kern_lwp.c revision 1.197 1 /* $NetBSD: kern_lwp.c,v 1.197 2019/04/19 01:52:55 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.197 2019/04/19 01:52:55 ozaki-r Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219
220 #define _LWP_API_PRIVATE
221
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/fstrans.h>
240 #include <sys/dtrace_bsd.h>
241 #include <sys/sdt.h>
242 #include <sys/xcall.h>
243 #include <sys/uidinfo.h>
244 #include <sys/sysctl.h>
245
246 #include <uvm/uvm_extern.h>
247 #include <uvm/uvm_object.h>
248
249 static pool_cache_t lwp_cache __read_mostly;
250 struct lwplist alllwp __cacheline_aligned;
251
252 static void lwp_dtor(void *, void *);
253
254 /* DTrace proc provider probes */
255 SDT_PROVIDER_DEFINE(proc);
256
257 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
260
261 struct turnstile turnstile0;
262 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
263 #ifdef LWP0_CPU_INFO
264 .l_cpu = LWP0_CPU_INFO,
265 #endif
266 #ifdef LWP0_MD_INITIALIZER
267 .l_md = LWP0_MD_INITIALIZER,
268 #endif
269 .l_proc = &proc0,
270 .l_lid = 1,
271 .l_flag = LW_SYSTEM,
272 .l_stat = LSONPROC,
273 .l_ts = &turnstile0,
274 .l_syncobj = &sched_syncobj,
275 .l_refcnt = 1,
276 .l_priority = PRI_USER + NPRI_USER - 1,
277 .l_inheritedprio = -1,
278 .l_class = SCHED_OTHER,
279 .l_psid = PS_NONE,
280 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
281 .l_name = __UNCONST("swapper"),
282 .l_fd = &filedesc0,
283 };
284
285 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
286
287 /*
288 * sysctl helper routine for kern.maxlwp. Ensures that the new
289 * values are not too low or too high.
290 */
291 static int
292 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
293 {
294 int error, nmaxlwp;
295 struct sysctlnode node;
296
297 nmaxlwp = maxlwp;
298 node = *rnode;
299 node.sysctl_data = &nmaxlwp;
300 error = sysctl_lookup(SYSCTLFN_CALL(&node));
301 if (error || newp == NULL)
302 return error;
303
304 if (nmaxlwp < 0 || nmaxlwp >= 65536)
305 return EINVAL;
306 if (nmaxlwp > cpu_maxlwp())
307 return EINVAL;
308 maxlwp = nmaxlwp;
309
310 return 0;
311 }
312
313 static void
314 sysctl_kern_lwp_setup(void)
315 {
316 struct sysctllog *clog = NULL;
317
318 sysctl_createv(&clog, 0, NULL, NULL,
319 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
320 CTLTYPE_INT, "maxlwp",
321 SYSCTL_DESCR("Maximum number of simultaneous threads"),
322 sysctl_kern_maxlwp, 0, NULL, 0,
323 CTL_KERN, CTL_CREATE, CTL_EOL);
324 }
325
326 void
327 lwpinit(void)
328 {
329
330 LIST_INIT(&alllwp);
331 lwpinit_specificdata();
332 lwp_sys_init();
333 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
334 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
335
336 maxlwp = cpu_maxlwp();
337 sysctl_kern_lwp_setup();
338 }
339
340 void
341 lwp0_init(void)
342 {
343 struct lwp *l = &lwp0;
344
345 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
346 KASSERT(l->l_lid == proc0.p_nlwpid);
347
348 LIST_INSERT_HEAD(&alllwp, l, l_list);
349
350 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
351 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
352 cv_init(&l->l_sigcv, "sigwait");
353 cv_init(&l->l_waitcv, "vfork");
354
355 kauth_cred_hold(proc0.p_cred);
356 l->l_cred = proc0.p_cred;
357
358 kdtrace_thread_ctor(NULL, l);
359 lwp_initspecific(l);
360
361 SYSCALL_TIME_LWP_INIT(l);
362 }
363
364 static void
365 lwp_dtor(void *arg, void *obj)
366 {
367 lwp_t *l = obj;
368 uint64_t where;
369 (void)l;
370
371 /*
372 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
373 * calls will exit before memory of LWP is returned to the pool, where
374 * KVA of LWP structure might be freed and re-used for other purposes.
375 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
376 * callers, therefore cross-call to all CPUs will do the job. Also,
377 * the value of l->l_cpu must be still valid at this point.
378 */
379 KASSERT(l->l_cpu != NULL);
380 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
381 xc_wait(where);
382 }
383
384 /*
385 * Set an suspended.
386 *
387 * Must be called with p_lock held, and the LWP locked. Will unlock the
388 * LWP before return.
389 */
390 int
391 lwp_suspend(struct lwp *curl, struct lwp *t)
392 {
393 int error;
394
395 KASSERT(mutex_owned(t->l_proc->p_lock));
396 KASSERT(lwp_locked(t, NULL));
397
398 KASSERT(curl != t || curl->l_stat == LSONPROC);
399
400 /*
401 * If the current LWP has been told to exit, we must not suspend anyone
402 * else or deadlock could occur. We won't return to userspace.
403 */
404 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
405 lwp_unlock(t);
406 return (EDEADLK);
407 }
408
409 error = 0;
410
411 switch (t->l_stat) {
412 case LSRUN:
413 case LSONPROC:
414 t->l_flag |= LW_WSUSPEND;
415 lwp_need_userret(t);
416 lwp_unlock(t);
417 break;
418
419 case LSSLEEP:
420 t->l_flag |= LW_WSUSPEND;
421
422 /*
423 * Kick the LWP and try to get it to the kernel boundary
424 * so that it will release any locks that it holds.
425 * setrunnable() will release the lock.
426 */
427 if ((t->l_flag & LW_SINTR) != 0)
428 setrunnable(t);
429 else
430 lwp_unlock(t);
431 break;
432
433 case LSSUSPENDED:
434 lwp_unlock(t);
435 break;
436
437 case LSSTOP:
438 t->l_flag |= LW_WSUSPEND;
439 setrunnable(t);
440 break;
441
442 case LSIDL:
443 case LSZOMB:
444 error = EINTR; /* It's what Solaris does..... */
445 lwp_unlock(t);
446 break;
447 }
448
449 return (error);
450 }
451
452 /*
453 * Restart a suspended LWP.
454 *
455 * Must be called with p_lock held, and the LWP locked. Will unlock the
456 * LWP before return.
