /*
885 * PCU state needs to be saved before calling uvm_lwp_fork() so that
886 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
887 */
888 pcu_save_all(l1);
889
890 uvm_lwp_setuarea(l2, uaddr);
891 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
892
893 if ((flags & LWP_PIDLID) != 0) {
894 lid = proc_alloc_pid(p2);
895 l2->l_pflag |= LP_PIDLID;
896 } else {
897 lid = 0;
898 }
899
900 mutex_enter(p2->p_lock);
901
902 if ((flags & LWP_DETACHED) != 0) {
903 l2->l_prflag = LPR_DETACHED;
904 p2->p_ndlwps++;
905 } else
906 l2->l_prflag = 0;
907
908 l2->l_sigstk = *sigstk;
909 l2->l_sigmask = *sigmask;
910 TAILQ_INIT(&l2->l_sigpend.sp_info);
911 sigemptyset(&l2->l_sigpend.sp_set);
912
913 if (__predict_true(lid == 0)) {
914 /*
915 * XXX: l_lid are expected to be unique (for a process)
916 * if LWP_PIDLID is sometimes set this won't be true.
917 * Once 2^31 threads have been allocated we have to
918 * scan to ensure we allocate a unique value.
919 */
920 lid = ++p2->p_nlwpid;
921 if (__predict_false(lid & LID_SCAN)) {
922 lid = lwp_find_free_lid(lid, l2, p2);
923 p2->p_nlwpid = lid | LID_SCAN;
924 /* l2 as been inserted into p_lwps in order */
925 goto skip_insert;
926 }
927 p2->p_nlwpid = lid;
928 }
929 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
930 skip_insert:
931 l2->l_lid = lid;
932 p2->p_nlwps++;
933 p2->p_nrlwps++;
934
935 KASSERT(l2->l_affinity == NULL);
936
937 if ((p2->p_flag & PK_SYSTEM) == 0) {
938 /* Inherit the affinity mask. */
939 if (l1->l_affinity) {
940 /*
941 * Note that we hold the state lock while inheriting
942 * the affinity to avoid race with sched_setaffinity().
943 */
944 lwp_lock(l1);
945 if (l1->l_affinity) {
946 kcpuset_use(l1->l_affinity);
947 l2->l_affinity = l1->l_affinity;
948 }
949 lwp_unlock(l1);
950 }
951 lwp_lock(l2);
952 /* Inherit a processor-set */
953 l2->l_psid = l1->l_psid;
954 /* Look for a CPU to start */
955 l2->l_cpu = sched_takecpu(l2);
956 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
957 }
958 mutex_exit(p2->p_lock);
959
960 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
961
962 mutex_enter(proc_lock);
963 LIST_INSERT_HEAD(&alllwp, l2, l_list);
964 mutex_exit(proc_lock);
965
966 SYSCALL_TIME_LWP_INIT(l2);
967
968 if (p2->p_emul->e_lwp_fork)
969 (*p2->p_emul->e_lwp_fork)(l1, l2);
970
971 /* If the process is traced, report lwp creation to a debugger */
972 if ((p2->p_slflag & (PSL_TRACED|PSL_TRACELWP_CREATE|PSL_SYSCALL)) ==
973 (PSL_TRACED|PSL_TRACELWP_CREATE)) {
974 ksiginfo_t ksi;
975
976 /* Tracing */
977 KASSERT((l2->l_flag & LW_SYSTEM) == 0);
978
979 p2->p_lwp_created = l2->l_lid;
980
981 KSI_INIT_EMPTY(&ksi);
982 ksi.ksi_signo = SIGTRAP;
983 ksi.ksi_code = TRAP_LWP;
984 mutex_enter(proc_lock);
985 kpsignal(p2, &ksi, NULL);
986 mutex_exit(proc_lock);
987 }
988
989 return (0);
990 }
991
992 /*
993 * Called by MD code when a new LWP begins execution. Must be called
994 * with the previous LWP locked (so at splsched), or if there is no
995 * previous LWP, at splsched.
996 */
997 void
998 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
999 {
1000 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1001
1002 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1003
1004 KASSERT(kpreempt_disabled());
1005 if (prev != NULL) {
1006 /*
1007 * Normalize the count of the spin-mutexes, it was
1008 * increased in mi_switch(). Unmark the state of
1009 * context switch - it is finished for previous LWP.
