kern_lwp.c revision 1.217.2.1 1 /* $NetBSD: kern_lwp.c,v 1.217.2.1 2020/01/17 21:47:35 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Overview
34 *
35 * Lightweight processes (LWPs) are the basic unit or thread of
36 * execution within the kernel. The core state of an LWP is described
37 * by "struct lwp", also known as lwp_t.
38 *
39 * Each LWP is contained within a process (described by "struct proc"),
40 * Every process contains at least one LWP, but may contain more. The
41 * process describes attributes shared among all of its LWPs such as a
42 * private address space, global execution state (stopped, active,
43 * zombie, ...), signal disposition and so on. On a multiprocessor
44 * machine, multiple LWPs be executing concurrently in the kernel.
45 *
46 * Execution states
47 *
48 * At any given time, an LWP has overall state that is described by
49 * lwp::l_stat. The states are broken into two sets below. The first
50 * set is guaranteed to represent the absolute, current state of the
51 * LWP:
52 *
53 * LSONPROC
54 *
55 * On processor: the LWP is executing on a CPU, either in the
56 * kernel or in user space.
57 *
58 * LSRUN
59 *
60 * Runnable: the LWP is parked on a run queue, and may soon be
61 * chosen to run by an idle processor, or by a processor that
62 * has been asked to preempt a currently runnning but lower
63 * priority LWP.
64 *
65 * LSIDL
66 *
67 * Idle: the LWP has been created but has not yet executed,
68 * or it has ceased executing a unit of work and is waiting
69 * to be started again.
70 *
71 * LSSUSPENDED:
72 *
73 * Suspended: the LWP has had its execution suspended by
74 * another LWP in the same process using the _lwp_suspend()
75 * system call. User-level LWPs also enter the suspended
76 * state when the system is shutting down.
77 *
78 * The second set represent a "statement of intent" on behalf of the
79 * LWP. The LWP may in fact be executing on a processor, may be
80 * sleeping or idle. It is expected to take the necessary action to
81 * stop executing or become "running" again within a short timeframe.
82 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
83 * Importantly, it indicates that its state is tied to a CPU.
84 *
85 * LSZOMB:
86 *
87 * Dead or dying: the LWP has released most of its resources
88 * and is about to switch away into oblivion, or has already
89 * switched away. When it switches away, its few remaining
90 * resources can be collected.
91 *
92 * LSSLEEP:
93 *
94 * Sleeping: the LWP has entered itself onto a sleep queue, and
95 * has switched away or will switch away shortly to allow other
96 * LWPs to run on the CPU.
97 *
98 * LSSTOP:
99 *
100 * Stopped: the LWP has been stopped as a result of a job
101 * control signal, or as a result of the ptrace() interface.
102 *
103 * Stopped LWPs may run briefly within the kernel to handle
104 * signals that they receive, but will not return to user space
105 * until their process' state is changed away from stopped.
106 *
107 * Single LWPs within a process can not be set stopped
108 * selectively: all actions that can stop or continue LWPs
109 * occur at the process level.
110 *
111 * State transitions
112 *
113 * Note that the LSSTOP state may only be set when returning to
114 * user space in userret(), or when sleeping interruptably. The
115 * LSSUSPENDED state may only be set in userret(). Before setting
116 * those states, we try to ensure that the LWPs will release all
117 * locks that they hold, and at a minimum try to ensure that the
118 * LWP can be set runnable again by a signal.
119 *
120 * LWPs may transition states in the following ways:
121 *
122 * RUN -------> ONPROC ONPROC -----> RUN
123 * > SLEEP
124 * > STOPPED
125 * > SUSPENDED
126 * > ZOMB
127 * > IDL (special cases)
128 *
129 * STOPPED ---> RUN SUSPENDED --> RUN
130 * > SLEEP
131 *
132 * SLEEP -----> ONPROC IDL --------> RUN
133 * > RUN > SUSPENDED
134 * > STOPPED > STOPPED
135 * > ONPROC (special cases)
136 *
137 * Some state transitions are only possible with kernel threads (eg
138 * ONPROC -> IDL) and happen under tightly controlled circumstances
139 * free of unwanted side effects.
140 *
141 * Migration
142 *
143 * Migration of threads from one CPU to another could be performed
144 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
145 * functions. The universal lwp_migrate() function should be used for
146 * any other cases. Subsystems in the kernel must be aware that CPU
147 * of LWP may change, while it is not locked.
148 *
149 * Locking
150 *
151 * The majority of fields in 'struct lwp' are covered by a single,
152 * general spin lock pointed to by lwp::l_mutex. The locks covering
153 * each field are documented in sys/lwp.h.
154 *
155 * State transitions must be made with the LWP's general lock held,
156 * and may cause the LWP's lock pointer to change. Manipulation of
157 * the general lock is not performed directly, but through calls to
158 * lwp_lock(), lwp_unlock() and others. It should be noted that the
159 * adaptive locks are not allowed to be released while the LWP's lock
160 * is being held (unlike for other spin-locks).
161 *
162 * States and their associated locks:
163 *
164 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
165 *
166 * Always covered by spc_lwplock, which protects LWPs not
167 * associated with any other sync object. This is a per-CPU
168 * lock and matches lwp::l_cpu.
169 *
170 * LSRUN:
171 *
172 * Always covered by spc_mutex, which protects the run queues.
173 * This is a per-CPU lock and matches lwp::l_cpu.
174 *
175 * LSSLEEP:
176 *
177 * Covered by a lock associated with the sleep queue (sometimes
178 * a turnstile sleep queue) that the LWP resides on.
179 *
180 * LSSTOP:
181 *
182 * If the LWP was previously sleeping (l_wchan != NULL), then
183 * l_mutex references the sleep queue lock. If the LWP was
184 * runnable or on the CPU when halted, or has been removed from
185 * the sleep queue since halted, then the lock is spc_lwplock.
186 *
187 * The lock order is as follows:
188 *
189 * sleepq -> turnstile -> spc_lwplock -> spc_mutex
190 *
191 * Each process has an scheduler state lock (proc::p_lock), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_lock must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * (But not always for kernel threads. There are some special cases
200 * as mentioned above: soft interrupts, and the idle loops.)
201 *
202 * Note that an LWP is considered running or likely to run soon if in
203 * one of the following states. This affects the value of p_nrlwps:
204 *
205 * LSRUN, LSONPROC, LSSLEEP
206 *
207 * p_lock does not need to be held when transitioning among these
208 * three states, hence p_lock is rarely taken for state transitions.