457 */
458 void
459 lwp_continue(struct lwp *l)
460 {
461
462 KASSERT(mutex_owned(l->l_proc->p_lock));
463 KASSERT(lwp_locked(l, NULL));
464
465 /* If rebooting or not suspended, then just bail out. */
466 if ((l->l_flag & LW_WREBOOT) != 0) {
467 lwp_unlock(l);
468 return;
469 }
470
471 l->l_flag &= ~LW_WSUSPEND;
472
473 if (l->l_stat != LSSUSPENDED) {
474 lwp_unlock(l);
475 return;
476 }
477
478 /* setrunnable() will release the lock. */
479 setrunnable(l);
480 }
481
482 /*
483 * Restart a stopped LWP.
484 *
485 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
486 * LWP before return.
487 */
488 void
489 lwp_unstop(struct lwp *l)
490 {
491 struct proc *p = l->l_proc;
492
493 KASSERT(mutex_owned(proc_lock));
494 KASSERT(mutex_owned(p->p_lock));
495
496 lwp_lock(l);
497
498 /* If not stopped, then just bail out. */
499 if (l->l_stat != LSSTOP) {
500 lwp_unlock(l);
501 return;
502 }
503
504 p->p_stat = SACTIVE;
505 p->p_sflag &= ~PS_STOPPING;
506
507 if (!p->p_waited)
508 p->p_pptr->p_nstopchild--;
509
510 if (l->l_wchan == NULL) {
511 /* setrunnable() will release the lock. */
512 setrunnable(l);
513 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
514 /* setrunnable() so we can receive the signal */
515 setrunnable(l);
516 } else {
517 l->l_stat = LSSLEEP;
518 p->p_nrlwps++;
519 lwp_unlock(l);
520 }
521 }
522
523 /*
524 * Wait for an LWP within the current process to exit. If 'lid' is
525 * non-zero, we are waiting for a specific LWP.
526 *
527 * Must be called with p->p_lock held.
528 */
529 int
530 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
531 {
532 const lwpid_t curlid = l->l_lid;
533 proc_t *p = l->l_proc;
534 lwp_t *l2;
535 int error;
536
537 KASSERT(mutex_owned(p->p_lock));
538
539 p->p_nlwpwait++;
540 l->l_waitingfor = lid;
541
542 for (;;) {
543 int nfound;
544
545 /*
546 * Avoid a race between exit1() and sigexit(): if the
547 * process is dumping core, then we need to bail out: call
548 * into lwp_userret() where we will be suspended until the
549 * deed is done.
550 */
551 if ((p->p_sflag & PS_WCORE) != 0) {
552 mutex_exit(p->p_lock);
553 lwp_userret(l);
554 KASSERT(false);
555 }
556
557 /*
558 * First off, drain any detached LWP that is waiting to be
559 * reaped.
560 */
561 while ((l2 = p->p_zomblwp) != NULL) {
562 p->p_zomblwp = NULL;
563 lwp_free(l2, false, false);/* releases proc mutex */
564 mutex_enter(p->p_lock);
565 }
566
567 /*
568 * Now look for an LWP to collect. If the whole process is
569 * exiting, count detached LWPs as eligible to be collected,
570 * but don't drain them here.
571 */
572 nfound = 0;
573 error = 0;
574 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
575 /*
576 * If a specific wait and the target is waiting on
577 * us, then avoid deadlock. This also traps LWPs
578 * that try to wait on themselves.
579 *
580 * Note that this does not handle more complicated
581 * cycles, like: t1 -> t2 -> t3 -> t1. The process
582 * can still be killed so it is not a major problem.
583 */
584 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
585 error = EDEADLK;
586 break;
587 }
588 if (l2 == l)
589 continue;
590 if ((l2->l_prflag & LPR_DETACHED) != 0) {
591 nfound += exiting;
592 continue;
593 }
594 if (lid != 0) {
595 if (l2->l_lid != lid)
596 continue;
597 /*
598 * Mark this LWP as the first waiter, if there
599 * is no other.
600 */
601 if (l2->l_waiter == 0)
602 l2->l_waiter = curlid;
603 } else if (l2->l_waiter != 0) {
604 /*
605 * It already has a waiter - so don't
606 * collect it. If the waiter doesn't
607 * grab it we'll get another chance
608 * later.
609 */
610 nfound++;
611 continue;
612 }
613 nfound++;
614
615 /* No need to lock the LWP in order to see LSZOMB. */
616 if (l2->l_stat != LSZOMB)
617 continue;
618
619 /*
620 * We're no longer waiting. Reset the "first waiter"
621 * pointer on the target, in case it was us.
622 */
623 l->l_waitingfor = 0;
624 l2->l_waiter = 0;
625 p->p_nlwpwait--;
626 if (departed)
627 *departed = l2->l_lid;
628 sched_lwp_collect(l2);
629
630 /* lwp_free() releases the proc lock. */
631 lwp_free(l2, false, false);
632 mutex_enter(p->p_lock);
633 return 0;
634 }
635
636 if (error != 0)
637 break;
638 if (nfound == 0) {
639 error = ESRCH;
640 break;
641 }
642
643 /*
644 * Note: since the lock will be dropped, need to restart on
645 * wakeup to run all LWPs again, e.g. there may be new LWPs.
646 */
647 if (exiting) {
648 KASSERT(p->p_nlwps > 1);
649 cv_wait(&p->p_lwpcv, p->p_lock);
650 error = EAGAIN;
651 break;
652 }
653
654 /*
655 * If all other LWPs are waiting for exits or suspends
656 * and the supply of zombies and potential zombies is
657 * exhausted, then we are about to deadlock.
658 *
659 * If the process is exiting (and this LWP is not the one
660 * that is coordinating the exit) then bail out now.
661 */
662 if ((p->p_sflag & PS_WEXIT) != 0 ||
663 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
664 error = EDEADLK;
665 break;
666 }
667
668 /*
669 * Sit around and wait for something to happen. We'll be
670 * awoken if any of the conditions examined change: if an
671 * LWP exits, is collected, or is detached.
672 */
673 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
674 break;
675 }
676
677 /*
678 * We didn't find any LWPs to collect, we may have received a
679 * signal, or some other condition has caused us to bail out.
680 *
681 * If waiting on a specific LWP, clear the waiters marker: some
682 * other LWP may want it. Then, kick all the remaining waiters
683 * so that they can re-check for zombies and for deadlock.
684 */
685 if (lid != 0) {
686 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
687 if (l2->l_lid == lid) {
688 if (l2->l_waiter == curlid)
689 l2->l_waiter = 0;
690 break;
691 }
692 }
693 }
694 p->p_nlwpwait--;
695 l->l_waitingfor = 0;
696 cv_broadcast(&p->p_lwpcv);
697
698 return error;
699 }
700
701 static lwpid_t
702 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
703 {
704 #define LID_SCAN (1u << 31)
705 lwp_t *scan, *free_before;
706 lwpid_t nxt_lid;
707
708 /*
709 * We want the first unused lid greater than or equal to
710 * try_lid (modulo 2^31).