1010 */
1011 curcpu()->ci_mtx_count++;
1012 membar_exit();
1013 prev->l_ctxswtch = 0;
1014 }
1015 KPREEMPT_DISABLE(new_lwp);
1016 if (__predict_true(new_lwp->l_proc->p_vmspace))
1017 pmap_activate(new_lwp);
1018 spl0();
1019
1020 /* Note trip through cpu_switchto(). */
1021 pserialize_switchpoint();
1022
1023 LOCKDEBUG_BARRIER(NULL, 0);
1024 KPREEMPT_ENABLE(new_lwp);
1025 if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1026 KERNEL_LOCK(1, new_lwp);
1027 }
1028 }
1029
1030 /*
1031 * Exit an LWP.
1032 */
1033 void
1034 lwp_exit(struct lwp *l)
1035 {
1036 struct proc *p = l->l_proc;
1037 struct lwp *l2;
1038 bool current;
1039
1040 current = (l == curlwp);
1041
1042 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1043 KASSERT(p == curproc);
1044
1045 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1046
1047 /*
1048 * Verify that we hold no locks other than the kernel lock.
1049 */
1050 LOCKDEBUG_BARRIER(&kernel_lock, 0);
1051
1052 /* If the process is traced, report lwp termination to a debugger */
1053 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT|PSL_SYSCALL)) ==
1054 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1055 ksiginfo_t ksi;
1056
1057 /* Tracing */
1058 KASSERT((l->l_flag & LW_SYSTEM) == 0);
1059
1060 p->p_lwp_exited = l->l_lid;
1061
1062 KSI_INIT_EMPTY(&ksi);
1063 ksi.ksi_signo = SIGTRAP;
1064 ksi.ksi_code = TRAP_LWP;
1065 mutex_enter(proc_lock);
1066 kpsignal(p, &ksi, NULL);
1067 mutex_exit(proc_lock);
1068 }
1069
1070 /*
1071 * If we are the last live LWP in a process, we need to exit the
1072 * entire process. We do so with an exit status of zero, because
1073 * it's a "controlled" exit, and because that's what Solaris does.
1074 *
1075 * We are not quite a zombie yet, but for accounting purposes we
1076 * must increment the count of zombies here.
1077 *
1078 * Note: the last LWP's specificdata will be deleted here.
1079 */
1080 mutex_enter(p->p_lock);
1081 if (p->p_nlwps - p->p_nzlwps == 1) {
1082 KASSERT(current == true);
1083 KASSERT(p != &proc0);
1084 /* XXXSMP kernel_lock not held */
1085 exit1(l, 0, 0);
1086 /* NOTREACHED */
1087 }
1088 p->p_nzlwps++;
1089 mutex_exit(p->p_lock);
1090
1091 if (p->p_emul->e_lwp_exit)
1092 (*p->p_emul->e_lwp_exit)(l);
1093
1094 /* Drop filedesc reference. */
1095 fd_free();
1096
1097 /* Release fstrans private data. */
1098 fstrans_lwp_dtor(l);
1099
1100 /* Delete the specificdata while it's still safe to sleep. */
1101 lwp_finispecific(l);
1102
1103 /*
1104 * Release our cached credentials.
1105 */
1106 kauth_cred_free(l->l_cred);
1107 callout_destroy(&l->l_timeout_ch);
1108
1109 /*
1110 * Remove the LWP from the global list.
1111 * Free its LID from the PID namespace if needed.
1112 */
1113 mutex_enter(proc_lock);
1114 LIST_REMOVE(l, l_list);
1115 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1116 proc_free_pid(l->l_lid);
1117 }
1118 mutex_exit(proc_lock);
1119
1120 /*
1121 * Get rid of all references to the LWP that others (e.g. procfs)
1122 * may have, and mark the LWP as a zombie. If the LWP is detached,
1123 * mark it waiting for collection in the proc structure. Note that
1124 * before we can do that, we need to free any other dead, deatched
1125 * LWP waiting to meet its maker.
