kern_lwp.c revision 1.210 1 /* $NetBSD: kern_lwp.c,v 1.210 2019/11/21 18:22:05 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSONPROC, LSZOMB:
165 *
166 * Always covered by spc_lwplock, which protects running LWPs.
167 * This is a per-CPU lock and matches lwp::l_cpu.
168 *
169 * LSIDL, LSRUN:
170 *
171 * Always covered by spc_mutex, which protects the run queues.
172 * This is a per-CPU lock and matches lwp::l_cpu.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a lock associated with the sleep queue that the
177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue lock. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the lock is spc_lwplock.
185 *
186 * The lock order is as follows:
187 *
188 * spc::spc_lwplock ->
189 * sleeptab::st_mutex ->
190 * tschain_t::tc_mutex ->
191 * spc::spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above. See kern_softint.c.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.210 2019/11/21 18:22:05 ad Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219
220 #define _LWP_API_PRIVATE
221
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/fstrans.h>
240 #include <sys/dtrace_bsd.h>
241 #include <sys/sdt.h>
242 #include <sys/ptrace.h>
243 #include <sys/xcall.h>
244 #include <sys/uidinfo.h>
245 #include <sys/sysctl.h>
246 #include <sys/psref.h>
247 #include <sys/msan.h>
248
249 #include <uvm/uvm_extern.h>
250 #include <uvm/uvm_object.h>
251
252 static pool_cache_t lwp_cache __read_mostly;
253 struct lwplist alllwp __cacheline_aligned;
254
255 static void lwp_dtor(void *, void *);
256
257 /* DTrace proc provider probes */
258 SDT_PROVIDER_DEFINE(proc);
259
260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
261 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
262 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
263
264 struct turnstile turnstile0;
265 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
266 #ifdef LWP0_CPU_INFO
267 .l_cpu = LWP0_CPU_INFO,
268 #endif
269 #ifdef LWP0_MD_INITIALIZER
270 .l_md = LWP0_MD_INITIALIZER,
271 #endif
272 .l_proc = &proc0,
273 .l_lid = 1,
274 .l_flag = LW_SYSTEM,
275 .l_stat = LSONPROC,
276 .l_ts = &turnstile0,
277 .l_syncobj = &sched_syncobj,
278 .l_refcnt = 1,
279 .l_priority = PRI_USER + NPRI_USER - 1,
280 .l_inheritedprio = -1,
281 .l_class = SCHED_OTHER,
282 .l_psid = PS_NONE,
283 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
284 .l_name = __UNCONST("swapper"),
285 .l_fd = &filedesc0,
286 };
287
288 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
289
290 /*
291 * sysctl helper routine for kern.maxlwp. Ensures that the new
292 * values are not too low or too high.
293 */
294 static int
295 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
296 {
297 int error, nmaxlwp;
298 struct sysctlnode node;
299
300 nmaxlwp = maxlwp;
301 node = *rnode;
302 node.sysctl_data = &nmaxlwp;
303 error = sysctl_lookup(SYSCTLFN_CALL(&node));
304 if (error || newp == NULL)
305 return error;
306
307 if (nmaxlwp < 0 || nmaxlwp >= 65536)
308 return EINVAL;
309 if (nmaxlwp > cpu_maxlwp())
310 return EINVAL;
311 maxlwp = nmaxlwp;
312
313 return 0;
314 }
315
316 static void
317 sysctl_kern_lwp_setup(void)
318 {
319 struct sysctllog *clog = NULL;
320
321 sysctl_createv(&clog, 0, NULL, NULL,
322 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
323 CTLTYPE_INT, "maxlwp",
324 SYSCTL_DESCR("Maximum number of simultaneous threads"),
325 sysctl_kern_maxlwp, 0, NULL, 0,
326 CTL_KERN, CTL_CREATE, CTL_EOL);
327 }
328
329 void
330 lwpinit(void)
331 {
332
333 LIST_INIT(&alllwp);
334 lwpinit_specificdata();
335 lwp_sys_init();
336 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
337 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
338
339 maxlwp = cpu_maxlwp();
340 sysctl_kern_lwp_setup();
341 }
342
343 void
344 lwp0_init(void)
345 {
346 struct lwp *l = &lwp0;
347
348 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
349 KASSERT(l->l_lid == proc0.p_nlwpid);
350
351 LIST_INSERT_HEAD(&alllwp, l, l_list);
352
353 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
354 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
355 cv_init(&l->l_sigcv, "sigwait");
356 cv_init(&l->l_waitcv, "vfork");
357
358 kauth_cred_hold(proc0.p_cred);
359 l->l_cred = proc0.p_cred;
360
361 kdtrace_thread_ctor(NULL, l);
362 lwp_initspecific(l);
363
364 SYSCALL_TIME_LWP_INIT(l);
365 }
366
367 static void
368 lwp_dtor(void *arg, void *obj)
369 {
370 lwp_t *l = obj;
371 (void)l;
372
373 /*
374 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
375 * calls will exit before memory of LWP is returned to the pool, where
376 * KVA of LWP structure might be freed and re-used for other purposes.
377 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
378 * callers, therefore cross-call to all CPUs will do the job. Also,
379 * the value of l->l_cpu must be still valid at this point.
380 */
381 KASSERT(l->l_cpu != NULL);
382 xc_barrier(0);
383 }
384
385 /*
386 * Set an suspended.
387 *
388 * Must be called with p_lock held, and the LWP locked. Will unlock the
389 * LWP before return.
390 */
391 int
392 lwp_suspend(struct lwp *curl, struct lwp *t)
393 {
394 int error;
395
396 KASSERT(mutex_owned(t->l_proc->p_lock));
397 KASSERT(lwp_locked(t, NULL));
398
399 KASSERT(curl != t || curl->l_stat == LSONPROC);
400
401 /*
402 * If the current LWP has been told to exit, we must not suspend anyone
403 * else or deadlock could occur. We won't return to userspace.
404 */
405 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
406 lwp_unlock(t);
407 return (EDEADLK);
408 }
409
410 if ((t->l_flag & LW_DBGSUSPEND) != 0) {
411 lwp_unlock(t);
412 return 0;
413 }
414
415 error = 0;
416
417 switch (t->l_stat) {
418 case LSRUN:
419 case LSONPROC:
420 t->l_flag |= LW_WSUSPEND;
421 lwp_need_userret(t);
422 lwp_unlock(t);
423 break;
424
425 case LSSLEEP:
426 t->l_flag |= LW_WSUSPEND;
427
428 /*
429 * Kick the LWP and try to get it to the kernel boundary
430 * so that it will release any locks that it holds.
431 * setrunnable() will release the lock.
