kern_lwp.c revision 1.217.2.2 1 /* $NetBSD: kern_lwp.c,v 1.217.2.2 2020/01/25 22:38:51 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Nathan J. Williams, and Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Overview
35 *
36 * Lightweight processes (LWPs) are the basic unit or thread of
37 * execution within the kernel. The core state of an LWP is described
38 * by "struct lwp", also known as lwp_t.
39 *
40 * Each LWP is contained within a process (described by "struct proc"),
41 * Every process contains at least one LWP, but may contain more. The
42 * process describes attributes shared among all of its LWPs such as a
43 * private address space, global execution state (stopped, active,
44 * zombie, ...), signal disposition and so on. On a multiprocessor
45 * machine, multiple LWPs be executing concurrently in the kernel.
46 *
47 * Execution states
48 *
49 * At any given time, an LWP has overall state that is described by
50 * lwp::l_stat. The states are broken into two sets below. The first
51 * set is guaranteed to represent the absolute, current state of the
52 * LWP:
53 *
54 * LSONPROC
55 *
56 * On processor: the LWP is executing on a CPU, either in the
57 * kernel or in user space.
58 *
59 * LSRUN
60 *
61 * Runnable: the LWP is parked on a run queue, and may soon be
62 * chosen to run by an idle processor, or by a processor that
63 * has been asked to preempt a currently runnning but lower
64 * priority LWP.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is about to switch away into oblivion, or has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > SLEEP
125 * > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 * > IDL (special cases)
129 *
130 * STOPPED ---> RUN SUSPENDED --> RUN
131 * > SLEEP
132 *
133 * SLEEP -----> ONPROC IDL --------> RUN
134 * > RUN > SUSPENDED
135 * > STOPPED > STOPPED
136 * > ONPROC (special cases)
137 *
138 * Some state transitions are only possible with kernel threads (eg
139 * ONPROC -> IDL) and happen under tightly controlled circumstances
140 * free of unwanted side effects.
141 *
142 * Migration
143 *
144 * Migration of threads from one CPU to another could be performed
145 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
146 * functions. The universal lwp_migrate() function should be used for
147 * any other cases. Subsystems in the kernel must be aware that CPU
148 * of LWP may change, while it is not locked.
149 *
150 * Locking
151 *
152 * The majority of fields in 'struct lwp' are covered by a single,
153 * general spin lock pointed to by lwp::l_mutex. The locks covering
154 * each field are documented in sys/lwp.h.
155 *
156 * State transitions must be made with the LWP's general lock held,
157 * and may cause the LWP's lock pointer to change. Manipulation of
158 * the general lock is not performed directly, but through calls to
159 * lwp_lock(), lwp_unlock() and others. It should be noted that the
160 * adaptive locks are not allowed to be released while the LWP's lock
161 * is being held (unlike for other spin-locks).
162 *
163 * States and their associated locks:
164 *
165 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
166 *
167 * Always covered by spc_lwplock, which protects LWPs not
168 * associated with any other sync object. This is a per-CPU
169 * lock and matches lwp::l_cpu.
170 *
171 * LSRUN:
172 *
173 * Always covered by spc_mutex, which protects the run queues.
174 * This is a per-CPU lock and matches lwp::l_cpu.
175 *
176 * LSSLEEP:
177 *
178 * Covered by a lock associated with the sleep queue (sometimes
179 * a turnstile sleep queue) that the LWP resides on.
180 *
181 * LSSTOP:
182 *
183 * If the LWP was previously sleeping (l_wchan != NULL), then
184 * l_mutex references the sleep queue lock. If the LWP was
185 * runnable or on the CPU when halted, or has been removed from
186 * the sleep queue since halted, then the lock is spc_lwplock.
187 *
188 * The lock order is as follows:
189 *
190 * sleepq -> turnstile -> spc_lwplock -> spc_mutex
191 *
192 * Each process has an scheduler state lock (proc::p_lock), and a
193 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
194 * so on. When an LWP is to be entered into or removed from one of the
195 * following states, p_lock must be held and the process wide counters
196 * adjusted:
197 *
198 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
199 *
200 * (But not always for kernel threads. There are some special cases
201 * as mentioned above: soft interrupts, and the idle loops.)
202 *
203 * Note that an LWP is considered running or likely to run soon if in
204 * one of the following states. This affects the value of p_nrlwps:
205 *
206 * LSRUN, LSONPROC, LSSLEEP
207 *
208 * p_lock does not need to be held when transitioning among these
209 * three states, hence p_lock is rarely taken for state transitions.