1126 */
1127 mutex_enter(p->p_lock);
1128 lwp_drainrefs(l);
1129
1130 if ((l->l_prflag & LPR_DETACHED) != 0) {
1131 while ((l2 = p->p_zomblwp) != NULL) {
1132 p->p_zomblwp = NULL;
1133 lwp_free(l2, false, false);/* releases proc mutex */
1134 mutex_enter(p->p_lock);
1135 l->l_refcnt++;
1136 lwp_drainrefs(l);
1137 }
1138 p->p_zomblwp = l;
1139 }
1140
1141 /*
1142 * If we find a pending signal for the process and we have been
1143 * asked to check for signals, then we lose: arrange to have
1144 * all other LWPs in the process check for signals.
1145 */
1146 if ((l->l_flag & LW_PENDSIG) != 0 &&
1147 firstsig(&p->p_sigpend.sp_set) != 0) {
1148 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1149 lwp_lock(l2);
1150 l2->l_flag |= LW_PENDSIG;
1151 lwp_unlock(l2);
1152 }
1153 }
1154
1155 /*
1156 * Release any PCU resources before becoming a zombie.
1157 */
1158 pcu_discard_all(l);
1159
1160 lwp_lock(l);
1161 l->l_stat = LSZOMB;
1162 if (l->l_name != NULL) {
1163 strcpy(l->l_name, "(zombie)");
1164 }
1165 lwp_unlock(l);
1166 p->p_nrlwps--;
1167 cv_broadcast(&p->p_lwpcv);
1168 if (l->l_lwpctl != NULL)
1169 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1170 mutex_exit(p->p_lock);
1171
1172 /*
1173 * We can no longer block. At this point, lwp_free() may already
1174 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1175 *
1176 * Free MD LWP resources.
1177 */
1178 cpu_lwp_free(l, 0);
1179
1180 if (current) {
1181 pmap_deactivate(l);
1182
1183 /*
1184 * Release the kernel lock, and switch away into
1185 * oblivion.
1186 */
1187 #ifdef notyet
1188 /* XXXSMP hold in lwp_userret() */
1189 KERNEL_UNLOCK_LAST(l);
1190 #else
1191 KERNEL_UNLOCK_ALL(l, NULL);
1192 #endif
1193 lwp_exit_switchaway(l);
1194 }
1195 }
1196
1197 /*
1198 * Free a dead LWP's remaining resources.
1199 *
1200 * XXXLWP limits.
1201 */
1202 void
1203 lwp_free(struct lwp *l, bool recycle, bool last)
1204 {
1205 struct proc *p = l->l_proc;
1206 struct rusage *ru;
1207 ksiginfoq_t kq;
1208
1209 KASSERT(l != curlwp);
1210 KASSERT(last || mutex_owned(p->p_lock));
1211
1212 /*
1213 * We use the process credentials instead of the lwp credentials here
1214 * because the lwp credentials maybe cached (just after a setuid call)
1215 * and we don't want pay for syncing, since the lwp is going away
1216 * anyway
1217 */
1218 if (p != &proc0 && p->p_nlwps != 1)
1219 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1220 /*
1221 * If this was not the last LWP in the process, then adjust
1222 * counters and unlock.
1223 */
1224 if (!last) {
1225 /*
1226 * Add the LWP's run time to the process' base value.
1227 * This needs to co-incide with coming off p_lwps.
1228 */
1229 bintime_add(&p->p_rtime, &l->l_rtime);
1230 p->p_pctcpu += l->l_pctcpu;
1231 ru = &p->p_stats->p_ru;
1232 ruadd(ru, &l->l_ru);
1233 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1234 ru->ru_nivcsw += l->l_nivcsw;
1235 LIST_REMOVE(l, l_sibling);
1236 p->p_nlwps--;
1237 p->p_nzlwps--;
1238 if ((l->l_prflag & LPR_DETACHED) != 0)
1239 p->p_ndlwps--;
1240
1241 /*
1242 * Have any LWPs sleeping in lwp_wait() recheck for
1243 * deadlock.
1244 */
1245 cv_broadcast(&p->p_lwpcv);
1246 mutex_exit(p->p_lock);
1247 }
1248
1249 #ifdef MULTIPROCESSOR
1250 /*
1251 * In the unlikely event that the LWP is still on the CPU,
1252 * then spin until it has switched away. We need to release
1253 * all locks to avoid deadlock against interrupt handlers on
1254 * the target CPU.
1255 */
1256 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1257 int count;
1258 (void)count; /* XXXgcc */
1259 KERNEL_UNLOCK_ALL(curlwp, &count);
1260 while ((l->l_pflag & LP_RUNNING) != 0 ||
1261 l->l_cpu->ci_curlwp == l)
1262 SPINLOCK_BACKOFF_HOOK;
1263 KERNEL_LOCK(count, curlwp);
1264 }
1265 #endif
1266
1267 /*
1268 * Destroy the LWP's remaining signal information.
