kern_lwp.c revision 1.213 1 /* $NetBSD: kern_lwp.c,v 1.213 2019/11/24 13:14:23 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
165 *
166 * Always covered by spc_lwplock, which protects LWPs not
167 * associated with any other sync object. This is a per-CPU
168 * lock and matches lwp::l_cpu.
169 *
170 * LSRUN:
171 *
172 * Always covered by spc_mutex, which protects the run queues.
173 * This is a per-CPU lock and matches lwp::l_cpu.
174 *
175 * LSSLEEP:
176 *
177 * Covered by a lock associated with the sleep queue (sometimes
178 * a turnstile sleep queue) that the LWP resides on.
179 *
180 * LSSTOP:
181 *
182 * If the LWP was previously sleeping (l_wchan != NULL), then
183 * l_mutex references the sleep queue lock. If the LWP was
184 * runnable or on the CPU when halted, or has been removed from
185 * the sleep queue since halted, then the lock is spc_lwplock.
186 *
187 * The lock order is as follows:
188 *
189 * sleepq -> turnstile -> spc_lwplock -> spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * (But not always for kernel threads. There are some special cases
200 * as mentioned above: soft interrupts, and the idle loops.)
201 *
202 * Note that an LWP is considered running or likely to run soon if in
203 * one of the following states. This affects the value of p_nrlwps:
204 *
205 * LSRUN, LSONPROC, LSSLEEP
206 *
207 * p_lock does not need to be held when transitioning among these
208 * three states, hence p_lock is rarely taken for state transitions.
209 */
210
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.213 2019/11/24 13:14:23 ad Exp $");
213
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_dtrace.h"
217
218 #define _LWP_API_PRIVATE
219
220 #include <sys/param.h>
221 #include <sys/systm.h>
222 #include <sys/cpu.h>
223 #include <sys/pool.h>
224 #include <sys/proc.h>
225 #include <sys/syscallargs.h>
226 #include <sys/syscall_stats.h>
227 #include <sys/kauth.h>
228 #include <sys/pserialize.h>
229 #include <sys/sleepq.h>
230 #include <sys/lockdebug.h>
231 #include <sys/kmem.h>
232 #include <sys/pset.h>
233 #include <sys/intr.h>
234 #include <sys/lwpctl.h>
235 #include <sys/atomic.h>
236 #include <sys/filedesc.h>
237 #include <sys/fstrans.h>
238 #include <sys/dtrace_bsd.h>
239 #include <sys/sdt.h>
240 #include <sys/ptrace.h>
241 #include <sys/xcall.h>
242 #include <sys/uidinfo.h>
243 #include <sys/sysctl.h>
244 #include <sys/psref.h>
245 #include <sys/msan.h>
246
247 #include <uvm/uvm_extern.h>
248 #include <uvm/uvm_object.h>
249
250 static pool_cache_t lwp_cache __read_mostly;
251 struct lwplist alllwp __cacheline_aligned;
252
253 static void lwp_dtor(void *, void *);
254
255 /* DTrace proc provider probes */
256 SDT_PROVIDER_DEFINE(proc);
257
258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
261
262 struct turnstile turnstile0 __cacheline_aligned;
263 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
264 #ifdef LWP0_CPU_INFO
265 .l_cpu = LWP0_CPU_INFO,
266 #endif
267 #ifdef LWP0_MD_INITIALIZER
268 .l_md = LWP0_MD_INITIALIZER,
269 #endif
270 .l_proc = &proc0,
271 .l_lid = 1,
272 .l_flag = LW_SYSTEM,
273 .l_stat = LSONPROC,
274 .l_ts = &turnstile0,
275 .l_syncobj = &sched_syncobj,
276 .l_refcnt = 1,
277 .l_priority = PRI_USER + NPRI_USER - 1,
278 .l_inheritedprio = -1,
279 .l_class = SCHED_OTHER,
280 .l_psid = PS_NONE,
281 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
282 .l_name = __UNCONST("swapper"),
283 .l_fd = &filedesc0,
284 };
285
286 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
287
288 /*
289 * sysctl helper routine for kern.maxlwp. Ensures that the new
290 * values are not too low or too high.
291 */
292 static int
293 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
294 {
295 int error, nmaxlwp;
296 struct sysctlnode node;
297
298 nmaxlwp = maxlwp;
299 node = *rnode;
300 node.sysctl_data = &nmaxlwp;
301 error = sysctl_lookup(SYSCTLFN_CALL(&node));
302 if (error || newp == NULL)
303 return error;
304
305 if (nmaxlwp < 0 || nmaxlwp >= 65536)
306 return EINVAL;
307 if (nmaxlwp > cpu_maxlwp())
308 return EINVAL;
309 maxlwp = nmaxlwp;
310
311 return 0;
312 }
313
314 static void
315 sysctl_kern_lwp_setup(void)
316 {
317 struct sysctllog *clog = NULL;
318
319 sysctl_createv(&clog, 0, NULL, NULL,
320 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
321 CTLTYPE_INT, "maxlwp",
322 SYSCTL_DESCR("Maximum number of simultaneous threads"),
323 sysctl_kern_maxlwp, 0, NULL, 0,
324 CTL_KERN, CTL_CREATE, CTL_EOL);
325 }
326
327 void
328 lwpinit(void)
329 {
330
331 LIST_INIT(&alllwp);
332 lwpinit_specificdata();
333 lwp_sys_init();
334 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
335 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
336
337 maxlwp = cpu_maxlwp();
338 sysctl_kern_lwp_setup();
339 }
340
341 void
342 lwp0_init(void)
343 {
344 struct lwp *l = &lwp0;
345
346 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
347 KASSERT(l->l_lid == proc0.p_nlwpid);
348
349 LIST_INSERT_HEAD(&alllwp, l, l_list);
350
351 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
352 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
353 cv_init(&l->l_sigcv, "sigwait");
354 cv_init(&l->l_waitcv, "vfork");
355
356 kauth_cred_hold(proc0.p_cred);
357 l->l_cred = proc0.p_cred;
358
359 kdtrace_thread_ctor(NULL, l);
360 lwp_initspecific(l);
361
362 SYSCALL_TIME_LWP_INIT(l);
363 }
364
365 static void
366 lwp_dtor(void *arg, void *obj)
367 {
368 lwp_t *l = obj;
369 (void)l;
370
371 /*
372 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
373 * calls will exit before memory of LWP is returned to the pool, where
374 * KVA of LWP structure might be freed and re-used for other purposes.
375 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
376 * callers, therefore cross-call to all CPUs will do the job. Also,
377 * the value of l->l_cpu must be still valid at this point.
378 */
379 KASSERT(l->l_cpu != NULL);
380 xc_barrier(0);
381 }
382
383 /*
384 * Set an suspended.
385 *
386 * Must be called with p_lock held, and the LWP locked. Will unlock the
387 * LWP before return.