210 */
211
212 #include <sys/cdefs.h>
213 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.217.2.2 2020/01/25 22:38:51 ad Exp $");
214
215 #include "opt_ddb.h"
216 #include "opt_lockdebug.h"
217 #include "opt_dtrace.h"
218
219 #define _LWP_API_PRIVATE
220
221 #include <sys/param.h>
222 #include <sys/systm.h>
223 #include <sys/cpu.h>
224 #include <sys/pool.h>
225 #include <sys/proc.h>
226 #include <sys/syscallargs.h>
227 #include <sys/syscall_stats.h>
228 #include <sys/kauth.h>
229 #include <sys/sleepq.h>
230 #include <sys/lockdebug.h>
231 #include <sys/kmem.h>
232 #include <sys/pset.h>
233 #include <sys/intr.h>
234 #include <sys/lwpctl.h>
235 #include <sys/atomic.h>
236 #include <sys/filedesc.h>
237 #include <sys/fstrans.h>
238 #include <sys/dtrace_bsd.h>
239 #include <sys/sdt.h>
240 #include <sys/ptrace.h>
241 #include <sys/xcall.h>
242 #include <sys/uidinfo.h>
243 #include <sys/sysctl.h>
244 #include <sys/psref.h>
245 #include <sys/msan.h>
246
247 #include <uvm/uvm_extern.h>
248 #include <uvm/uvm_object.h>
249
250 static pool_cache_t lwp_cache __read_mostly;
251 struct lwplist alllwp __cacheline_aligned;
252
253 static void lwp_dtor(void *, void *);
254
255 /* DTrace proc provider probes */
256 SDT_PROVIDER_DEFINE(proc);
257
258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
261
262 struct turnstile turnstile0 __cacheline_aligned;
263 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
264 #ifdef LWP0_CPU_INFO
265 .l_cpu = LWP0_CPU_INFO,
266 #endif
267 #ifdef LWP0_MD_INITIALIZER
268 .l_md = LWP0_MD_INITIALIZER,
269 #endif
270 .l_proc = &proc0,
271 .l_lid = 1,
272 .l_flag = LW_SYSTEM,
273 .l_stat = LSONPROC,
274 .l_ts = &turnstile0,
275 .l_syncobj = &sched_syncobj,
276 .l_refcnt = 1,
277 .l_priority = PRI_USER + NPRI_USER - 1,
278 .l_inheritedprio = -1,
279 .l_class = SCHED_OTHER,
280 .l_psid = PS_NONE,
281 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
282 .l_name = __UNCONST("swapper"),
283 .l_fd = &filedesc0,
284 };
285
286 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
287
288 /*
289 * sysctl helper routine for kern.maxlwp. Ensures that the new
290 * values are not too low or too high.
291 */
292 static int
293 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
294 {
295 int error, nmaxlwp;
296 struct sysctlnode node;
297
298 nmaxlwp = maxlwp;
299 node = *rnode;
300 node.sysctl_data = &nmaxlwp;
301 error = sysctl_lookup(SYSCTLFN_CALL(&node));
302 if (error || newp == NULL)
303 return error;
304
305 if (nmaxlwp < 0 || nmaxlwp >= 65536)
306 return EINVAL;
307 if (nmaxlwp > cpu_maxlwp())
308 return EINVAL;
309 maxlwp = nmaxlwp;
310
311 return 0;
312 }
313
314 static void
315 sysctl_kern_lwp_setup(void)
316 {
317 struct sysctllog *clog = NULL;
318
319 sysctl_createv(&clog, 0, NULL, NULL,
320 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
321 CTLTYPE_INT, "maxlwp",
322 SYSCTL_DESCR("Maximum number of simultaneous threads"),
323 sysctl_kern_maxlwp, 0, NULL, 0,
324 CTL_KERN, CTL_CREATE, CTL_EOL);
325 }
326
327 void
328 lwpinit(void)
329 {
330
331 LIST_INIT(&alllwp);
332 lwpinit_specificdata();
333 lwp_sys_init();
334 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
335 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
336
337 maxlwp = cpu_maxlwp();
338 sysctl_kern_lwp_setup();
339 }
340
341 void
342 lwp0_init(void)
343 {
344 struct lwp *l = &lwp0;
345
346 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
347 KASSERT(l->l_lid == proc0.p_nlwpid);
348
349 LIST_INSERT_HEAD(&alllwp, l, l_list);
350
351 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
352 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
353 cv_init(&l->l_sigcv, "sigwait");
354 cv_init(&l->l_waitcv, "vfork");
355
356 kauth_cred_hold(proc0.p_cred);
357 l->l_cred = proc0.p_cred;
358
359 kdtrace_thread_ctor(NULL, l);
360 lwp_initspecific(l);
361
362 SYSCALL_TIME_LWP_INIT(l);
363 }
364
365 static void
366 lwp_dtor(void *arg, void *obj)
367 {
368 lwp_t *l = obj;
369 (void)l;
370
371 /*
372 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
373 * calls will exit before memory of LWP is returned to the pool, where
374 * KVA of LWP structure might be freed and re-used for other purposes.
375 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
376 * callers, therefore cross-call to all CPUs will do the job. Also,
377 * the value of l->l_cpu must be still valid at this point.
378 */
379 KASSERT(l->l_cpu != NULL);
380 xc_barrier(0);
381 }
382
383 /*
384 * Set an suspended.
385 *
386 * Must be called with p_lock held, and the LWP locked. Will unlock the
387 * LWP before return.
388 */
389 int
390 lwp_suspend(struct lwp *curl, struct lwp *t)
391 {
392 int error;
393
394 KASSERT(mutex_owned(t->l_proc->p_lock));
395 KASSERT(lwp_locked(t, NULL));
396
397 KASSERT(curl != t || curl->l_stat == LSONPROC);
398
399 /*
400 * If the current LWP has been told to exit, we must not suspend anyone
401 * else or deadlock could occur. We won't return to userspace.