209 */
210
211 #include <sys/cdefs.h>
212 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.217.2.1 2020/01/17 21:47:35 ad Exp $");
213
214 #include "opt_ddb.h"
215 #include "opt_lockdebug.h"
216 #include "opt_dtrace.h"
217
218 #define _LWP_API_PRIVATE
219
220 #include <sys/param.h>
221 #include <sys/systm.h>
222 #include <sys/cpu.h>
223 #include <sys/pool.h>
224 #include <sys/proc.h>
225 #include <sys/syscallargs.h>
226 #include <sys/syscall_stats.h>
227 #include <sys/kauth.h>
228 #include <sys/sleepq.h>
229 #include <sys/lockdebug.h>
230 #include <sys/kmem.h>
231 #include <sys/pset.h>
232 #include <sys/intr.h>
233 #include <sys/lwpctl.h>
234 #include <sys/atomic.h>
235 #include <sys/filedesc.h>
236 #include <sys/fstrans.h>
237 #include <sys/dtrace_bsd.h>
238 #include <sys/sdt.h>
239 #include <sys/ptrace.h>
240 #include <sys/xcall.h>
241 #include <sys/uidinfo.h>
242 #include <sys/sysctl.h>
243 #include <sys/psref.h>
244 #include <sys/msan.h>
245
246 #include <uvm/uvm_extern.h>
247 #include <uvm/uvm_object.h>
248
249 static pool_cache_t lwp_cache __read_mostly;
250 struct lwplist alllwp __cacheline_aligned;
251
252 static void lwp_dtor(void *, void *);
253
254 /* DTrace proc provider probes */
255 SDT_PROVIDER_DEFINE(proc);
256
257 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
260
261 struct turnstile turnstile0 __cacheline_aligned;
262 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
263 #ifdef LWP0_CPU_INFO
264 .l_cpu = LWP0_CPU_INFO,
265 #endif
266 #ifdef LWP0_MD_INITIALIZER
267 .l_md = LWP0_MD_INITIALIZER,
268 #endif
269 .l_proc = &proc0,
270 .l_lid = 1,
271 .l_flag = LW_SYSTEM,
272 .l_stat = LSONPROC,
273 .l_ts = &turnstile0,
274 .l_syncobj = &sched_syncobj,
275 .l_refcnt = 1,
276 .l_priority = PRI_USER + NPRI_USER - 1,
277 .l_inheritedprio = -1,
278 .l_class = SCHED_OTHER,
279 .l_psid = PS_NONE,
280 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
281 .l_name = __UNCONST("swapper"),
282 .l_fd = &filedesc0,
283 };
284
285 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
286
287 /*
288 * sysctl helper routine for kern.maxlwp. Ensures that the new
289 * values are not too low or too high.
290 */
291 static int
292 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
293 {
294 int error, nmaxlwp;
295 struct sysctlnode node;
296
297 nmaxlwp = maxlwp;
298 node = *rnode;
299 node.sysctl_data = &nmaxlwp;
300 error = sysctl_lookup(SYSCTLFN_CALL(&node));
301 if (error || newp == NULL)
302 return error;
303
304 if (nmaxlwp < 0 || nmaxlwp >= 65536)
305 return EINVAL;
306 if (nmaxlwp > cpu_maxlwp())
307 return EINVAL;
308 maxlwp = nmaxlwp;
309
310 return 0;
311 }
312
313 static void
314 sysctl_kern_lwp_setup(void)
315 {
316 struct sysctllog *clog = NULL;
317
318 sysctl_createv(&clog, 0, NULL, NULL,
319 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
320 CTLTYPE_INT, "maxlwp",
321 SYSCTL_DESCR("Maximum number of simultaneous threads"),
322 sysctl_kern_maxlwp, 0, NULL, 0,
323 CTL_KERN, CTL_CREATE, CTL_EOL);
324 }
325
326 void
327 lwpinit(void)
328 {
329
330 LIST_INIT(&alllwp);
331 lwpinit_specificdata();
332 lwp_sys_init();
333 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
334 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
335
336 maxlwp = cpu_maxlwp();
337 sysctl_kern_lwp_setup();
338 }
339
340 void
341 lwp0_init(void)
342 {
343 struct lwp *l = &lwp0;
344
345 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
346 KASSERT(l->l_lid == proc0.p_nlwpid);
347
348 LIST_INSERT_HEAD(&alllwp, l, l_list);
349
350 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
351 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
352 cv_init(&l->l_sigcv, "sigwait");
353 cv_init(&l->l_waitcv, "vfork");
354
355 kauth_cred_hold(proc0.p_cred);
356 l->l_cred = proc0.p_cred;
357
358 kdtrace_thread_ctor(NULL, l);
359 lwp_initspecific(l);
360
361 SYSCALL_TIME_LWP_INIT(l);
362 }
363
364 static void
365 lwp_dtor(void *arg, void *obj)
366 {
367 lwp_t *l = obj;
368 (void)l;
369
370 /*
371 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
372 * calls will exit before memory of LWP is returned to the pool, where
373 * KVA of LWP structure might be freed and re-used for other purposes.
374 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
375 * callers, therefore cross-call to all CPUs will do the job. Also,
376 * the value of l->l_cpu must be still valid at this point.
377 */
378 KASSERT(l->l_cpu != NULL);
379 xc_barrier(0);
380 }
381
382 /*
383 * Set an suspended.
384 *
385 * Must be called with p_lock held, and the LWP locked. Will unlock the
386 * LWP before return.
387 */
388 int
389 lwp_suspend(struct lwp *curl, struct lwp *t)
390 {
391 int error;
392
393 KASSERT(mutex_owned(t->l_proc->p_lock));
394 KASSERT(lwp_locked(t, NULL));
395
396 KASSERT(curl != t || curl->l_stat == LSONPROC);
397
398 /*
399 * If the current LWP has been told to exit, we must not suspend anyone
400 * else or deadlock could occur. We won't return to userspace.
401 */
402 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
403 lwp_unlock(t);
404 return (EDEADLK);
405 }
406
407 if ((t->l_flag & LW_DBGSUSPEND) != 0) {
408 lwp_unlock(t);
409 return 0;
410 }
411
412 error = 0;
413
414 switch (t->l_stat) {
415 case LSRUN:
416 case LSONPROC:
417 t->l_flag |= LW_WSUSPEND;
418 lwp_need_userret(t);
419 lwp_unlock(t);
420 break;
421
422 case LSSLEEP:
423 t->l_flag |= LW_WSUSPEND;
424
425 /*
426 * Kick the LWP and try to get it to the kernel boundary
427 * so that it will release any locks that it holds.
428 * setrunnable() will release the lock.
429 */
430 if ((t->l_flag & LW_SINTR) != 0)
431 setrunnable(t);
432 else
433 lwp_unlock(t);
434 break;
435
436 case LSSUSPENDED:
437 lwp_unlock(t);
438 break;
439
440 case LSSTOP:
441 t->l_flag |= LW_WSUSPEND;
442 setrunnable(t);
443 break;
444
445 case LSIDL:
446 case LSZOMB:
447 error = EINTR; /* It's what Solaris does..... */
448 lwp_unlock(t);
449 break;
450 }
451
452 return (error);
453 }
454
455 /*
456 * Restart a suspended LWP.
457 *
458 * Must be called with p_lock held, and the LWP locked. Will unlock the
459 * LWP before return.
460 */
461 void
462 lwp_continue(struct lwp *l)
463 {
464
465 KASSERT(mutex_owned(l->l_proc->p_lock));
466 KASSERT(lwp_locked(l, NULL));
467
468 /* If rebooting or not suspended, then just bail out. */
469 if ((l->l_flag & LW_WREBOOT) != 0) {
470 lwp_unlock(l);
471 return;
472 }
473
474 l->l_flag &= ~LW_WSUSPEND;
475
476 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
477 lwp_unlock(l);
478 return;
479 }
480
481 /* setrunnable() will release the lock. */
482 setrunnable(l);
483 }
484
485 /*
486 * Restart a stopped LWP.
487 *
488 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
489 * LWP before return.
490 */
491 void
492 lwp_unstop(struct lwp *l)
493 {
494 struct proc *p = l->l_proc;
495
496 KASSERT(mutex_owned(proc_lock));
497 KASSERT(mutex_owned(p->p_lock));
498
499 lwp_lock(l);
500
501 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
502
503 /* If not stopped, then just bail out. */
504 if (l->l_stat != LSSTOP) {
505 lwp_unlock(l);
506 return;
507 }
508
509 p->p_stat = SACTIVE;
510 p->p_sflag &= ~PS_STOPPING;
511
512 if (!p->p_waited)
513 p->p_pptr->p_nstopchild--;
514
515 if (l->l_wchan == NULL) {
516 /* setrunnable() will release the lock. */
517 setrunnable(l);
518 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
519 /* setrunnable() so we can receive the signal */
520 setrunnable(l);
521 } else {
522 l->l_stat = LSSLEEP;
523 p->p_nrlwps++;
524 lwp_unlock(l);
525 }
526 }
527
528 /*
529 * Wait for an LWP within the current process to exit. If 'lid' is
530 * non-zero, we are waiting for a specific LWP.