388 */
389 int
390 lwp_suspend(struct lwp *curl, struct lwp *t)
391 {
392 int error;
393
394 KASSERT(mutex_owned(t->l_proc->p_lock));
395 KASSERT(lwp_locked(t, NULL));
396
397 KASSERT(curl != t || curl->l_stat == LSONPROC);
398
399 /*
400 * If the current LWP has been told to exit, we must not suspend anyone
401 * else or deadlock could occur. We won't return to userspace.
402 */
403 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
404 lwp_unlock(t);
405 return (EDEADLK);
406 }
407
408 if ((t->l_flag & LW_DBGSUSPEND) != 0) {
409 lwp_unlock(t);
410 return 0;
411 }
412
413 error = 0;
414
415 switch (t->l_stat) {
416 case LSRUN:
417 case LSONPROC:
418 t->l_flag |= LW_WSUSPEND;
419 lwp_need_userret(t);
420 lwp_unlock(t);
421 break;
422
423 case LSSLEEP:
424 t->l_flag |= LW_WSUSPEND;
425
426 /*
427 * Kick the LWP and try to get it to the kernel boundary
428 * so that it will release any locks that it holds.
429 * setrunnable() will release the lock.
430 */
431 if ((t->l_flag & LW_SINTR) != 0)
432 setrunnable(t);
433 else
434 lwp_unlock(t);
435 break;
436
437 case LSSUSPENDED:
438 lwp_unlock(t);
439 break;
440
441 case LSSTOP:
442 t->l_flag |= LW_WSUSPEND;
443 setrunnable(t);
444 break;
445
446 case LSIDL:
447 case LSZOMB:
448 error = EINTR; /* It's what Solaris does..... */
449 lwp_unlock(t);
450 break;
451 }
452
453 return (error);
454 }
455
456 /*
457 * Restart a suspended LWP.
458 *
459 * Must be called with p_lock held, and the LWP locked. Will unlock the
460 * LWP before return.
461 */
462 void
463 lwp_continue(struct lwp *l)
464 {
465
466 KASSERT(mutex_owned(l->l_proc->p_lock));
467 KASSERT(lwp_locked(l, NULL));
468
469 /* If rebooting or not suspended, then just bail out. */
470 if ((l->l_flag & LW_WREBOOT) != 0) {
471 lwp_unlock(l);
472 return;
473 }
474
475 l->l_flag &= ~LW_WSUSPEND;
476
477 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
478 lwp_unlock(l);
479 return;
480 }
481
482 /* setrunnable() will release the lock. */
483 setrunnable(l);
484 }
485
486 /*
487 * Restart a stopped LWP.
488 *
489 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
490 * LWP before return.
491 */
492 void
493 lwp_unstop(struct lwp *l)
494 {
495 struct proc *p = l->l_proc;
496
497 KASSERT(mutex_owned(proc_lock));
498 KASSERT(mutex_owned(p->p_lock));
499
500 lwp_lock(l);
501
502 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
503
504 /* If not stopped, then just bail out. */
505 if (l->l_stat != LSSTOP) {
506 lwp_unlock(l);
507 return;
508 }
509
510 p->p_stat = SACTIVE;
511 p->p_sflag &= ~PS_STOPPING;
512
513 if (!p->p_waited)
514 p->p_pptr->p_nstopchild--;
515
516 if (l->l_wchan == NULL) {
517 /* setrunnable() will release the lock. */
518 setrunnable(l);
519 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
520 /* setrunnable() so we can receive the signal */
521 setrunnable(l);
522 } else {
523 l->l_stat = LSSLEEP;
524 p->p_nrlwps++;
525 lwp_unlock(l);
526 }
527 }
528
529 /*
530 * Wait for an LWP within the current process to exit. If 'lid' is
531 * non-zero, we are waiting for a specific LWP.
532 *
533 * Must be called with p->p_lock held.
534 */
535 int
536 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
537 {
538 const lwpid_t curlid = l->l_lid;
539 proc_t *p = l->l_proc;
540 lwp_t *l2;
541 int error;
542
543 KASSERT(mutex_owned(p->p_lock));
544
545 p->p_nlwpwait++;
546 l->l_waitingfor = lid;
547
548 for (;;) {
549 int nfound;
550
551 /*
552 * Avoid a race between exit1() and sigexit(): if the
553 * process is dumping core, then we need to bail out: call
554 * into lwp_userret() where we will be suspended until the
555 * deed is done.
556 */
557 if ((p->p_sflag & PS_WCORE) != 0) {
558 mutex_exit(p->p_lock);
559 lwp_userret(l);
560 KASSERT(false);
561 }
562
563 /*
564 * First off, drain any detached LWP that is waiting to be
565 * reaped.
566 */
567 while ((l2 = p->p_zomblwp) != NULL) {
568 p->p_zomblwp = NULL;
569 lwp_free(l2, false, false);/* releases proc mutex */
570 mutex_enter(p->p_lock);
571 }
572
573 /*
574 * Now look for an LWP to collect. If the whole process is
575 * exiting, count detached LWPs as eligible to be collected,
576 * but don't drain them here.
577 */
578 nfound = 0;
579 error = 0;
580 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
581 /*
582 * If a specific wait and the target is waiting on
583 * us, then avoid deadlock. This also traps LWPs
584 * that try to wait on themselves.
585 *
586 * Note that this does not handle more complicated
587 * cycles, like: t1 -> t2 -> t3 -> t1. The process
588 * can still be killed so it is not a major problem.
589 */
590 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
591 error = EDEADLK;
592 break;
593 }
594 if (l2 == l)
595 continue;
596 if ((l2->l_prflag & LPR_DETACHED) != 0) {
597 nfound += exiting;
598 continue;
599 }
600 if (lid != 0) {
601 if (l2->l_lid != lid)
602 continue;
603 /*
604 * Mark this LWP as the first waiter, if there
605 * is no other.
606 */
607 if (l2->l_waiter == 0)
608 l2->l_waiter = curlid;
609 } else if (l2->l_waiter != 0) {
610 /*
611 * It already has a waiter - so don't
612 * collect it. If the waiter doesn't
613 * grab it we'll get another chance
614 * later.
615 */
616 nfound++;
617 continue;
618 }
619 nfound++;
620
621 /* No need to lock the LWP in order to see LSZOMB. */
622 if (l2->l_stat != LSZOMB)
623 continue;
624
625 /*
626 * We're no longer waiting. Reset the "first waiter"
627 * pointer on the target, in case it was us.
628 */
629 l->l_waitingfor = 0;
630 l2->l_waiter = 0;
631 p->p_nlwpwait--;
632 if (departed)
633 *departed = l2->l_lid;
634 sched_lwp_collect(l2);
635
636 /* lwp_free() releases the proc lock. */
637 lwp_free(l2, false, false);
638 mutex_enter(p->p_lock);
639 return 0;
640 }
641
642 if (error != 0)
643 break;
644 if (nfound == 0) {
645 error = ESRCH;
646 break;
647 }
648
649 /*
650 * Note: since the lock will be dropped, need to restart on
651 * wakeup to run all LWPs again, e.g. there may be new LWPs.