402 */
403 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
404 lwp_unlock(t);
405 return (EDEADLK);
406 }
407
408 if ((t->l_flag & LW_DBGSUSPEND) != 0) {
409 lwp_unlock(t);
410 return 0;
411 }
412
413 error = 0;
414
415 switch (t->l_stat) {
416 case LSRUN:
417 case LSONPROC:
418 t->l_flag |= LW_WSUSPEND;
419 lwp_need_userret(t);
420 lwp_unlock(t);
421 break;
422
423 case LSSLEEP:
424 t->l_flag |= LW_WSUSPEND;
425
426 /*
427 * Kick the LWP and try to get it to the kernel boundary
428 * so that it will release any locks that it holds.
429 * setrunnable() will release the lock.
430 */
431 if ((t->l_flag & LW_SINTR) != 0)
432 setrunnable(t);
433 else
434 lwp_unlock(t);
435 break;
436
437 case LSSUSPENDED:
438 lwp_unlock(t);
439 break;
440
441 case LSSTOP:
442 t->l_flag |= LW_WSUSPEND;
443 setrunnable(t);
444 break;
445
446 case LSIDL:
447 case LSZOMB:
448 error = EINTR; /* It's what Solaris does..... */
449 lwp_unlock(t);
450 break;
451 }
452
453 return (error);
454 }
455
456 /*
457 * Restart a suspended LWP.
458 *
459 * Must be called with p_lock held, and the LWP locked. Will unlock the
460 * LWP before return.
461 */
462 void
463 lwp_continue(struct lwp *l)
464 {
465
466 KASSERT(mutex_owned(l->l_proc->p_lock));
467 KASSERT(lwp_locked(l, NULL));
468
469 /* If rebooting or not suspended, then just bail out. */
470 if ((l->l_flag & LW_WREBOOT) != 0) {
471 lwp_unlock(l);
472 return;
473 }
474
475 l->l_flag &= ~LW_WSUSPEND;
476
477 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
478 lwp_unlock(l);
479 return;
480 }
481
482 /* setrunnable() will release the lock. */
483 setrunnable(l);
484 }
485
486 /*
487 * Restart a stopped LWP.
488 *
489 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
490 * LWP before return.
491 */
492 void
493 lwp_unstop(struct lwp *l)
494 {
495 struct proc *p = l->l_proc;
496
497 KASSERT(mutex_owned(proc_lock));
498 KASSERT(mutex_owned(p->p_lock));
499
500 lwp_lock(l);
501
502 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
503
504 /* If not stopped, then just bail out. */
505 if (l->l_stat != LSSTOP) {
506 lwp_unlock(l);
507 return;
508 }
509
510 p->p_stat = SACTIVE;
511 p->p_sflag &= ~PS_STOPPING;
512
513 if (!p->p_waited)
514 p->p_pptr->p_nstopchild--;
515
516 if (l->l_wchan == NULL) {
517 /* setrunnable() will release the lock. */
518 setrunnable(l);
519 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
520 /* setrunnable() so we can receive the signal */
521 setrunnable(l);
522 } else {
523 l->l_stat = LSSLEEP;
524 p->p_nrlwps++;
525 lwp_unlock(l);
526 }
527 }
528
529 /*
530 * Wait for an LWP within the current process to exit. If 'lid' is
531 * non-zero, we are waiting for a specific LWP.
532 *
533 * Must be called with p->p_lock held.
534 */
535 int
536 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
537 {
538 const lwpid_t curlid = l->l_lid;
539 proc_t *p = l->l_proc;
540 lwp_t *l2;
541 int error;
542
543 KASSERT(mutex_owned(p->p_lock));
544
545 p->p_nlwpwait++;
546 l->l_waitingfor = lid;
547
548 for (;;) {
549 int nfound;
550
551 /*
552 * Avoid a race between exit1() and sigexit(): if the
553 * process is dumping core, then we need to bail out: call
554 * into lwp_userret() where we will be suspended until the
555 * deed is done.
556 */
557 if ((p->p_sflag & PS_WCORE) != 0) {
558 mutex_exit(p->p_lock);
559 lwp_userret(l);
560 KASSERT(false);
561 }
562
563 /*
564 * First off, drain any detached LWP that is waiting to be
565 * reaped.
566 */
567 while ((l2 = p->p_zomblwp) != NULL) {
568 p->p_zomblwp = NULL;
569 lwp_free(l2, false, false);/* releases proc mutex */
570 mutex_enter(p->p_lock);
571 }
572
573 /*
574 * Now look for an LWP to collect. If the whole process is
575 * exiting, count detached LWPs as eligible to be collected,
576 * but don't drain them here.
577 */
578 nfound = 0;
579 error = 0;
580 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
581 /*
582 * If a specific wait and the target is waiting on
583 * us, then avoid deadlock. This also traps LWPs
584 * that try to wait on themselves.
585 *
586 * Note that this does not handle more complicated
587 * cycles, like: t1 -> t2 -> t3 -> t1. The process
588 * can still be killed so it is not a major problem.