531 *
532 * Must be called with p->p_lock held.
533 */
534 int
535 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
536 {
537 const lwpid_t curlid = l->l_lid;
538 proc_t *p = l->l_proc;
539 lwp_t *l2;
540 int error;
541
542 KASSERT(mutex_owned(p->p_lock));
543
544 p->p_nlwpwait++;
545 l->l_waitingfor = lid;
546
547 for (;;) {
548 int nfound;
549
550 /*
551 * Avoid a race between exit1() and sigexit(): if the
552 * process is dumping core, then we need to bail out: call
553 * into lwp_userret() where we will be suspended until the
554 * deed is done.
555 */
556 if ((p->p_sflag & PS_WCORE) != 0) {
557 mutex_exit(p->p_lock);
558 lwp_userret(l);
559 KASSERT(false);
560 }
561
562 /*
563 * First off, drain any detached LWP that is waiting to be
564 * reaped.
565 */
566 while ((l2 = p->p_zomblwp) != NULL) {
567 p->p_zomblwp = NULL;
568 lwp_free(l2, false, false);/* releases proc mutex */
569 mutex_enter(p->p_lock);
570 }
571
572 /*
573 * Now look for an LWP to collect. If the whole process is
574 * exiting, count detached LWPs as eligible to be collected,
575 * but don't drain them here.
576 */
577 nfound = 0;
578 error = 0;
579 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
580 /*
581 * If a specific wait and the target is waiting on
582 * us, then avoid deadlock. This also traps LWPs
583 * that try to wait on themselves.
584 *
585 * Note that this does not handle more complicated
586 * cycles, like: t1 -> t2 -> t3 -> t1. The process
587 * can still be killed so it is not a major problem.
588 */
589 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
590 error = EDEADLK;
591 break;
592 }
593 if (l2 == l)
594 continue;
595 if ((l2->l_prflag & LPR_DETACHED) != 0) {
596 nfound += exiting;
597 continue;
598 }
599 if (lid != 0) {
600 if (l2->l_lid != lid)
601 continue;
602 /*
603 * Mark this LWP as the first waiter, if there
604 * is no other.
605 */
606 if (l2->l_waiter == 0)
607 l2->l_waiter = curlid;
608 } else if (l2->l_waiter != 0) {
609 /*
610 * It already has a waiter - so don't
611 * collect it. If the waiter doesn't
612 * grab it we'll get another chance
613 * later.
614 */
615 nfound++;
616 continue;
617 }
618 nfound++;
619
620 /* No need to lock the LWP in order to see LSZOMB. */
621 if (l2->l_stat != LSZOMB)
622 continue;
623
624 /*
625 * We're no longer waiting. Reset the "first waiter"
626 * pointer on the target, in case it was us.
627 */
628 l->l_waitingfor = 0;
629 l2->l_waiter = 0;
630 p->p_nlwpwait--;
631 if (departed)
632 *departed = l2->l_lid;
633 sched_lwp_collect(l2);
634
635 /* lwp_free() releases the proc lock. */
636 lwp_free(l2, false, false);
637 mutex_enter(p->p_lock);
638 return 0;
639 }
640
641 if (error != 0)
642 break;
643 if (nfound == 0) {
644 error = ESRCH;
645 break;
646 }
647
648 /*
649 * Note: since the lock will be dropped, need to restart on
650 * wakeup to run all LWPs again, e.g. there may be new LWPs.
651 */
652 if (exiting) {
653 KASSERT(p->p_nlwps > 1);
654 cv_wait(&p->p_lwpcv, p->p_lock);
655 error = EAGAIN;
656 break;
657 }
658
659 /*
660 * If all other LWPs are waiting for exits or suspends
661 * and the supply of zombies and potential zombies is
662 * exhausted, then we are about to deadlock.
663 *
664 * If the process is exiting (and this LWP is not the one
665 * that is coordinating the exit) then bail out now.
666 */
667 if ((p->p_sflag & PS_WEXIT) != 0 ||
668 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
669 error = EDEADLK;
670 break;
671 }
672
673 /*
674 * Sit around and wait for something to happen. We'll be
675 * awoken if any of the conditions examined change: if an
676 * LWP exits, is collected, or is detached.
677 */
678 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
679 break;
680 }
681
682 /*
683 * We didn't find any LWPs to collect, we may have received a
684 * signal, or some other condition has caused us to bail out.
685 *
686 * If waiting on a specific LWP, clear the waiters marker: some
687 * other LWP may want it. Then, kick all the remaining waiters
688 * so that they can re-check for zombies and for deadlock.
689 */
690 if (lid != 0) {
691 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
692 if (l2->l_lid == lid) {
693 if (l2->l_waiter == curlid)
694 l2->l_waiter = 0;
695 break;
696 }
697 }
698 }
699 p->p_nlwpwait--;
700 l->l_waitingfor = 0;
701 cv_broadcast(&p->p_lwpcv);
702
703 return error;
704 }
705
706 static lwpid_t
707 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
708 {
709 #define LID_SCAN (1u << 31)
710 lwp_t *scan, *free_before;
711 lwpid_t nxt_lid;
712
713 /*
714 * We want the first unused lid greater than or equal to
715 * try_lid (modulo 2^31).
716 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
717 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
718 * the outer test easier.
719 * This would be much easier if the list were sorted in
720 * increasing order.
721 * The list is kept sorted in decreasing order.
722 * This code is only used after a process has generated 2^31 lwp.
723 *
724 * Code assumes it can always find an id.
725 */
726
727 try_lid &= LID_SCAN - 1;
728 if (try_lid <= 1)
729 try_lid = 2;
730
731 free_before = NULL;
732 nxt_lid = LID_SCAN - 1;
733 LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
734 if (scan->l_lid != nxt_lid) {
735 /* There are available lid before this entry */
736 free_before = scan;
737 if (try_lid > scan->l_lid)
738 break;
739 }
740 if (try_lid == scan->l_lid) {
741 /* The ideal lid is busy, take a higher one */
742 if (free_before != NULL) {
743 try_lid = free_before->l_lid + 1;
744 break;
745 }
746 /* No higher ones, reuse low numbers */
747 try_lid = 2;
748 }
749
750 nxt_lid = scan->l_lid - 1;
751 if (LIST_NEXT(scan, l_sibling) == NULL) {
752 /* The value we have is lower than any existing lwp */
753 LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
754 return try_lid;
755 }
756 }
757
758 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
759 return try_lid;
760 }
761
762 /*
763 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
764 * The new LWP is created in state LSIDL and must be set running,
765 * suspended, or stopped by the caller.
766 */
767 int
768 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
769 void *stack, size_t stacksize, void (*func)(void *), void *arg,
770 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
771 const stack_t *sigstk)
772 {
773 struct lwp *l2;
774 turnstile_t *ts;
775 lwpid_t lid;
776
777 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
778
779 /*
780 * Enforce limits, excluding the first lwp and kthreads. We must
781 * use the process credentials here when adjusting the limit, as
782 * they are what's tied to the accounting entity. However for
783 * authorizing the action, we'll use the LWP's credentials.
784 */
785 mutex_enter(p2->p_lock);
786 if (p2->p_nlwps != 0 && p2 != &proc0) {
787 uid_t uid = kauth_cred_getuid(p2->p_cred);
788 int count = chglwpcnt(uid, 1);
789 if (__predict_false(count >
790 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
791 if (kauth_authorize_process(l1->l_cred,
792 KAUTH_PROCESS_RLIMIT, p2,
793 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
794 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
795 != 0) {
796 (void)chglwpcnt(uid, -1);
797 mutex_exit(p2->p_lock);
798 return EAGAIN;
799 }
800 }
801 }
802
803 /*
804 * First off, reap any detached LWP waiting to be collected.
805 * We can re-use its LWP structure and turnstile.
806 */
807 if ((l2 = p2->p_zomblwp) != NULL) {
808 p2->p_zomblwp = NULL;
809 lwp_free(l2, true, false);
810 /* p2 now unlocked by lwp_free() */
811 ts = l2->l_ts;
812 KASSERT(l2->l_inheritedprio == -1);
813 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
814 memset(l2, 0, sizeof(*l2));
815 l2->l_ts = ts;
816 } else {
817 mutex_exit(p2->p_lock);
818 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
819 memset(l2, 0, sizeof(*l2));
820 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
821 SLIST_INIT(&l2->l_pi_lenders);
822 }
823
824 l2->l_stat = LSIDL;
825 l2->l_proc = p2;
826 l2->l_refcnt = 1;
827 l2->l_class = sclass;
828
829 /*
830 * If vfork(), we want the LWP to run fast and on the same CPU
831 * as its parent, so that it can reuse the VM context and cache
832 * footprint on the local CPU.
833 */
834 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
835 l2->l_kpribase = PRI_KERNEL;
836 l2->l_priority = l1->l_priority;
837 l2->l_inheritedprio = -1;
838 l2->l_protectprio = -1;
839 l2->l_auxprio = -1;
840 l2->l_flag = (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
841 l2->l_pflag = LP_MPSAFE;
842 TAILQ_INIT(&l2->l_ld_locks);
843 l2->l_psrefs = 0;
844 kmsan_lwp_alloc(l2);
845
846 /*
847 * For vfork, borrow parent's lwpctl context if it exists.
848 * This also causes us to return via lwp_userret.
849 */
850 if (flags & LWP_VFORK && l1->l_lwpctl) {
851 l2->l_lwpctl = l1->l_lwpctl;
852 l2->l_flag |= LW_LWPCTL;
853 }
854
855 /*
856 * If not the first LWP in the process, grab a reference to the
857 * descriptor table.
858 */
859 l2->l_fd = p2->p_fd;
860 if (p2->p_nlwps != 0) {
861 KASSERT(l1->l_proc == p2);
862 fd_hold(l2);
863 } else {
864 KASSERT(l1->l_proc != p2);
865 }
866
867 if (p2->p_flag & PK_SYSTEM) {
868 /* Mark it as a system LWP. */
869 l2->l_flag |= LW_SYSTEM;
870 }
871
872 kpreempt_disable();
873 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
874 l2->l_cpu = l1->l_cpu;
875 kpreempt_enable();
876
877 kdtrace_thread_ctor(NULL, l2);
878 lwp_initspecific(l2);
879 sched_lwp_fork(l1, l2);
880 lwp_update_creds(l2);
881 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
882 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
883 cv_init(&l2->l_sigcv, "sigwait");
884 cv_init(&l2->l_waitcv, "vfork");
885 l2->l_syncobj = &sched_syncobj;
886 PSREF_DEBUG_INIT_LWP(l2);
887
888 if (rnewlwpp != NULL)
889 *rnewlwpp = l2;
890
891 /*
892 * PCU state needs to be saved before calling uvm_lwp_fork() so that
893 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
894 */
895 pcu_save_all(l1);
896
897 uvm_lwp_setuarea(l2, uaddr);
898 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
899
900 if ((flags & LWP_PIDLID) != 0) {
901 lid = proc_alloc_pid(p2);
902 l2->l_pflag |= LP_PIDLID;
903 } else if (p2->p_nlwps == 0) {
904 lid = l1->l_lid;
905 /*
906 * Update next LWP ID, too. If this overflows to LID_SCAN,
907 * the slow path of scanning will be used for the next LWP.
908 */
909 p2->p_nlwpid = lid + 1;
910 } else {
911 lid = 0;
912 }
913
914 mutex_enter(p2->p_lock);
915
916 if ((flags & LWP_DETACHED) != 0) {
917 l2->l_prflag = LPR_DETACHED;
918 p2->p_ndlwps++;
919 } else
920 l2->l_prflag = 0;
921
922 l2->l_sigstk = *sigstk;
923 l2->l_sigmask = *sigmask;
924 TAILQ_INIT(&l2->l_sigpend.sp_info);
925 sigemptyset(&l2->l_sigpend.sp_set);
926
927 if (__predict_true(lid == 0)) {
928 /*
929 * XXX: l_lid are expected to be unique (for a process)
930 * if LWP_PIDLID is sometimes set this won't be true.
931 * Once 2^31 threads have been allocated we have to
932 * scan to ensure we allocate a unique value.
933 */
934 lid = ++p2->p_nlwpid;
935 if (__predict_false(lid & LID_SCAN)) {
936 lid = lwp_find_free_lid(lid, l2, p2);
937 p2->p_nlwpid = lid | LID_SCAN;
938 /* l2 as been inserted into p_lwps in order */
939 goto skip_insert;
940 }
941 p2->p_nlwpid = lid;
942 }
943 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
944 skip_insert:
945 l2->l_lid = lid;
946 p2->p_nlwps++;
947 p2->p_nrlwps++;
948
949 KASSERT(l2->l_affinity == NULL);
950
951 /* Inherit the affinity mask. */
952 if (l1->l_affinity) {
953 /*
954 * Note that we hold the state lock while inheriting
955 * the affinity to avoid race with sched_setaffinity().
956 */
957 lwp_lock(l1);
958 if (l1->l_affinity) {
959 kcpuset_use(l1->l_affinity);
960 l2->l_affinity = l1->l_affinity;
961 }
962 lwp_unlock(l1);
963 }
964 mutex_exit(p2->p_lock);
965
966 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
967
968 mutex_enter(proc_lock);
969 LIST_INSERT_HEAD(&alllwp, l2, l_list);
970 /* Inherit a processor-set */
971 l2->l_psid = l1->l_psid;
972 mutex_exit(proc_lock);
973
974 SYSCALL_TIME_LWP_INIT(l2);
975
976 if (p2->p_emul->e_lwp_fork)
977 (*p2->p_emul->e_lwp_fork)(l1, l2);
978
979 return (0);
980 }
981
982 /*
983 * Set a new LWP running. If the process is stopping, then the LWP is
984 * created stopped.
985 */
986 void
987 lwp_start(lwp_t *l, int flags)
988 {
989 proc_t *p = l->l_proc;
990
991 mutex_enter(p->p_lock);
992 lwp_lock(l);
993 KASSERT(l->l_stat == LSIDL);
994 if ((flags & LWP_SUSPENDED) != 0) {
995 /* It'll suspend itself in lwp_userret(). */
996 l->l_flag |= LW_WSUSPEND;
997 }
998 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
999 KASSERT(l->l_wchan == NULL);
1000 l->l_stat = LSSTOP;
1001 p->p_nrlwps--;
1002 lwp_unlock(l);
1003 } else {
1004 setrunnable(l);
1005 /* LWP now unlocked */
1006 }
1007 mutex_exit(p->p_lock);
1008 }
1009
1010 /*
1011 * Called by MD code when a new LWP begins execution. Must be called
1012 * with the previous LWP locked (so at splsched), or if there is no
1013 * previous LWP, at splsched.
1014 */
1015 void
1016 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1017 {
1018
1019 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1020 KASSERT(kpreempt_disabled());
1021 KASSERT(prev != NULL);
1022 KASSERT((prev->l_flag & LW_RUNNING) != 0);
1023 KASSERT(curcpu()->ci_mtx_count == -2);
1024
1025 /* Immediately mark previous LWP as no longer running, and unlock. */
1026 prev->l_flag &= ~LW_RUNNING;
1027 lwp_unlock(prev);
1028
1029 /* Correct spin mutex count after mi_switch(). */
1030 curcpu()->ci_mtx_count = 0;
1031
1032 /* Install new VM context. */
1033 if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1034 pmap_activate(new_lwp);
1035 }
1036
1037 /* We remain at IPL_SCHED from mi_switch() - reset it. */
1038 spl0();
1039
1040 LOCKDEBUG_BARRIER(NULL, 0);
1041 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1042
1043 /* For kthreads, acquire kernel lock if not MPSAFE. */
1044 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1045 KERNEL_LOCK(1, new_lwp);
1046 }
1047 }
1048
1049 /*
1050 * Exit an LWP.
1051 */
1052 void
1053 lwp_exit(struct lwp *l)
1054 {
1055 struct proc *p = l->l_proc;
1056 struct lwp *l2;
1057 bool current;
1058
1059 current = (l == curlwp);
1060
1061 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1062 KASSERT(p == curproc);
1063
1064 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1065
1066 /* Verify that we hold no locks */
1067 LOCKDEBUG_BARRIER(NULL, 0);
1068
1069 /*
1070 * If we are the last live LWP in a process, we need to exit the
1071 * entire process. We do so with an exit status of zero, because
1072 * it's a "controlled" exit, and because that's what Solaris does.
1073 *
1074 * We are not quite a zombie yet, but for accounting purposes we
1075 * must increment the count of zombies here.
1076 *
1077 * Note: the last LWP's specificdata will be deleted here.
1078 */
1079 mutex_enter(p->p_lock);
1080 if (p->p_nlwps - p->p_nzlwps == 1) {
1081 KASSERT(current == true);
1082 KASSERT(p != &proc0);
1083 /* XXXSMP kernel_lock not held */
1084 exit1(l, 0, 0);
1085 /* NOTREACHED */
1086 }
1087 p->p_nzlwps++;
1088 mutex_exit(p->p_lock);
1089
1090 if (p->p_emul->e_lwp_exit)
1091 (*p->p_emul->e_lwp_exit)(l);
1092
1093 /* Drop filedesc reference. */
1094 fd_free();
1095
1096 /* Release fstrans private data. */
1097 fstrans_lwp_dtor(l);
1098
1099 /* Delete the specificdata while it's still safe to sleep. */
1100 lwp_finispecific(l);
1101
1102 /*
1103 * Release our cached credentials.
1104 */
1105 kauth_cred_free(l->l_cred);
1106 callout_destroy(&l->l_timeout_ch);
1107
1108 /*
1109 * If traced, report LWP exit event to the debugger.
1110 *
1111 * Remove the LWP from the global list.
1112 * Free its LID from the PID namespace if needed.
1113 */
1114 mutex_enter(proc_lock);
1115
1116 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1117 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1118 mutex_enter(p->p_lock);
1119 if (ISSET(p->p_sflag, PS_WEXIT)) {
1120 mutex_exit(p->p_lock);
1121 /*
1122 * We are exiting, bail out without informing parent
1123 * about a terminating LWP as it would deadlock.
1124 */
1125 } else {
1126 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1127 mutex_enter(proc_lock);
1128 }
1129 }
1130
1131 LIST_REMOVE(l, l_list);
1132 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1133 proc_free_pid(l->l_lid);
1134 }
1135 mutex_exit(proc_lock);
1136
1137 /*
1138 * Get rid of all references to the LWP that others (e.g. procfs)
1139 * may have, and mark the LWP as a zombie. If the LWP is detached,
1140 * mark it waiting for collection in the proc structure. Note that
1141 * before we can do that, we need to free any other dead, deatched
1142 * LWP waiting to meet its maker.
1143 */
1144 mutex_enter(p->p_lock);
1145 lwp_drainrefs(l);
1146
1147 if ((l->l_prflag & LPR_DETACHED) != 0) {
1148 while ((l2 = p->p_zomblwp) != NULL) {
1149 p->p_zomblwp = NULL;
1150 lwp_free(l2, false, false);/* releases proc mutex */
1151 mutex_enter(p->p_lock);
1152 l->l_refcnt++;
1153 lwp_drainrefs(l);
1154 }
1155 p->p_zomblwp = l;
1156 }
1157
1158 /*
1159 * If we find a pending signal for the process and we have been
1160 * asked to check for signals, then we lose: arrange to have
1161 * all other LWPs in the process check for signals.
1162 */
1163 if ((l->l_flag & LW_PENDSIG) != 0 &&
1164 firstsig(&p->p_sigpend.sp_set) != 0) {
1165 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1166 lwp_lock(l2);
1167 signotify(l2);
1168 lwp_unlock(l2);
1169 }
1170 }
1171
1172 /*
1173 * Release any PCU resources before becoming a zombie.
1174 */
1175 pcu_discard_all(l);
1176
1177 lwp_lock(l);
1178 l->l_stat = LSZOMB;
1179 if (l->l_name != NULL) {
1180 strcpy(l->l_name, "(zombie)");
1181 }
1182 lwp_unlock(l);
1183 p->p_nrlwps--;
1184 cv_broadcast(&p->p_lwpcv);
1185 if (l->l_lwpctl != NULL)
1186 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1187 mutex_exit(p->p_lock);
1188
1189 /*
1190 * We can no longer block. At this point, lwp_free() may already
1191 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1192 *
1193 * Free MD LWP resources.
1194 */
1195 cpu_lwp_free(l, 0);
1196
1197 if (current) {
1198 /* For the LW_RUNNING check in lwp_free(). */
1199 membar_exit();
1200 /* Switch away into oblivion. */
1201 lwp_lock(l);
1202 spc_lock(l->l_cpu);
1203 mi_switch(l);
1204 panic("lwp_exit");
1205 }
1206 }
1207
1208 /*
1209 * Free a dead LWP's remaining resources.
1210 *
1211 * XXXLWP limits.
1212 */
1213 void
1214 lwp_free(struct lwp *l, bool recycle, bool last)
1215 {
1216 struct proc *p = l->l_proc;
1217 struct rusage *ru;
1218 ksiginfoq_t kq;
1219
1220 KASSERT(l != curlwp);
1221 KASSERT(last || mutex_owned(p->p_lock));
1222
1223 /*
1224 * We use the process credentials instead of the lwp credentials here
1225 * because the lwp credentials maybe cached (just after a setuid call)
1226 * and we don't want pay for syncing, since the lwp is going away
1227 * anyway
1228 */
1229 if (p != &proc0 && p->p_nlwps != 1)
1230 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1231
1232 /*
1233 * If this was not the last LWP in the process, then adjust
1234 * counters and unlock.
1235 */
1236 if (!last) {
1237 /*
1238 * Add the LWP's run time to the process' base value.
1239 * This needs to co-incide with coming off p_lwps.
1240 */
1241 bintime_add(&p->p_rtime, &l->l_rtime);
1242 p->p_pctcpu += l->l_pctcpu;
1243 ru = &p->p_stats->p_ru;
1244 ruadd(ru, &l->l_ru);
1245 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1246 ru->ru_nivcsw += l->l_nivcsw;
1247 LIST_REMOVE(l, l_sibling);
1248 p->p_nlwps--;
1249 p->p_nzlwps--;
1250 if ((l->l_prflag & LPR_DETACHED) != 0)
1251 p->p_ndlwps--;
1252
1253 /*
1254 * Have any LWPs sleeping in lwp_wait() recheck for
1255 * deadlock.