432 */
433 if ((t->l_flag & LW_SINTR) != 0)
434 setrunnable(t);
435 else
436 lwp_unlock(t);
437 break;
438
439 case LSSUSPENDED:
440 lwp_unlock(t);
441 break;
442
443 case LSSTOP:
444 t->l_flag |= LW_WSUSPEND;
445 setrunnable(t);
446 break;
447
448 case LSIDL:
449 case LSZOMB:
450 error = EINTR; /* It's what Solaris does..... */
451 lwp_unlock(t);
452 break;
453 }
454
455 return (error);
456 }
457
458 /*
459 * Restart a suspended LWP.
460 *
461 * Must be called with p_lock held, and the LWP locked. Will unlock the
462 * LWP before return.
463 */
464 void
465 lwp_continue(struct lwp *l)
466 {
467
468 KASSERT(mutex_owned(l->l_proc->p_lock));
469 KASSERT(lwp_locked(l, NULL));
470
471 /* If rebooting or not suspended, then just bail out. */
472 if ((l->l_flag & LW_WREBOOT) != 0) {
473 lwp_unlock(l);
474 return;
475 }
476
477 l->l_flag &= ~LW_WSUSPEND;
478
479 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
480 lwp_unlock(l);
481 return;
482 }
483
484 /* setrunnable() will release the lock. */
485 setrunnable(l);
486 }
487
488 /*
489 * Restart a stopped LWP.
490 *
491 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
492 * LWP before return.
493 */
494 void
495 lwp_unstop(struct lwp *l)
496 {
497 struct proc *p = l->l_proc;
498
499 KASSERT(mutex_owned(proc_lock));
500 KASSERT(mutex_owned(p->p_lock));
501
502 lwp_lock(l);
503
504 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
505
506 /* If not stopped, then just bail out. */
507 if (l->l_stat != LSSTOP) {
508 lwp_unlock(l);
509 return;
510 }
511
512 p->p_stat = SACTIVE;
513 p->p_sflag &= ~PS_STOPPING;
514
515 if (!p->p_waited)
516 p->p_pptr->p_nstopchild--;
517
518 if (l->l_wchan == NULL) {
519 /* setrunnable() will release the lock. */
520 setrunnable(l);
521 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
522 /* setrunnable() so we can receive the signal */
523 setrunnable(l);
524 } else {
525 l->l_stat = LSSLEEP;
526 p->p_nrlwps++;
527 lwp_unlock(l);
528 }
529 }
530
531 /*
532 * Wait for an LWP within the current process to exit. If 'lid' is
533 * non-zero, we are waiting for a specific LWP.
534 *
535 * Must be called with p->p_lock held.
536 */
537 int
538 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
539 {
540 const lwpid_t curlid = l->l_lid;
541 proc_t *p = l->l_proc;
542 lwp_t *l2;
543 int error;
544
545 KASSERT(mutex_owned(p->p_lock));
546
547 p->p_nlwpwait++;
548 l->l_waitingfor = lid;
549
550 for (;;) {
551 int nfound;
552
553 /*
554 * Avoid a race between exit1() and sigexit(): if the
555 * process is dumping core, then we need to bail out: call
556 * into lwp_userret() where we will be suspended until the
557 * deed is done.
558 */
559 if ((p->p_sflag & PS_WCORE) != 0) {
560 mutex_exit(p->p_lock);
561 lwp_userret(l);
562 KASSERT(false);
563 }
564
565 /*
566 * First off, drain any detached LWP that is waiting to be
567 * reaped.
568 */
569 while ((l2 = p->p_zomblwp) != NULL) {
570 p->p_zomblwp = NULL;
571 lwp_free(l2, false, false);/* releases proc mutex */
572 mutex_enter(p->p_lock);
573 }
574
575 /*
576 * Now look for an LWP to collect. If the whole process is
577 * exiting, count detached LWPs as eligible to be collected,
578 * but don't drain them here.
579 */
580 nfound = 0;
581 error = 0;
582 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
583 /*
584 * If a specific wait and the target is waiting on
585 * us, then avoid deadlock. This also traps LWPs
586 * that try to wait on themselves.
587 *
588 * Note that this does not handle more complicated
589 * cycles, like: t1 -> t2 -> t3 -> t1. The process
590 * can still be killed so it is not a major problem.
591 */
592 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
593 error = EDEADLK;
594 break;
595 }
596 if (l2 == l)
597 continue;
598 if ((l2->l_prflag & LPR_DETACHED) != 0) {
599 nfound += exiting;
600 continue;
601 }
602 if (lid != 0) {
603 if (l2->l_lid != lid)
604 continue;
605 /*
606 * Mark this LWP as the first waiter, if there
607 * is no other.
608 */
609 if (l2->l_waiter == 0)
610 l2->l_waiter = curlid;
611 } else if (l2->l_waiter != 0) {
612 /*
613 * It already has a waiter - so don't
614 * collect it. If the waiter doesn't
615 * grab it we'll get another chance
616 * later.
617 */
618 nfound++;
619 continue;
620 }
621 nfound++;
622
623 /* No need to lock the LWP in order to see LSZOMB. */
624 if (l2->l_stat != LSZOMB)
625 continue;
626
627 /*
628 * We're no longer waiting. Reset the "first waiter"
629 * pointer on the target, in case it was us.
630 */
631 l->l_waitingfor = 0;
632 l2->l_waiter = 0;
633 p->p_nlwpwait--;
634 if (departed)
635 *departed = l2->l_lid;
636 sched_lwp_collect(l2);
637
638 /* lwp_free() releases the proc lock. */
639 lwp_free(l2, false, false);
640 mutex_enter(p->p_lock);
641 return 0;
642 }
643
644 if (error != 0)
645 break;
646 if (nfound == 0) {
647 error = ESRCH;
648 break;
649 }
650
651 /*
652 * Note: since the lock will be dropped, need to restart on
653 * wakeup to run all LWPs again, e.g. there may be new LWPs.
654 */
655 if (exiting) {
656 KASSERT(p->p_nlwps > 1);
657 cv_wait(&p->p_lwpcv, p->p_lock);
658 error = EAGAIN;
659 break;
660 }
661
662 /*
663 * If all other LWPs are waiting for exits or suspends
664 * and the supply of zombies and potential zombies is
665 * exhausted, then we are about to deadlock.
666 *
667 * If the process is exiting (and this LWP is not the one
668 * that is coordinating the exit) then bail out now.
669 */
670 if ((p->p_sflag & PS_WEXIT) != 0 ||
671 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
672 error = EDEADLK;
673 break;
674 }
675
676 /*
677 * Sit around and wait for something to happen. We'll be
678 * awoken if any of the conditions examined change: if an
679 * LWP exits, is collected, or is detached.
680 */
681 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
682 break;
683 }
684
685 /*
686 * We didn't find any LWPs to collect, we may have received a
687 * signal, or some other condition has caused us to bail out.
688 *
689 * If waiting on a specific LWP, clear the waiters marker: some
690 * other LWP may want it. Then, kick all the remaining waiters
691 * so that they can re-check for zombies and for deadlock.
692 */
693 if (lid != 0) {
694 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
695 if (l2->l_lid == lid) {
696 if (l2->l_waiter == curlid)
697 l2->l_waiter = 0;
698 break;
699 }
700 }
701 }
702 p->p_nlwpwait--;
703 l->l_waitingfor = 0;
704 cv_broadcast(&p->p_lwpcv);
705
706 return error;
707 }
708
709 static lwpid_t
710 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
711 {
712 #define LID_SCAN (1u << 31)
713 lwp_t *scan, *free_before;
714 lwpid_t nxt_lid;
715
716 /*
717 * We want the first unused lid greater than or equal to
718 * try_lid (modulo 2^31).
719 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
720 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
721 * the outer test easier.
722 * This would be much easier if the list were sorted in
723 * increasing order.
724 * The list is kept sorted in decreasing order.
725 * This code is only used after a process has generated 2^31 lwp.
726 *
727 * Code assumes it can always find an id.
728 */
729
730 try_lid &= LID_SCAN - 1;
731 if (try_lid <= 1)
732 try_lid = 2;
733
734 free_before = NULL;
735 nxt_lid = LID_SCAN - 1;
736 LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
737 if (scan->l_lid != nxt_lid) {
738 /* There are available lid before this entry */
739 free_before = scan;
740 if (try_lid > scan->l_lid)
741 break;
742 }
743 if (try_lid == scan->l_lid) {
744 /* The ideal lid is busy, take a higher one */
745 if (free_before != NULL) {
746 try_lid = free_before->l_lid + 1;
747 break;
748 }
749 /* No higher ones, reuse low numbers */
750 try_lid = 2;
751 }
752
753 nxt_lid = scan->l_lid - 1;
754 if (LIST_NEXT(scan, l_sibling) == NULL) {
755 /* The value we have is lower than any existing lwp */
756 LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
757 return try_lid;
758 }
759 }
760
761 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
762 return try_lid;
763 }
764
765 /*
766 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
767 * The new LWP is created in state LSIDL and must be set running,
768 * suspended, or stopped by the caller.
769 */
770 int
771 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
772 void *stack, size_t stacksize, void (*func)(void *), void *arg,
773 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
774 const stack_t *sigstk)
775 {
776 struct lwp *l2, *isfree;
777 turnstile_t *ts;
778 lwpid_t lid;
779
780 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
781
782 /*
783 * Enforce limits, excluding the first lwp and kthreads.
784 */
785 if (p2->p_nlwps != 0 && p2 != &proc0) {
786 uid_t uid = kauth_cred_getuid(l1->l_cred);
787 int count = chglwpcnt(uid, 1);
788 if (__predict_false(count >
789 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
790 if (kauth_authorize_process(l1->l_cred,
791 KAUTH_PROCESS_RLIMIT, p2,
792 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
793 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
794 != 0) {
795 (void)chglwpcnt(uid, -1);
796 return EAGAIN;
797 }
798 }
799 }
800
801 /*
802 * First off, reap any detached LWP waiting to be collected.
803 * We can re-use its LWP structure and turnstile.
804 */
805 isfree = NULL;
806 if (p2->p_zomblwp != NULL) {
807 mutex_enter(p2->p_lock);
808 if ((isfree = p2->p_zomblwp) != NULL) {
809 p2->p_zomblwp = NULL;
810 lwp_free(isfree, true, false);/* releases proc mutex */
811 } else
812 mutex_exit(p2->p_lock);
813 }
814 if (isfree == NULL) {
815 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
816 memset(l2, 0, sizeof(*l2));
817 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
818 SLIST_INIT(&l2->l_pi_lenders);
819 } else {
820 l2 = isfree;
821 ts = l2->l_ts;
822 KASSERT(l2->l_inheritedprio == -1);
823 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
824 memset(l2, 0, sizeof(*l2));
825 l2->l_ts = ts;
826 }
827
828 l2->l_stat = LSIDL;
829 l2->l_proc = p2;
830 l2->l_refcnt = 1;
831 l2->l_class = sclass;
832
833 /*
834 * If vfork(), we want the LWP to run fast and on the same CPU
835 * as its parent, so that it can reuse the VM context and cache
836 * footprint on the local CPU.
837 */
838 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
839 l2->l_kpribase = PRI_KERNEL;
840 l2->l_priority = l1->l_priority;
841 l2->l_inheritedprio = -1;
842 l2->l_protectprio = -1;
843 l2->l_auxprio = -1;
844 l2->l_flag = 0;
845 l2->l_pflag = LP_MPSAFE;
846 TAILQ_INIT(&l2->l_ld_locks);
847 l2->l_psrefs = 0;
848 kmsan_lwp_alloc(l2);
849
850 /*
851 * For vfork, borrow parent's lwpctl context if it exists.
852 * This also causes us to return via lwp_userret.
853 */
854 if (flags & LWP_VFORK && l1->l_lwpctl) {
855 l2->l_lwpctl = l1->l_lwpctl;
856 l2->l_flag |= LW_LWPCTL;
857 }
858
859 /*
860 * If not the first LWP in the process, grab a reference to the
861 * descriptor table.
862 */
863 l2->l_fd = p2->p_fd;
864 if (p2->p_nlwps != 0) {
865 KASSERT(l1->l_proc == p2);
866 fd_hold(l2);
867 } else {
868 KASSERT(l1->l_proc != p2);
869 }
870
871 if (p2->p_flag & PK_SYSTEM) {
872 /* Mark it as a system LWP. */
873 l2->l_flag |= LW_SYSTEM;
874 }
875
876 kpreempt_disable();
877 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
878 l2->l_cpu = l1->l_cpu;
879 kpreempt_enable();
880
881 kdtrace_thread_ctor(NULL, l2);
882 lwp_initspecific(l2);
883 sched_lwp_fork(l1, l2);
884 lwp_update_creds(l2);
885 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
886 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
887 cv_init(&l2->l_sigcv, "sigwait");
888 cv_init(&l2->l_waitcv, "vfork");
889 l2->l_syncobj = &sched_syncobj;
890 PSREF_DEBUG_INIT_LWP(l2);
891
892 if (rnewlwpp != NULL)
893 *rnewlwpp = l2;
894
895 /*
896 * PCU state needs to be saved before calling uvm_lwp_fork() so that
897 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
898 */
899 pcu_save_all(l1);
900
901 uvm_lwp_setuarea(l2, uaddr);
902 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
903
904 if ((flags & LWP_PIDLID) != 0) {
905 lid = proc_alloc_pid(p2);
906 l2->l_pflag |= LP_PIDLID;
907 } else if (p2->p_nlwps == 0) {
908 lid = l1->l_lid;
909 /*
910 * Update next LWP ID, too. If this overflows to LID_SCAN,
911 * the slow path of scanning will be used for the next LWP.
912 */
913 p2->p_nlwpid = lid + 1;
914 } else {
915 lid = 0;
916 }
917
918 mutex_enter(p2->p_lock);
919
920 if ((flags & LWP_DETACHED) != 0) {
921 l2->l_prflag = LPR_DETACHED;
922 p2->p_ndlwps++;
923 } else
924 l2->l_prflag = 0;
925
926 l2->l_sigstk = *sigstk;
927 l2->l_sigmask = *sigmask;
928 TAILQ_INIT(&l2->l_sigpend.sp_info);
929 sigemptyset(&l2->l_sigpend.sp_set);
930
931 if (__predict_true(lid == 0)) {
932 /*
933 * XXX: l_lid are expected to be unique (for a process)
934 * if LWP_PIDLID is sometimes set this won't be true.
935 * Once 2^31 threads have been allocated we have to
936 * scan to ensure we allocate a unique value.
937 */
938 lid = ++p2->p_nlwpid;
939 if (__predict_false(lid & LID_SCAN)) {
940 lid = lwp_find_free_lid(lid, l2, p2);
941 p2->p_nlwpid = lid | LID_SCAN;
942 /* l2 as been inserted into p_lwps in order */
943 goto skip_insert;
944 }
945 p2->p_nlwpid = lid;
946 }
947 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
948 skip_insert:
949 l2->l_lid = lid;
950 p2->p_nlwps++;
951 p2->p_nrlwps++;
952
953 KASSERT(l2->l_affinity == NULL);
954
955 /* Inherit the affinity mask. */
956 if (l1->l_affinity) {
957 /*
958 * Note that we hold the state lock while inheriting
959 * the affinity to avoid race with sched_setaffinity().
960 */
961 lwp_lock(l1);
962 if (l1->l_affinity) {
963 kcpuset_use(l1->l_affinity);
964 l2->l_affinity = l1->l_affinity;
965 }
966 lwp_unlock(l1);
967 }
968 mutex_exit(p2->p_lock);
969
970 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
971
972 mutex_enter(proc_lock);
973 LIST_INSERT_HEAD(&alllwp, l2, l_list);
974 /* Inherit a processor-set */
975 l2->l_psid = l1->l_psid;
976 mutex_exit(proc_lock);
977
978 SYSCALL_TIME_LWP_INIT(l2);
979
980 if (p2->p_emul->e_lwp_fork)
981 (*p2->p_emul->e_lwp_fork)(l1, l2);
982
983 return (0);
984 }
985
986 /*
987 * Called by MD code when a new LWP begins execution. Must be called
988 * with the previous LWP locked (so at splsched), or if there is no
989 * previous LWP, at splsched.
990 */
991 void
992 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
993 {
994 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
995
996 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
997
998 KASSERT(kpreempt_disabled());
999 if (prev != NULL) {
1000 /*
1001 * Normalize the count of the spin-mutexes, it was
1002 * increased in mi_switch(). Unmark the state of
1003 * context switch - it is finished for previous LWP.
1004 */
1005 curcpu()->ci_mtx_count++;
1006 membar_exit();
1007 prev->l_ctxswtch = 0;
1008 }
1009 KPREEMPT_DISABLE(new_lwp);
1010 if (__predict_true(new_lwp->l_proc->p_vmspace))
1011 pmap_activate(new_lwp);
1012 spl0();
1013
1014 /* Note trip through cpu_switchto(). */
1015 pserialize_switchpoint();
1016
1017 LOCKDEBUG_BARRIER(NULL, 0);
1018 KPREEMPT_ENABLE(new_lwp);
1019 if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1020 KERNEL_LOCK(1, new_lwp);
1021 }
1022 }
1023
1024 /*
1025 * Exit an LWP.
1026 */
1027 void
1028 lwp_exit(struct lwp *l)
1029 {
1030 struct proc *p = l->l_proc;
1031 struct lwp *l2;
1032 bool current;
1033
1034 current = (l == curlwp);
1035
1036 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1037 KASSERT(p == curproc);
1038
1039 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1040
1041 /*
1042 * Verify that we hold no locks other than the kernel lock.
1043 */
1044 LOCKDEBUG_BARRIER(&kernel_lock, 0);
1045
1046 /*
1047 * If we are the last live LWP in a process, we need to exit the
1048 * entire process. We do so with an exit status of zero, because
1049 * it's a "controlled" exit, and because that's what Solaris does.
1050 *
1051 * We are not quite a zombie yet, but for accounting purposes we
1052 * must increment the count of zombies here.
1053 *
1054 * Note: the last LWP's specificdata will be deleted here.
1055 */
1056 mutex_enter(p->p_lock);
1057 if (p->p_nlwps - p->p_nzlwps == 1) {
1058 KASSERT(current == true);
1059 KASSERT(p != &proc0);
1060 /* XXXSMP kernel_lock not held */
1061 exit1(l, 0, 0);
1062 /* NOTREACHED */
1063 }
1064 p->p_nzlwps++;
1065 mutex_exit(p->p_lock);
1066
1067 if (p->p_emul->e_lwp_exit)
1068 (*p->p_emul->e_lwp_exit)(l);
1069
1070 /* Drop filedesc reference. */
1071 fd_free();
1072
1073 /* Release fstrans private data. */
1074 fstrans_lwp_dtor(l);
1075
1076 /* Delete the specificdata while it's still safe to sleep. */
1077 lwp_finispecific(l);
1078
1079 /*
1080 * Release our cached credentials.
1081 */
1082 kauth_cred_free(l->l_cred);
1083 callout_destroy(&l->l_timeout_ch);
1084
1085 /*
1086 * If traced, report LWP exit event to the debugger.
1087 *
1088 * Remove the LWP from the global list.
1089 * Free its LID from the PID namespace if needed.
1090 */
1091 mutex_enter(proc_lock);
1092
1093 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1094 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1095 mutex_enter(p->p_lock);
1096 if (ISSET(p->p_sflag, PS_WEXIT)) {
1097 mutex_exit(p->p_lock);
1098 /*
1099 * We are exiting, bail out without informing parent
1100 * about a terminating LWP as it would deadlock.
1101 */
1102 } else {
1103 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1104 mutex_enter(proc_lock);
1105 }
1106 }
1107
1108 LIST_REMOVE(l, l_list);
1109 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1110 proc_free_pid(l->l_lid);
1111 }
1112 mutex_exit(proc_lock);
1113
1114 /*
1115 * Get rid of all references to the LWP that others (e.g. procfs)
1116 * may have, and mark the LWP as a zombie. If the LWP is detached,
1117 * mark it waiting for collection in the proc structure. Note that
1118 * before we can do that, we need to free any other dead, deatched
1119 * LWP waiting to meet its maker.
1120 */
1121 mutex_enter(p->p_lock);
1122 lwp_drainrefs(l);
1123
1124 if ((l->l_prflag & LPR_DETACHED) != 0) {
1125 while ((l2 = p->p_zomblwp) != NULL) {
1126 p->p_zomblwp = NULL;
1127 lwp_free(l2, false, false);/* releases proc mutex */
1128 mutex_enter(p->p_lock);
1129 l->l_refcnt++;
1130 lwp_drainrefs(l);
1131 }
1132 p->p_zomblwp = l;
1133 }
1134
1135 /*
1136 * If we find a pending signal for the process and we have been
1137 * asked to check for signals, then we lose: arrange to have
1138 * all other LWPs in the process check for signals.
1139 */
1140 if ((l->l_flag & LW_PENDSIG) != 0 &&
1141 firstsig(&p->p_sigpend.sp_set) != 0) {
1142 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1143 lwp_lock(l2);
1144 signotify(l2);
1145 lwp_unlock(l2);
1146 }
1147 }
1148
1149 /*
1150 * Release any PCU resources before becoming a zombie.
1151 */
1152 pcu_discard_all(l);
1153
1154 lwp_lock(l);
1155 l->l_stat = LSZOMB;
1156 if (l->l_name != NULL) {
1157 strcpy(l->l_name, "(zombie)");
1158 }
1159 lwp_unlock(l);
1160 p->p_nrlwps--;
1161 cv_broadcast(&p->p_lwpcv);
1162 if (l->l_lwpctl != NULL)
1163 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1164 mutex_exit(p->p_lock);
1165
1166 /*
1167 * We can no longer block. At this point, lwp_free() may already
1168 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1169 *
1170 * Free MD LWP resources.
1171 */
1172 cpu_lwp_free(l, 0);
1173
1174 if (current) {
1175 pmap_deactivate(l);
1176
1177 /*
1178 * Release the kernel lock, and switch away into
1179 * oblivion.
1180 */
1181 #ifdef notyet
1182 /* XXXSMP hold in lwp_userret() */
1183 KERNEL_UNLOCK_LAST(l);
1184 #else
1185 KERNEL_UNLOCK_ALL(l, NULL);
1186 #endif
1187 lwp_exit_switchaway(l);
1188 }
1189 }
1190
1191 /*
1192 * Free a dead LWP's remaining resources.
1193 *
1194 * XXXLWP limits.
1195 */
1196 void
1197 lwp_free(struct lwp *l, bool recycle, bool last)
1198 {
1199 struct proc *p = l->l_proc;
1200 struct rusage *ru;
1201 ksiginfoq_t kq;
1202
1203 KASSERT(l != curlwp);
1204 KASSERT(last || mutex_owned(p->p_lock));
1205
1206 /*
1207 * We use the process credentials instead of the lwp credentials here
1208 * because the lwp credentials maybe cached (just after a setuid call)
1209 * and we don't want pay for syncing, since the lwp is going away
1210 * anyway
1211 */
1212 if (p != &proc0 && p->p_nlwps != 1)
1213 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1214 /*
1215 * If this was not the last LWP in the process, then adjust
1216 * counters and unlock.
1217 */
1218 if (!last) {
1219 /*
1220 * Add the LWP's run time to the process' base value.
1221 * This needs to co-incide with coming off p_lwps.
1222 */
1223 bintime_add(&p->p_rtime, &l->l_rtime);
1224 p->p_pctcpu += l->l_pctcpu;
1225 ru = &p->p_stats->p_ru;
1226 ruadd(ru, &l->l_ru);
1227 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1228 ru->ru_nivcsw += l->l_nivcsw;
1229 LIST_REMOVE(l, l_sibling);
1230 p->p_nlwps--;
1231 p->p_nzlwps--;
1232 if ((l->l_prflag & LPR_DETACHED) != 0)
1233 p->p_ndlwps--;
1234
1235 /*
1236 * Have any LWPs sleeping in lwp_wait() recheck for
1237 * deadlock.
1238 */
1239 cv_broadcast(&p->p_lwpcv);
1240 mutex_exit(p->p_lock);
1241 }
1242
1243 #ifdef MULTIPROCESSOR
1244 /*
1245 * In the unlikely event that the LWP is still on the CPU,
1246 * then spin until it has switched away. We need to release
1247 * all locks to avoid deadlock against interrupt handlers on
1248 * the target CPU.
1249 */
1250 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1251 int count;
1252 (void)count; /* XXXgcc */
1253 KERNEL_UNLOCK_ALL(curlwp, &count);
1254 while ((l->l_pflag & LP_RUNNING) != 0 ||
1255 l->l_cpu->ci_curlwp == l)
1256 SPINLOCK_BACKOFF_HOOK;
1257 KERNEL_LOCK(count, curlwp);
1258 }
1259 #endif
1260
1261 /*
1262 * Destroy the LWP's remaining signal information.
1263 */
1264 ksiginfo_queue_init(&kq);
1265 sigclear(&l->l_sigpend, NULL, &kq);
1266 ksiginfo_queue_drain(&kq);
1267 cv_destroy(&l->l_sigcv);
1268 cv_destroy(&l->l_waitcv);
1269
1270 /*
1271 * Free lwpctl structure and affinity.
1272 */
1273 if (l->l_lwpctl) {
1274 lwp_ctl_free(l);
1275 }
1276 if (l->l_affinity) {
1277 kcpuset_unuse(l->l_affinity, NULL);
1278 l->l_affinity = NULL;
1279 }
1280
1281 /*
1282 * Free the LWP's turnstile and the LWP structure itself unless the
1283 * caller wants to recycle them. Also, free the scheduler specific
1284 * data.
1285 *
1286 * We can't return turnstile0 to the pool (it didn't come from it),
1287 * so if it comes up just drop it quietly and move on.
1288 *
1289 * We don't recycle the VM resources at this time.
1290 */
1291
1292 if (!recycle && l->l_ts != &turnstile0)
1293 pool_cache_put(turnstile_cache, l->l_ts);
1294 if (l->l_name != NULL)
1295 kmem_free(l->l_name, MAXCOMLEN);
1296
1297 kmsan_lwp_free(l);
1298 cpu_lwp_free2(l);
1299 uvm_lwp_exit(l);
1300
1301 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1302 KASSERT(l->l_inheritedprio == -1);
1303 KASSERT(l->l_blcnt == 0);
1304 kdtrace_thread_dtor(NULL, l);
1305 if (!recycle)
1306 pool_cache_put(lwp_cache, l);
1307 }
1308
1309 /*
1310 * Migrate the LWP to the another CPU. Unlocks the LWP.
1311 */
1312 void
1313 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1314 {
1315 struct schedstate_percpu *tspc;
1316 int lstat = l->l_stat;
1317
1318 KASSERT(lwp_locked(l, NULL));
1319 KASSERT(tci != NULL);
1320
1321 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1322 if ((l->l_pflag & LP_RUNNING) != 0) {
1323 lstat = LSONPROC;
1324 }
1325
1326 /*
1327 * The destination CPU could be changed while previous migration
1328 * was not finished.
1329 */
1330 if (l->l_target_cpu != NULL) {
1331 l->l_target_cpu = tci;
1332 lwp_unlock(l);
1333 return;
1334 }
1335
1336 /* Nothing to do if trying to migrate to the same CPU */
1337 if (l->l_cpu == tci) {
1338 lwp_unlock(l);
1339 return;
1340 }
1341
1342 KASSERT(l->l_target_cpu == NULL);
1343 tspc = &tci->ci_schedstate;
1344 switch (lstat) {
1345 case LSRUN:
1346 l->l_target_cpu = tci;
1347 break;
1348 case LSIDL:
1349 l->l_cpu = tci;
1350 lwp_unlock_to(l, tspc->spc_mutex);
1351 return;
1352 case LSSLEEP:
1353 l->l_cpu = tci;
1354 break;
1355 case LSSTOP:
1356 case LSSUSPENDED:
1357 l->l_cpu = tci;
1358 if (l->l_wchan == NULL) {
1359 lwp_unlock_to(l, tspc->spc_lwplock);
1360 return;
1361 }
1362 break;
1363 case LSONPROC:
1364 l->l_target_cpu = tci;
1365 spc_lock(l->l_cpu);
1366 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1367 spc_unlock(l->l_cpu);
1368 break;
1369 }
1370 lwp_unlock(l);
1371 }
1372
1373 /*
1374 * Find the LWP in the process. Arguments may be zero, in such case,
1375 * the calling process and first LWP in the list will be used.
1376 * On success - returns proc locked.
1377 */
1378 struct lwp *
1379 lwp_find2(pid_t pid, lwpid_t lid)
1380 {
1381 proc_t *p;
1382 lwp_t *l;
1383
1384 /* Find the process. */
1385 if (pid != 0) {
1386 mutex_enter(proc_lock);
1387 p = proc_find(pid);
1388 if (p == NULL) {
1389 mutex_exit(proc_lock);
1390 return NULL;
1391 }
1392 mutex_enter(p->p_lock);
1393 mutex_exit(proc_lock);
1394 } else {
1395 p = curlwp->l_proc;
1396 mutex_enter(p->p_lock);
1397 }
1398 /* Find the thread. */
1399 if (lid != 0) {
1400 l = lwp_find(p, lid);
1401 } else {
1402 l = LIST_FIRST(&p->p_lwps);
1403 }
1404 if (l == NULL) {
1405 mutex_exit(p->p_lock);
1406 }
1407 return l;
1408 }
1409
1410 /*
1411 * Look up a live LWP within the specified process.
1412 *
1413 * Must be called with p->p_lock held.
1414 */
1415 struct lwp *
1416 lwp_find(struct proc *p, lwpid_t id)
1417 {
1418 struct lwp *l;
1419
1420 KASSERT(mutex_owned(p->p_lock));
1421
1422 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1423 if (l->l_lid == id)
1424 break;
1425 }
1426
1427 /*
1428 * No need to lock - all of these conditions will
1429 * be visible with the process level mutex held.
1430 */
1431 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1432 l = NULL;
1433
1434 return l;
1435 }
1436
1437 /*
1438 * Update an LWP's cached credentials to mirror the process' master copy.
1439 *
1440 * This happens early in the syscall path, on user trap, and on LWP
1441 * creation. A long-running LWP can also voluntarily choose to update
1442 * its credentials by calling this routine. This may be called from
1443 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1444 */
1445 void
1446 lwp_update_creds(struct lwp *l)
1447 {
1448 kauth_cred_t oc;
1449 struct proc *p;
1450
1451 p = l->l_proc;
1452 oc = l->l_cred;
1453
1454 mutex_enter(p->p_lock);
1455 kauth_cred_hold(p->p_cred);
1456 l->l_cred = p->p_cred;
1457 l->l_prflag &= ~LPR_CRMOD;
1458 mutex_exit(p->p_lock);
1459 if (oc != NULL)
1460 kauth_cred_free(oc);
1461 }
1462
1463 /*
1464 * Verify that an LWP is locked, and optionally verify that the lock matches
1465 * one we specify.
1466 */
1467 int
1468 lwp_locked(struct lwp *l, kmutex_t *mtx)
1469 {
1470 kmutex_t *cur = l->l_mutex;
1471
1472 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1473 }
1474
1475 /*
1476 * Lend a new mutex to an LWP. The old mutex must be held.
1477 */
1478 void
1479 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1480 {
1481
1482 KASSERT(mutex_owned(l->l_mutex));
1483
1484 membar_exit();
1485 l->l_mutex = mtx;
1486 }
1487
1488 /*
1489 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1490 * must be held.
1491 */
1492 void
1493 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1494 {
1495 kmutex_t *old;
1496
1497 KASSERT(lwp_locked(l, NULL));
1498
1499 old = l->l_mutex;
1500 membar_exit();
1501 l->l_mutex = mtx;
1502 mutex_spin_exit(old);
1503 }
1504
1505 int
1506 lwp_trylock(struct lwp *l)
1507 {
1508 kmutex_t *old;
1509
1510 for (;;) {
1511 if (!mutex_tryenter(old = l->l_mutex))
1512 return 0;
1513 if (__predict_true(l->l_mutex == old))
1514 return 1;
1515 mutex_spin_exit(old);
1516 }
1517 }
1518
1519 void
1520 lwp_unsleep(lwp_t *l, bool cleanup)
1521 {
1522
1523 KASSERT(mutex_owned(l->l_mutex));
1524 (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1525 }
1526
1527 /*
1528 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1529 * set.
1530 */
1531 void
1532 lwp_userret(struct lwp *l)
1533 {
1534 struct proc *p;
1535 int sig;
1536
1537 KASSERT(l == curlwp);
1538 KASSERT(l->l_stat == LSONPROC);
1539 p = l->l_proc;
1540
1541 #ifndef __HAVE_FAST_SOFTINTS
1542 /* Run pending soft interrupts. */
1543 if (l->l_cpu->ci_data.cpu_softints != 0)
1544 softint_overlay();
1545 #endif
1546
1547 /*
1548 * It is safe to do this read unlocked on a MP system..
1549 */
1550 while ((l->l_flag & LW_USERRET) != 0) {
1551 /*
1552 * Process pending signals first, unless the process
1553 * is dumping core or exiting, where we will instead
1554 * enter the LW_WSUSPEND case below.
1555 */
1556 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1557 LW_PENDSIG) {
1558 mutex_enter(p->p_lock);
1559 while ((sig = issignal(l)) != 0)
1560 postsig(sig);
1561 mutex_exit(p->p_lock);
1562 }
1563
1564 /*
1565 * Core-dump or suspend pending.
1566 *
1567 * In case of core dump, suspend ourselves, so that the kernel
1568 * stack and therefore the userland registers saved in the
1569 * trapframe are around for coredump() to write them out.
1570 * We also need to save any PCU resources that we have so that
1571 * they accessible for coredump(). We issue a wakeup on
1572 * p->p_lwpcv so that sigexit() will write the core file out
1573 * once all other LWPs are suspended.
1574 */
1575 if ((l->l_flag & LW_WSUSPEND) != 0) {
1576 pcu_save_all(l);
1577 mutex_enter(p->p_lock);
1578 p->p_nrlwps--;
1579 cv_broadcast(&p->p_lwpcv);
1580 lwp_lock(l);
1581 l->l_stat = LSSUSPENDED;
1582 lwp_unlock(l);
1583 mutex_exit(p->p_lock);
1584 lwp_lock(l);
1585 mi_switch(l);
1586 }
1587
1588 /* Process is exiting. */
1589 if ((l->l_flag & LW_WEXIT) != 0) {
1590 lwp_exit(l);
1591 KASSERT(0);
1592 /* NOTREACHED */
1593 }
1594
1595 /* update lwpctl processor (for vfork child_return) */
1596 if (l->l_flag & LW_LWPCTL) {
1597 lwp_lock(l);
1598 KASSERT(kpreempt_disabled());
1599 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1600 l->l_lwpctl->lc_pctr++;
1601 l->l_flag &= ~LW_LWPCTL;
1602 lwp_unlock(l);
1603 }
1604 }
1605 }
1606
1607 /*
1608 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1609 */
1610 void
1611 lwp_need_userret(struct lwp *l)
1612 {
1613
1614 KASSERT(!cpu_intr_p());
1615 KASSERT(lwp_locked(l, NULL));
1616
1617 /*
1618 * If the LWP is in any state other than LSONPROC, we know that it
1619 * is executing in-kernel and will hit userret() on the way out.
1620 *
1621 * If the LWP is curlwp, then we know we'll be back out to userspace
1622 * soon (can't be called from a hardware interrupt here).
1623 *
1624 * Otherwise, we can't be sure what the LWP is doing, so first make
1625 * sure the update to l_flag will be globally visible, and then
1626 * force the LWP to take a trip through trap() where it will do
1627 * userret().
1628 */
1629 if (l->l_stat == LSONPROC && l != curlwp) {
1630 membar_producer();
1631 cpu_signotify(l);
1632 }
1633 }
1634
1635 /*
1636 * Add one reference to an LWP. This will prevent the LWP from
1637 * exiting, thus keep the lwp structure and PCB around to inspect.
1638 */
1639 void
1640 lwp_addref(struct lwp *l)
1641 {
1642
1643 KASSERT(mutex_owned(l->l_proc->p_lock));
1644 KASSERT(l->l_stat != LSZOMB);
1645 KASSERT(l->l_refcnt != 0);
1646
1647 l->l_refcnt++;
1648 }
1649
1650 /*
1651 * Remove one reference to an LWP. If this is the last reference,
1652 * then we must finalize the LWP's death.
1653 */
1654 void
1655 lwp_delref(struct lwp *l)
1656 {
1657 struct proc *p = l->l_proc;
1658
1659 mutex_enter(p->p_lock);
1660 lwp_delref2(l);
1661 mutex_exit(p->p_lock);
1662 }
1663
1664 /*
1665 * Remove one reference to an LWP. If this is the last reference,
1666 * then we must finalize the LWP's death. The proc mutex is held
1667 * on entry.
1668 */
1669 void
1670 lwp_delref2(struct lwp *l)
1671 {
1672 struct proc *p = l->l_proc;
1673
1674 KASSERT(mutex_owned(p->p_lock));
1675 KASSERT(l->l_stat != LSZOMB);
1676 KASSERT(l->l_refcnt > 0);
1677 if (--l->l_refcnt == 0)
1678 cv_broadcast(&p->p_lwpcv);
1679 }
1680
1681 /*
1682 * Drain all references to the current LWP.
1683 */
1684 void
1685 lwp_drainrefs(struct lwp *l)
1686 {
1687 struct proc *p = l->l_proc;
1688
1689 KASSERT(mutex_owned(p->p_lock));
1690 KASSERT(l->l_refcnt != 0);
1691
1692 l->l_refcnt--;
1693 while (l->l_refcnt != 0)
1694 cv_wait(&p->p_lwpcv, p->p_lock);
1695 }
1696
1697 /*
1698 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1699 * be held.
1700 */
1701 bool
1702 lwp_alive(lwp_t *l)
1703 {
1704
1705 KASSERT(mutex_owned(l->l_proc->p_lock));
1706
1707 switch (l->l_stat) {
1708 case LSSLEEP:
1709 case LSRUN:
1710 case LSONPROC:
1711 case LSSTOP:
1712 case LSSUSPENDED:
1713 return true;
1714 default:
1715 return false;
1716 }
1717 }
1718
1719 /*
1720 * Return first live LWP in the process.
1721 */
1722 lwp_t *
1723 lwp_find_first(proc_t *p)
1724 {
1725 lwp_t *l;
1726
1727 KASSERT(mutex_owned(p->p_lock));
1728
1729 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1730 if (lwp_alive(l)) {
1731 return l;
1732 }
1733 }
1734
1735 return NULL;
1736 }
1737
1738 /*
1739 * Allocate a new lwpctl structure for a user LWP.
1740 */
1741 int
1742 lwp_ctl_alloc(vaddr_t *uaddr)
1743 {
1744 lcproc_t *lp;
1745 u_int bit, i, offset;
1746 struct uvm_object *uao;
1747 int error;
1748 lcpage_t *lcp;
1749 proc_t *p;
1750 lwp_t *l;
1751
1752 l = curlwp;
1753 p = l->l_proc;
1754
1755 /* don't allow a vforked process to create lwp ctls */
1756 if (p->p_lflag & PL_PPWAIT)
1757 return EBUSY;
1758
1759 if (l->l_lcpage != NULL) {
1760 lcp = l->l_lcpage;
1761 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1762 return 0;
1763 }
1764
1765 /* First time around, allocate header structure for the process. */
1766 if ((lp = p->p_lwpctl) == NULL) {
1767 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1768 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1769 lp->lp_uao = NULL;
1770 TAILQ_INIT(&lp->lp_pages);
1771 mutex_enter(p->p_lock);
1772 if (p->p_lwpctl == NULL) {
1773 p->p_lwpctl = lp;
1774 mutex_exit(p->p_lock);
1775 } else {
1776 mutex_exit(p->p_lock);
1777 mutex_destroy(&lp->lp_lock);
1778 kmem_free(lp, sizeof(*lp));
1779 lp = p->p_lwpctl;
1780 }
1781 }
1782
1783 /*
1784 * Set up an anonymous memory region to hold the shared pages.
1785 * Map them into the process' address space. The user vmspace
1786 * gets the first reference on the UAO.
1787 */
1788 mutex_enter(&lp->lp_lock);
1789 if (lp->lp_uao == NULL) {
1790 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1791 lp->lp_cur = 0;
1792 lp->lp_max = LWPCTL_UAREA_SZ;
1793 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1794 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1795 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1796 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1797 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1798 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1799 if (error != 0) {
1800 uao_detach(lp->lp_uao);
1801 lp->lp_uao = NULL;
1802 mutex_exit(&lp->lp_lock);
1803 return error;
1804 }
1805 }
1806
1807 /* Get a free block and allocate for this LWP. */
1808 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1809 if (lcp->lcp_nfree != 0)
1810 break;
1811 }
1812 if (lcp == NULL) {
1813 /* Nothing available - try to set up a free page. */
1814 if (lp->lp_cur == lp->lp_max) {
1815 mutex_exit(&lp->lp_lock);
1816 return ENOMEM;
1817 }
1818 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1819
1820 /*
1821 * Wire the next page down in kernel space. Since this
1822 * is a new mapping, we must add a reference.
1823 */
1824 uao = lp->lp_uao;
1825 (*uao->pgops->pgo_reference)(uao);
1826 lcp->lcp_kaddr = vm_map_min(kernel_map);
1827 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1828 uao, lp->lp_cur, PAGE_SIZE,
1829 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1830 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1831 if (error != 0) {
1832 mutex_exit(&lp->lp_lock);
1833 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1834 (*uao->pgops->pgo_detach)(uao);
1835 return error;
1836 }
1837 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1838 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1839 if (error != 0) {
1840 mutex_exit(&lp->lp_lock);
1841 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1842 lcp->lcp_kaddr + PAGE_SIZE);
1843 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1844 return error;
1845 }
1846 /* Prepare the page descriptor and link into the list. */
1847 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1848 lp->lp_cur += PAGE_SIZE;
1849 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1850 lcp->lcp_rotor = 0;
1851 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1852 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1853 }
1854 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1855 if (++i >= LWPCTL_BITMAP_ENTRIES)
1856 i = 0;
1857 }
1858 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1859 lcp->lcp_bitmap[i] ^= (1U << bit);
1860 lcp->lcp_rotor = i;
1861 lcp->lcp_nfree--;
1862 l->l_lcpage = lcp;
1863 offset = (i << 5) + bit;
1864 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1865 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1866 mutex_exit(&lp->lp_lock);
1867
1868 KPREEMPT_DISABLE(l);
1869 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1870 KPREEMPT_ENABLE(l);
1871
1872 return 0;
1873 }
1874
1875 /*
1876 * Free an lwpctl structure back to the per-process list.
1877 */
1878 void
1879 lwp_ctl_free(lwp_t *l)
1880 {
1881 struct proc *p = l->l_proc;
1882 lcproc_t *lp;
1883 lcpage_t *lcp;
1884 u_int map, offset;
1885
1886 /* don't free a lwp context we borrowed for vfork */
1887 if (p->p_lflag & PL_PPWAIT) {
1888 l->l_lwpctl = NULL;
1889 return;
1890 }
1891
1892 lp = p->p_lwpctl;
1893 KASSERT(lp != NULL);
1894
1895 lcp = l->l_lcpage;
1896 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1897 KASSERT(offset < LWPCTL_PER_PAGE);
1898
1899 mutex_enter(&lp->lp_lock);
1900 lcp->lcp_nfree++;
1901 map = offset >> 5;
1902 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1903 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1904 lcp->lcp_rotor = map;
1905 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1906 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1907 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1908 }
1909 mutex_exit(&lp->lp_lock);
1910 }
1911
1912 /*
1913 * Process is exiting; tear down lwpctl state. This can only be safely
1914 * called by the last LWP in the process.
1915 */
1916 void
1917 lwp_ctl_exit(void)
1918 {
1919 lcpage_t *lcp, *next;
1920 lcproc_t *lp;
1921 proc_t *p;
1922 lwp_t *l;
1923
1924 l = curlwp;
1925 l->l_lwpctl = NULL;
1926 l->l_lcpage = NULL;
1927 p = l->l_proc;
1928 lp = p->p_lwpctl;
1929
1930 KASSERT(lp != NULL);
1931 KASSERT(p->p_nlwps == 1);
1932
1933 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1934 next = TAILQ_NEXT(lcp, lcp_chain);
1935 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1936 lcp->lcp_kaddr + PAGE_SIZE);
1937 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1938 }
1939
1940 if (lp->lp_uao != NULL) {
1941 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1942 lp->lp_uva + LWPCTL_UAREA_SZ);
1943 }
1944
1945 mutex_destroy(&lp->lp_lock);
1946 kmem_free(lp, sizeof(*lp));
1947 p->p_lwpctl = NULL;
1948 }
1949
1950 /*
1951 * Return the current LWP's "preemption counter". Used to detect
1952 * preemption across operations that can tolerate preemption without
1953 * crashing, but which may generate incorrect results if preempted.
1954 */
1955 uint64_t
1956 lwp_pctr(void)
1957 {
1958
1959 return curlwp->l_ncsw;
1960 }
1961
1962 /*
1963 * Set an LWP's private data pointer.
1964 */
1965 int
1966 lwp_setprivate(struct lwp *l, void *ptr)
1967 {
1968 int error = 0;
1969
1970 l->l_private = ptr;
1971 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1972 error = cpu_lwp_setprivate(l, ptr);
1973 #endif
1974 return error;
1975 }
1976
1977 #if defined(DDB)
1978 #include <machine/pcb.h>
1979
1980 void
1981 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1982 {
1983 lwp_t *l;
1984
1985 LIST_FOREACH(l, &alllwp, l_list) {
1986 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1987
1988 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1989 continue;
1990 }
1991 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1992 (void *)addr, (void *)stack,
1993 (size_t)(addr - stack), l);
1994 }
1995 }
1996 #endif /* defined(DDB) */
1997