1269 */
1270 ksiginfo_queue_init(&kq);
1271 sigclear(&l->l_sigpend, NULL, &kq);
1272 ksiginfo_queue_drain(&kq);
1273 cv_destroy(&l->l_sigcv);
1274 cv_destroy(&l->l_waitcv);
1275
1276 /*
1277 * Free lwpctl structure and affinity.
1278 */
1279 if (l->l_lwpctl) {
1280 lwp_ctl_free(l);
1281 }
1282 if (l->l_affinity) {
1283 kcpuset_unuse(l->l_affinity, NULL);
1284 l->l_affinity = NULL;
1285 }
1286
1287 /*
1288 * Free the LWP's turnstile and the LWP structure itself unless the
1289 * caller wants to recycle them. Also, free the scheduler specific
1290 * data.
1291 *
1292 * We can't return turnstile0 to the pool (it didn't come from it),
1293 * so if it comes up just drop it quietly and move on.
1294 *
1295 * We don't recycle the VM resources at this time.
1296 */
1297
1298 if (!recycle && l->l_ts != &turnstile0)
1299 pool_cache_put(turnstile_cache, l->l_ts);
1300 if (l->l_name != NULL)
1301 kmem_free(l->l_name, MAXCOMLEN);
1302
1303 cpu_lwp_free2(l);
1304 uvm_lwp_exit(l);
1305
1306 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1307 KASSERT(l->l_inheritedprio == -1);
1308 KASSERT(l->l_blcnt == 0);
1309 kdtrace_thread_dtor(NULL, l);
1310 if (!recycle)
1311 pool_cache_put(lwp_cache, l);
1312 }
1313
1314 /*
1315 * Migrate the LWP to the another CPU. Unlocks the LWP.
1316 */
1317 void
1318 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1319 {
1320 struct schedstate_percpu *tspc;
1321 int lstat = l->l_stat;
1322
1323 KASSERT(lwp_locked(l, NULL));
1324 KASSERT(tci != NULL);
1325
1326 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1327 if ((l->l_pflag & LP_RUNNING) != 0) {
1328 lstat = LSONPROC;
1329 }
1330
1331 /*
1332 * The destination CPU could be changed while previous migration
1333 * was not finished.
1334 */
1335 if (l->l_target_cpu != NULL) {
1336 l->l_target_cpu = tci;
1337 lwp_unlock(l);
1338 return;
1339 }
1340
1341 /* Nothing to do if trying to migrate to the same CPU */
1342 if (l->l_cpu == tci) {
1343 lwp_unlock(l);
1344 return;
1345 }
1346
1347 KASSERT(l->l_target_cpu == NULL);
1348 tspc = &tci->ci_schedstate;
1349 switch (lstat) {
1350 case LSRUN:
1351 l->l_target_cpu = tci;
1352 break;
1353 case LSIDL:
1354 l->l_cpu = tci;
1355 lwp_unlock_to(l, tspc->spc_mutex);
1356 return;
1357 case LSSLEEP:
1358 l->l_cpu = tci;
1359 break;
1360 case LSSTOP:
1361 case LSSUSPENDED:
1362 l->l_cpu = tci;
1363 if (l->l_wchan == NULL) {
1364 lwp_unlock_to(l, tspc->spc_lwplock);
1365 return;
1366 }
1367 break;
1368 case LSONPROC:
1369 l->l_target_cpu = tci;
1370 spc_lock(l->l_cpu);
1371 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1372 spc_unlock(l->l_cpu);
1373 break;
1374 }
1375 lwp_unlock(l);
1376 }
1377
1378 /*
1379 * Find the LWP in the process. Arguments may be zero, in such case,
1380 * the calling process and first LWP in the list will be used.
1381 * On success - returns proc locked.
1382 */
1383 struct lwp *
1384 lwp_find2(pid_t pid, lwpid_t lid)
1385 {
1386 proc_t *p;
1387 lwp_t *l;
1388
1389 /* Find the process. */
1390 if (pid != 0) {
1391 mutex_enter(proc_lock);
1392 p = proc_find(pid);
1393 if (p == NULL) {
1394 mutex_exit(proc_lock);
1395 return NULL;
1396 }
1397 mutex_enter(p->p_lock);
1398 mutex_exit(proc_lock);
1399 } else {
1400 p = curlwp->l_proc;
1401 mutex_enter(p->p_lock);
1402 }
1403 /* Find the thread. */
1404 if (lid != 0) {
1405 l = lwp_find(p, lid);
1406 } else {
1407 l = LIST_FIRST(&p->p_lwps);
1408 }
1409 if (l == NULL) {
1410 mutex_exit(p->p_lock);
1411 }
1412 return l;
1413 }
1414
1415 /*
1416 * Look up a live LWP within the specified process.
1417 *
1418 * Must be called with p->p_lock held.
1419 */
1420 struct lwp *
1421 lwp_find(struct proc *p, lwpid_t id)
1422 {
1423 struct lwp *l;
1424
1425 KASSERT(mutex_owned(p->p_lock));
1426
1427 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1428 if (l->l_lid == id)
1429 break;
1430 }
1431
1432 /*
1433 * No need to lock - all of these conditions will
1434 * be visible with the process level mutex held.
1435 */
1436 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1437 l = NULL;
1438
1439 return l;
1440 }
1441
1442 /*
1443 * Update an LWP's cached credentials to mirror the process' master copy.
1444 *
1445 * This happens early in the syscall path, on user trap, and on LWP
1446 * creation. A long-running LWP can also voluntarily choose to update
1447 * its credentials by calling this routine. This may be called from
1448 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1449 */
1450 void
1451 lwp_update_creds(struct lwp *l)
1452 {
1453 kauth_cred_t oc;
1454 struct proc *p;
1455
1456 p = l->l_proc;
1457 oc = l->l_cred;
1458
1459 mutex_enter(p->p_lock);
1460 kauth_cred_hold(p->p_cred);
1461 l->l_cred = p->p_cred;
1462 l->l_prflag &= ~LPR_CRMOD;
1463 mutex_exit(p->p_lock);
1464 if (oc != NULL)
1465 kauth_cred_free(oc);
1466 }
1467
1468 /*
1469 * Verify that an LWP is locked, and optionally verify that the lock matches
1470 * one we specify.
1471 */
1472 int
1473 lwp_locked(struct lwp *l, kmutex_t *mtx)
1474 {
1475 kmutex_t *cur = l->l_mutex;
1476
1477 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1478 }
1479
1480 /*
1481 * Lend a new mutex to an LWP. The old mutex must be held.
1482 */
1483 void
1484 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1485 {
1486
1487 KASSERT(mutex_owned(l->l_mutex));
1488
1489 membar_exit();
1490 l->l_mutex = mtx;
1491 }
1492
1493 /*
1494 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1495 * must be held.
1496 */
1497 void
1498 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1499 {
1500 kmutex_t *old;
1501
1502 KASSERT(lwp_locked(l, NULL));
1503
1504 old = l->l_mutex;
1505 membar_exit();
1506 l->l_mutex = mtx;
1507 mutex_spin_exit(old);
1508 }
1509
1510 int
1511 lwp_trylock(struct lwp *l)
1512 {
1513 kmutex_t *old;
1514
1515 for (;;) {
1516 if (!mutex_tryenter(old = l->l_mutex))
1517 return 0;
1518 if (__predict_true(l->l_mutex == old))
1519 return 1;
1520 mutex_spin_exit(old);
1521 }
1522 }
1523
1524 void
1525 lwp_unsleep(lwp_t *l, bool cleanup)
1526 {
1527
1528 KASSERT(mutex_owned(l->l_mutex));
1529 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1530 }
1531
1532 /*
1533 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1534 * set.
1535 */
1536 void
1537 lwp_userret(struct lwp *l)
1538 {
1539 struct proc *p;
1540 int sig;
1541
1542 KASSERT(l == curlwp);
1543 KASSERT(l->l_stat == LSONPROC);
1544 p = l->l_proc;
1545
1546 #ifndef __HAVE_FAST_SOFTINTS
1547 /* Run pending soft interrupts. */
1548 if (l->l_cpu->ci_data.cpu_softints != 0)
1549 softint_overlay();
1550 #endif
1551
1552 /*
1553 * It is safe to do this read unlocked on a MP system..
1554 */
1555 while ((l->l_flag & LW_USERRET) != 0) {
1556 /*
1557 * Process pending signals first, unless the process
1558 * is dumping core or exiting, where we will instead
1559 * enter the LW_WSUSPEND case below.
1560 */
1561 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1562 LW_PENDSIG) {
1563 mutex_enter(p->p_lock);
1564 while ((sig = issignal(l)) != 0)
1565 postsig(sig);
1566 mutex_exit(p->p_lock);
1567 }
1568
1569 /*
1570 * Core-dump or suspend pending.
1571 *
1572 * In case of core dump, suspend ourselves, so that the kernel
1573 * stack and therefore the userland registers saved in the
1574 * trapframe are around for coredump() to write them out.
1575 * We also need to save any PCU resources that we have so that
1576 * they accessible for coredump(). We issue a wakeup on
1577 * p->p_lwpcv so that sigexit() will write the core file out
1578 * once all other LWPs are suspended.
1579 */
1580 if ((l->l_flag & LW_WSUSPEND) != 0) {
1581 pcu_save_all(l);
1582 mutex_enter(p->p_lock);
1583 p->p_nrlwps--;
1584 cv_broadcast(&p->p_lwpcv);
1585 lwp_lock(l);
1586 l->l_stat = LSSUSPENDED;
1587 lwp_unlock(l);
1588 mutex_exit(p->p_lock);
1589 lwp_lock(l);
1590 mi_switch(l);
1591 }
1592
1593 /* Process is exiting. */
1594 if ((l->l_flag & LW_WEXIT) != 0) {
1595 lwp_exit(l);
1596 KASSERT(0);
1597 /* NOTREACHED */
1598 }
1599
1600 /* update lwpctl processor (for vfork child_return) */
1601 if (l->l_flag & LW_LWPCTL) {
1602 lwp_lock(l);
1603 KASSERT(kpreempt_disabled());
1604 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1605 l->l_lwpctl->lc_pctr++;
1606 l->l_flag &= ~LW_LWPCTL;
1607 lwp_unlock(l);
1608 }
1609 }
1610 }
1611
1612 /*
1613 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1614 */
1615 void
1616 lwp_need_userret(struct lwp *l)
1617 {
1618 KASSERT(lwp_locked(l, NULL));
1619
1620 /*
1621 * Since the tests in lwp_userret() are done unlocked, make sure
1622 * that the condition will be seen before forcing the LWP to enter
1623 * kernel mode.
1624 */
1625 membar_producer();
1626 cpu_signotify(l);
1627 }
1628
1629 /*
1630 * Add one reference to an LWP. This will prevent the LWP from
1631 * exiting, thus keep the lwp structure and PCB around to inspect.
1632 */
1633 void
1634 lwp_addref(struct lwp *l)
1635 {
1636
1637 KASSERT(mutex_owned(l->l_proc->p_lock));
1638 KASSERT(l->l_stat != LSZOMB);
1639 KASSERT(l->l_refcnt != 0);
1640
1641 l->l_refcnt++;
1642 }
1643
1644 /*
1645 * Remove one reference to an LWP. If this is the last reference,
1646 * then we must finalize the LWP's death.
1647 */
1648 void
1649 lwp_delref(struct lwp *l)
1650 {
1651 struct proc *p = l->l_proc;
1652
1653 mutex_enter(p->p_lock);
1654 lwp_delref2(l);
1655 mutex_exit(p->p_lock);
1656 }
1657
1658 /*
1659 * Remove one reference to an LWP. If this is the last reference,
1660 * then we must finalize the LWP's death. The proc mutex is held
1661 * on entry.
1662 */
1663 void
1664 lwp_delref2(struct lwp *l)
1665 {
1666 struct proc *p = l->l_proc;
1667
1668 KASSERT(mutex_owned(p->p_lock));
1669 KASSERT(l->l_stat != LSZOMB);
1670 KASSERT(l->l_refcnt > 0);
1671 if (--l->l_refcnt == 0)
1672 cv_broadcast(&p->p_lwpcv);
1673 }
1674
1675 /*
1676 * Drain all references to the current LWP.
1677 */
1678 void
1679 lwp_drainrefs(struct lwp *l)
1680 {
1681 struct proc *p = l->l_proc;
1682
1683 KASSERT(mutex_owned(p->p_lock));
1684 KASSERT(l->l_refcnt != 0);
1685
1686 l->l_refcnt--;
1687 while (l->l_refcnt != 0)
1688 cv_wait(&p->p_lwpcv, p->p_lock);
1689 }
1690
1691 /*
1692 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1693 * be held.
1694 */
1695 bool
1696 lwp_alive(lwp_t *l)
1697 {
1698
1699 KASSERT(mutex_owned(l->l_proc->p_lock));
1700
1701 switch (l->l_stat) {
1702 case LSSLEEP:
1703 case LSRUN:
1704 case LSONPROC:
1705 case LSSTOP:
1706 case LSSUSPENDED:
1707 return true;
1708 default:
1709 return false;
1710 }
1711 }
1712
1713 /*
1714 * Return first live LWP in the process.
1715 */
1716 lwp_t *
1717 lwp_find_first(proc_t *p)
1718 {
1719 lwp_t *l;
1720
1721 KASSERT(mutex_owned(p->p_lock));
1722
1723 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1724 if (lwp_alive(l)) {
1725 return l;
1726 }
1727 }
1728
1729 return NULL;
1730 }
1731
1732 /*
1733 * Allocate a new lwpctl structure for a user LWP.
1734 */
1735 int
1736 lwp_ctl_alloc(vaddr_t *uaddr)
1737 {
1738 lcproc_t *lp;
1739 u_int bit, i, offset;
1740 struct uvm_object *uao;
1741 int error;
1742 lcpage_t *lcp;
1743 proc_t *p;
1744 lwp_t *l;
1745
1746 l = curlwp;
1747 p = l->l_proc;
1748
1749 /* don't allow a vforked process to create lwp ctls */
1750 if (p->p_lflag & PL_PPWAIT)
1751 return EBUSY;
1752
1753 if (l->l_lcpage != NULL) {
1754 lcp = l->l_lcpage;
1755 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1756 return 0;
1757 }
1758
1759 /* First time around, allocate header structure for the process. */
1760 if ((lp = p->p_lwpctl) == NULL) {
1761 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1762 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1763 lp->lp_uao = NULL;
1764 TAILQ_INIT(&lp->lp_pages);
1765 mutex_enter(p->p_lock);
1766 if (p->p_lwpctl == NULL) {
1767 p->p_lwpctl = lp;
1768 mutex_exit(p->p_lock);
1769 } else {
1770 mutex_exit(p->p_lock);
1771 mutex_destroy(&lp->lp_lock);
1772 kmem_free(lp, sizeof(*lp));
1773 lp = p->p_lwpctl;
1774 }
1775 }
1776
1777 /*
1778 * Set up an anonymous memory region to hold the shared pages.
1779 * Map them into the process' address space. The user vmspace
1780 * gets the first reference on the UAO.
1781 */
1782 mutex_enter(&lp->lp_lock);
1783 if (lp->lp_uao == NULL) {
1784 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1785 lp->lp_cur = 0;
1786 lp->lp_max = LWPCTL_UAREA_SZ;
1787 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1788 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1789 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1790 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1791 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1792 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1793 if (error != 0) {
1794 uao_detach(lp->lp_uao);
1795 lp->lp_uao = NULL;
1796 mutex_exit(&lp->lp_lock);
1797 return error;
1798 }
1799 }
1800
1801 /* Get a free block and allocate for this LWP. */
1802 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1803 if (lcp->lcp_nfree != 0)
1804 break;
1805 }
1806 if (lcp == NULL) {
1807 /* Nothing available - try to set up a free page. */
1808 if (lp->lp_cur == lp->lp_max) {
1809 mutex_exit(&lp->lp_lock);
1810 return ENOMEM;
1811 }
1812 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1813
1814 /*
1815 * Wire the next page down in kernel space. Since this
1816 * is a new mapping, we must add a reference.
1817 */
1818 uao = lp->lp_uao;
1819 (*uao->pgops->pgo_reference)(uao);
1820 lcp->lcp_kaddr = vm_map_min(kernel_map);
1821 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1822 uao, lp->lp_cur, PAGE_SIZE,
1823 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1824 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1825 if (error != 0) {
1826 mutex_exit(&lp->lp_lock);
1827 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1828 (*uao->pgops->pgo_detach)(uao);
1829 return error;
1830 }
1831 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1832 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1833 if (error != 0) {
1834 mutex_exit(&lp->lp_lock);
1835 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1836 lcp->lcp_kaddr + PAGE_SIZE);
1837 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1838 return error;
1839 }
1840 /* Prepare the page descriptor and link into the list. */
1841 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1842 lp->lp_cur += PAGE_SIZE;
1843 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1844 lcp->lcp_rotor = 0;
1845 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1846 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1847 }
1848 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1849 if (++i >= LWPCTL_BITMAP_ENTRIES)
1850 i = 0;
1851 }
1852 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1853 lcp->lcp_bitmap[i] ^= (1U << bit);
1854 lcp->lcp_rotor = i;
1855 lcp->lcp_nfree--;
1856 l->l_lcpage = lcp;
1857 offset = (i << 5) + bit;
1858 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1859 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1860 mutex_exit(&lp->lp_lock);
1861
1862 KPREEMPT_DISABLE(l);
1863 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1864 KPREEMPT_ENABLE(l);
1865
1866 return 0;
1867 }
1868
1869 /*
1870 * Free an lwpctl structure back to the per-process list.
1871 */
1872 void
1873 lwp_ctl_free(lwp_t *l)
1874 {
1875 struct proc *p = l->l_proc;
1876 lcproc_t *lp;
1877 lcpage_t *lcp;
1878 u_int map, offset;
1879
1880 /* don't free a lwp context we borrowed for vfork */
1881 if (p->p_lflag & PL_PPWAIT) {
1882 l->l_lwpctl = NULL;
1883 return;
1884 }
1885
1886 lp = p->p_lwpctl;
1887 KASSERT(lp != NULL);
1888
1889 lcp = l->l_lcpage;
1890 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1891 KASSERT(offset < LWPCTL_PER_PAGE);
1892
1893 mutex_enter(&lp->lp_lock);
1894 lcp->lcp_nfree++;
1895 map = offset >> 5;
1896 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1897 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1898 lcp->lcp_rotor = map;
1899 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1900 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1901 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1902 }
1903 mutex_exit(&lp->lp_lock);
1904 }
1905
1906 /*
1907 * Process is exiting; tear down lwpctl state. This can only be safely
1908 * called by the last LWP in the process.
1909 */
1910 void
1911 lwp_ctl_exit(void)
1912 {
1913 lcpage_t *lcp, *next;
1914 lcproc_t *lp;
1915 proc_t *p;
1916 lwp_t *l;
1917
1918 l = curlwp;
1919 l->l_lwpctl = NULL;
1920 l->l_lcpage = NULL;
1921 p = l->l_proc;
1922 lp = p->p_lwpctl;
1923
1924 KASSERT(lp != NULL);
1925 KASSERT(p->p_nlwps == 1);
1926
1927 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1928 next = TAILQ_NEXT(lcp, lcp_chain);
1929 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1930 lcp->lcp_kaddr + PAGE_SIZE);
1931 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1932 }
1933
1934 if (lp->lp_uao != NULL) {
1935 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1936 lp->lp_uva + LWPCTL_UAREA_SZ);
1937 }
1938
1939 mutex_destroy(&lp->lp_lock);
1940 kmem_free(lp, sizeof(*lp));
1941 p->p_lwpctl = NULL;
1942 }
1943
1944 /*
1945 * Return the current LWP's "preemption counter". Used to detect
1946 * preemption across operations that can tolerate preemption without
1947 * crashing, but which may generate incorrect results if preempted.
1948 */
1949 uint64_t
1950 lwp_pctr(void)
1951 {
1952
1953 return curlwp->l_ncsw;
1954 }
1955
1956 /*
1957 * Set an LWP's private data pointer.
1958 */
1959 int
1960 lwp_setprivate(struct lwp *l, void *ptr)
1961 {
1962 int error = 0;
1963
1964 l->l_private = ptr;
1965 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1966 error = cpu_lwp_setprivate(l, ptr);
1967 #endif
1968 return error;
1969 }
1970
1971 #if defined(DDB)
1972 #include <machine/pcb.h>
1973
1974 void
1975 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1976 {
1977 lwp_t *l;
1978
1979 LIST_FOREACH(l, &alllwp, l_list) {
1980 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1981
1982 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1983 continue;
1984 }
1985 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1986 (void *)addr, (void *)stack,
1987 (size_t)(addr - stack), l);
1988 }
1989 }
1990 #endif /* defined(DDB) */
1991