589 */
590 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
591 error = EDEADLK;
592 break;
593 }
594 if (l2 == l)
595 continue;
596 if ((l2->l_prflag & LPR_DETACHED) != 0) {
597 nfound += exiting;
598 continue;
599 }
600 if (lid != 0) {
601 if (l2->l_lid != lid)
602 continue;
603 /*
604 * Mark this LWP as the first waiter, if there
605 * is no other.
606 */
607 if (l2->l_waiter == 0)
608 l2->l_waiter = curlid;
609 } else if (l2->l_waiter != 0) {
610 /*
611 * It already has a waiter - so don't
612 * collect it. If the waiter doesn't
613 * grab it we'll get another chance
614 * later.
615 */
616 nfound++;
617 continue;
618 }
619 nfound++;
620
621 /* No need to lock the LWP in order to see LSZOMB. */
622 if (l2->l_stat != LSZOMB)
623 continue;
624
625 /*
626 * We're no longer waiting. Reset the "first waiter"
627 * pointer on the target, in case it was us.
628 */
629 l->l_waitingfor = 0;
630 l2->l_waiter = 0;
631 p->p_nlwpwait--;
632 if (departed)
633 *departed = l2->l_lid;
634 sched_lwp_collect(l2);
635
636 /* lwp_free() releases the proc lock. */
637 lwp_free(l2, false, false);
638 mutex_enter(p->p_lock);
639 return 0;
640 }
641
642 if (error != 0)
643 break;
644 if (nfound == 0) {
645 error = ESRCH;
646 break;
647 }
648
649 /*
650 * Note: since the lock will be dropped, need to restart on
651 * wakeup to run all LWPs again, e.g. there may be new LWPs.
652 */
653 if (exiting) {
654 KASSERT(p->p_nlwps > 1);
655 cv_wait(&p->p_lwpcv, p->p_lock);
656 error = EAGAIN;
657 break;
658 }
659
660 /*
661 * If all other LWPs are waiting for exits or suspends
662 * and the supply of zombies and potential zombies is
663 * exhausted, then we are about to deadlock.
664 *
665 * If the process is exiting (and this LWP is not the one
666 * that is coordinating the exit) then bail out now.
667 */
668 if ((p->p_sflag & PS_WEXIT) != 0 ||
669 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
670 error = EDEADLK;
671 break;
672 }
673
674 /*
675 * Sit around and wait for something to happen. We'll be
676 * awoken if any of the conditions examined change: if an
677 * LWP exits, is collected, or is detached.
678 */
679 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
680 break;
681 }
682
683 /*
684 * We didn't find any LWPs to collect, we may have received a
685 * signal, or some other condition has caused us to bail out.
686 *
687 * If waiting on a specific LWP, clear the waiters marker: some
688 * other LWP may want it. Then, kick all the remaining waiters
689 * so that they can re-check for zombies and for deadlock.
690 */
691 if (lid != 0) {
692 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
693 if (l2->l_lid == lid) {
694 if (l2->l_waiter == curlid)
695 l2->l_waiter = 0;
696 break;
697 }
698 }
699 }
700 p->p_nlwpwait--;
701 l->l_waitingfor = 0;
702 cv_broadcast(&p->p_lwpcv);
703
704 return error;
705 }
706
707 static lwpid_t
708 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
709 {
710 #define LID_SCAN (1u << 31)
711 lwp_t *scan, *free_before;
712 lwpid_t nxt_lid;
713
714 /*
715 * We want the first unused lid greater than or equal to
716 * try_lid (modulo 2^31).
717 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
718 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
719 * the outer test easier.
720 * This would be much easier if the list were sorted in
721 * increasing order.
722 * The list is kept sorted in decreasing order.
723 * This code is only used after a process has generated 2^31 lwp.
724 *
725 * Code assumes it can always find an id.
726 */
727
728 try_lid &= LID_SCAN - 1;
729 if (try_lid <= 1)
730 try_lid = 2;
731
732 free_before = NULL;
733 nxt_lid = LID_SCAN - 1;
734 LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
735 if (scan->l_lid != nxt_lid) {
736 /* There are available lid before this entry */
737 free_before = scan;
738 if (try_lid > scan->l_lid)
739 break;
740 }
741 if (try_lid == scan->l_lid) {
742 /* The ideal lid is busy, take a higher one */
743 if (free_before != NULL) {
744 try_lid = free_before->l_lid + 1;
745 break;
746 }
747 /* No higher ones, reuse low numbers */
748 try_lid = 2;
749 }
750
751 nxt_lid = scan->l_lid - 1;
752 if (LIST_NEXT(scan, l_sibling) == NULL) {
753 /* The value we have is lower than any existing lwp */
754 LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
755 return try_lid;
756 }
757 }
758
759 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
760 return try_lid;
761 }
762
763 /*
764 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
765 * The new LWP is created in state LSIDL and must be set running,
766 * suspended, or stopped by the caller.
767 */
768 int
769 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
770 void *stack, size_t stacksize, void (*func)(void *), void *arg,
771 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
772 const stack_t *sigstk)
773 {
774 struct lwp *l2;
775 turnstile_t *ts;
776 lwpid_t lid;
777
778 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
779
780 /*
781 * Enforce limits, excluding the first lwp and kthreads. We must
782 * use the process credentials here when adjusting the limit, as
783 * they are what's tied to the accounting entity. However for
784 * authorizing the action, we'll use the LWP's credentials.