711 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
712 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
713 * the outer test easier.
714 * This would be much easier if the list were sorted in
715 * increasing order.
716 * The list is kept sorted in decreasing order.
717 * This code is only used after a process has generated 2^31 lwp.
718 *
719 * Code assumes it can always find an id.
720 */
721
722 try_lid &= LID_SCAN - 1;
723 if (try_lid <= 1)
724 try_lid = 2;
725
726 free_before = NULL;
727 nxt_lid = LID_SCAN - 1;
728 LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
729 if (scan->l_lid != nxt_lid) {
730 /* There are available lid before this entry */
731 free_before = scan;
732 if (try_lid > scan->l_lid)
733 break;
734 }
735 if (try_lid == scan->l_lid) {
736 /* The ideal lid is busy, take a higher one */
737 if (free_before != NULL) {
738 try_lid = free_before->l_lid + 1;
739 break;
740 }
741 /* No higher ones, reuse low numbers */
742 try_lid = 2;
743 }
744
745 nxt_lid = scan->l_lid - 1;
746 if (LIST_NEXT(scan, l_sibling) == NULL) {
747 /* The value we have is lower than any existing lwp */
748 LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
749 return try_lid;
750 }
751 }
752
753 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
754 return try_lid;
755 }
756
757 /*
758 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
759 * The new LWP is created in state LSIDL and must be set running,
760 * suspended, or stopped by the caller.
761 */
762 int
763 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
764 void *stack, size_t stacksize, void (*func)(void *), void *arg,
765 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
766 const stack_t *sigstk)
767 {
768 struct lwp *l2, *isfree;
769 turnstile_t *ts;
770 lwpid_t lid;
771
772 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
773
774 /*
775 * Enforce limits, excluding the first lwp and kthreads.
776 */
777 if (p2->p_nlwps != 0 && p2 != &proc0) {
778 uid_t uid = kauth_cred_getuid(l1->l_cred);
779 int count = chglwpcnt(uid, 1);
780 if (__predict_false(count >
781 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
782 if (kauth_authorize_process(l1->l_cred,
783 KAUTH_PROCESS_RLIMIT, p2,
784 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
785 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
786 != 0) {
787 (void)chglwpcnt(uid, -1);
788 return EAGAIN;
789 }
790 }
791 }
792
793 /*
794 * First off, reap any detached LWP waiting to be collected.
795 * We can re-use its LWP structure and turnstile.
796 */
797 isfree = NULL;
798 if (p2->p_zomblwp != NULL) {
799 mutex_enter(p2->p_lock);
800 if ((isfree = p2->p_zomblwp) != NULL) {
801 p2->p_zomblwp = NULL;
802 lwp_free(isfree, true, false);/* releases proc mutex */
803 } else
804 mutex_exit(p2->p_lock);
805 }
806 if (isfree == NULL) {
807 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
808 memset(l2, 0, sizeof(*l2));
809 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
810 SLIST_INIT(&l2->l_pi_lenders);
811 } else {
812 l2 = isfree;
813 ts = l2->l_ts;
814 KASSERT(l2->l_inheritedprio == -1);
815 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
816 memset(l2, 0, sizeof(*l2));
817 l2->l_ts = ts;
818 }
819
820 l2->l_stat = LSIDL;
821 l2->l_proc = p2;
822 l2->l_refcnt = 1;
823 l2->l_class = sclass;
824
825 /*
826 * If vfork(), we want the LWP to run fast and on the same CPU
827 * as its parent, so that it can reuse the VM context and cache
828 * footprint on the local CPU.
829 */
830 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
831 l2->l_kpribase = PRI_KERNEL;
832 l2->l_priority = l1->l_priority;
833 l2->l_inheritedprio = -1;
834 l2->l_protectprio = -1;
835 l2->l_auxprio = -1;
836 l2->l_flag = 0;
837 l2->l_pflag = LP_MPSAFE;
838 TAILQ_INIT(&l2->l_ld_locks);
839 l2->l_psrefs = 0;
840
841 /*
842 * For vfork, borrow parent's lwpctl context if it exists.
843 * This also causes us to return via lwp_userret.
844 */
845 if (flags & LWP_VFORK && l1->l_lwpctl) {
846 l2->l_lwpctl = l1->l_lwpctl;
847 l2->l_flag |= LW_LWPCTL;
848 }
849
850 /*
851 * If not the first LWP in the process, grab a reference to the
852 * descriptor table.
853 */
854 l2->l_fd = p2->p_fd;
855 if (p2->p_nlwps != 0) {
856 KASSERT(l1->l_proc == p2);
857 fd_hold(l2);
858 } else {
859 KASSERT(l1->l_proc != p2);
860 }
861
862 if (p2->p_flag & PK_SYSTEM) {
863 /* Mark it as a system LWP. */
864 l2->l_flag |= LW_SYSTEM;
865 }
866
867 kpreempt_disable();
868 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
869 l2->l_cpu = l1->l_cpu;
870 kpreempt_enable();
871
872 kdtrace_thread_ctor(NULL, l2);
873 lwp_initspecific(l2);
874 sched_lwp_fork(l1, l2);
875 lwp_update_creds(l2);
876 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
877 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
878 cv_init(&l2->l_sigcv, "sigwait");
879 cv_init(&l2->l_waitcv, "vfork");
880 l2->l_syncobj = &sched_syncobj;
881
882 if (rnewlwpp != NULL)
883 *rnewlwpp = l2;
884
885 /*
886 * PCU state needs to be saved before calling uvm_lwp_fork() so that
887 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
888 */
889 pcu_save_all(l1);
890
891 uvm_lwp_setuarea(l2, uaddr);
892 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
893
894 if ((flags & LWP_PIDLID) != 0) {
895 lid = proc_alloc_pid(p2);
896 l2->l_pflag |= LP_PIDLID;
897 } else {
898 lid = 0;
899 }
900
901 mutex_enter(p2->p_lock);
902
903 if ((flags & LWP_DETACHED) != 0) {
904 l2->l_prflag = LPR_DETACHED;
905 p2->p_ndlwps++;
906 } else
907 l2->l_prflag = 0;
908
909 l2->l_sigstk = *sigstk;
910 l2->l_sigmask = *sigmask;
911 TAILQ_INIT(&l2->l_sigpend.sp_info);
912 sigemptyset(&l2->l_sigpend.sp_set);
913
914 if (__predict_true(lid == 0)) {
915 /*
916 * XXX: l_lid are expected to be unique (for a process)
917 * if LWP_PIDLID is sometimes set this won't be true.
918 * Once 2^31 threads have been allocated we have to
919 * scan to ensure we allocate a unique value.
920 */
921 lid = ++p2->p_nlwpid;
922 if (__predict_false(lid & LID_SCAN)) {
923 lid = lwp_find_free_lid(lid, l2, p2);
924 p2->p_nlwpid = lid | LID_SCAN;
925 /* l2 as been inserted into p_lwps in order */
926 goto skip_insert;
927 }
928 p2->p_nlwpid = lid;
929 }
930 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
931 skip_insert:
932 l2->l_lid = lid;
933 p2->p_nlwps++;
934 p2->p_nrlwps++;
935
936 KASSERT(l2->l_affinity == NULL);
937
938 if ((p2->p_flag & PK_SYSTEM) == 0) {
939 /* Inherit the affinity mask. */
940 if (l1->l_affinity) {
941 /*
942 * Note that we hold the state lock while inheriting
943 * the affinity to avoid race with sched_setaffinity().
944 */
945 lwp_lock(l1);
946 if (l1->l_affinity) {
947 kcpuset_use(l1->l_affinity);
948 l2->l_affinity = l1->l_affinity;
949 }
950 lwp_unlock(l1);
951 }
952 lwp_lock(l2);
953 /* Inherit a processor-set */
954 l2->l_psid = l1->l_psid;
955 /* Look for a CPU to start */
956 l2->l_cpu = sched_takecpu(l2);
957 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
958 }
959 mutex_exit(p2->p_lock);
960
961 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
962
963 mutex_enter(proc_lock);
964 LIST_INSERT_HEAD(&alllwp, l2, l_list);
965 mutex_exit(proc_lock);
966
967 SYSCALL_TIME_LWP_INIT(l2);
968
969 if (p2->p_emul->e_lwp_fork)
970 (*p2->p_emul->e_lwp_fork)(l1, l2);
971
972 /* If the process is traced, report lwp creation to a debugger */
973 if ((p2->p_slflag & (PSL_TRACED|PSL_TRACELWP_CREATE|PSL_SYSCALL)) ==
974 (PSL_TRACED|PSL_TRACELWP_CREATE)) {
975 ksiginfo_t ksi;
976
977 /* Tracing */
978 KASSERT((l2->l_flag & LW_SYSTEM) == 0);
979
980 p2->p_lwp_created = l2->l_lid;
981
982 KSI_INIT_EMPTY(&ksi);
983 ksi.ksi_signo = SIGTRAP;
984 ksi.ksi_code = TRAP_LWP;
985 mutex_enter(proc_lock);
986 kpsignal(p2, &ksi, NULL);
987 mutex_exit(proc_lock);
988 }
989
990 return (0);
991 }
992
993 /*
994 * Called by MD code when a new LWP begins execution. Must be called
995 * with the previous LWP locked (so at splsched), or if there is no
996 * previous LWP, at splsched.
997 */
998 void
999 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1000 {
1001 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1002
1003 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1004
1005 KASSERT(kpreempt_disabled());
1006 if (prev != NULL) {
1007 /*
1008 * Normalize the count of the spin-mutexes, it was
1009 * increased in mi_switch(). Unmark the state of
1010 * context switch - it is finished for previous LWP.
1011 */
1012 curcpu()->ci_mtx_count++;
1013 membar_exit();
1014 prev->l_ctxswtch = 0;
1015 }
1016 KPREEMPT_DISABLE(new_lwp);
1017 if (__predict_true(new_lwp->l_proc->p_vmspace))
1018 pmap_activate(new_lwp);
1019 spl0();
1020
1021 /* Note trip through cpu_switchto(). */
1022 pserialize_switchpoint();
1023
1024 LOCKDEBUG_BARRIER(NULL, 0);
1025 KPREEMPT_ENABLE(new_lwp);
1026 if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1027 KERNEL_LOCK(1, new_lwp);
1028 }
1029 }
1030
1031 /*
1032 * Exit an LWP.
1033 */
1034 void
1035 lwp_exit(struct lwp *l)
1036 {
1037 struct proc *p = l->l_proc;
1038 struct lwp *l2;
1039 bool current;
1040
1041 current = (l == curlwp);
1042
1043 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1044 KASSERT(p == curproc);
1045
1046 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1047
1048 /*
1049 * Verify that we hold no locks other than the kernel lock.
1050 */
1051 LOCKDEBUG_BARRIER(&kernel_lock, 0);
1052
1053 /* If the process is traced, report lwp termination to a debugger */
1054 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT|PSL_SYSCALL)) ==
1055 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1056 ksiginfo_t ksi;
1057
1058 /* Tracing */
1059 KASSERT((l->l_flag & LW_SYSTEM) == 0);
1060
1061 p->p_lwp_exited = l->l_lid;
1062
1063 KSI_INIT_EMPTY(&ksi);
1064 ksi.ksi_signo = SIGTRAP;
1065 ksi.ksi_code = TRAP_LWP;
1066 mutex_enter(proc_lock);
1067 kpsignal(p, &ksi, NULL);
1068 mutex_exit(proc_lock);
1069 }
1070
1071 /*
1072 * If we are the last live LWP in a process, we need to exit the
1073 * entire process. We do so with an exit status of zero, because
1074 * it's a "controlled" exit, and because that's what Solaris does.
1075 *
1076 * We are not quite a zombie yet, but for accounting purposes we
1077 * must increment the count of zombies here.
1078 *
1079 * Note: the last LWP's specificdata will be deleted here.
1080 */
1081 mutex_enter(p->p_lock);
1082 if (p->p_nlwps - p->p_nzlwps == 1) {
1083 KASSERT(current == true);
1084 KASSERT(p != &proc0);
1085 /* XXXSMP kernel_lock not held */
1086 exit1(l, 0, 0);
1087 /* NOTREACHED */
1088 }
1089 p->p_nzlwps++;
1090 mutex_exit(p->p_lock);
1091
1092 if (p->p_emul->e_lwp_exit)
1093 (*p->p_emul->e_lwp_exit)(l);
1094
1095 /* Drop filedesc reference. */
1096 fd_free();
1097
1098 /* Release fstrans private data. */
1099 fstrans_lwp_dtor(l);
1100
1101 /* Delete the specificdata while it's still safe to sleep. */
1102 lwp_finispecific(l);
1103
1104 /*
1105 * Release our cached credentials.
1106 */
1107 kauth_cred_free(l->l_cred);
1108 callout_destroy(&l->l_timeout_ch);
1109
1110 /*
1111 * Remove the LWP from the global list.
1112 * Free its LID from the PID namespace if needed.