652 */
653 if (exiting) {
654 KASSERT(p->p_nlwps > 1);
655 cv_wait(&p->p_lwpcv, p->p_lock);
656 error = EAGAIN;
657 break;
658 }
659
660 /*
661 * If all other LWPs are waiting for exits or suspends
662 * and the supply of zombies and potential zombies is
663 * exhausted, then we are about to deadlock.
664 *
665 * If the process is exiting (and this LWP is not the one
666 * that is coordinating the exit) then bail out now.
667 */
668 if ((p->p_sflag & PS_WEXIT) != 0 ||
669 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
670 error = EDEADLK;
671 break;
672 }
673
674 /*
675 * Sit around and wait for something to happen. We'll be
676 * awoken if any of the conditions examined change: if an
677 * LWP exits, is collected, or is detached.
678 */
679 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
680 break;
681 }
682
683 /*
684 * We didn't find any LWPs to collect, we may have received a
685 * signal, or some other condition has caused us to bail out.
686 *
687 * If waiting on a specific LWP, clear the waiters marker: some
688 * other LWP may want it. Then, kick all the remaining waiters
689 * so that they can re-check for zombies and for deadlock.
690 */
691 if (lid != 0) {
692 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
693 if (l2->l_lid == lid) {
694 if (l2->l_waiter == curlid)
695 l2->l_waiter = 0;
696 break;
697 }
698 }
699 }
700 p->p_nlwpwait--;
701 l->l_waitingfor = 0;
702 cv_broadcast(&p->p_lwpcv);
703
704 return error;
705 }
706
707 static lwpid_t
708 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
709 {
710 #define LID_SCAN (1u << 31)
711 lwp_t *scan, *free_before;
712 lwpid_t nxt_lid;
713
714 /*
715 * We want the first unused lid greater than or equal to
716 * try_lid (modulo 2^31).
717 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
718 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
719 * the outer test easier.
720 * This would be much easier if the list were sorted in
721 * increasing order.
722 * The list is kept sorted in decreasing order.
723 * This code is only used after a process has generated 2^31 lwp.
724 *
725 * Code assumes it can always find an id.
726 */
727
728 try_lid &= LID_SCAN - 1;
729 if (try_lid <= 1)
730 try_lid = 2;
731
732 free_before = NULL;
733 nxt_lid = LID_SCAN - 1;
734 LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
735 if (scan->l_lid != nxt_lid) {
736 /* There are available lid before this entry */
737 free_before = scan;
738 if (try_lid > scan->l_lid)
739 break;
740 }
741 if (try_lid == scan->l_lid) {
742 /* The ideal lid is busy, take a higher one */
743 if (free_before != NULL) {
744 try_lid = free_before->l_lid + 1;
745 break;
746 }
747 /* No higher ones, reuse low numbers */
748 try_lid = 2;
749 }
750
751 nxt_lid = scan->l_lid - 1;
752 if (LIST_NEXT(scan, l_sibling) == NULL) {
753 /* The value we have is lower than any existing lwp */
754 LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
755 return try_lid;
756 }
757 }
758
759 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
760 return try_lid;
761 }
762
763 /*
764 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
765 * The new LWP is created in state LSIDL and must be set running,
766 * suspended, or stopped by the caller.
767 */
768 int
769 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
770 void *stack, size_t stacksize, void (*func)(void *), void *arg,
771 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
772 const stack_t *sigstk)
773 {
774 struct lwp *l2, *isfree;
775 turnstile_t *ts;
776 lwpid_t lid;
777
778 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
779
780 /*
781 * Enforce limits, excluding the first lwp and kthreads.
782 */
783 if (p2->p_nlwps != 0 && p2 != &proc0) {
784 uid_t uid = kauth_cred_getuid(l1->l_cred);
785 int count = chglwpcnt(uid, 1);
786 if (__predict_false(count >
787 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
788 if (kauth_authorize_process(l1->l_cred,
789 KAUTH_PROCESS_RLIMIT, p2,
790 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
791 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
792 != 0) {
793 (void)chglwpcnt(uid, -1);
794 return EAGAIN;
795 }
796 }
797 }
798
799 /*
800 * First off, reap any detached LWP waiting to be collected.
801 * We can re-use its LWP structure and turnstile.
802 */
803 isfree = NULL;
804 if (p2->p_zomblwp != NULL) {
805 mutex_enter(p2->p_lock);
806 if ((isfree = p2->p_zomblwp) != NULL) {
807 p2->p_zomblwp = NULL;
808 lwp_free(isfree, true, false);/* releases proc mutex */
809 } else
810 mutex_exit(p2->p_lock);
811 }
812 if (isfree == NULL) {
813 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
814 memset(l2, 0, sizeof(*l2));
815 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
816 SLIST_INIT(&l2->l_pi_lenders);
817 } else {
818 l2 = isfree;
819 ts = l2->l_ts;
820 KASSERT(l2->l_inheritedprio == -1);
821 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
822 memset(l2, 0, sizeof(*l2));
823 l2->l_ts = ts;
824 }
825
826 l2->l_stat = LSIDL;
827 l2->l_proc = p2;
828 l2->l_refcnt = 1;
829 l2->l_class = sclass;
830
831 /*
832 * If vfork(), we want the LWP to run fast and on the same CPU
833 * as its parent, so that it can reuse the VM context and cache
834 * footprint on the local CPU.
835 */
836 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
837 l2->l_kpribase = PRI_KERNEL;
838 l2->l_priority = l1->l_priority;
839 l2->l_inheritedprio = -1;
840 l2->l_protectprio = -1;
841 l2->l_auxprio = -1;
842 l2->l_flag = (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
843 l2->l_pflag = LP_MPSAFE;
844 TAILQ_INIT(&l2->l_ld_locks);
845 l2->l_psrefs = 0;
846 kmsan_lwp_alloc(l2);
847
848 /*
849 * For vfork, borrow parent's lwpctl context if it exists.
850 * This also causes us to return via lwp_userret.
851 */
852 if (flags & LWP_VFORK && l1->l_lwpctl) {
853 l2->l_lwpctl = l1->l_lwpctl;
854 l2->l_flag |= LW_LWPCTL;
855 }
856
857 /*
858 * If not the first LWP in the process, grab a reference to the
859 * descriptor table.
860 */
861 l2->l_fd = p2->p_fd;
862 if (p2->p_nlwps != 0) {
863 KASSERT(l1->l_proc == p2);
864 fd_hold(l2);
865 } else {
866 KASSERT(l1->l_proc != p2);
867 }
868
869 if (p2->p_flag & PK_SYSTEM) {
870 /* Mark it as a system LWP. */
871 l2->l_flag |= LW_SYSTEM;
872 }
873
874 kpreempt_disable();
875 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
876 l2->l_cpu = l1->l_cpu;
877 kpreempt_enable();
878
879 kdtrace_thread_ctor(NULL, l2);
880 lwp_initspecific(l2);
881 sched_lwp_fork(l1, l2);
882 lwp_update_creds(l2);
883 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
884 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
885 cv_init(&l2->l_sigcv, "sigwait");
886 cv_init(&l2->l_waitcv, "vfork");
887 l2->l_syncobj = &sched_syncobj;
888 PSREF_DEBUG_INIT_LWP(l2);
889
890 if (rnewlwpp != NULL)
891 *rnewlwpp = l2;
892
893 /*
894 * PCU state needs to be saved before calling uvm_lwp_fork() so that
895 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
896 */
897 pcu_save_all(l1);
898
899 uvm_lwp_setuarea(l2, uaddr);
900 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
901
902 if ((flags & LWP_PIDLID) != 0) {
903 lid = proc_alloc_pid(p2);
904 l2->l_pflag |= LP_PIDLID;
905 } else if (p2->p_nlwps == 0) {
906 lid = l1->l_lid;
907 /*
908 * Update next LWP ID, too. If this overflows to LID_SCAN,
909 * the slow path of scanning will be used for the next LWP.
910 */
911 p2->p_nlwpid = lid + 1;
912 } else {
913 lid = 0;
914 }
915
916 mutex_enter(p2->p_lock);
917
918 if ((flags & LWP_DETACHED) != 0) {
919 l2->l_prflag = LPR_DETACHED;
920 p2->p_ndlwps++;
921 } else
922 l2->l_prflag = 0;
923
924 l2->l_sigstk = *sigstk;
925 l2->l_sigmask = *sigmask;
926 TAILQ_INIT(&l2->l_sigpend.sp_info);
927 sigemptyset(&l2->l_sigpend.sp_set);
928
929 if (__predict_true(lid == 0)) {
930 /*
931 * XXX: l_lid are expected to be unique (for a process)
932 * if LWP_PIDLID is sometimes set this won't be true.
933 * Once 2^31 threads have been allocated we have to
934 * scan to ensure we allocate a unique value.
935 */
936 lid = ++p2->p_nlwpid;
937 if (__predict_false(lid & LID_SCAN)) {
938 lid = lwp_find_free_lid(lid, l2, p2);
939 p2->p_nlwpid = lid | LID_SCAN;
940 /* l2 as been inserted into p_lwps in order */
941 goto skip_insert;
942 }
943 p2->p_nlwpid = lid;
944 }
945 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
946 skip_insert:
947 l2->l_lid = lid;
948 p2->p_nlwps++;
949 p2->p_nrlwps++;
950
951 KASSERT(l2->l_affinity == NULL);
952
953 /* Inherit the affinity mask. */
954 if (l1->l_affinity) {
955 /*
956 * Note that we hold the state lock while inheriting
957 * the affinity to avoid race with sched_setaffinity().
958 */
959 lwp_lock(l1);
960 if (l1->l_affinity) {
961 kcpuset_use(l1->l_affinity);
962 l2->l_affinity = l1->l_affinity;
963 }
964 lwp_unlock(l1);
965 }
966 mutex_exit(p2->p_lock);
967
968 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
969
970 mutex_enter(proc_lock);
971 LIST_INSERT_HEAD(&alllwp, l2, l_list);
972 /* Inherit a processor-set */
973 l2->l_psid = l1->l_psid;
974 mutex_exit(proc_lock);
975
976 SYSCALL_TIME_LWP_INIT(l2);
977
978 if (p2->p_emul->e_lwp_fork)
979 (*p2->p_emul->e_lwp_fork)(l1, l2);
980
981 return (0);
982 }
983
984 /*
985 * Set a new LWP running. If the process is stopping, then the LWP is
986 * created stopped.
987 */
988 void
989 lwp_start(lwp_t *l, int flags)
990 {
991 proc_t *p = l->l_proc;
992
993 mutex_enter(p->p_lock);
994 lwp_lock(l);
995 KASSERT(l->l_stat == LSIDL);
996 if ((flags & LWP_SUSPENDED) != 0) {
997 /* It'll suspend itself in lwp_userret(). */
998 l->l_flag |= LW_WSUSPEND;
999 }
1000 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1001 KASSERT(l->l_wchan == NULL);
1002 l->l_stat = LSSTOP;
1003 p->p_nrlwps--;
1004 lwp_unlock(l);
1005 } else {
1006 l->l_cpu = curcpu();
1007 setrunnable(l);
1008 /* LWP now unlocked */
1009 }
1010 mutex_exit(p->p_lock);
1011 }
1012
1013 /*
1014 * Called by MD code when a new LWP begins execution. Must be called
1015 * with the previous LWP locked (so at splsched), or if there is no
1016 * previous LWP, at splsched.
1017 */
1018 void
1019 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1020 {
1021 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1022
1023 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1024
1025 KASSERT(kpreempt_disabled());
1026 if (prev != NULL) {
1027 /*
1028 * Normalize the count of the spin-mutexes, it was
1029 * increased in mi_switch(). Unmark the state of
1030 * context switch - it is finished for previous LWP.
1031 */
1032 curcpu()->ci_mtx_count++;
1033 membar_exit();
1034 prev->l_ctxswtch = 0;
1035 }
1036 KPREEMPT_DISABLE(new_lwp);
1037 if (__predict_true(new_lwp->l_proc->p_vmspace))
1038 pmap_activate(new_lwp);
1039 spl0();
1040
1041 /* Note trip through cpu_switchto(). */
1042 pserialize_switchpoint();
1043
1044 LOCKDEBUG_BARRIER(NULL, 0);
1045 KPREEMPT_ENABLE(new_lwp);
1046 if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1047 KERNEL_LOCK(1, new_lwp);
1048 }
1049 }
1050
1051 /*
1052 * Exit an LWP.
1053 */
1054 void
1055 lwp_exit(struct lwp *l)
1056 {
1057 struct proc *p = l->l_proc;
1058 struct lwp *l2;
1059 bool current;
1060
1061 current = (l == curlwp);
1062
1063 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1064 KASSERT(p == curproc);
1065
1066 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1067
1068 /*
1069 * Verify that we hold no locks other than the kernel lock.
1070 */
1071 LOCKDEBUG_BARRIER(&kernel_lock, 0);
1072
1073 /*
1074 * If we are the last live LWP in a process, we need to exit the
1075 * entire process. We do so with an exit status of zero, because
1076 * it's a "controlled" exit, and because that's what Solaris does.
1077 *
1078 * We are not quite a zombie yet, but for accounting purposes we
1079 * must increment the count of zombies here.
1080 *
1081 * Note: the last LWP's specificdata will be deleted here.
1082 */
1083 mutex_enter(p->p_lock);
1084 if (p->p_nlwps - p->p_nzlwps == 1) {
1085 KASSERT(current == true);
1086 KASSERT(p != &proc0);
1087 /* XXXSMP kernel_lock not held */
1088 exit1(l, 0, 0);
1089 /* NOTREACHED */
1090 }
1091 p->p_nzlwps++;
1092 mutex_exit(p->p_lock);
1093
1094 if (p->p_emul->e_lwp_exit)
1095 (*p->p_emul->e_lwp_exit)(l);
1096
1097 /* Drop filedesc reference. */
1098 fd_free();
1099
1100 /* Release fstrans private data. */
1101 fstrans_lwp_dtor(l);
1102
1103 /* Delete the specificdata while it's still safe to sleep. */
1104 lwp_finispecific(l);
1105
1106 /*
1107 * Release our cached credentials.