785 */
786 mutex_enter(p2->p_lock);
787 if (p2->p_nlwps != 0 && p2 != &proc0) {
788 uid_t uid = kauth_cred_getuid(p2->p_cred);
789 int count = chglwpcnt(uid, 1);
790 if (__predict_false(count >
791 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
792 if (kauth_authorize_process(l1->l_cred,
793 KAUTH_PROCESS_RLIMIT, p2,
794 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
795 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
796 != 0) {
797 (void)chglwpcnt(uid, -1);
798 mutex_exit(p2->p_lock);
799 return EAGAIN;
800 }
801 }
802 }
803
804 /*
805 * First off, reap any detached LWP waiting to be collected.
806 * We can re-use its LWP structure and turnstile.
807 */
808 if ((l2 = p2->p_zomblwp) != NULL) {
809 p2->p_zomblwp = NULL;
810 lwp_free(l2, true, false);
811 /* p2 now unlocked by lwp_free() */
812 ts = l2->l_ts;
813 KASSERT(l2->l_inheritedprio == -1);
814 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
815 memset(l2, 0, sizeof(*l2));
816 l2->l_ts = ts;
817 } else {
818 mutex_exit(p2->p_lock);
819 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
820 memset(l2, 0, sizeof(*l2));
821 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
822 SLIST_INIT(&l2->l_pi_lenders);
823 }
824
825 l2->l_stat = LSIDL;
826 l2->l_proc = p2;
827 l2->l_refcnt = 1;
828 l2->l_class = sclass;
829
830 /*
831 * If vfork(), we want the LWP to run fast and on the same CPU
832 * as its parent, so that it can reuse the VM context and cache
833 * footprint on the local CPU.
834 */
835 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
836 l2->l_kpribase = PRI_KERNEL;
837 l2->l_priority = l1->l_priority;
838 l2->l_inheritedprio = -1;
839 l2->l_protectprio = -1;
840 l2->l_auxprio = -1;
841 l2->l_flag = (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
842 l2->l_pflag = LP_MPSAFE;
843 TAILQ_INIT(&l2->l_ld_locks);
844 l2->l_psrefs = 0;
845 kmsan_lwp_alloc(l2);
846
847 /*
848 * For vfork, borrow parent's lwpctl context if it exists.
849 * This also causes us to return via lwp_userret.
850 */
851 if (flags & LWP_VFORK && l1->l_lwpctl) {
852 l2->l_lwpctl = l1->l_lwpctl;
853 l2->l_flag |= LW_LWPCTL;
854 }
855
856 /*
857 * If not the first LWP in the process, grab a reference to the
858 * descriptor table.
859 */
860 l2->l_fd = p2->p_fd;
861 if (p2->p_nlwps != 0) {
862 KASSERT(l1->l_proc == p2);
863 fd_hold(l2);
864 } else {
865 KASSERT(l1->l_proc != p2);
866 }
867
868 if (p2->p_flag & PK_SYSTEM) {
869 /* Mark it as a system LWP. */
870 l2->l_flag |= LW_SYSTEM;
871 }
872
873 kpreempt_disable();
874 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
875 l2->l_cpu = l1->l_cpu;
876 kpreempt_enable();
877
878 kdtrace_thread_ctor(NULL, l2);
879 lwp_initspecific(l2);
880 sched_lwp_fork(l1, l2);
881 lwp_update_creds(l2);
882 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
883 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
884 cv_init(&l2->l_sigcv, "sigwait");
885 cv_init(&l2->l_waitcv, "vfork");
886 l2->l_syncobj = &sched_syncobj;
887 PSREF_DEBUG_INIT_LWP(l2);
888
889 if (rnewlwpp != NULL)
890 *rnewlwpp = l2;
891
892 /*
893 * PCU state needs to be saved before calling uvm_lwp_fork() so that
894 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
895 */
896 pcu_save_all(l1);
897
898 uvm_lwp_setuarea(l2, uaddr);
899 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
900
901 if ((flags & LWP_PIDLID) != 0) {
902 lid = proc_alloc_pid(p2);
903 l2->l_pflag |= LP_PIDLID;
904 } else if (p2->p_nlwps == 0) {
905 lid = l1->l_lid;
906 /*
907 * Update next LWP ID, too. If this overflows to LID_SCAN,
908 * the slow path of scanning will be used for the next LWP.
909 */
910 p2->p_nlwpid = lid + 1;
911 } else {
912 lid = 0;
913 }
914
915 mutex_enter(p2->p_lock);
916
917 if ((flags & LWP_DETACHED) != 0) {
918 l2->l_prflag = LPR_DETACHED;
919 p2->p_ndlwps++;
920 } else
921 l2->l_prflag = 0;
922
923 l2->l_sigstk = *sigstk;
924 l2->l_sigmask = *sigmask;
925 TAILQ_INIT(&l2->l_sigpend.sp_info);
926 sigemptyset(&l2->l_sigpend.sp_set);
927
928 if (__predict_true(lid == 0)) {
929 /*
930 * XXX: l_lid are expected to be unique (for a process)
931 * if LWP_PIDLID is sometimes set this won't be true.