1113 */
1114 mutex_enter(proc_lock);
1115 LIST_REMOVE(l, l_list);
1116 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1117 proc_free_pid(l->l_lid);
1118 }
1119 mutex_exit(proc_lock);
1120
1121 /*
1122 * Get rid of all references to the LWP that others (e.g. procfs)
1123 * may have, and mark the LWP as a zombie. If the LWP is detached,
1124 * mark it waiting for collection in the proc structure. Note that
1125 * before we can do that, we need to free any other dead, deatched
1126 * LWP waiting to meet its maker.
1127 */
1128 mutex_enter(p->p_lock);
1129 lwp_drainrefs(l);
1130
1131 if ((l->l_prflag & LPR_DETACHED) != 0) {
1132 while ((l2 = p->p_zomblwp) != NULL) {
1133 p->p_zomblwp = NULL;
1134 lwp_free(l2, false, false);/* releases proc mutex */
1135 mutex_enter(p->p_lock);
1136 l->l_refcnt++;
1137 lwp_drainrefs(l);
1138 }
1139 p->p_zomblwp = l;
1140 }
1141
1142 /*
1143 * If we find a pending signal for the process and we have been
1144 * asked to check for signals, then we lose: arrange to have
1145 * all other LWPs in the process check for signals.
1146 */
1147 if ((l->l_flag & LW_PENDSIG) != 0 &&
1148 firstsig(&p->p_sigpend.sp_set) != 0) {
1149 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1150 lwp_lock(l2);
1151 l2->l_flag |= LW_PENDSIG;
1152 lwp_unlock(l2);
1153 }
1154 }
1155
1156 /*
1157 * Release any PCU resources before becoming a zombie.
1158 */
1159 pcu_discard_all(l);
1160
1161 lwp_lock(l);
1162 l->l_stat = LSZOMB;
1163 if (l->l_name != NULL) {
1164 strcpy(l->l_name, "(zombie)");
1165 }
1166 lwp_unlock(l);
1167 p->p_nrlwps--;
1168 cv_broadcast(&p->p_lwpcv);
1169 if (l->l_lwpctl != NULL)
1170 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1171 mutex_exit(p->p_lock);
1172
1173 /*
1174 * We can no longer block. At this point, lwp_free() may already
1175 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1176 *
1177 * Free MD LWP resources.
1178 */
1179 cpu_lwp_free(l, 0);
1180
1181 if (current) {
1182 pmap_deactivate(l);
1183
1184 /*
1185 * Release the kernel lock, and switch away into
1186 * oblivion.
1187 */
1188 #ifdef notyet
1189 /* XXXSMP hold in lwp_userret() */
1190 KERNEL_UNLOCK_LAST(l);
1191 #else
1192 KERNEL_UNLOCK_ALL(l, NULL);
1193 #endif
1194 lwp_exit_switchaway(l);
1195 }
1196 }
1197
1198 /*
1199 * Free a dead LWP's remaining resources.
1200 *
1201 * XXXLWP limits.
1202 */
1203 void
1204 lwp_free(struct lwp *l, bool recycle, bool last)
1205 {
1206 struct proc *p = l->l_proc;
1207 struct rusage *ru;
1208 ksiginfoq_t kq;
1209
1210 KASSERT(l != curlwp);
1211 KASSERT(last || mutex_owned(p->p_lock));
1212
1213 /*
1214 * We use the process credentials instead of the lwp credentials here
1215 * because the lwp credentials maybe cached (just after a setuid call)
1216 * and we don't want pay for syncing, since the lwp is going away
1217 * anyway
1218 */
1219 if (p != &proc0 && p->p_nlwps != 1)
1220 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1221 /*
1222 * If this was not the last LWP in the process, then adjust
1223 * counters and unlock.
1224 */
1225 if (!last) {
1226 /*
1227 * Add the LWP's run time to the process' base value.
1228 * This needs to co-incide with coming off p_lwps.
1229 */
1230 bintime_add(&p->p_rtime, &l->l_rtime);
1231 p->p_pctcpu += l->l_pctcpu;
1232 ru = &p->p_stats->p_ru;
1233 ruadd(ru, &l->l_ru);
1234 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1235 ru->ru_nivcsw += l->l_nivcsw;
1236 LIST_REMOVE(l, l_sibling);
1237 p->p_nlwps--;
1238 p->p_nzlwps--;
1239 if ((l->l_prflag & LPR_DETACHED) != 0)
1240 p->p_ndlwps--;
1241
1242 /*
1243 * Have any LWPs sleeping in lwp_wait() recheck for
1244 * deadlock.
1245 */
1246 cv_broadcast(&p->p_lwpcv);
1247 mutex_exit(p->p_lock);
1248 }
1249
1250 #ifdef MULTIPROCESSOR
1251 /*
1252 * In the unlikely event that the LWP is still on the CPU,
1253 * then spin until it has switched away. We need to release
1254 * all locks to avoid deadlock against interrupt handlers on
1255 * the target CPU.
1256 */
1257 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1258 int count;
1259 (void)count; /* XXXgcc */
1260 KERNEL_UNLOCK_ALL(curlwp, &count);
1261 while ((l->l_pflag & LP_RUNNING) != 0 ||
1262 l->l_cpu->ci_curlwp == l)
1263 SPINLOCK_BACKOFF_HOOK;
1264 KERNEL_LOCK(count, curlwp);
1265 }
1266 #endif
1267
1268 /*
1269 * Destroy the LWP's remaining signal information.
1270 */
1271 ksiginfo_queue_init(&kq);
1272 sigclear(&l->l_sigpend, NULL, &kq);
1273 ksiginfo_queue_drain(&kq);
1274 cv_destroy(&l->l_sigcv);
1275 cv_destroy(&l->l_waitcv);
1276
1277 /*
1278 * Free lwpctl structure and affinity.
1279 */
1280 if (l->l_lwpctl) {
1281 lwp_ctl_free(l);
1282 }
1283 if (l->l_affinity) {
1284 kcpuset_unuse(l->l_affinity, NULL);
1285 l->l_affinity = NULL;
1286 }
1287
1288 /*
1289 * Free the LWP's turnstile and the LWP structure itself unless the
1290 * caller wants to recycle them. Also, free the scheduler specific
1291 * data.
1292 *
1293 * We can't return turnstile0 to the pool (it didn't come from it),
1294 * so if it comes up just drop it quietly and move on.
1295 *
1296 * We don't recycle the VM resources at this time.
1297 */
1298
1299 if (!recycle && l->l_ts != &turnstile0)
1300 pool_cache_put(turnstile_cache, l->l_ts);
1301 if (l->l_name != NULL)
1302 kmem_free(l->l_name, MAXCOMLEN);
1303
1304 cpu_lwp_free2(l);
1305 uvm_lwp_exit(l);
1306
1307 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1308 KASSERT(l->l_inheritedprio == -1);
1309 KASSERT(l->l_blcnt == 0);
1310 kdtrace_thread_dtor(NULL, l);
1311 if (!recycle)
1312 pool_cache_put(lwp_cache, l);
1313 }
1314
1315 /*
1316 * Migrate the LWP to the another CPU. Unlocks the LWP.
1317 */
1318 void
1319 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1320 {
1321 struct schedstate_percpu *tspc;
1322 int lstat = l->l_stat;
1323
1324 KASSERT(lwp_locked(l, NULL));
1325 KASSERT(tci != NULL);
1326
1327 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1328 if ((l->l_pflag & LP_RUNNING) != 0) {
1329 lstat = LSONPROC;
1330 }
1331
1332 /*
1333 * The destination CPU could be changed while previous migration
1334 * was not finished.
1335 */
1336 if (l->l_target_cpu != NULL) {
1337 l->l_target_cpu = tci;
1338 lwp_unlock(l);
1339 return;
1340 }
1341
1342 /* Nothing to do if trying to migrate to the same CPU */
1343 if (l->l_cpu == tci) {
1344 lwp_unlock(l);
1345 return;
1346 }
1347
1348 KASSERT(l->l_target_cpu == NULL);
1349 tspc = &tci->ci_schedstate;
1350 switch (lstat) {
1351 case LSRUN:
1352 l->l_target_cpu = tci;
1353 break;
1354 case LSIDL:
1355 l->l_cpu = tci;
1356 lwp_unlock_to(l, tspc->spc_mutex);
1357 return;
1358 case LSSLEEP:
1359 l->l_cpu = tci;
1360 break;
1361 case LSSTOP:
1362 case LSSUSPENDED:
1363 l->l_cpu = tci;
1364 if (l->l_wchan == NULL) {
1365 lwp_unlock_to(l, tspc->spc_lwplock);
1366 return;
1367 }
1368 break;
1369 case LSONPROC:
1370 l->l_target_cpu = tci;
1371 spc_lock(l->l_cpu);
1372 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1373 spc_unlock(l->l_cpu);
1374 break;
1375 }
1376 lwp_unlock(l);
1377 }
1378
1379 /*
1380 * Find the LWP in the process. Arguments may be zero, in such case,
1381 * the calling process and first LWP in the list will be used.
1382 * On success - returns proc locked.
1383 */
1384 struct lwp *
1385 lwp_find2(pid_t pid, lwpid_t lid)
1386 {
1387 proc_t *p;
1388 lwp_t *l;
1389
1390 /* Find the process. */
1391 if (pid != 0) {
1392 mutex_enter(proc_lock);
1393 p = proc_find(pid);
1394 if (p == NULL) {
1395 mutex_exit(proc_lock);
1396 return NULL;
1397 }
1398 mutex_enter(p->p_lock);
1399 mutex_exit(proc_lock);
1400 } else {
1401 p = curlwp->l_proc;
1402 mutex_enter(p->p_lock);
1403 }
1404 /* Find the thread. */
1405 if (lid != 0) {
1406 l = lwp_find(p, lid);
1407 } else {
1408 l = LIST_FIRST(&p->p_lwps);
1409 }
1410 if (l == NULL) {
1411 mutex_exit(p->p_lock);
1412 }
1413 return l;
1414 }
1415
1416 /*
1417 * Look up a live LWP within the specified process.
1418 *
1419 * Must be called with p->p_lock held.
1420 */
1421 struct lwp *
1422 lwp_find(struct proc *p, lwpid_t id)
1423 {
1424 struct lwp *l;
1425
1426 KASSERT(mutex_owned(p->p_lock));
1427
1428 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1429 if (l->l_lid == id)
1430 break;
1431 }
1432
1433 /*
1434 * No need to lock - all of these conditions will
1435 * be visible with the process level mutex held.
1436 */
1437 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1438 l = NULL;
1439
1440 return l;
1441 }
1442
1443 /*
1444 * Update an LWP's cached credentials to mirror the process' master copy.
1445 *
1446 * This happens early in the syscall path, on user trap, and on LWP
1447 * creation. A long-running LWP can also voluntarily choose to update
1448 * its credentials by calling this routine. This may be called from
1449 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1450 */
1451 void
1452 lwp_update_creds(struct lwp *l)
1453 {
1454 kauth_cred_t oc;
1455 struct proc *p;
1456
1457 p = l->l_proc;
1458 oc = l->l_cred;
1459
1460 mutex_enter(p->p_lock);
1461 kauth_cred_hold(p->p_cred);
1462 l->l_cred = p->p_cred;
1463 l->l_prflag &= ~LPR_CRMOD;
1464 mutex_exit(p->p_lock);
1465 if (oc != NULL)
1466 kauth_cred_free(oc);
1467 }
1468
1469 /*
1470 * Verify that an LWP is locked, and optionally verify that the lock matches
1471 * one we specify.
1472 */
1473 int
1474 lwp_locked(struct lwp *l, kmutex_t *mtx)
1475 {
1476 kmutex_t *cur = l->l_mutex;
1477
1478 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1479 }
1480
1481 /*
1482 * Lend a new mutex to an LWP. The old mutex must be held.
1483 */
1484 void
1485 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1486 {
1487
1488 KASSERT(mutex_owned(l->l_mutex));
1489
1490 membar_exit();
1491 l->l_mutex = mtx;
1492 }
1493
1494 /*
1495 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1496 * must be held.
1497 */
1498 void
1499 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1500 {
1501 kmutex_t *old;
1502
1503 KASSERT(lwp_locked(l, NULL));
1504
1505 old = l->l_mutex;
1506 membar_exit();
1507 l->l_mutex = mtx;
1508 mutex_spin_exit(old);
1509 }
1510
1511 int
1512 lwp_trylock(struct lwp *l)
1513 {
1514 kmutex_t *old;
1515
1516 for (;;) {
1517 if (!mutex_tryenter(old = l->l_mutex))
1518 return 0;
1519 if (__predict_true(l->l_mutex == old))
1520 return 1;
1521 mutex_spin_exit(old);
1522 }
1523 }
1524
1525 void
1526 lwp_unsleep(lwp_t *l, bool cleanup)
1527 {
1528
1529 KASSERT(mutex_owned(l->l_mutex));
1530 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1531 }
1532
1533 /*
1534 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1535 * set.
1536 */
1537 void
1538 lwp_userret(struct lwp *l)
1539 {
1540 struct proc *p;
1541 int sig;
1542
1543 KASSERT(l == curlwp);
1544 KASSERT(l->l_stat == LSONPROC);
1545 p = l->l_proc;
1546
1547 #ifndef __HAVE_FAST_SOFTINTS
1548 /* Run pending soft interrupts. */
1549 if (l->l_cpu->ci_data.cpu_softints != 0)
1550 softint_overlay();
1551 #endif
1552
1553 /*
1554 * It is safe to do this read unlocked on a MP system..
1555 */
1556 while ((l->l_flag & LW_USERRET) != 0) {
1557 /*
1558 * Process pending signals first, unless the process
1559 * is dumping core or exiting, where we will instead
1560 * enter the LW_WSUSPEND case below.
1561 */
1562 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1563 LW_PENDSIG) {
1564 mutex_enter(p->p_lock);
1565 while ((sig = issignal(l)) != 0)
1566 postsig(sig);
1567 mutex_exit(p->p_lock);
1568 }
1569
1570 /*
1571 * Core-dump or suspend pending.
1572 *
1573 * In case of core dump, suspend ourselves, so that the kernel
1574 * stack and therefore the userland registers saved in the
1575 * trapframe are around for coredump() to write them out.
1576 * We also need to save any PCU resources that we have so that
1577 * they accessible for coredump(). We issue a wakeup on
1578 * p->p_lwpcv so that sigexit() will write the core file out
1579 * once all other LWPs are suspended.
1580 */
1581 if ((l->l_flag & LW_WSUSPEND) != 0) {
1582 pcu_save_all(l);
1583 mutex_enter(p->p_lock);
1584 p->p_nrlwps--;
1585 cv_broadcast(&p->p_lwpcv);
1586 lwp_lock(l);
1587 l->l_stat = LSSUSPENDED;
1588 lwp_unlock(l);
1589 mutex_exit(p->p_lock);
1590 lwp_lock(l);
1591 mi_switch(l);
1592 }
1593
1594 /* Process is exiting. */
1595 if ((l->l_flag & LW_WEXIT) != 0) {
1596 lwp_exit(l);
1597 KASSERT(0);
1598 /* NOTREACHED */
1599 }
1600
1601 /* update lwpctl processor (for vfork child_return) */
1602 if (l->l_flag & LW_LWPCTL) {
1603 lwp_lock(l);
1604 KASSERT(kpreempt_disabled());
1605 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1606 l->l_lwpctl->lc_pctr++;
1607 l->l_flag &= ~LW_LWPCTL;
1608 lwp_unlock(l);
1609 }
1610 }
1611 }
1612
1613 /*
1614 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1615 */
1616 void
1617 lwp_need_userret(struct lwp *l)
1618 {
1619 KASSERT(lwp_locked(l, NULL));
1620
1621 /*
1622 * Since the tests in lwp_userret() are done unlocked, make sure
1623 * that the condition will be seen before forcing the LWP to enter
1624 * kernel mode.
1625 */
1626 membar_producer();
1627 cpu_signotify(l);
1628 }
1629
1630 /*
1631 * Add one reference to an LWP. This will prevent the LWP from
1632 * exiting, thus keep the lwp structure and PCB around to inspect.
1633 */
1634 void
1635 lwp_addref(struct lwp *l)
1636 {
1637
1638 KASSERT(mutex_owned(l->l_proc->p_lock));
1639 KASSERT(l->l_stat != LSZOMB);
1640 KASSERT(l->l_refcnt != 0);
1641
1642 l->l_refcnt++;
1643 }
1644
1645 /*
1646 * Remove one reference to an LWP. If this is the last reference,
1647 * then we must finalize the LWP's death.
1648 */
1649 void
1650 lwp_delref(struct lwp *l)
1651 {
1652 struct proc *p = l->l_proc;
1653
1654 mutex_enter(p->p_lock);
1655 lwp_delref2(l);
1656 mutex_exit(p->p_lock);
1657 }
1658
1659 /*
1660 * Remove one reference to an LWP. If this is the last reference,
1661 * then we must finalize the LWP's death. The proc mutex is held
1662 * on entry.
1663 */
1664 void
1665 lwp_delref2(struct lwp *l)
1666 {
1667 struct proc *p = l->l_proc;
1668
1669 KASSERT(mutex_owned(p->p_lock));
1670 KASSERT(l->l_stat != LSZOMB);
1671 KASSERT(l->l_refcnt > 0);
1672 if (--l->l_refcnt == 0)
1673 cv_broadcast(&p->p_lwpcv);
1674 }
1675
1676 /*
1677 * Drain all references to the current LWP.
1678 */
1679 void
1680 lwp_drainrefs(struct lwp *l)
1681 {
1682 struct proc *p = l->l_proc;
1683
1684 KASSERT(mutex_owned(p->p_lock));
1685 KASSERT(l->l_refcnt != 0);
1686
1687 l->l_refcnt--;
1688 while (l->l_refcnt != 0)
1689 cv_wait(&p->p_lwpcv, p->p_lock);
1690 }
1691
1692 /*
1693 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1694 * be held.
1695 */
1696 bool
1697 lwp_alive(lwp_t *l)
1698 {
1699
1700 KASSERT(mutex_owned(l->l_proc->p_lock));
1701
1702 switch (l->l_stat) {
1703 case LSSLEEP:
1704 case LSRUN:
1705 case LSONPROC:
1706 case LSSTOP:
1707 case LSSUSPENDED:
1708 return true;
1709 default:
1710 return false;
1711 }
1712 }
1713
1714 /*
1715 * Return first live LWP in the process.
1716 */
1717 lwp_t *
1718 lwp_find_first(proc_t *p)
1719 {
1720 lwp_t *l;
1721
1722 KASSERT(mutex_owned(p->p_lock));
1723
1724 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1725 if (lwp_alive(l)) {
1726 return l;
1727 }
1728 }
1729
1730 return NULL;
1731 }
1732
1733 /*
1734 * Allocate a new lwpctl structure for a user LWP.
1735 */
1736 int
1737 lwp_ctl_alloc(vaddr_t *uaddr)
1738 {
1739 lcproc_t *lp;
1740 u_int bit, i, offset;
1741 struct uvm_object *uao;
1742 int error;
1743 lcpage_t *lcp;
1744 proc_t *p;
1745 lwp_t *l;
1746
1747 l = curlwp;
1748 p = l->l_proc;
1749
1750 /* don't allow a vforked process to create lwp ctls */
1751 if (p->p_lflag & PL_PPWAIT)
1752 return EBUSY;
1753
1754 if (l->l_lcpage != NULL) {
1755 lcp = l->l_lcpage;
1756 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1757 return 0;
1758 }
1759
1760 /* First time around, allocate header structure for the process. */
1761 if ((lp = p->p_lwpctl) == NULL) {
1762 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1763 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1764 lp->lp_uao = NULL;
1765 TAILQ_INIT(&lp->lp_pages);
1766 mutex_enter(p->p_lock);
1767 if (p->p_lwpctl == NULL) {
1768 p->p_lwpctl = lp;
1769 mutex_exit(p->p_lock);
1770 } else {
1771 mutex_exit(p->p_lock);
1772 mutex_destroy(&lp->lp_lock);
1773 kmem_free(lp, sizeof(*lp));
1774 lp = p->p_lwpctl;
1775 }
1776 }
1777
1778 /*
1779 * Set up an anonymous memory region to hold the shared pages.
1780 * Map them into the process' address space. The user vmspace
1781 * gets the first reference on the UAO.
1782 */
1783 mutex_enter(&lp->lp_lock);
1784 if (lp->lp_uao == NULL) {
1785 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1786 lp->lp_cur = 0;
1787 lp->lp_max = LWPCTL_UAREA_SZ;
1788 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1789 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1790 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1791 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1792 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1793 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1794 if (error != 0) {
1795 uao_detach(lp->lp_uao);
1796 lp->lp_uao = NULL;
1797 mutex_exit(&lp->lp_lock);
1798 return error;
1799 }
1800 }
1801
1802 /* Get a free block and allocate for this LWP. */
1803 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1804 if (lcp->lcp_nfree != 0)
1805 break;
1806 }
1807 if (lcp == NULL) {
1808 /* Nothing available - try to set up a free page. */
1809 if (lp->lp_cur == lp->lp_max) {
1810 mutex_exit(&lp->lp_lock);
1811 return ENOMEM;
1812 }
1813 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1814
1815 /*
1816 * Wire the next page down in kernel space. Since this
1817 * is a new mapping, we must add a reference.
1818 */
1819 uao = lp->lp_uao;
1820 (*uao->pgops->pgo_reference)(uao);
1821 lcp->lcp_kaddr = vm_map_min(kernel_map);
1822 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1823 uao, lp->lp_cur, PAGE_SIZE,
1824 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1825 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1826 if (error != 0) {
1827 mutex_exit(&lp->lp_lock);
1828 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1829 (*uao->pgops->pgo_detach)(uao);
1830 return error;
1831 }
1832 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1833 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1834 if (error != 0) {
1835 mutex_exit(&lp->lp_lock);
1836 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1837 lcp->lcp_kaddr + PAGE_SIZE);
1838 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1839 return error;
1840 }
1841 /* Prepare the page descriptor and link into the list. */
1842 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1843 lp->lp_cur += PAGE_SIZE;
1844 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1845 lcp->lcp_rotor = 0;
1846 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1847 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1848 }
1849 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1850 if (++i >= LWPCTL_BITMAP_ENTRIES)
1851 i = 0;
1852 }
1853 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1854 lcp->lcp_bitmap[i] ^= (1U << bit);
1855 lcp->lcp_rotor = i;
1856 lcp->lcp_nfree--;
1857 l->l_lcpage = lcp;
1858 offset = (i << 5) + bit;
1859 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1860 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1861 mutex_exit(&lp->lp_lock);
1862
1863 KPREEMPT_DISABLE(l);
1864 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1865 KPREEMPT_ENABLE(l);
1866
1867 return 0;
1868 }
1869
1870 /*
1871 * Free an lwpctl structure back to the per-process list.
1872 */
1873 void
1874 lwp_ctl_free(lwp_t *l)
1875 {
1876 struct proc *p = l->l_proc;
1877 lcproc_t *lp;
1878 lcpage_t *lcp;
1879 u_int map, offset;
1880
1881 /* don't free a lwp context we borrowed for vfork */
1882 if (p->p_lflag & PL_PPWAIT) {
1883 l->l_lwpctl = NULL;
1884 return;
1885 }
1886
1887 lp = p->p_lwpctl;
1888 KASSERT(lp != NULL);
1889
1890 lcp = l->l_lcpage;
1891 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1892 KASSERT(offset < LWPCTL_PER_PAGE);
1893
1894 mutex_enter(&lp->lp_lock);
1895 lcp->lcp_nfree++;
1896 map = offset >> 5;
1897 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1898 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1899 lcp->lcp_rotor = map;
1900 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1901 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1902 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1903 }
1904 mutex_exit(&lp->lp_lock);
1905 }
1906
1907 /*
1908 * Process is exiting; tear down lwpctl state. This can only be safely
1909 * called by the last LWP in the process.
1910 */
1911 void
1912 lwp_ctl_exit(void)
1913 {
1914 lcpage_t *lcp, *next;
1915 lcproc_t *lp;
1916 proc_t *p;
1917 lwp_t *l;
1918
1919 l = curlwp;
1920 l->l_lwpctl = NULL;
1921 l->l_lcpage = NULL;
1922 p = l->l_proc;
1923 lp = p->p_lwpctl;
1924
1925 KASSERT(lp != NULL);
1926 KASSERT(p->p_nlwps == 1);
1927
1928 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1929 next = TAILQ_NEXT(lcp, lcp_chain);
1930 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1931 lcp->lcp_kaddr + PAGE_SIZE);
1932 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1933 }
1934
1935 if (lp->lp_uao != NULL) {
1936 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1937 lp->lp_uva + LWPCTL_UAREA_SZ);
1938 }
1939
1940 mutex_destroy(&lp->lp_lock);
1941 kmem_free(lp, sizeof(*lp));
1942 p->p_lwpctl = NULL;
1943 }
1944
1945 /*
1946 * Return the current LWP's "preemption counter". Used to detect
1947 * preemption across operations that can tolerate preemption without
1948 * crashing, but which may generate incorrect results if preempted.
1949 */
1950 uint64_t
1951 lwp_pctr(void)
1952 {
1953
1954 return curlwp->l_ncsw;
1955 }
1956
1957 /*
1958 * Set an LWP's private data pointer.
1959 */
1960 int
1961 lwp_setprivate(struct lwp *l, void *ptr)
1962 {
1963 int error = 0;
1964
1965 l->l_private = ptr;
1966 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1967 error = cpu_lwp_setprivate(l, ptr);
1968 #endif
1969 return error;
1970 }
1971
1972 #if defined(DDB)
1973 #include <machine/pcb.h>
1974
1975 void
1976 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1977 {
1978 lwp_t *l;
1979
1980 LIST_FOREACH(l, &alllwp, l_list) {
1981 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1982
1983 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1984 continue;
1985 }
1986 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1987 (void *)addr, (void *)stack,
1988 (size_t)(addr - stack), l);
1989 }
1990 }
1991 #endif /* defined(DDB) */
1992