1256 */
1257 cv_broadcast(&p->p_lwpcv);
1258 mutex_exit(p->p_lock);
1259 }
1260
1261 #ifdef MULTIPROCESSOR
1262 /*
1263 * In the unlikely event that the LWP is still on the CPU,
1264 * then spin until it has switched away. We need to release
1265 * all locks to avoid deadlock against interrupt handlers on
1266 * the target CPU.
1267 */
1268 membar_enter();
1269 while (__predict_false((l->l_flag & LW_RUNNING) != 0)) {
1270 SPINLOCK_BACKOFF_HOOK;
1271 }
1272 #endif
1273
1274 /*
1275 * Destroy the LWP's remaining signal information.
1276 */
1277 ksiginfo_queue_init(&kq);
1278 sigclear(&l->l_sigpend, NULL, &kq);
1279 ksiginfo_queue_drain(&kq);
1280 cv_destroy(&l->l_sigcv);
1281 cv_destroy(&l->l_waitcv);
1282
1283 /*
1284 * Free lwpctl structure and affinity.
1285 */
1286 if (l->l_lwpctl) {
1287 lwp_ctl_free(l);
1288 }
1289 if (l->l_affinity) {
1290 kcpuset_unuse(l->l_affinity, NULL);
1291 l->l_affinity = NULL;
1292 }
1293
1294 /*
1295 * Free the LWP's turnstile and the LWP structure itself unless the
1296 * caller wants to recycle them. Also, free the scheduler specific
1297 * data.
1298 *
1299 * We can't return turnstile0 to the pool (it didn't come from it),
1300 * so if it comes up just drop it quietly and move on.
1301 *
1302 * We don't recycle the VM resources at this time.
1303 */
1304
1305 if (!recycle && l->l_ts != &turnstile0)
1306 pool_cache_put(turnstile_cache, l->l_ts);
1307 if (l->l_name != NULL)
1308 kmem_free(l->l_name, MAXCOMLEN);
1309
1310 kmsan_lwp_free(l);
1311 cpu_lwp_free2(l);
1312 uvm_lwp_exit(l);
1313
1314 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1315 KASSERT(l->l_inheritedprio == -1);
1316 KASSERT(l->l_blcnt == 0);
1317 kdtrace_thread_dtor(NULL, l);
1318 if (!recycle)
1319 pool_cache_put(lwp_cache, l);
1320 }
1321
1322 /*
1323 * Migrate the LWP to the another CPU. Unlocks the LWP.
1324 */
1325 void
1326 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1327 {
1328 struct schedstate_percpu *tspc;
1329 int lstat = l->l_stat;
1330
1331 KASSERT(lwp_locked(l, NULL));
1332 KASSERT(tci != NULL);
1333
1334 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1335 if ((l->l_flag & LW_RUNNING) != 0) {
1336 lstat = LSONPROC;
1337 }
1338
1339 /*
1340 * The destination CPU could be changed while previous migration
1341 * was not finished.
1342 */
1343 if (l->l_target_cpu != NULL) {
1344 l->l_target_cpu = tci;
1345 lwp_unlock(l);
1346 return;
1347 }
1348
1349 /* Nothing to do if trying to migrate to the same CPU */
1350 if (l->l_cpu == tci) {
1351 lwp_unlock(l);
1352 return;
1353 }
1354
1355 KASSERT(l->l_target_cpu == NULL);
1356 tspc = &tci->ci_schedstate;
1357 switch (lstat) {
1358 case LSRUN:
1359 l->l_target_cpu = tci;
1360 break;
1361 case LSSLEEP:
1362 l->l_cpu = tci;
1363 break;
1364 case LSIDL:
1365 case LSSTOP:
1366 case LSSUSPENDED:
1367 l->l_cpu = tci;
1368 if (l->l_wchan == NULL) {
1369 lwp_unlock_to(l, tspc->spc_lwplock);
1370 return;
1371 }
1372 break;
1373 case LSONPROC:
1374 l->l_target_cpu = tci;
1375 spc_lock(l->l_cpu);
1376 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1377 /* spc now unlocked */
1378 break;
1379 }
1380 lwp_unlock(l);
1381 }
1382
1383 /*
1384 * Find the LWP in the process. Arguments may be zero, in such case,
1385 * the calling process and first LWP in the list will be used.
1386 * On success - returns proc locked.
1387 */
1388 struct lwp *
1389 lwp_find2(pid_t pid, lwpid_t lid)
1390 {
1391 proc_t *p;
1392 lwp_t *l;
1393
1394 /* Find the process. */
1395 if (pid != 0) {
1396 mutex_enter(proc_lock);
1397 p = proc_find(pid);
1398 if (p == NULL) {
1399 mutex_exit(proc_lock);
1400 return NULL;
1401 }
1402 mutex_enter(p->p_lock);
1403 mutex_exit(proc_lock);
1404 } else {
1405 p = curlwp->l_proc;
1406 mutex_enter(p->p_lock);
1407 }
1408 /* Find the thread. */
1409 if (lid != 0) {
1410 l = lwp_find(p, lid);
1411 } else {
1412 l = LIST_FIRST(&p->p_lwps);
1413 }
1414 if (l == NULL) {
1415 mutex_exit(p->p_lock);
1416 }
1417 return l;
1418 }
1419
1420 /*
1421 * Look up a live LWP within the specified process.
1422 *
1423 * Must be called with p->p_lock held.
1424 */
1425 struct lwp *
1426 lwp_find(struct proc *p, lwpid_t id)
1427 {
1428 struct lwp *l;
1429
1430 KASSERT(mutex_owned(p->p_lock));
1431
1432 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1433 if (l->l_lid == id)
1434 break;
1435 }
1436
1437 /*
1438 * No need to lock - all of these conditions will
1439 * be visible with the process level mutex held.
1440 */
1441 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1442 l = NULL;
1443
1444 return l;
1445 }
1446
1447 /*
1448 * Update an LWP's cached credentials to mirror the process' master copy.
1449 *
1450 * This happens early in the syscall path, on user trap, and on LWP
1451 * creation. A long-running LWP can also voluntarily choose to update
1452 * its credentials by calling this routine. This may be called from
1453 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1454 */
1455 void
1456 lwp_update_creds(struct lwp *l)
1457 {
1458 kauth_cred_t oc;
1459 struct proc *p;
1460
1461 p = l->l_proc;
1462 oc = l->l_cred;
1463
1464 mutex_enter(p->p_lock);
1465 kauth_cred_hold(p->p_cred);
1466 l->l_cred = p->p_cred;
1467 l->l_prflag &= ~LPR_CRMOD;
1468 mutex_exit(p->p_lock);
1469 if (oc != NULL)
1470 kauth_cred_free(oc);
1471 }
1472
1473 /*
1474 * Verify that an LWP is locked, and optionally verify that the lock matches
1475 * one we specify.
1476 */
1477 int
1478 lwp_locked(struct lwp *l, kmutex_t *mtx)
1479 {
1480 kmutex_t *cur = l->l_mutex;
1481
1482 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1483 }
1484
1485 /*
1486 * Lend a new mutex to an LWP. The old mutex must be held.
1487 */
1488 kmutex_t *
1489 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1490 {
1491 kmutex_t *oldmtx = l->l_mutex;
1492
1493 KASSERT(mutex_owned(oldmtx));
1494
1495 membar_exit();
1496 l->l_mutex = mtx;
1497 return oldmtx;
1498 }
1499
1500 /*
1501 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1502 * must be held.
1503 */
1504 void
1505 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1506 {
1507 kmutex_t *old;
1508
1509 KASSERT(lwp_locked(l, NULL));
1510
1511 old = l->l_mutex;
1512 membar_exit();
1513 l->l_mutex = mtx;
1514 mutex_spin_exit(old);
1515 }
1516
1517 int
1518 lwp_trylock(struct lwp *l)
1519 {
1520 kmutex_t *old;
1521
1522 for (;;) {
1523 if (!mutex_tryenter(old = l->l_mutex))
1524 return 0;
1525 if (__predict_true(l->l_mutex == old))
1526 return 1;
1527 mutex_spin_exit(old);
1528 }
1529 }
1530
1531 void
1532 lwp_unsleep(lwp_t *l, bool unlock)
1533 {
1534
1535 KASSERT(mutex_owned(l->l_mutex));
1536 (*l->l_syncobj->sobj_unsleep)(l, unlock);
1537 }
1538
1539 /*
1540 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1541 * set.
1542 */
1543 void
1544 lwp_userret(struct lwp *l)
1545 {
1546 struct proc *p;
1547 int sig;
1548
1549 KASSERT(l == curlwp);
1550 KASSERT(l->l_stat == LSONPROC);
1551 p = l->l_proc;
1552
1553 #ifndef __HAVE_FAST_SOFTINTS
1554 /* Run pending soft interrupts. */
1555 if (l->l_cpu->ci_data.cpu_softints != 0)
1556 softint_overlay();
1557 #endif
1558
1559 /*
1560 * It is safe to do this read unlocked on a MP system..
1561 */
1562 while ((l->l_flag & LW_USERRET) != 0) {
1563 /*
1564 * Process pending signals first, unless the process
1565 * is dumping core or exiting, where we will instead
1566 * enter the LW_WSUSPEND case below.
1567 */
1568 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1569 LW_PENDSIG) {
1570 mutex_enter(p->p_lock);
1571 while ((sig = issignal(l)) != 0)
1572 postsig(sig);
1573 mutex_exit(p->p_lock);
1574 }
1575
1576 /*
1577 * Core-dump or suspend pending.
1578 *
1579 * In case of core dump, suspend ourselves, so that the kernel
1580 * stack and therefore the userland registers saved in the
1581 * trapframe are around for coredump() to write them out.
1582 * We also need to save any PCU resources that we have so that
1583 * they accessible for coredump(). We issue a wakeup on
1584 * p->p_lwpcv so that sigexit() will write the core file out
1585 * once all other LWPs are suspended.
1586 */
1587 if ((l->l_flag & LW_WSUSPEND) != 0) {
1588 pcu_save_all(l);
1589 mutex_enter(p->p_lock);
1590 p->p_nrlwps--;
1591 cv_broadcast(&p->p_lwpcv);
1592 lwp_lock(l);
1593 l->l_stat = LSSUSPENDED;
1594 lwp_unlock(l);
1595 mutex_exit(p->p_lock);
1596 lwp_lock(l);
1597 spc_lock(l->l_cpu);
1598 mi_switch(l);
1599 }
1600
1601 /* Process is exiting. */
1602 if ((l->l_flag & LW_WEXIT) != 0) {
1603 lwp_exit(l);
1604 KASSERT(0);
1605 /* NOTREACHED */
1606 }
1607
1608 /* update lwpctl processor (for vfork child_return) */
1609 if (l->l_flag & LW_LWPCTL) {
1610 lwp_lock(l);
1611 KASSERT(kpreempt_disabled());
1612 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1613 l->l_lwpctl->lc_pctr++;
1614 l->l_flag &= ~LW_LWPCTL;
1615 lwp_unlock(l);
1616 }
1617 }
1618 }
1619
1620 /*
1621 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1622 */
1623 void
1624 lwp_need_userret(struct lwp *l)
1625 {
1626
1627 KASSERT(!cpu_intr_p());
1628 KASSERT(lwp_locked(l, NULL));
1629
1630 /*
1631 * If the LWP is in any state other than LSONPROC, we know that it
1632 * is executing in-kernel and will hit userret() on the way out.
1633 *
1634 * If the LWP is curlwp, then we know we'll be back out to userspace
1635 * soon (can't be called from a hardware interrupt here).
1636 *
1637 * Otherwise, we can't be sure what the LWP is doing, so first make
1638 * sure the update to l_flag will be globally visible, and then
1639 * force the LWP to take a trip through trap() where it will do
1640 * userret().
1641 */
1642 if (l->l_stat == LSONPROC && l != curlwp) {
1643 membar_producer();
1644 cpu_signotify(l);
1645 }
1646 }
1647
1648 /*
1649 * Add one reference to an LWP. This will prevent the LWP from
1650 * exiting, thus keep the lwp structure and PCB around to inspect.
1651 */
1652 void
1653 lwp_addref(struct lwp *l)
1654 {
1655
1656 KASSERT(mutex_owned(l->l_proc->p_lock));
1657 KASSERT(l->l_stat != LSZOMB);
1658 KASSERT(l->l_refcnt != 0);
1659
1660 l->l_refcnt++;
1661 }
1662
1663 /*
1664 * Remove one reference to an LWP. If this is the last reference,
1665 * then we must finalize the LWP's death.
1666 */
1667 void
1668 lwp_delref(struct lwp *l)
1669 {
1670 struct proc *p = l->l_proc;
1671
1672 mutex_enter(p->p_lock);
1673 lwp_delref2(l);
1674 mutex_exit(p->p_lock);
1675 }
1676
1677 /*
1678 * Remove one reference to an LWP. If this is the last reference,
1679 * then we must finalize the LWP's death. The proc mutex is held
1680 * on entry.
1681 */
1682 void
1683 lwp_delref2(struct lwp *l)
1684 {
1685 struct proc *p = l->l_proc;
1686
1687 KASSERT(mutex_owned(p->p_lock));
1688 KASSERT(l->l_stat != LSZOMB);
1689 KASSERT(l->l_refcnt > 0);
1690 if (--l->l_refcnt == 0)
1691 cv_broadcast(&p->p_lwpcv);
1692 }
1693
1694 /*
1695 * Drain all references to the current LWP.
1696 */
1697 void
1698 lwp_drainrefs(struct lwp *l)
1699 {
1700 struct proc *p = l->l_proc;
1701
1702 KASSERT(mutex_owned(p->p_lock));
1703 KASSERT(l->l_refcnt != 0);
1704
1705 l->l_refcnt--;
1706 while (l->l_refcnt != 0)
1707 cv_wait(&p->p_lwpcv, p->p_lock);
1708 }
1709
1710 /*
1711 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1712 * be held.
1713 */
1714 bool
1715 lwp_alive(lwp_t *l)
1716 {
1717
1718 KASSERT(mutex_owned(l->l_proc->p_lock));
1719
1720 switch (l->l_stat) {
1721 case LSSLEEP:
1722 case LSRUN:
1723 case LSONPROC:
1724 case LSSTOP:
1725 case LSSUSPENDED:
1726 return true;
1727 default:
1728 return false;
1729 }
1730 }
1731
1732 /*
1733 * Return first live LWP in the process.
1734 */
1735 lwp_t *
1736 lwp_find_first(proc_t *p)
1737 {
1738 lwp_t *l;
1739
1740 KASSERT(mutex_owned(p->p_lock));
1741
1742 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1743 if (lwp_alive(l)) {
1744 return l;
1745 }
1746 }
1747
1748 return NULL;
1749 }
1750
1751 /*
1752 * Allocate a new lwpctl structure for a user LWP.
1753 */
1754 int
1755 lwp_ctl_alloc(vaddr_t *uaddr)
1756 {
1757 lcproc_t *lp;
1758 u_int bit, i, offset;
1759 struct uvm_object *uao;
1760 int error;
1761 lcpage_t *lcp;
1762 proc_t *p;
1763 lwp_t *l;
1764
1765 l = curlwp;
1766 p = l->l_proc;
1767
1768 /* don't allow a vforked process to create lwp ctls */
1769 if (p->p_lflag & PL_PPWAIT)
1770 return EBUSY;
1771
1772 if (l->l_lcpage != NULL) {
1773 lcp = l->l_lcpage;
1774 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1775 return 0;
1776 }
1777
1778 /* First time around, allocate header structure for the process. */
1779 if ((lp = p->p_lwpctl) == NULL) {
1780 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1781 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1782 lp->lp_uao = NULL;
1783 TAILQ_INIT(&lp->lp_pages);
1784 mutex_enter(p->p_lock);
1785 if (p->p_lwpctl == NULL) {
1786 p->p_lwpctl = lp;
1787 mutex_exit(p->p_lock);
1788 } else {
1789 mutex_exit(p->p_lock);
1790 mutex_destroy(&lp->lp_lock);
1791 kmem_free(lp, sizeof(*lp));
1792 lp = p->p_lwpctl;
1793 }
1794 }
1795
1796 /*
1797 * Set up an anonymous memory region to hold the shared pages.
1798 * Map them into the process' address space. The user vmspace
1799 * gets the first reference on the UAO.
1800 */
1801 mutex_enter(&lp->lp_lock);
1802 if (lp->lp_uao == NULL) {
1803 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1804 lp->lp_cur = 0;
1805 lp->lp_max = LWPCTL_UAREA_SZ;
1806 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1807 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1808 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1809 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1810 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1811 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1812 if (error != 0) {
1813 uao_detach(lp->lp_uao);
1814 lp->lp_uao = NULL;
1815 mutex_exit(&lp->lp_lock);
1816 return error;
1817 }
1818 }
1819
1820 /* Get a free block and allocate for this LWP. */
1821 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1822 if (lcp->lcp_nfree != 0)
1823 break;
1824 }
1825 if (lcp == NULL) {
1826 /* Nothing available - try to set up a free page. */
1827 if (lp->lp_cur == lp->lp_max) {
1828 mutex_exit(&lp->lp_lock);
1829 return ENOMEM;
1830 }
1831 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1832
1833 /*
1834 * Wire the next page down in kernel space. Since this
1835 * is a new mapping, we must add a reference.
1836 */
1837 uao = lp->lp_uao;
1838 (*uao->pgops->pgo_reference)(uao);
1839 lcp->lcp_kaddr = vm_map_min(kernel_map);
1840 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1841 uao, lp->lp_cur, PAGE_SIZE,
1842 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1843 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1844 if (error != 0) {
1845 mutex_exit(&lp->lp_lock);
1846 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1847 (*uao->pgops->pgo_detach)(uao);
1848 return error;
1849 }
1850 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1851 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1852 if (error != 0) {
1853 mutex_exit(&lp->lp_lock);
1854 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1855 lcp->lcp_kaddr + PAGE_SIZE);
1856 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1857 return error;
1858 }
1859 /* Prepare the page descriptor and link into the list. */
1860 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1861 lp->lp_cur += PAGE_SIZE;
1862 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1863 lcp->lcp_rotor = 0;
1864 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1865 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1866 }
1867 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1868 if (++i >= LWPCTL_BITMAP_ENTRIES)
1869 i = 0;
1870 }
1871 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1872 lcp->lcp_bitmap[i] ^= (1U << bit);
1873 lcp->lcp_rotor = i;
1874 lcp->lcp_nfree--;
1875 l->l_lcpage = lcp;
1876 offset = (i << 5) + bit;
1877 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1878 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1879 mutex_exit(&lp->lp_lock);
1880
1881 KPREEMPT_DISABLE(l);
1882 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1883 KPREEMPT_ENABLE(l);
1884
1885 return 0;
1886 }
1887
1888 /*
1889 * Free an lwpctl structure back to the per-process list.
1890 */
1891 void
1892 lwp_ctl_free(lwp_t *l)
1893 {
1894 struct proc *p = l->l_proc;
1895 lcproc_t *lp;
1896 lcpage_t *lcp;
1897 u_int map, offset;
1898
1899 /* don't free a lwp context we borrowed for vfork */
1900 if (p->p_lflag & PL_PPWAIT) {
1901 l->l_lwpctl = NULL;
1902 return;
1903 }
1904
1905 lp = p->p_lwpctl;
1906 KASSERT(lp != NULL);
1907
1908 lcp = l->l_lcpage;
1909 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1910 KASSERT(offset < LWPCTL_PER_PAGE);
1911
1912 mutex_enter(&lp->lp_lock);
1913 lcp->lcp_nfree++;
1914 map = offset >> 5;
1915 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1916 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1917 lcp->lcp_rotor = map;
1918 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1919 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1920 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1921 }
1922 mutex_exit(&lp->lp_lock);
1923 }
1924
1925 /*
1926 * Process is exiting; tear down lwpctl state. This can only be safely
1927 * called by the last LWP in the process.
1928 */
1929 void
1930 lwp_ctl_exit(void)
1931 {
1932 lcpage_t *lcp, *next;
1933 lcproc_t *lp;
1934 proc_t *p;
1935 lwp_t *l;
1936
1937 l = curlwp;
1938 l->l_lwpctl = NULL;
1939 l->l_lcpage = NULL;
1940 p = l->l_proc;
1941 lp = p->p_lwpctl;
1942
1943 KASSERT(lp != NULL);
1944 KASSERT(p->p_nlwps == 1);
1945
1946 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1947 next = TAILQ_NEXT(lcp, lcp_chain);
1948 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1949 lcp->lcp_kaddr + PAGE_SIZE);
1950 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1951 }
1952
1953 if (lp->lp_uao != NULL) {
1954 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1955 lp->lp_uva + LWPCTL_UAREA_SZ);
1956 }
1957
1958 mutex_destroy(&lp->lp_lock);
1959 kmem_free(lp, sizeof(*lp));
1960 p->p_lwpctl = NULL;
1961 }
1962
1963 /*
1964 * Return the current LWP's "preemption counter". Used to detect
1965 * preemption across operations that can tolerate preemption without
1966 * crashing, but which may generate incorrect results if preempted.
1967 */
1968 uint64_t
1969 lwp_pctr(void)
1970 {
1971
1972 return curlwp->l_ncsw;
1973 }
1974
1975 /*
1976 * Set an LWP's private data pointer.
1977 */
1978 int
1979 lwp_setprivate(struct lwp *l, void *ptr)
1980 {
1981 int error = 0;
1982
1983 l->l_private = ptr;
1984 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1985 error = cpu_lwp_setprivate(l, ptr);
1986 #endif
1987 return error;
1988 }
1989
1990 #if defined(DDB)
1991 #include <machine/pcb.h>
1992
1993 void
1994 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1995 {
1996 lwp_t *l;
1997
1998 LIST_FOREACH(l, &alllwp, l_list) {
1999 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2000
2001 if (addr < stack || stack + KSTACK_SIZE <= addr) {
2002 continue;
2003 }
2004 (*pr)("%p is %p+%zu, LWP %p's stack\n",
2005 (void *)addr, (void *)stack,
2006 (size_t)(addr - stack), l);
2007 }
2008 }
2009 #endif /* defined(DDB) */
2010