932 * Once 2^31 threads have been allocated we have to
933 * scan to ensure we allocate a unique value.
934 */
935 lid = ++p2->p_nlwpid;
936 if (__predict_false(lid & LID_SCAN)) {
937 lid = lwp_find_free_lid(lid, l2, p2);
938 p2->p_nlwpid = lid | LID_SCAN;
939 /* l2 as been inserted into p_lwps in order */
940 goto skip_insert;
941 }
942 p2->p_nlwpid = lid;
943 }
944 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
945 skip_insert:
946 l2->l_lid = lid;
947 p2->p_nlwps++;
948 p2->p_nrlwps++;
949
950 KASSERT(l2->l_affinity == NULL);
951
952 /* Inherit the affinity mask. */
953 if (l1->l_affinity) {
954 /*
955 * Note that we hold the state lock while inheriting
956 * the affinity to avoid race with sched_setaffinity().
957 */
958 lwp_lock(l1);
959 if (l1->l_affinity) {
960 kcpuset_use(l1->l_affinity);
961 l2->l_affinity = l1->l_affinity;
962 }
963 lwp_unlock(l1);
964 }
965 mutex_exit(p2->p_lock);
966
967 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
968
969 mutex_enter(proc_lock);
970 LIST_INSERT_HEAD(&alllwp, l2, l_list);
971 /* Inherit a processor-set */
972 l2->l_psid = l1->l_psid;
973 mutex_exit(proc_lock);
974
975 SYSCALL_TIME_LWP_INIT(l2);
976
977 if (p2->p_emul->e_lwp_fork)
978 (*p2->p_emul->e_lwp_fork)(l1, l2);
979
980 return (0);
981 }
982
983 /*
984 * Set a new LWP running. If the process is stopping, then the LWP is
985 * created stopped.
986 */
987 void
988 lwp_start(lwp_t *l, int flags)
989 {
990 proc_t *p = l->l_proc;
991
992 mutex_enter(p->p_lock);
993 lwp_lock(l);
994 KASSERT(l->l_stat == LSIDL);
995 if ((flags & LWP_SUSPENDED) != 0) {
996 /* It'll suspend itself in lwp_userret(). */
997 l->l_flag |= LW_WSUSPEND;
998 }
999 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1000 KASSERT(l->l_wchan == NULL);
1001 l->l_stat = LSSTOP;
1002 p->p_nrlwps--;
1003 lwp_unlock(l);
1004 } else {
1005 setrunnable(l);
1006 /* LWP now unlocked */
1007 }
1008 mutex_exit(p->p_lock);
1009 }
1010
1011 /*
1012 * Called by MD code when a new LWP begins execution. Must be called
1013 * with the previous LWP locked (so at splsched), or if there is no
1014 * previous LWP, at splsched.
1015 */
1016 void
1017 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1018 {
1019
1020 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1021 KASSERT(kpreempt_disabled());
1022 KASSERT(prev != NULL);
1023 KASSERT((prev->l_flag & LW_RUNNING) != 0);
1024 KASSERT(curcpu()->ci_mtx_count == -2);
1025
1026 /* Immediately mark previous LWP as no longer running, and unlock. */
1027 prev->l_flag &= ~LW_RUNNING;
1028 lwp_unlock(prev);
1029
1030 /* Correct spin mutex count after mi_switch(). */
1031 curcpu()->ci_mtx_count = 0;
1032
1033 /* Install new VM context. */
1034 if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1035 pmap_activate(new_lwp);
1036 }
1037
1038 /* We remain at IPL_SCHED from mi_switch() - reset it. */
1039 spl0();
1040
1041 LOCKDEBUG_BARRIER(NULL, 0);
1042 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1043
1044 /* For kthreads, acquire kernel lock if not MPSAFE. */
1045 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1046 KERNEL_LOCK(1, new_lwp);
1047 }
1048 }
1049
1050 /*
1051 * Exit an LWP.
1052 */
1053 void
1054 lwp_exit(struct lwp *l)
1055 {
1056 struct proc *p = l->l_proc;
1057 struct lwp *l2;
1058 bool current;
1059
1060 current = (l == curlwp);
1061
1062 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1063 KASSERT(p == curproc);
1064
1065 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1066
1067 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1068 LOCKDEBUG_BARRIER(NULL, 0);
1069 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1070
1071 /*
1072 * If we are the last live LWP in a process, we need to exit the
1073 * entire process. We do so with an exit status of zero, because
1074 * it's a "controlled" exit, and because that's what Solaris does.
1075 *
1076 * We are not quite a zombie yet, but for accounting purposes we
1077 * must increment the count of zombies here.
1078 *
1079 * Note: the last LWP's specificdata will be deleted here.
1080 */
1081 mutex_enter(p->p_lock);
1082 if (p->p_nlwps - p->p_nzlwps == 1) {
1083 KASSERT(current == true);
1084 KASSERT(p != &proc0);
1085 exit1(l, 0, 0);
1086 /* NOTREACHED */
1087 }
1088 p->p_nzlwps++;
1089 mutex_exit(p->p_lock);
1090
1091 if (p->p_emul->e_lwp_exit)
1092 (*p->p_emul->e_lwp_exit)(l);
1093
1094 /* Drop filedesc reference. */
1095 fd_free();
1096
1097 /* Release fstrans private data. */
1098 fstrans_lwp_dtor(l);
1099
1100 /* Delete the specificdata while it's still safe to sleep. */
1101 lwp_finispecific(l);
1102
1103 /*
1104 * Release our cached credentials.
1105 */
1106 kauth_cred_free(l->l_cred);
1107 callout_destroy(&l->l_timeout_ch);
1108
1109 /*
1110 * If traced, report LWP exit event to the debugger.
1111 *
1112 * Remove the LWP from the global list.
1113 * Free its LID from the PID namespace if needed.
1114 */
1115 mutex_enter(proc_lock);
1116
1117 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1118 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1119 mutex_enter(p->p_lock);
1120 if (ISSET(p->p_sflag, PS_WEXIT)) {
1121 mutex_exit(p->p_lock);
1122 /*
1123 * We are exiting, bail out without informing parent
1124 * about a terminating LWP as it would deadlock.
1125 */
1126 } else {
1127 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1128 mutex_enter(proc_lock);
1129 }
1130 }
1131
1132 LIST_REMOVE(l, l_list);
1133 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1134 proc_free_pid(l->l_lid);
1135 }
1136 mutex_exit(proc_lock);
1137
1138 /*
1139 * Get rid of all references to the LWP that others (e.g. procfs)
1140 * may have, and mark the LWP as a zombie. If the LWP is detached,
1141 * mark it waiting for collection in the proc structure. Note that
1142 * before we can do that, we need to free any other dead, deatched
1143 * LWP waiting to meet its maker.
1144 */
1145 mutex_enter(p->p_lock);
1146 lwp_drainrefs(l);
1147
1148 if ((l->l_prflag & LPR_DETACHED) != 0) {
1149 while ((l2 = p->p_zomblwp) != NULL) {
1150 p->p_zomblwp = NULL;
1151 lwp_free(l2, false, false);/* releases proc mutex */
1152 mutex_enter(p->p_lock);
1153 l->l_refcnt++;
1154 lwp_drainrefs(l);
1155 }
1156 p->p_zomblwp = l;
1157 }
1158
1159 /*
1160 * If we find a pending signal for the process and we have been
1161 * asked to check for signals, then we lose: arrange to have
1162 * all other LWPs in the process check for signals.
1163 */
1164 if ((l->l_flag & LW_PENDSIG) != 0 &&
1165 firstsig(&p->p_sigpend.sp_set) != 0) {
1166 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1167 lwp_lock(l2);
1168 signotify(l2);
1169 lwp_unlock(l2);
1170 }
1171 }
1172
1173 /*
1174 * Release any PCU resources before becoming a zombie.
1175 */
1176 pcu_discard_all(l);
1177
1178 lwp_lock(l);
1179 l->l_stat = LSZOMB;
1180 if (l->l_name != NULL) {
1181 strcpy(l->l_name, "(zombie)");
1182 }
1183 lwp_unlock(l);
1184 p->p_nrlwps--;
1185 cv_broadcast(&p->p_lwpcv);
1186 if (l->l_lwpctl != NULL)
1187 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1188 mutex_exit(p->p_lock);
1189
1190 /*
1191 * We can no longer block. At this point, lwp_free() may already
1192 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1193 *
1194 * Free MD LWP resources.
1195 */
1196 cpu_lwp_free(l, 0);
1197
1198 if (current) {
1199 /* For the LW_RUNNING check in lwp_free(). */
1200 membar_exit();
1201 /* Switch away into oblivion. */
1202 lwp_lock(l);
1203 spc_lock(l->l_cpu);
1204 mi_switch(l);
1205 panic("lwp_exit");
1206 }
1207 }
1208
1209 /*
1210 * Free a dead LWP's remaining resources.
1211 *
1212 * XXXLWP limits.
1213 */
1214 void
1215 lwp_free(struct lwp *l, bool recycle, bool last)
1216 {
1217 struct proc *p = l->l_proc;
1218 struct rusage *ru;
1219 ksiginfoq_t kq;
1220
1221 KASSERT(l != curlwp);
1222 KASSERT(last || mutex_owned(p->p_lock));
1223
1224 /*
1225 * We use the process credentials instead of the lwp credentials here
1226 * because the lwp credentials maybe cached (just after a setuid call)
1227 * and we don't want pay for syncing, since the lwp is going away
1228 * anyway
1229 */
1230 if (p != &proc0 && p->p_nlwps != 1)
1231 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1232
1233 /*
1234 * If this was not the last LWP in the process, then adjust
1235 * counters and unlock.
1236 */
1237 if (!last) {
1238 /*
1239 * Add the LWP's run time to the process' base value.
1240 * This needs to co-incide with coming off p_lwps.
1241 */
1242 bintime_add(&p->p_rtime, &l->l_rtime);
1243 p->p_pctcpu += l->l_pctcpu;
1244 ru = &p->p_stats->p_ru;
1245 ruadd(ru, &l->l_ru);
1246 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1247 ru->ru_nivcsw += l->l_nivcsw;
1248 LIST_REMOVE(l, l_sibling);
1249 p->p_nlwps--;
1250 p->p_nzlwps--;
1251 if ((l->l_prflag & LPR_DETACHED) != 0)
1252 p->p_ndlwps--;
1253
1254 /*
1255 * Have any LWPs sleeping in lwp_wait() recheck for
1256 * deadlock.
1257 */
1258 cv_broadcast(&p->p_lwpcv);
1259 mutex_exit(p->p_lock);
1260 }
1261
1262 #ifdef MULTIPROCESSOR
1263 /*
1264 * In the unlikely event that the LWP is still on the CPU,
1265 * then spin until it has switched away. We need to release
1266 * all locks to avoid deadlock against interrupt handlers on
1267 * the target CPU.
1268 */
1269 membar_enter();
1270 while (__predict_false((l->l_flag & LW_RUNNING) != 0)) {
1271 SPINLOCK_BACKOFF_HOOK;
1272 }
1273 #endif
1274
1275 /*
1276 * Destroy the LWP's remaining signal information.
1277 */
1278 ksiginfo_queue_init(&kq);
1279 sigclear(&l->l_sigpend, NULL, &kq);
1280 ksiginfo_queue_drain(&kq);
1281 cv_destroy(&l->l_sigcv);
1282 cv_destroy(&l->l_waitcv);
1283
1284 /*
1285 * Free lwpctl structure and affinity.
1286 */
1287 if (l->l_lwpctl) {
1288 lwp_ctl_free(l);
1289 }
1290 if (l->l_affinity) {
1291 kcpuset_unuse(l->l_affinity, NULL);
1292 l->l_affinity = NULL;
1293 }
1294
1295 /*
1296 * Free the LWP's turnstile and the LWP structure itself unless the
1297 * caller wants to recycle them. Also, free the scheduler specific
1298 * data.
1299 *
1300 * We can't return turnstile0 to the pool (it didn't come from it),
1301 * so if it comes up just drop it quietly and move on.
1302 *
1303 * We don't recycle the VM resources at this time.
1304 */
1305
1306 if (!recycle && l->l_ts != &turnstile0)
1307 pool_cache_put(turnstile_cache, l->l_ts);
1308 if (l->l_name != NULL)
1309 kmem_free(l->l_name, MAXCOMLEN);
1310
1311 kmsan_lwp_free(l);
1312 cpu_lwp_free2(l);
1313 uvm_lwp_exit(l);
1314
1315 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1316 KASSERT(l->l_inheritedprio == -1);
1317 KASSERT(l->l_blcnt == 0);
1318 kdtrace_thread_dtor(NULL, l);
1319 if (!recycle)
1320 pool_cache_put(lwp_cache, l);
1321 }
1322
1323 /*
1324 * Migrate the LWP to the another CPU. Unlocks the LWP.
1325 */
1326 void
1327 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1328 {
1329 struct schedstate_percpu *tspc;
1330 int lstat = l->l_stat;
1331
1332 KASSERT(lwp_locked(l, NULL));
1333 KASSERT(tci != NULL);
1334
1335 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1336 if ((l->l_flag & LW_RUNNING) != 0) {
1337 lstat = LSONPROC;
1338 }
1339
1340 /*
1341 * The destination CPU could be changed while previous migration
1342 * was not finished.
1343 */
1344 if (l->l_target_cpu != NULL) {
1345 l->l_target_cpu = tci;
1346 lwp_unlock(l);
1347 return;
1348 }
1349
1350 /* Nothing to do if trying to migrate to the same CPU */
1351 if (l->l_cpu == tci) {
1352 lwp_unlock(l);
1353 return;
1354 }
1355
1356 KASSERT(l->l_target_cpu == NULL);
1357 tspc = &tci->ci_schedstate;
1358 switch (lstat) {
1359 case LSRUN:
1360 l->l_target_cpu = tci;
1361 break;
1362 case LSSLEEP:
1363 l->l_cpu = tci;
1364 break;
1365 case LSIDL:
1366 case LSSTOP:
1367 case LSSUSPENDED:
1368 l->l_cpu = tci;
1369 if (l->l_wchan == NULL) {
1370 lwp_unlock_to(l, tspc->spc_lwplock);
1371 return;
1372 }
1373 break;
1374 case LSONPROC:
1375 l->l_target_cpu = tci;
1376 spc_lock(l->l_cpu);
1377 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1378 /* spc now unlocked */
1379 break;
1380 }
1381 lwp_unlock(l);
1382 }
1383
1384 /*
1385 * Find the LWP in the process. Arguments may be zero, in such case,
1386 * the calling process and first LWP in the list will be used.
1387 * On success - returns proc locked.
1388 */
1389 struct lwp *
1390 lwp_find2(pid_t pid, lwpid_t lid)
1391 {
1392 proc_t *p;
1393 lwp_t *l;
1394
1395 /* Find the process. */
1396 if (pid != 0) {
1397 mutex_enter(proc_lock);
1398 p = proc_find(pid);
1399 if (p == NULL) {
1400 mutex_exit(proc_lock);
1401 return NULL;
1402 }
1403 mutex_enter(p->p_lock);
1404 mutex_exit(proc_lock);
1405 } else {
1406 p = curlwp->l_proc;
1407 mutex_enter(p->p_lock);
1408 }
1409 /* