kern_lwp.c revision 1.201 1 /* $NetBSD: kern_lwp.c,v 1.201 2019/05/17 03:34:26 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.201 2019/05/17 03:34:26 ozaki-r Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219
220 #define _LWP_API_PRIVATE
221
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/fstrans.h>
240 #include <sys/dtrace_bsd.h>
241 #include <sys/sdt.h>
242 #include <sys/xcall.h>
243 #include <sys/uidinfo.h>
244 #include <sys/sysctl.h>
245 #include <sys/psref.h>
246
247 #include <uvm/uvm_extern.h>
248 #include <uvm/uvm_object.h>
249
250 static pool_cache_t lwp_cache __read_mostly;
251 struct lwplist alllwp __cacheline_aligned;
252
253 static void lwp_dtor(void *, void *);
254
255 /* DTrace proc provider probes */
256 SDT_PROVIDER_DEFINE(proc);
257
258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
261
262 struct turnstile turnstile0;
263 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
264 #ifdef LWP0_CPU_INFO
265 .l_cpu = LWP0_CPU_INFO,
266 #endif
267 #ifdef LWP0_MD_INITIALIZER
268 .l_md = LWP0_MD_INITIALIZER,
269 #endif
270 .l_proc = &proc0,
271 .l_lid = 1,
272 .l_flag = LW_SYSTEM,
273 .l_stat = LSONPROC,
274 .l_ts = &turnstile0,
275 .l_syncobj = &sched_syncobj,
276 .l_refcnt = 1,
277 .l_priority = PRI_USER + NPRI_USER - 1,
278 .l_inheritedprio = -1,
279 .l_class = SCHED_OTHER,
280 .l_psid = PS_NONE,
281 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
282 .l_name = __UNCONST("swapper"),
283 .l_fd = &filedesc0,
284 };
285
286 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
287
288 /*
289 * sysctl helper routine for kern.maxlwp. Ensures that the new
290 * values are not too low or too high.
291 */
292 static int
293 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
294 {
295 int error, nmaxlwp;
296 struct sysctlnode node;
297
298 nmaxlwp = maxlwp;
299 node = *rnode;
300 node.sysctl_data = &nmaxlwp;
301 error = sysctl_lookup(SYSCTLFN_CALL(&node));
302 if (error || newp == NULL)
303 return error;
304
305 if (nmaxlwp < 0 || nmaxlwp >= 65536)
306 return EINVAL;
307 if (nmaxlwp > cpu_maxlwp())
308 return EINVAL;
309 maxlwp = nmaxlwp;
310
311 return 0;
312 }
313
314 static void
315 sysctl_kern_lwp_setup(void)
316 {
317 struct sysctllog *clog = NULL;
318
319 sysctl_createv(&clog, 0, NULL, NULL,
320 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
321 CTLTYPE_INT, "maxlwp",
322 SYSCTL_DESCR("Maximum number of simultaneous threads"),
323 sysctl_kern_maxlwp, 0, NULL, 0,
324 CTL_KERN, CTL_CREATE, CTL_EOL);
325 }
326
327 void
328 lwpinit(void)
329 {
330
331 LIST_INIT(&alllwp);
332 lwpinit_specificdata();
333 lwp_sys_init();
334 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
335 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
336
337 maxlwp = cpu_maxlwp();
338 sysctl_kern_lwp_setup();
339 }
340
341 void
342 lwp0_init(void)
343 {
344 struct lwp *l = &lwp0;
345
346 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
347 KASSERT(l->l_lid == proc0.p_nlwpid);
348
349 LIST_INSERT_HEAD(&alllwp, l, l_list);
350
351 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
352 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
353 cv_init(&l->l_sigcv, "sigwait");
354 cv_init(&l->l_waitcv, "vfork");
355
356 kauth_cred_hold(proc0.p_cred);
357 l->l_cred = proc0.p_cred;
358
359 kdtrace_thread_ctor(NULL, l);
360 lwp_initspecific(l);
361
362 SYSCALL_TIME_LWP_INIT(l);
363 }
364
365 static void
366 lwp_dtor(void *arg, void *obj)
367 {
368 lwp_t *l = obj;
369 uint64_t where;
370 (void)l;
371
372 /*
373 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
374 * calls will exit before memory of LWP is returned to the pool, where
375 * KVA of LWP structure might be freed and re-used for other purposes.
376 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
377 * callers, therefore cross-call to all CPUs will do the job. Also,
378 * the value of l->l_cpu must be still valid at this point.
379 */
380 KASSERT(l->l_cpu != NULL);
381 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
382 xc_wait(where);
383 }
384
385 /*
386 * Set an suspended.
387 *
388 * Must be called with p_lock held, and the LWP locked. Will unlock the
389 * LWP before return.
390 */
391 int
392 lwp_suspend(struct lwp *curl, struct lwp *t)
393 {
394 int error;
395
396 KASSERT(mutex_owned(t->l_proc->p_lock));
397 KASSERT(lwp_locked(t, NULL));
398
399 KASSERT(curl != t || curl->l_stat == LSONPROC);
400
401 /*
402 * If the current LWP has been told to exit, we must not suspend anyone
403 * else or deadlock could occur. We won't return to userspace.
404 */
405 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
406 lwp_unlock(t);
407 return (EDEADLK);
408 }
409
410 error = 0;
411
412 switch (t->l_stat) {
413 case LSRUN:
414 case LSONPROC:
415 t->l_flag |= LW_WSUSPEND;
416 lwp_need_userret(t);
417 lwp_unlock(t);
418 break;
419
420 case LSSLEEP:
421 t->l_flag |= LW_WSUSPEND;
422
423 /*
424 * Kick the LWP and try to get it to the kernel boundary
425 * so that it will release any locks that it holds.
426 * setrunnable() will release the lock.
427 */
428 if ((t->l_flag & LW_SINTR) != 0)
429 setrunnable(t);
430 else
431 lwp_unlock(t);
432 break;
433
434 case LSSUSPENDED:
435 lwp_unlock(t);
436 break;
437
438 case LSSTOP:
439 t->l_flag |= LW_WSUSPEND;
440 setrunnable(t);
441 break;
442
443 case LSIDL:
444 case LSZOMB:
445 error = EINTR; /* It's what Solaris does..... */
446 lwp_unlock(t);
447 break;
448 }
449
450 return (error);
451 }
452
453 /*
454 * Restart a suspended LWP.
455 *
456 * Must be called with p_lock held, and the LWP locked. Will unlock the
457 * LWP before return.
458 */
459 void
460 lwp_continue(struct lwp *l)
461 {
462
463 KASSERT(mutex_owned(l->l_proc->p_lock));
464 KASSERT(lwp_locked(l, NULL));
465
466 /* If rebooting or not suspended, then just bail out. */
467 if ((l->l_flag & LW_WREBOOT) != 0) {
468 lwp_unlock(l);
469 return;
470 }
471
472 l->l_flag &= ~LW_WSUSPEND;
473
474 if (l->l_stat != LSSUSPENDED) {
475 lwp_unlock(l);
476 return;
477 }
478
479 /* setrunnable() will release the lock. */
480 setrunnable(l);
481 }
482
483 /*
484 * Restart a stopped LWP.
485 *
486 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
487 * LWP before return.
488 */
489 void
490 lwp_unstop(struct lwp *l)
491 {
492 struct proc *p = l->l_proc;
493
494 KASSERT(mutex_owned(proc_lock));
495 KASSERT(mutex_owned(p->p_lock));
496
497 lwp_lock(l);
498
499 /* If not stopped, then just bail out. */
500 if (l->l_stat != LSSTOP) {
501 lwp_unlock(l);
502 return;
503 }
504
505 p->p_stat = SACTIVE;
506 p->p_sflag &= ~PS_STOPPING;
507
508 if (!p->p_waited)
509 p->p_pptr->p_nstopchild--;
510
511 if (l->l_wchan == NULL) {
512 /* setrunnable() will release the lock. */
513 setrunnable(l);
514 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
515 /* setrunnable() so we can receive the signal */
516 setrunnable(l);
517 } else {
518 l->l_stat = LSSLEEP;
519 p->p_nrlwps++;
520 lwp_unlock(l);
521 }
522 }
523
524 /*
525 * Wait for an LWP within the current process to exit. If 'lid' is
526 * non-zero, we are waiting for a specific LWP.
527 *
528 * Must be called with p->p_lock held.
529 */
530 int
531 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
532 {
533 const lwpid_t curlid = l->l_lid;
534 proc_t *p = l->l_proc;
535 lwp_t *l2;
536 int error;
537
538 KASSERT(mutex_owned(p->p_lock));
539
540 p->p_nlwpwait++;
541 l->l_waitingfor = lid;
542
543 for (;;) {
544 int nfound;
545
546 /*
547 * Avoid a race between exit1() and sigexit(): if the
548 * process is dumping core, then we need to bail out: call
549 * into lwp_userret() where we will be suspended until the
550 * deed is done.
551 */
552 if ((p->p_sflag & PS_WCORE) != 0) {
553 mutex_exit(p->p_lock);
554 lwp_userret(l);
555 KASSERT(false);
556 }
557
558 /*
559 * First off, drain any detached LWP that is waiting to be
560 * reaped.
561 */
562 while ((l2 = p->p_zomblwp) != NULL) {
563 p->p_zomblwp = NULL;
564 lwp_free(l2, false, false);/* releases proc mutex */
565 mutex_enter(p->p_lock);
566 }
567
568 /*
569 * Now look for an LWP to collect. If the whole process is
570 * exiting, count detached LWPs as eligible to be collected,
571 * but don't drain them here.
572 */
573 nfound = 0;
574 error = 0;
575 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
576 /*
577 * If a specific wait and the target is waiting on
578 * us, then avoid deadlock. This also traps LWPs
579 * that try to wait on themselves.
580 *
581 * Note that this does not handle more complicated
582 * cycles, like: t1 -> t2 -> t3 -> t1. The process
583 * can still be killed so it is not a major problem.
584 */
585 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
586 error = EDEADLK;
587 break;
588 }
589 if (l2 == l)
590 continue;
591 if ((l2->l_prflag & LPR_DETACHED) != 0) {
592 nfound += exiting;
593 continue;
594 }
595 if (lid != 0) {
596 if (l2->l_lid != lid)
597 continue;
598 /*
599 * Mark this LWP as the first waiter, if there
600 * is no other.
601 */
602 if (l2->l_waiter == 0)
603 l2->l_waiter = curlid;
604 } else if (l2->l_waiter != 0) {
605 /*
606 * It already has a waiter - so don't
607 * collect it. If the waiter doesn't
608 * grab it we'll get another chance
609 * later.
610 */
611 nfound++;
612 continue;
613 }
614 nfound++;
615
616 /* No need to lock the LWP in order to see LSZOMB. */
617 if (l2->l_stat != LSZOMB)
618 continue;
619
620 /*
621 * We're no longer waiting. Reset the "first waiter"
622 * pointer on the target, in case it was us.
623 */
624 l->l_waitingfor = 0;
625 l2->l_waiter = 0;
626 p->p_nlwpwait--;
627 if (departed)
628 *departed = l2->l_lid;
629 sched_lwp_collect(l2);
630
631 /* lwp_free() releases the proc lock. */
632 lwp_free(l2, false, false);
633 mutex_enter(p->p_lock);
634 return 0;
635 }
636
637 if (error != 0)
638 break;
639 if (nfound == 0) {
640 error = ESRCH;
641 break;
642 }
643
644 /*
645 * Note: since the lock will be dropped, need to restart on
646 * wakeup to run all LWPs again, e.g. there may be new LWPs.
647 */
648 if (exiting) {
649 KASSERT(p->p_nlwps > 1);
650 cv_wait(&p->p_lwpcv, p->p_lock);
651 error = EAGAIN;
652 break;
653 }
654
655 /*
656 * If all other LWPs are waiting for exits or suspends
657 * and the supply of zombies and potential zombies is
658 * exhausted, then we are about to deadlock.
659 *
660 * If the process is exiting (and this LWP is not the one
661 * that is coordinating the exit) then bail out now.
662 */
663 if ((p->p_sflag & PS_WEXIT) != 0 ||
664 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
665 error = EDEADLK;
666 break;
667 }
668
669 /*
670 * Sit around and wait for something to happen. We'll be
671 * awoken if any of the conditions examined change: if an
672 * LWP exits, is collected, or is detached.
673 */
674 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
675 break;
676 }
677
678 /*
679 * We didn't find any LWPs to collect, we may have received a
680 * signal, or some other condition has caused us to bail out.
681 *
682 * If waiting on a specific LWP, clear the waiters marker: some
683 * other LWP may want it. Then, kick all the remaining waiters
684 * so that they can re-check for zombies and for deadlock.
685 */
686 if (lid != 0) {
687 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
688 if (l2->l_lid == lid) {
689 if (l2->l_waiter == curlid)
690 l2->l_waiter = 0;
691 break;
692 }
693 }
694 }
695 p->p_nlwpwait--;
696 l->l_waitingfor = 0;
697 cv_broadcast(&p->p_lwpcv);
698
699 return error;
700 }
701
702 static lwpid_t
703 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
704 {
705 #define LID_SCAN (1u << 31)
706 lwp_t *scan, *free_before;
707 lwpid_t nxt_lid;
708
709 /*
710 * We want the first unused lid greater than or equal to
711 * try_lid (modulo 2^31).
712 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
713 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
714 * the outer test easier.
715 * This would be much easier if the list were sorted in
716 * increasing order.
717 * The list is kept sorted in decreasing order.
718 * This code is only used after a process has generated 2^31 lwp.
719 *
720 * Code assumes it can always find an id.
721 */
722
723 try_lid &= LID_SCAN - 1;
724 if (try_lid <= 1)
725 try_lid = 2;
726
727 free_before = NULL;
728 nxt_lid = LID_SCAN - 1;
729 LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
730 if (scan->l_lid != nxt_lid) {
731 /* There are available lid before this entry */
732 free_before = scan;
733 if (try_lid > scan->l_lid)
734 break;
735 }
736 if (try_lid == scan->l_lid) {
737 /* The ideal lid is busy, take a higher one */
738 if (free_before != NULL) {
739 try_lid = free_before->l_lid + 1;
740 break;
741 }
742 /* No higher ones, reuse low numbers */
743 try_lid = 2;
744 }
745
746 nxt_lid = scan->l_lid - 1;
747 if (LIST_NEXT(scan, l_sibling) == NULL) {
748 /* The value we have is lower than any existing lwp */
749 LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
750 return try_lid;
751 }
752 }
753
754 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
755 return try_lid;
756 }
757
758 /*
759 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
760 * The new LWP is created in state LSIDL and must be set running,
761 * suspended, or stopped by the caller.
762 */
763 int
764 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
765 void *stack, size_t stacksize, void (*func)(void *), void *arg,
766 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
767 const stack_t *sigstk)
768 {
769 struct lwp *l2, *isfree;
770 turnstile_t *ts;
771 lwpid_t lid;
772
773 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
774
775 /*
776 * Enforce limits, excluding the first lwp and kthreads.
777 */
778 if (p2->p_nlwps != 0 && p2 != &proc0) {
779 uid_t uid = kauth_cred_getuid(l1->l_cred);
780 int count = chglwpcnt(uid, 1);
781 if (__predict_false(count >
782 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
783 if (kauth_authorize_process(l1->l_cred,
784 KAUTH_PROCESS_RLIMIT, p2,
785 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
786 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
787 != 0) {
788 (void)chglwpcnt(uid, -1);
789 return EAGAIN;
790 }
791 }
792 }
793
794 /*
795 * First off, reap any detached LWP waiting to be collected.
796 * We can re-use its LWP structure and turnstile.
797 */
798 isfree = NULL;
799 if (p2->p_zomblwp != NULL) {
800 mutex_enter(p2->p_lock);
801 if ((isfree = p2->p_zomblwp) != NULL) {
802 p2->p_zomblwp = NULL;
803 lwp_free(isfree, true, false);/* releases proc mutex */
804 } else
805 mutex_exit(p2->p_lock);
806 }
807 if (isfree == NULL) {
808 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
809 memset(l2, 0, sizeof(*l2));
810 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
811 SLIST_INIT(&l2->l_pi_lenders);
812 } else {
813 l2 = isfree;
814 ts = l2->l_ts;
815 KASSERT(l2->l_inheritedprio == -1);
816 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
817 memset(l2, 0, sizeof(*l2));
818 l2->l_ts = ts;
819 }
820
821 l2->l_stat = LSIDL;
822 l2->l_proc = p2;
823 l2->l_refcnt = 1;
824 l2->l_class = sclass;
825
826 /*
827 * If vfork(), we want the LWP to run fast and on the same CPU
828 * as its parent, so that it can reuse the VM context and cache
829 * footprint on the local CPU.
830 */
831 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
832 l2->l_kpribase = PRI_KERNEL;
833 l2->l_priority = l1->l_priority;
834 l2->l_inheritedprio = -1;
835 l2->l_protectprio = -1;
836 l2->l_auxprio = -1;
837 l2->l_flag = 0;
838 l2->l_pflag = LP_MPSAFE;
839 TAILQ_INIT(&l2->l_ld_locks);
840 l2->l_psrefs = 0;
841
842 /*
843 * For vfork, borrow parent's lwpctl context if it exists.
844 * This also causes us to return via lwp_userret.
845 */
846 if (flags & LWP_VFORK && l1->l_lwpctl) {
847 l2->l_lwpctl = l1->l_lwpctl;
848 l2->l_flag |= LW_LWPCTL;
849 }
850
851 /*
852 * If not the first LWP in the process, grab a reference to the
853 * descriptor table.
854 */
855 l2->l_fd = p2->p_fd;
856 if (p2->p_nlwps != 0) {
857 KASSERT(l1->l_proc == p2);
858 fd_hold(l2);
859 } else {
860 KASSERT(l1->l_proc != p2);
861 }
862
863 if (p2->p_flag & PK_SYSTEM) {
864 /* Mark it as a system LWP. */
865 l2->l_flag |= LW_SYSTEM;
866 }
867
868 kpreempt_disable();
869 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
870 l2->l_cpu = l1->l_cpu;
871 kpreempt_enable();
872
873 kdtrace_thread_ctor(NULL, l2);
874 lwp_initspecific(l2);
875 sched_lwp_fork(l1, l2);
876 lwp_update_creds(l2);
877 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
878 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
879 cv_init(&l2->l_sigcv, "sigwait");
880 cv_init(&l2->l_waitcv, "vfork");
881 l2->l_syncobj = &sched_syncobj;
882 PSREF_DEBUG_INIT_LWP(l2);
883
884 if (rnewlwpp != NULL)
885 *rnewlwpp = l2;
886
887 /*
888 * PCU state needs to be saved before calling uvm_lwp_fork() so that
889 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
890 */
891 pcu_save_all(l1);
892
893 uvm_lwp_setuarea(l2, uaddr);
894 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
895
896 if ((flags & LWP_PIDLID) != 0) {
897 lid = proc_alloc_pid(p2);
898 l2->l_pflag |= LP_PIDLID;
899 } else {
900 lid = 0;
901 }
902
903 mutex_enter(p2->p_lock);
904
905 if ((flags & LWP_DETACHED) != 0) {
906 l2->l_prflag = LPR_DETACHED;
907 p2->p_ndlwps++;
908 } else
909 l2->l_prflag = 0;
910
911 l2->l_sigstk = *sigstk;
912 l2->l_sigmask = *sigmask;
913 TAILQ_INIT(&l2->l_sigpend.sp_info);
914 sigemptyset(&l2->l_sigpend.sp_set);
915
916 if (__predict_true(lid == 0)) {
917 /*
918 * XXX: l_lid are expected to be unique (for a process)
919 * if LWP_PIDLID is sometimes set this won't be true.
920 * Once 2^31 threads have been allocated we have to
921 * scan to ensure we allocate a unique value.
922 */
923 lid = ++p2->p_nlwpid;
924 if (__predict_false(lid & LID_SCAN)) {
925 lid = lwp_find_free_lid(lid, l2, p2);
926 p2->p_nlwpid = lid | LID_SCAN;
927 /* l2 as been inserted into p_lwps in order */
928 goto skip_insert;
929 }
930 p2->p_nlwpid = lid;
931 }
932 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
933 skip_insert:
934 l2->l_lid = lid;
935 p2->p_nlwps++;
936 p2->p_nrlwps++;
937
938 KASSERT(l2->l_affinity == NULL);
939
940 if ((p2->p_flag & PK_SYSTEM) == 0) {
941 /* Inherit the affinity mask. */
942 if (l1->l_affinity) {
943 /*
944 * Note that we hold the state lock while inheriting
945 * the affinity to avoid race with sched_setaffinity().
946 */
947 lwp_lock(l1);
948 if (l1->l_affinity) {
949 kcpuset_use(l1->l_affinity);
950 l2->l_affinity = l1->l_affinity;
951 }
952 lwp_unlock(l1);
953 }
954 lwp_lock(l2);
955 /* Inherit a processor-set */
956 l2->l_psid = l1->l_psid;
957 /* Look for a CPU to start */
958 l2->l_cpu = sched_takecpu(l2);
959 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
960 }
961 mutex_exit(p2->p_lock);
962
963 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
964
965 mutex_enter(proc_lock);
966 LIST_INSERT_HEAD(&alllwp, l2, l_list);
967 mutex_exit(proc_lock);
968
969 SYSCALL_TIME_LWP_INIT(l2);
970
971 if (p2->p_emul->e_lwp_fork)
972 (*p2->p_emul->e_lwp_fork)(l1, l2);
973
974 return (0);
975 }
976
977 /*
978 * Called by MD code when a new LWP begins execution. Must be called
979 * with the previous LWP locked (so at splsched), or if there is no
980 * previous LWP, at splsched.
981 */
982 void
983 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
984 {
985 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
986
987 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
988
989 KASSERT(kpreempt_disabled());
990 if (prev != NULL) {
991 /*
992 * Normalize the count of the spin-mutexes, it was
993 * increased in mi_switch(). Unmark the state of
994 * context switch - it is finished for previous LWP.
995 */
996 curcpu()->ci_mtx_count++;
997 membar_exit();
998 prev->l_ctxswtch = 0;
999 }
1000 KPREEMPT_DISABLE(new_lwp);
1001 if (__predict_true(new_lwp->l_proc->p_vmspace))
1002 pmap_activate(new_lwp);
1003 spl0();
1004
1005 /* Note trip through cpu_switchto(). */
1006 pserialize_switchpoint();
1007
1008 LOCKDEBUG_BARRIER(NULL, 0);
1009 KPREEMPT_ENABLE(new_lwp);
1010 if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1011 KERNEL_LOCK(1, new_lwp);
1012 }
1013 }
1014
1015 /*
1016 * Exit an LWP.
1017 */
1018 void
1019 lwp_exit(struct lwp *l)
1020 {
1021 struct proc *p = l->l_proc;
1022 struct lwp *l2;
1023 bool current;
1024
1025 current = (l == curlwp);
1026
1027 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1028 KASSERT(p == curproc);
1029
1030 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1031
1032 /*
1033 * Verify that we hold no locks other than the kernel lock.
1034 */
1035 LOCKDEBUG_BARRIER(&kernel_lock, 0);
1036
1037 /*
1038 * If we are the last live LWP in a process, we need to exit the
1039 * entire process. We do so with an exit status of zero, because
1040 * it's a "controlled" exit, and because that's what Solaris does.
1041 *
1042 * We are not quite a zombie yet, but for accounting purposes we
1043 * must increment the count of zombies here.
1044 *
1045 * Note: the last LWP's specificdata will be deleted here.
1046 */
1047 mutex_enter(p->p_lock);
1048 if (p->p_nlwps - p->p_nzlwps == 1) {
1049 KASSERT(current == true);
1050 KASSERT(p != &proc0);
1051 /* XXXSMP kernel_lock not held */
1052 exit1(l, 0, 0);
1053 /* NOTREACHED */
1054 }
1055 p->p_nzlwps++;
1056 mutex_exit(p->p_lock);
1057
1058 if (p->p_emul->e_lwp_exit)
1059 (*p->p_emul->e_lwp_exit)(l);
1060
1061 /* Drop filedesc reference. */
1062 fd_free();
1063
1064 /* Release fstrans private data. */
1065 fstrans_lwp_dtor(l);
1066
1067 /* Delete the specificdata while it's still safe to sleep. */
1068 lwp_finispecific(l);
1069
1070 /*
1071 * Release our cached credentials.
1072 */
1073 kauth_cred_free(l->l_cred);
1074 callout_destroy(&l->l_timeout_ch);
1075
1076 /*
1077 * If traced, report LWP exit event to the debugger.
1078 *
1079 * Remove the LWP from the global list.
1080 * Free its LID from the PID namespace if needed.
1081 */
1082 mutex_enter(proc_lock);
1083
1084 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1085 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1086 mutex_enter(p->p_lock);
1087 p->p_lwp_exited = l->l_lid;
1088 eventswitch(TRAP_LWP);
1089 mutex_enter(proc_lock);
1090 }
1091
1092 LIST_REMOVE(l, l_list);
1093 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1094 proc_free_pid(l->l_lid);
1095 }
1096 mutex_exit(proc_lock);
1097
1098 /*
1099 * Get rid of all references to the LWP that others (e.g. procfs)
1100 * may have, and mark the LWP as a zombie. If the LWP is detached,
1101 * mark it waiting for collection in the proc structure. Note that
1102 * before we can do that, we need to free any other dead, deatched
1103 * LWP waiting to meet its maker.
1104 */
1105 mutex_enter(p->p_lock);
1106 lwp_drainrefs(l);
1107
1108 if ((l->l_prflag & LPR_DETACHED) != 0) {
1109 while ((l2 = p->p_zomblwp) != NULL) {
1110 p->p_zomblwp = NULL;
1111 lwp_free(l2, false, false);/* releases proc mutex */
1112 mutex_enter(p->p_lock);
1113 l->l_refcnt++;
1114 lwp_drainrefs(l);
1115 }
1116 p->p_zomblwp = l;
1117 }
1118
1119 /*
1120 * If we find a pending signal for the process and we have been
1121 * asked to check for signals, then we lose: arrange to have
1122 * all other LWPs in the process check for signals.
1123 */
1124 if ((l->l_flag & LW_PENDSIG) != 0 &&
1125 firstsig(&p->p_sigpend.sp_set) != 0) {
1126 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1127 lwp_lock(l2);
1128 l2->l_flag |= LW_PENDSIG;
1129 lwp_unlock(l2);
1130 }
1131 }
1132
1133 /*
1134 * Release any PCU resources before becoming a zombie.
1135 */
1136 pcu_discard_all(l);
1137
1138 lwp_lock(l);
1139 l->l_stat = LSZOMB;
1140 if (l->l_name != NULL) {
1141 strcpy(l->l_name, "(zombie)");
1142 }
1143 lwp_unlock(l);
1144 p->p_nrlwps--;
1145 cv_broadcast(&p->p_lwpcv);
1146 if (l->l_lwpctl != NULL)
1147 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1148 mutex_exit(p->p_lock);
1149
1150 /*
1151 * We can no longer block. At this point, lwp_free() may already
1152 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1153 *
1154 * Free MD LWP resources.
1155 */
1156 cpu_lwp_free(l, 0);
1157
1158 if (current) {
1159 pmap_deactivate(l);
1160
1161 /*
1162 * Release the kernel lock, and switch away into
1163 * oblivion.
1164 */
1165 #ifdef notyet
1166 /* XXXSMP hold in lwp_userret() */
1167 KERNEL_UNLOCK_LAST(l);
1168 #else
1169 KERNEL_UNLOCK_ALL(l, NULL);
1170 #endif
1171 lwp_exit_switchaway(l);
1172 }
1173 }
1174
1175 /*
1176 * Free a dead LWP's remaining resources.
1177 *
1178 * XXXLWP limits.
1179 */
1180 void
1181 lwp_free(struct lwp *l, bool recycle, bool last)
1182 {
1183 struct proc *p = l->l_proc;
1184 struct rusage *ru;
1185 ksiginfoq_t kq;
1186
1187 KASSERT(l != curlwp);
1188 KASSERT(last || mutex_owned(p->p_lock));
1189
1190 /*
1191 * We use the process credentials instead of the lwp credentials here
1192 * because the lwp credentials maybe cached (just after a setuid call)
1193 * and we don't want pay for syncing, since the lwp is going away
1194 * anyway
1195 */
1196 if (p != &proc0 && p->p_nlwps != 1)
1197 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1198 /*
1199 * If this was not the last LWP in the process, then adjust
1200 * counters and unlock.
1201 */
1202 if (!last) {
1203 /*
1204 * Add the LWP's run time to the process' base value.
1205 * This needs to co-incide with coming off p_lwps.
1206 */
1207 bintime_add(&p->p_rtime, &l->l_rtime);
1208 p->p_pctcpu += l->l_pctcpu;
1209 ru = &p->p_stats->p_ru;
1210 ruadd(ru, &l->l_ru);
1211 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1212 ru->ru_nivcsw += l->l_nivcsw;
1213 LIST_REMOVE(l, l_sibling);
1214 p->p_nlwps--;
1215 p->p_nzlwps--;
1216 if ((l->l_prflag & LPR_DETACHED) != 0)
1217 p->p_ndlwps--;
1218
1219 /*
1220 * Have any LWPs sleeping in lwp_wait() recheck for
1221 * deadlock.
1222 */
1223 cv_broadcast(&p->p_lwpcv);
1224 mutex_exit(p->p_lock);
1225 }
1226
1227 #ifdef MULTIPROCESSOR
1228 /*
1229 * In the unlikely event that the LWP is still on the CPU,
1230 * then spin until it has switched away. We need to release
1231 * all locks to avoid deadlock against interrupt handlers on
1232 * the target CPU.
1233 */
1234 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1235 int count;
1236 (void)count; /* XXXgcc */
1237 KERNEL_UNLOCK_ALL(curlwp, &count);
1238 while ((l->l_pflag & LP_RUNNING) != 0 ||
1239 l->l_cpu->ci_curlwp == l)
1240 SPINLOCK_BACKOFF_HOOK;
1241 KERNEL_LOCK(count, curlwp);
1242 }
1243 #endif
1244
1245 /*
1246 * Destroy the LWP's remaining signal information.
1247 */
1248 ksiginfo_queue_init(&kq);
1249 sigclear(&l->l_sigpend, NULL, &kq);
1250 ksiginfo_queue_drain(&kq);
1251 cv_destroy(&l->l_sigcv);
1252 cv_destroy(&l->l_waitcv);
1253
1254 /*
1255 * Free lwpctl structure and affinity.
1256 */
1257 if (l->l_lwpctl) {
1258 lwp_ctl_free(l);
1259 }
1260 if (l->l_affinity) {
1261 kcpuset_unuse(l->l_affinity, NULL);
1262 l->l_affinity = NULL;
1263 }
1264
1265 /*
1266 * Free the LWP's turnstile and the LWP structure itself unless the
1267 * caller wants to recycle them. Also, free the scheduler specific
1268 * data.
1269 *
1270 * We can't return turnstile0 to the pool (it didn't come from it),
1271 * so if it comes up just drop it quietly and move on.
1272 *
1273 * We don't recycle the VM resources at this time.
1274 */
1275
1276 if (!recycle && l->l_ts != &turnstile0)
1277 pool_cache_put(turnstile_cache, l->l_ts);
1278 if (l->l_name != NULL)
1279 kmem_free(l->l_name, MAXCOMLEN);
1280
1281 cpu_lwp_free2(l);
1282 uvm_lwp_exit(l);
1283
1284 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1285 KASSERT(l->l_inheritedprio == -1);
1286 KASSERT(l->l_blcnt == 0);
1287 kdtrace_thread_dtor(NULL, l);
1288 if (!recycle)
1289 pool_cache_put(lwp_cache, l);
1290 }
1291
1292 /*
1293 * Migrate the LWP to the another CPU. Unlocks the LWP.
1294 */
1295 void
1296 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1297 {
1298 struct schedstate_percpu *tspc;
1299 int lstat = l->l_stat;
1300
1301 KASSERT(lwp_locked(l, NULL));
1302 KASSERT(tci != NULL);
1303
1304 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1305 if ((l->l_pflag & LP_RUNNING) != 0) {
1306 lstat = LSONPROC;
1307 }
1308
1309 /*
1310 * The destination CPU could be changed while previous migration
1311 * was not finished.
1312 */
1313 if (l->l_target_cpu != NULL) {
1314 l->l_target_cpu = tci;
1315 lwp_unlock(l);
1316 return;
1317 }
1318
1319 /* Nothing to do if trying to migrate to the same CPU */
1320 if (l->l_cpu == tci) {
1321 lwp_unlock(l);
1322 return;
1323 }
1324
1325 KASSERT(l->l_target_cpu == NULL);
1326 tspc = &tci->ci_schedstate;
1327 switch (lstat) {
1328 case LSRUN:
1329 l->l_target_cpu = tci;
1330 break;
1331 case LSIDL:
1332 l->l_cpu = tci;
1333 lwp_unlock_to(l, tspc->spc_mutex);
1334 return;
1335 case LSSLEEP:
1336 l->l_cpu = tci;
1337 break;
1338 case LSSTOP:
1339 case LSSUSPENDED:
1340 l->l_cpu = tci;
1341 if (l->l_wchan == NULL) {
1342 lwp_unlock_to(l, tspc->spc_lwplock);
1343 return;
1344 }
1345 break;
1346 case LSONPROC:
1347 l->l_target_cpu = tci;
1348 spc_lock(l->l_cpu);
1349 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1350 spc_unlock(l->l_cpu);
1351 break;
1352 }
1353 lwp_unlock(l);
1354 }
1355
1356 /*
1357 * Find the LWP in the process. Arguments may be zero, in such case,
1358 * the calling process and first LWP in the list will be used.
1359 * On success - returns proc locked.
1360 */
1361 struct lwp *
1362 lwp_find2(pid_t pid, lwpid_t lid)
1363 {
1364 proc_t *p;
1365 lwp_t *l;
1366
1367 /* Find the process. */
1368 if (pid != 0) {
1369 mutex_enter(proc_lock);
1370 p = proc_find(pid);
1371 if (p == NULL) {
1372 mutex_exit(proc_lock);
1373 return NULL;
1374 }
1375 mutex_enter(p->p_lock);
1376 mutex_exit(proc_lock);
1377 } else {
1378 p = curlwp->l_proc;
1379 mutex_enter(p->p_lock);
1380 }
1381 /* Find the thread. */
1382 if (lid != 0) {
1383 l = lwp_find(p, lid);
1384 } else {
1385 l = LIST_FIRST(&p->p_lwps);
1386 }
1387 if (l == NULL) {
1388 mutex_exit(p->p_lock);
1389 }
1390 return l;
1391 }
1392
1393 /*
1394 * Look up a live LWP within the specified process.
1395 *
1396 * Must be called with p->p_lock held.
1397 */
1398 struct lwp *
1399 lwp_find(struct proc *p, lwpid_t id)
1400 {
1401 struct lwp *l;
1402
1403 KASSERT(mutex_owned(p->p_lock));
1404
1405 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1406 if (l->l_lid == id)
1407 break;
1408 }
1409
1410 /*
1411 * No need to lock - all of these conditions will
1412 * be visible with the process level mutex held.
1413 */
1414 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1415 l = NULL;
1416
1417 return l;
1418 }
1419
1420 /*
1421 * Update an LWP's cached credentials to mirror the process' master copy.
1422 *
1423 * This happens early in the syscall path, on user trap, and on LWP
1424 * creation. A long-running LWP can also voluntarily choose to update
1425 * its credentials by calling this routine. This may be called from
1426 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1427 */
1428 void
1429 lwp_update_creds(struct lwp *l)
1430 {
1431 kauth_cred_t oc;
1432 struct proc *p;
1433
1434 p = l->l_proc;
1435 oc = l->l_cred;
1436
1437 mutex_enter(p->p_lock);
1438 kauth_cred_hold(p->p_cred);
1439 l->l_cred = p->p_cred;
1440 l->l_prflag &= ~LPR_CRMOD;
1441 mutex_exit(p->p_lock);
1442 if (oc != NULL)
1443 kauth_cred_free(oc);
1444 }
1445
1446 /*
1447 * Verify that an LWP is locked, and optionally verify that the lock matches
1448 * one we specify.
1449 */
1450 int
1451 lwp_locked(struct lwp *l, kmutex_t *mtx)
1452 {
1453 kmutex_t *cur = l->l_mutex;
1454
1455 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1456 }
1457
1458 /*
1459 * Lend a new mutex to an LWP. The old mutex must be held.
1460 */
1461 void
1462 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1463 {
1464
1465 KASSERT(mutex_owned(l->l_mutex));
1466
1467 membar_exit();
1468 l->l_mutex = mtx;
1469 }
1470
1471 /*
1472 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1473 * must be held.
1474 */
1475 void
1476 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1477 {
1478 kmutex_t *old;
1479
1480 KASSERT(lwp_locked(l, NULL));
1481
1482 old = l->l_mutex;
1483 membar_exit();
1484 l->l_mutex = mtx;
1485 mutex_spin_exit(old);
1486 }
1487
1488 int
1489 lwp_trylock(struct lwp *l)
1490 {
1491 kmutex_t *old;
1492
1493 for (;;) {
1494 if (!mutex_tryenter(old = l->l_mutex))
1495 return 0;
1496 if (__predict_true(l->l_mutex == old))
1497 return 1;
1498 mutex_spin_exit(old);
1499 }
1500 }
1501
1502 void
1503 lwp_unsleep(lwp_t *l, bool cleanup)
1504 {
1505
1506 KASSERT(mutex_owned(l->l_mutex));
1507 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1508 }
1509
1510 /*
1511 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1512 * set.
1513 */
1514 void
1515 lwp_userret(struct lwp *l)
1516 {
1517 struct proc *p;
1518 int sig;
1519
1520 KASSERT(l == curlwp);
1521 KASSERT(l->l_stat == LSONPROC);
1522 p = l->l_proc;
1523
1524 #ifndef __HAVE_FAST_SOFTINTS
1525 /* Run pending soft interrupts. */
1526 if (l->l_cpu->ci_data.cpu_softints != 0)
1527 softint_overlay();
1528 #endif
1529
1530 /*
1531 * It is safe to do this read unlocked on a MP system..
1532 */
1533 while ((l->l_flag & LW_USERRET) != 0) {
1534 /*
1535 * Process pending signals first, unless the process
1536 * is dumping core or exiting, where we will instead
1537 * enter the LW_WSUSPEND case below.
1538 */
1539 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1540 LW_PENDSIG) {
1541 mutex_enter(p->p_lock);
1542 while ((sig = issignal(l)) != 0)
1543 postsig(sig);
1544 mutex_exit(p->p_lock);
1545 }
1546
1547 /*
1548 * Core-dump or suspend pending.
1549 *
1550 * In case of core dump, suspend ourselves, so that the kernel
1551 * stack and therefore the userland registers saved in the
1552 * trapframe are around for coredump() to write them out.
1553 * We also need to save any PCU resources that we have so that
1554 * they accessible for coredump(). We issue a wakeup on
1555 * p->p_lwpcv so that sigexit() will write the core file out
1556 * once all other LWPs are suspended.
1557 */
1558 if ((l->l_flag & LW_WSUSPEND) != 0) {
1559 pcu_save_all(l);
1560 mutex_enter(p->p_lock);
1561 p->p_nrlwps--;
1562 cv_broadcast(&p->p_lwpcv);
1563 lwp_lock(l);
1564 l->l_stat = LSSUSPENDED;
1565 lwp_unlock(l);
1566 mutex_exit(p->p_lock);
1567 lwp_lock(l);
1568 mi_switch(l);
1569 }
1570
1571 /* Process is exiting. */
1572 if ((l->l_flag & LW_WEXIT) != 0) {
1573 lwp_exit(l);
1574 KASSERT(0);
1575 /* NOTREACHED */
1576 }
1577
1578 /* update lwpctl processor (for vfork child_return) */
1579 if (l->l_flag & LW_LWPCTL) {
1580 lwp_lock(l);
1581 KASSERT(kpreempt_disabled());
1582 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1583 l->l_lwpctl->lc_pctr++;
1584 l->l_flag &= ~LW_LWPCTL;
1585 lwp_unlock(l);
1586 }
1587 }
1588 }
1589
1590 /*
1591 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1592 */
1593 void
1594 lwp_need_userret(struct lwp *l)
1595 {
1596 KASSERT(lwp_locked(l, NULL));
1597
1598 /*
1599 * Since the tests in lwp_userret() are done unlocked, make sure
1600 * that the condition will be seen before forcing the LWP to enter
1601 * kernel mode.
1602 */
1603 membar_producer();
1604 cpu_signotify(l);
1605 }
1606
1607 /*
1608 * Add one reference to an LWP. This will prevent the LWP from
1609 * exiting, thus keep the lwp structure and PCB around to inspect.
1610 */
1611 void
1612 lwp_addref(struct lwp *l)
1613 {
1614
1615 KASSERT(mutex_owned(l->l_proc->p_lock));
1616 KASSERT(l->l_stat != LSZOMB);
1617 KASSERT(l->l_refcnt != 0);
1618
1619 l->l_refcnt++;
1620 }
1621
1622 /*
1623 * Remove one reference to an LWP. If this is the last reference,
1624 * then we must finalize the LWP's death.
1625 */
1626 void
1627 lwp_delref(struct lwp *l)
1628 {
1629 struct proc *p = l->l_proc;
1630
1631 mutex_enter(p->p_lock);
1632 lwp_delref2(l);
1633 mutex_exit(p->p_lock);
1634 }
1635
1636 /*
1637 * Remove one reference to an LWP. If this is the last reference,
1638 * then we must finalize the LWP's death. The proc mutex is held
1639 * on entry.
1640 */
1641 void
1642 lwp_delref2(struct lwp *l)
1643 {
1644 struct proc *p = l->l_proc;
1645
1646 KASSERT(mutex_owned(p->p_lock));
1647 KASSERT(l->l_stat != LSZOMB);
1648 KASSERT(l->l_refcnt > 0);
1649 if (--l->l_refcnt == 0)
1650 cv_broadcast(&p->p_lwpcv);
1651 }
1652
1653 /*
1654 * Drain all references to the current LWP.
1655 */
1656 void
1657 lwp_drainrefs(struct lwp *l)
1658 {
1659 struct proc *p = l->l_proc;
1660
1661 KASSERT(mutex_owned(p->p_lock));
1662 KASSERT(l->l_refcnt != 0);
1663
1664 l->l_refcnt--;
1665 while (l->l_refcnt != 0)
1666 cv_wait(&p->p_lwpcv, p->p_lock);
1667 }
1668
1669 /*
1670 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1671 * be held.
1672 */
1673 bool
1674 lwp_alive(lwp_t *l)
1675 {
1676
1677 KASSERT(mutex_owned(l->l_proc->p_lock));
1678
1679 switch (l->l_stat) {
1680 case LSSLEEP:
1681 case LSRUN:
1682 case LSONPROC:
1683 case LSSTOP:
1684 case LSSUSPENDED:
1685 return true;
1686 default:
1687 return false;
1688 }
1689 }
1690
1691 /*
1692 * Return first live LWP in the process.
1693 */
1694 lwp_t *
1695 lwp_find_first(proc_t *p)
1696 {
1697 lwp_t *l;
1698
1699 KASSERT(mutex_owned(p->p_lock));
1700
1701 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1702 if (lwp_alive(l)) {
1703 return l;
1704 }
1705 }
1706
1707 return NULL;
1708 }
1709
1710 /*
1711 * Allocate a new lwpctl structure for a user LWP.
1712 */
1713 int
1714 lwp_ctl_alloc(vaddr_t *uaddr)
1715 {
1716 lcproc_t *lp;
1717 u_int bit, i, offset;
1718 struct uvm_object *uao;
1719 int error;
1720 lcpage_t *lcp;
1721 proc_t *p;
1722 lwp_t *l;
1723
1724 l = curlwp;
1725 p = l->l_proc;
1726
1727 /* don't allow a vforked process to create lwp ctls */
1728 if (p->p_lflag & PL_PPWAIT)
1729 return EBUSY;
1730
1731 if (l->l_lcpage != NULL) {
1732 lcp = l->l_lcpage;
1733 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1734 return 0;
1735 }
1736
1737 /* First time around, allocate header structure for the process. */
1738 if ((lp = p->p_lwpctl) == NULL) {
1739 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1740 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1741 lp->lp_uao = NULL;
1742 TAILQ_INIT(&lp->lp_pages);
1743 mutex_enter(p->p_lock);
1744 if (p->p_lwpctl == NULL) {
1745 p->p_lwpctl = lp;
1746 mutex_exit(p->p_lock);
1747 } else {
1748 mutex_exit(p->p_lock);
1749 mutex_destroy(&lp->lp_lock);
1750 kmem_free(lp, sizeof(*lp));
1751 lp = p->p_lwpctl;
1752 }
1753 }
1754
1755 /*
1756 * Set up an anonymous memory region to hold the shared pages.
1757 * Map them into the process' address space. The user vmspace
1758 * gets the first reference on the UAO.
1759 */
1760 mutex_enter(&lp->lp_lock);
1761 if (lp->lp_uao == NULL) {
1762 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1763 lp->lp_cur = 0;
1764 lp->lp_max = LWPCTL_UAREA_SZ;
1765 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1766 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1767 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1768 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1769 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1770 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1771 if (error != 0) {
1772 uao_detach(lp->lp_uao);
1773 lp->lp_uao = NULL;
1774 mutex_exit(&lp->lp_lock);
1775 return error;
1776 }
1777 }
1778
1779 /* Get a free block and allocate for this LWP. */
1780 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1781 if (lcp->lcp_nfree != 0)
1782 break;
1783 }
1784 if (lcp == NULL) {
1785 /* Nothing available - try to set up a free page. */
1786 if (lp->lp_cur == lp->lp_max) {
1787 mutex_exit(&lp->lp_lock);
1788 return ENOMEM;
1789 }
1790 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1791
1792 /*
1793 * Wire the next page down in kernel space. Since this
1794 * is a new mapping, we must add a reference.
1795 */
1796 uao = lp->lp_uao;
1797 (*uao->pgops->pgo_reference)(uao);
1798 lcp->lcp_kaddr = vm_map_min(kernel_map);
1799 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1800 uao, lp->lp_cur, PAGE_SIZE,
1801 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1802 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1803 if (error != 0) {
1804 mutex_exit(&lp->lp_lock);
1805 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1806 (*uao->pgops->pgo_detach)(uao);
1807 return error;
1808 }
1809 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1810 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1811 if (error != 0) {
1812 mutex_exit(&lp->lp_lock);
1813 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1814 lcp->lcp_kaddr + PAGE_SIZE);
1815 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1816 return error;
1817 }
1818 /* Prepare the page descriptor and link into the list. */
1819 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1820 lp->lp_cur += PAGE_SIZE;
1821 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1822 lcp->lcp_rotor = 0;
1823 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1824 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1825 }
1826 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1827 if (++i >= LWPCTL_BITMAP_ENTRIES)
1828 i = 0;
1829 }
1830 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1831 lcp->lcp_bitmap[i] ^= (1U << bit);
1832 lcp->lcp_rotor = i;
1833 lcp->lcp_nfree--;
1834 l->l_lcpage = lcp;
1835 offset = (i << 5) + bit;
1836 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1837 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1838 mutex_exit(&lp->lp_lock);
1839
1840 KPREEMPT_DISABLE(l);
1841 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1842 KPREEMPT_ENABLE(l);
1843
1844 return 0;
1845 }
1846
1847 /*
1848 * Free an lwpctl structure back to the per-process list.
1849 */
1850 void
1851 lwp_ctl_free(lwp_t *l)
1852 {
1853 struct proc *p = l->l_proc;
1854 lcproc_t *lp;
1855 lcpage_t *lcp;
1856 u_int map, offset;
1857
1858 /* don't free a lwp context we borrowed for vfork */
1859 if (p->p_lflag & PL_PPWAIT) {
1860 l->l_lwpctl = NULL;
1861 return;
1862 }
1863
1864 lp = p->p_lwpctl;
1865 KASSERT(lp != NULL);
1866
1867 lcp = l->l_lcpage;
1868 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1869 KASSERT(offset < LWPCTL_PER_PAGE);
1870
1871 mutex_enter(&lp->lp_lock);
1872 lcp->lcp_nfree++;
1873 map = offset >> 5;
1874 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1875 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1876 lcp->lcp_rotor = map;
1877 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1878 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1879 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1880 }
1881 mutex_exit(&lp->lp_lock);
1882 }
1883
1884 /*
1885 * Process is exiting; tear down lwpctl state. This can only be safely
1886 * called by the last LWP in the process.
1887 */
1888 void
1889 lwp_ctl_exit(void)
1890 {
1891 lcpage_t *lcp, *next;
1892 lcproc_t *lp;
1893 proc_t *p;
1894 lwp_t *l;
1895
1896 l = curlwp;
1897 l->l_lwpctl = NULL;
1898 l->l_lcpage = NULL;
1899 p = l->l_proc;
1900 lp = p->p_lwpctl;
1901
1902 KASSERT(lp != NULL);
1903 KASSERT(p->p_nlwps == 1);
1904
1905 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1906 next = TAILQ_NEXT(lcp, lcp_chain);
1907 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1908 lcp->lcp_kaddr + PAGE_SIZE);
1909 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1910 }
1911
1912 if (lp->lp_uao != NULL) {
1913 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1914 lp->lp_uva + LWPCTL_UAREA_SZ);
1915 }
1916
1917 mutex_destroy(&lp->lp_lock);
1918 kmem_free(lp, sizeof(*lp));
1919 p->p_lwpctl = NULL;
1920 }
1921
1922 /*
1923 * Return the current LWP's "preemption counter". Used to detect
1924 * preemption across operations that can tolerate preemption without
1925 * crashing, but which may generate incorrect results if preempted.
1926 */
1927 uint64_t
1928 lwp_pctr(void)
1929 {
1930
1931 return curlwp->l_ncsw;
1932 }
1933
1934 /*
1935 * Set an LWP's private data pointer.
1936 */
1937 int
1938 lwp_setprivate(struct lwp *l, void *ptr)
1939 {
1940 int error = 0;
1941
1942 l->l_private = ptr;
1943 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1944 error = cpu_lwp_setprivate(l, ptr);
1945 #endif
1946 return error;
1947 }
1948
1949 #if defined(DDB)
1950 #include <machine/pcb.h>
1951
1952 void
1953 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1954 {
1955 lwp_t *l;
1956
1957 LIST_FOREACH(l, &alllwp, l_list) {
1958 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1959
1960 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1961 continue;
1962 }
1963 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1964 (void *)addr, (void *)stack,
1965 (size_t)(addr - stack), l);
1966 }
1967 }
1968 #endif /* defined(DDB) */
1969