1108 */
1109 kauth_cred_free(l->l_cred);
1110 callout_destroy(&l->l_timeout_ch);
1111
1112 /*
1113 * If traced, report LWP exit event to the debugger.
1114 *
1115 * Remove the LWP from the global list.
1116 * Free its LID from the PID namespace if needed.
1117 */
1118 mutex_enter(proc_lock);
1119
1120 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1121 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1122 mutex_enter(p->p_lock);
1123 if (ISSET(p->p_sflag, PS_WEXIT)) {
1124 mutex_exit(p->p_lock);
1125 /*
1126 * We are exiting, bail out without informing parent
1127 * about a terminating LWP as it would deadlock.
1128 */
1129 } else {
1130 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1131 mutex_enter(proc_lock);
1132 }
1133 }
1134
1135 LIST_REMOVE(l, l_list);
1136 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1137 proc_free_pid(l->l_lid);
1138 }
1139 mutex_exit(proc_lock);
1140
1141 /*
1142 * Get rid of all references to the LWP that others (e.g. procfs)
1143 * may have, and mark the LWP as a zombie. If the LWP is detached,
1144 * mark it waiting for collection in the proc structure. Note that
1145 * before we can do that, we need to free any other dead, deatched
1146 * LWP waiting to meet its maker.
1147 */
1148 mutex_enter(p->p_lock);
1149 lwp_drainrefs(l);
1150
1151 if ((l->l_prflag & LPR_DETACHED) != 0) {
1152 while ((l2 = p->p_zomblwp) != NULL) {
1153 p->p_zomblwp = NULL;
1154 lwp_free(l2, false, false);/* releases proc mutex */
1155 mutex_enter(p->p_lock);
1156 l->l_refcnt++;
1157 lwp_drainrefs(l);
1158 }
1159 p->p_zomblwp = l;
1160 }
1161
1162 /*
1163 * If we find a pending signal for the process and we have been
1164 * asked to check for signals, then we lose: arrange to have
1165 * all other LWPs in the process check for signals.
1166 */
1167 if ((l->l_flag & LW_PENDSIG) != 0 &&
1168 firstsig(&p->p_sigpend.sp_set) != 0) {
1169 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1170 lwp_lock(l2);
1171 signotify(l2);
1172 lwp_unlock(l2);
1173 }
1174 }
1175
1176 /*
1177 * Release any PCU resources before becoming a zombie.
1178 */
1179 pcu_discard_all(l);
1180
1181 lwp_lock(l);
1182 l->l_stat = LSZOMB;
1183 if (l->l_name != NULL) {
1184 strcpy(l->l_name, "(zombie)");
1185 }
1186 lwp_unlock(l);
1187 p->p_nrlwps--;
1188 cv_broadcast(&p->p_lwpcv);
1189 if (l->l_lwpctl != NULL)
1190 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1191 mutex_exit(p->p_lock);
1192
1193 /*
1194 * We can no longer block. At this point, lwp_free() may already
1195 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1196 *
1197 * Free MD LWP resources.
1198 */
1199 cpu_lwp_free(l, 0);
1200
1201 if (current) {
1202 pmap_deactivate(l);
1203
1204 /*
1205 * Release the kernel lock, and switch away into
1206 * oblivion.
1207 */
1208 #ifdef notyet
1209 /* XXXSMP hold in lwp_userret() */
1210 KERNEL_UNLOCK_LAST(l);
1211 #else
1212 KERNEL_UNLOCK_ALL(l, NULL);
1213 #endif
1214 lwp_exit_switchaway(l);
1215 }
1216 }
1217
1218 /*
1219 * Free a dead LWP's remaining resources.
1220 *
1221 * XXXLWP limits.
1222 */
1223 void
1224 lwp_free(struct lwp *l, bool recycle, bool last)
1225 {
1226 struct proc *p = l->l_proc;
1227 struct rusage *ru;
1228 ksiginfoq_t kq;
1229
1230 KASSERT(l != curlwp);
1231 KASSERT(last || mutex_owned(p->p_lock));
1232
1233 /*
1234 * We use the process credentials instead of the lwp credentials here
1235 * because the lwp credentials maybe cached (just after a setuid call)
1236 * and we don't want pay for syncing, since the lwp is going away
1237 * anyway
1238 */
1239 if (p != &proc0 && p->p_nlwps != 1)
1240 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1241 /*
1242 * If this was not the last LWP in the process, then adjust
1243 * counters and unlock.
1244 */
1245 if (!last) {
1246 /*
1247 * Add the LWP's run time to the process' base value.
1248 * This needs to co-incide with coming off p_lwps.
1249 */
1250 bintime_add(&p->p_rtime, &l->l_rtime);
1251 p->p_pctcpu += l->l_pctcpu;
1252 ru = &p->p_stats->p_ru;
1253 ruadd(ru, &l->l_ru);
1254 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1255 ru->ru_nivcsw += l->l_nivcsw;
1256 LIST_REMOVE(l, l_sibling);
1257 p->p_nlwps--;
1258 p->p_nzlwps--;
1259 if ((l->l_prflag & LPR_DETACHED) != 0)
1260 p->p_ndlwps--;
1261
1262 /*
1263 * Have any LWPs sleeping in lwp_wait() recheck for
1264 * deadlock.
1265 */
1266 cv_broadcast(&p->p_lwpcv);
1267 mutex_exit(p->p_lock);
1268 }
1269
1270 #ifdef MULTIPROCESSOR
1271 /*
1272 * In the unlikely event that the LWP is still on the CPU,
1273 * then spin until it has switched away. We need to release
1274 * all locks to avoid deadlock against interrupt handlers on
1275 * the target CPU.
1276 */
1277 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1278 int count;
1279 (void)count; /* XXXgcc */
1280 KERNEL_UNLOCK_ALL(curlwp, &count);
1281 while ((l->l_pflag & LP_RUNNING) != 0 ||
1282 l->l_cpu->ci_curlwp == l)
1283 SPINLOCK_BACKOFF_HOOK;
1284 KERNEL_LOCK(count, curlwp);
1285 }
1286 #endif
1287
1288 /*
1289 * Destroy the LWP's remaining signal information.
1290 */
1291 ksiginfo_queue_init(&kq);
1292 sigclear(&l->l_sigpend, NULL, &kq);
1293 ksiginfo_queue_drain(&kq);
1294 cv_destroy(&l->l_sigcv);
1295 cv_destroy(&l->l_waitcv);
1296
1297 /*
1298 * Free lwpctl structure and affinity.
1299 */
1300 if (l->l_lwpctl) {
1301 lwp_ctl_free(l);
1302 }
1303 if (l->l_affinity) {
1304 kcpuset_unuse(l->l_affinity, NULL);
1305 l->l_affinity = NULL;
1306 }
1307
1308 /*
1309 * Free the LWP's turnstile and the LWP structure itself unless the
1310 * caller wants to recycle them. Also, free the scheduler specific
1311 * data.
1312 *
1313 * We can't return turnstile0 to the pool (it didn't come from it),
1314 * so if it comes up just drop it quietly and move on.
1315 *
1316 * We don't recycle the VM resources at this time.
1317 */
1318
1319 if (!recycle && l->l_ts != &turnstile0)
1320 pool_cache_put(turnstile_cache, l->l_ts);
1321 if (l->l_name != NULL)
1322 kmem_free(l->l_name, MAXCOMLEN);
1323
1324 kmsan_lwp_free(l);
1325 cpu_lwp_free2(l);
1326 uvm_lwp_exit(l);
1327
1328 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1329 KASSERT(l->l_inheritedprio == -1);
1330 KASSERT(l->l_blcnt == 0);
1331 kdtrace_thread_dtor(NULL, l);
1332 if (!recycle)
1333 pool_cache_put(lwp_cache, l);
1334 }
1335
1336 /*
1337 * Migrate the LWP to the another CPU. Unlocks the LWP.
1338 */
1339 void
1340 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1341 {
1342 struct schedstate_percpu *tspc;
1343 int lstat = l->l_stat;
1344
1345 KASSERT(lwp_locked(l, NULL));
1346 KASSERT(tci != NULL);
1347
1348 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1349 if ((l->l_pflag & LP_RUNNING) != 0) {
1350 lstat = LSONPROC;
1351 }
1352
1353 /*
1354 * The destination CPU could be changed while previous migration
1355 * was not finished.
1356 */
1357 if (l->l_target_cpu != NULL) {
1358 l->l_target_cpu = tci;
1359 lwp_unlock(l);
1360 return;
1361 }
1362
1363 /* Nothing to do if trying to migrate to the same CPU */
1364 if (l->l_cpu == tci) {
1365 lwp_unlock(l);
1366 return;
1367 }
1368
1369 KASSERT(l->l_target_cpu == NULL);
1370 tspc = &tci->ci_schedstate;
1371 switch (lstat) {
1372 case LSRUN:
1373 l->l_target_cpu = tci;
1374 break;
1375 case LSSLEEP:
1376 l->l_cpu = tci;
1377 break;
1378 case LSIDL:
1379 case LSSTOP:
1380 case LSSUSPENDED:
1381 l->l_cpu = tci;
1382 if (l->l_wchan == NULL) {
1383 lwp_unlock_to(l, tspc->spc_lwplock);
1384 return;
1385 }
1386 break;
1387 case LSONPROC:
1388 l->l_target_cpu = tci;
1389 spc_lock(l->l_cpu);
1390 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1391 /* spc now unlocked */
1392 break;
1393 }
1394 lwp_unlock(l);
1395 }
1396
1397 /*
1398 * Find the LWP in the process. Arguments may be zero, in such case,
1399 * the calling process and first LWP in the list will be used.
1400 * On success - returns proc locked.
1401 */
1402 struct lwp *
1403 lwp_find2(pid_t pid, lwpid_t lid)
1404 {
1405 proc_t *p;
1406 lwp_t *l;
1407
1408 /* Find the process. */
1409 if (pid != 0) {
1410 mutex_enter(proc_lock);
1411 p = proc_find(pid);
1412 if (p == NULL) {
1413 mutex_exit(proc_lock);
1414 return NULL;
1415 }
1416 mutex_enter(p->p_lock);
1417 mutex_exit(proc_lock);
1418 } else {
1419 p = curlwp->l_proc;
1420 mutex_enter(p->p_lock);
1421 }
1422 /* Find the thread. */
1423 if (lid != 0) {
1424 l = lwp_find(p, lid);
1425 } else {
1426 l = LIST_FIRST(&p->p_lwps);
1427 }
1428 if (l == NULL) {
1429 mutex_exit(p->p_lock);
1430 }
1431 return l;
1432 }
1433
1434 /*
1435 * Look up a live LWP within the specified process.
1436 *
1437 * Must be called with p->p_lock held.
1438 */
1439 struct lwp *
1440 lwp_find(struct proc *p, lwpid_t id)
1441 {
1442 struct lwp *l;
1443
1444 KASSERT(mutex_owned(p->p_lock));
1445
1446 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1447 if (l->l_lid == id)
1448 break;
1449 }
1450
1451 /*
1452 * No need to lock - all of these conditions will
1453 * be visible with the process level mutex held.
1454 */
1455 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1456 l = NULL;
1457
1458 return l;
1459 }
1460
1461 /*
1462 * Update an LWP's cached credentials to mirror the process' master copy.
1463 *
1464 * This happens early in the syscall path, on user trap, and on LWP
1465 * creation. A long-running LWP can also voluntarily choose to update
1466 * its credentials by calling this routine. This may be called from
1467 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1468 */
1469 void
1470 lwp_update_creds(struct lwp *l)
1471 {
1472 kauth_cred_t oc;
1473 struct proc *p;
1474
1475 p = l->l_proc;
1476 oc = l->l_cred;
1477
1478 mutex_enter(p->p_lock);
1479 kauth_cred_hold(p->p_cred);
1480 l->l_cred = p->p_cred;
1481 l->l_prflag &= ~LPR_CRMOD;
1482 mutex_exit(p->p_lock);
1483 if (oc != NULL)
1484 kauth_cred_free(oc);
1485 }
1486
1487 /*
1488 * Verify that an LWP is locked, and optionally verify that the lock matches
1489 * one we specify.
1490 */
1491 int
1492 lwp_locked(struct lwp *l, kmutex_t *mtx)
1493 {
1494 kmutex_t *cur = l->l_mutex;
1495
1496 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1497 }
1498
1499 /*
1500 * Lend a new mutex to an LWP. The old mutex must be held.
1501 */
1502 kmutex_t *
1503 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1504 {
1505 kmutex_t *oldmtx = l->l_mutex;
1506
1507 KASSERT(mutex_owned(oldmtx));
1508
1509 membar_exit();
1510 l->l_mutex = mtx;
1511 return oldmtx;
1512 }
1513
1514 /*
1515 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1516 * must be held.
1517 */
1518 void
1519 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1520 {
1521 kmutex_t *old;
1522
1523 KASSERT(lwp_locked(l, NULL));
1524
1525 old = l->l_mutex;
1526 membar_exit();
1527 l->l_mutex = mtx;
1528 mutex_spin_exit(old);
1529 }
1530
1531 int
1532 lwp_trylock(struct lwp *l)
1533 {
1534 kmutex_t *old;
1535
1536 for (;;) {
1537 if (!mutex_tryenter(old = l->l_mutex))
1538 return 0;
1539 if (__predict_true(l->l_mutex == old))
1540 return 1;
1541 mutex_spin_exit(old);
1542 }
1543 }
1544
1545 void
1546 lwp_unsleep(lwp_t *l, bool unlock)
1547 {
1548
1549 KASSERT(mutex_owned(l->l_mutex));
1550 (*l->l_syncobj->sobj_unsleep)(l, unlock);
1551 }
1552
1553 /*
1554 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1555 * set.
1556 */
1557 void
1558 lwp_userret(struct lwp *l)
1559 {
1560 struct proc *p;
1561 int sig;
1562
1563 KASSERT(l == curlwp);
1564 KASSERT(l->l_stat == LSONPROC);
1565 p = l->l_proc;
1566
1567 #ifndef __HAVE_FAST_SOFTINTS
1568 /* Run pending soft interrupts. */
1569 if (l->l_cpu->ci_data.cpu_softints != 0)
1570 softint_overlay();
1571 #endif
1572
1573 /*
1574 * It is safe to do this read unlocked on a MP system..
1575 */
1576 while ((l->l_flag & LW_USERRET) != 0) {
1577 /*
1578 * Process pending signals first, unless the process
1579 * is dumping core or exiting, where we will instead
1580 * enter the LW_WSUSPEND case below.
1581 */
1582 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1583 LW_PENDSIG) {
1584 mutex_enter(p->p_lock);
1585 while ((sig = issignal(l)) != 0)
1586 postsig(sig);
1587 mutex_exit(p->p_lock);
1588 }
1589
1590 /*
1591 * Core-dump or suspend pending.
1592 *
1593 * In case of core dump, suspend ourselves, so that the kernel
1594 * stack and therefore the userland registers saved in the
1595 * trapframe are around for coredump() to write them out.
1596 * We also need to save any PCU resources that we have so that
1597 * they accessible for coredump(). We issue a wakeup on
1598 * p->p_lwpcv so that sigexit() will write the core file out
1599 * once all other LWPs are suspended.
1600 */
1601 if ((l->l_flag & LW_WSUSPEND) != 0) {
1602 pcu_save_all(l);
1603 mutex_enter(p->p_lock);
1604 p->p_nrlwps--;
1605 cv_broadcast(&p->p_lwpcv);
1606 lwp_lock(l);
1607 l->l_stat = LSSUSPENDED;
1608 lwp_unlock(l);
1609 mutex_exit(p->p_lock);
1610 lwp_lock(l);
1611 mi_switch(l);
1612 }
1613
1614 /* Process is exiting. */
1615 if ((l->l_flag & LW_WEXIT) != 0) {
1616 lwp_exit(l);
1617 KASSERT(0);
1618 /* NOTREACHED */
1619 }
1620
1621 /* update lwpctl processor (for vfork child_return) */
1622 if (l->l_flag & LW_LWPCTL) {
1623 lwp_lock(l);
1624 KASSERT(kpreempt_disabled());
1625 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1626 l->l_lwpctl->lc_pctr++;
1627 l->l_flag &= ~LW_LWPCTL;
1628 lwp_unlock(l);
1629 }
1630 }
1631 }
1632
1633 /*
1634 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1635 */
1636 void
1637 lwp_need_userret(struct lwp *l)
1638 {
1639
1640 KASSERT(!cpu_intr_p());
1641 KASSERT(lwp_locked(l, NULL));
1642
1643 /*
1644 * If the LWP is in any state other than LSONPROC, we know that it
1645 * is executing in-kernel and will hit userret() on the way out.
1646 *
1647 * If the LWP is curlwp, then we know we'll be back out to userspace
1648 * soon (can't be called from a hardware interrupt here).
1649 *
1650 * Otherwise, we can't be sure what the LWP is doing, so first make
1651 * sure the update to l_flag will be globally visible, and then
1652 * force the LWP to take a trip through trap() where it will do
1653 * userret().
1654 */
1655 if (l->l_stat == LSONPROC && l != curlwp) {
1656 membar_producer();
1657 cpu_signotify(l);
1658 }
1659 }
1660
1661 /*
1662 * Add one reference to an LWP. This will prevent the LWP from
1663 * exiting, thus keep the lwp structure and PCB around to inspect.
1664 */
1665 void
1666 lwp_addref(struct lwp *l)
1667 {
1668
1669 KASSERT(mutex_owned(l->l_proc->p_lock));
1670 KASSERT(l->l_stat != LSZOMB);
1671 KASSERT(l->l_refcnt != 0);
1672
1673 l->l_refcnt++;
1674 }
1675
1676 /*
1677 * Remove one reference to an LWP. If this is the last reference,
1678 * then we must finalize the LWP's death.
1679 */
1680 void
1681 lwp_delref(struct lwp *l)
1682 {
1683 struct proc *p = l->l_proc;
1684
1685 mutex_enter(p->p_lock);
1686 lwp_delref2(l);
1687 mutex_exit(p->p_lock);
1688 }
1689
1690 /*
1691 * Remove one reference to an LWP. If this is the last reference,
1692 * then we must finalize the LWP's death. The proc mutex is held
1693 * on entry.
1694 */
1695 void
1696 lwp_delref2(struct lwp *l)
1697 {
1698 struct proc *p = l->l_proc;
1699
1700 KASSERT(mutex_owned(p->p_lock));
1701 KASSERT(l->l_stat != LSZOMB);
1702 KASSERT(l->l_refcnt > 0);
1703 if (--l->l_refcnt == 0)
1704 cv_broadcast(&p->p_lwpcv);
1705 }
1706
1707 /*
1708 * Drain all references to the current LWP.
1709 */
1710 void
1711 lwp_drainrefs(struct lwp *l)
1712 {
1713 struct proc *p = l->l_proc;
1714
1715 KASSERT(mutex_owned(p->p_lock));
1716 KASSERT(l->l_refcnt != 0);
1717
1718 l->l_refcnt--;
1719 while (l->l_refcnt != 0)
1720 cv_wait(&p->p_lwpcv, p->p_lock);
1721 }
1722
1723 /*
1724 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1725 * be held.
1726 */
1727 bool
1728 lwp_alive(lwp_t *l)
1729 {
1730
1731 KASSERT(mutex_owned(l->l_proc->p_lock));
1732
1733 switch (l->l_stat) {
1734 case LSSLEEP:
1735 case LSRUN:
1736 case LSONPROC:
1737 case LSSTOP:
1738 case LSSUSPENDED:
1739 return true;
1740 default:
1741 return false;
1742 }
1743 }
1744
1745 /*
1746 * Return first live LWP in the process.
1747 */
1748 lwp_t *
1749 lwp_find_first(proc_t *p)
1750 {
1751 lwp_t *l;
1752
1753 KASSERT(mutex_owned(p->p_lock));
1754
1755 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1756 if (lwp_alive(l)) {
1757 return l;
1758 }
1759 }
1760
1761 return NULL;
1762 }
1763
1764 /*
1765 * Allocate a new lwpctl structure for a user LWP.
1766 */
1767 int
1768 lwp_ctl_alloc(vaddr_t *uaddr)
1769 {
1770 lcproc_t *lp;
1771 u_int bit, i, offset;
1772 struct uvm_object *uao;
1773 int error;
1774 lcpage_t *lcp;
1775 proc_t *p;
1776 lwp_t *l;
1777
1778 l = curlwp;
1779 p = l->l_proc;
1780
1781 /* don't allow a vforked process to create lwp ctls */
1782 if (p->p_lflag & PL_PPWAIT)
1783 return EBUSY;
1784
1785 if (l->l_lcpage != NULL) {
1786 lcp = l->l_lcpage;
1787 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1788 return 0;
1789 }
1790
1791 /* First time around, allocate header structure for the process. */
1792 if ((lp = p->p_lwpctl) == NULL) {
1793 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1794 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1795 lp->lp_uao = NULL;
1796 TAILQ_INIT(&lp->lp_pages);
1797 mutex_enter(p->p_lock);
1798 if (p->p_lwpctl == NULL) {
1799 p->p_lwpctl = lp;
1800 mutex_exit(p->p_lock);
1801 } else {
1802 mutex_exit(p->p_lock);
1803 mutex_destroy(&lp->lp_lock);
1804 kmem_free(lp, sizeof(*lp));
1805 lp = p->p_lwpctl;
1806 }
1807 }
1808
1809 /*
1810 * Set up an anonymous memory region to hold the shared pages.
1811 * Map them into the process' address space. The user vmspace
1812 * gets the first reference on the UAO.
1813 */
1814 mutex_enter(&lp->lp_lock);
1815 if (lp->lp_uao == NULL) {
1816 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1817 lp->lp_cur = 0;
1818 lp->lp_max = LWPCTL_UAREA_SZ;
1819 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1820 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1821 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1822 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1823 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1824 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1825 if (error != 0) {
1826 uao_detach(lp->lp_uao);
1827 lp->lp_uao = NULL;
1828 mutex_exit(&lp->lp_lock);
1829 return error;
1830 }
1831 }
1832
1833 /* Get a free block and allocate for this LWP. */
1834 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1835 if (lcp->lcp_nfree != 0)
1836 break;
1837 }
1838 if (lcp == NULL) {
1839 /* Nothing available - try to set up a free page. */
1840 if (lp->lp_cur == lp->lp_max) {
1841 mutex_exit(&lp->lp_lock);
1842 return ENOMEM;
1843 }
1844 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1845
1846 /*
1847 * Wire the next page down in kernel space. Since this
1848 * is a new mapping, we must add a reference.
1849 */
1850 uao = lp->lp_uao;
1851 (*uao->pgops->pgo_reference)(uao);
1852 lcp->lcp_kaddr = vm_map_min(kernel_map);
1853 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1854 uao, lp->lp_cur, PAGE_SIZE,
1855 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1856 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1857 if (error != 0) {
1858 mutex_exit(&lp->lp_lock);
1859 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1860 (*uao->pgops->pgo_detach)(uao);
1861 return error;
1862 }
1863 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1864 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1865 if (error != 0) {
1866 mutex_exit(&lp->lp_lock);
1867 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1868 lcp->lcp_kaddr + PAGE_SIZE);
1869 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1870 return error;
1871 }
1872 /* Prepare the page descriptor and link into the list. */
1873 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1874 lp->lp_cur += PAGE_SIZE;
1875 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1876 lcp->lcp_rotor = 0;
1877 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1878 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1879 }
1880 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1881 if (++i >= LWPCTL_BITMAP_ENTRIES)
1882 i = 0;
1883 }
1884 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1885 lcp->lcp_bitmap[i] ^= (1U << bit);
1886 lcp->lcp_rotor = i;
1887 lcp->lcp_nfree--;
1888 l->l_lcpage = lcp;
1889 offset = (i << 5) + bit;
1890 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1891 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1892 mutex_exit(&lp->lp_lock);
1893
1894 KPREEMPT_DISABLE(l);
1895 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1896 KPREEMPT_ENABLE(l);
1897
1898 return 0;
1899 }
1900
1901 /*
1902 * Free an lwpctl structure back to the per-process list.
1903 */
1904 void
1905 lwp_ctl_free(lwp_t *l)
1906 {
1907 struct proc *p = l->l_proc;
1908 lcproc_t *lp;
1909 lcpage_t *lcp;
1910 u_int map, offset;
1911
1912 /* don't free a lwp context we borrowed for vfork */
1913 if (p->p_lflag & PL_PPWAIT) {
1914 l->l_lwpctl = NULL;
1915 return;
1916 }
1917
1918 lp = p->p_lwpctl;
1919 KASSERT(lp != NULL);
1920
1921 lcp = l->l_lcpage;
1922 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1923 KASSERT(offset < LWPCTL_PER_PAGE);
1924
1925 mutex_enter(&lp->lp_lock);
1926 lcp->lcp_nfree++;
1927 map = offset >> 5;
1928 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1929 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1930 lcp->lcp_rotor = map;
1931 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1932 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1933 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1934 }
1935 mutex_exit(&lp->lp_lock);
1936 }
1937
1938 /*
1939 * Process is exiting; tear down lwpctl state. This can only be safely
1940 * called by the last LWP in the process.
1941 */
1942 void
1943 lwp_ctl_exit(void)
1944 {
1945 lcpage_t *lcp, *next;
1946 lcproc_t *lp;
1947 proc_t *p;
1948 lwp_t *l;
1949
1950 l = curlwp;
1951 l->l_lwpctl = NULL;
1952 l->l_lcpage = NULL;
1953 p = l->l_proc;
1954 lp = p->p_lwpctl;
1955
1956 KASSERT(lp != NULL);
1957 KASSERT(p->p_nlwps == 1);
1958
1959 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1960 next = TAILQ_NEXT(lcp, lcp_chain);
1961 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1962 lcp->lcp_kaddr + PAGE_SIZE);
1963 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1964 }
1965
1966 if (lp->lp_uao != NULL) {
1967 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1968 lp->lp_uva + LWPCTL_UAREA_SZ);
1969 }
1970
1971 mutex_destroy(&lp->lp_lock);
1972 kmem_free(lp, sizeof(*lp));
1973 p->p_lwpctl = NULL;
1974 }
1975
1976 /*
1977 * Return the current LWP's "preemption counter". Used to detect
1978 * preemption across operations that can tolerate preemption without
1979 * crashing, but which may generate incorrect results if preempted.
1980 */
1981 uint64_t
1982 lwp_pctr(void)
1983 {
1984
1985 return curlwp->l_ncsw;
1986 }
1987
1988 /*
1989 * Set an LWP's private data pointer.
1990 */
1991 int
1992 lwp_setprivate(struct lwp *l, void *ptr)
1993 {
1994 int error = 0;
1995
1996 l->l_private = ptr;
1997 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1998 error = cpu_lwp_setprivate(l, ptr);
1999 #endif
2000 return error;
2001 }
2002
2003 #if defined(DDB)
2004 #include <machine/pcb.h>
2005
2006 void
2007 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2008 {
2009 lwp_t *l;
2010
2011 LIST_FOREACH(l, &alllwp, l_list) {
2012 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2013
2014 if (addr < stack || stack + KSTACK_SIZE <= addr) {
2015 continue;
2016 }
2017 (*pr)("%p is %p+%zu, LWP %p's stack\n",
2018 (void *)addr, (void *)stack,
2019 (size_t)(addr - stack), l);
2020 }
2021 }
2022 #endif /* defined(DDB) */
2023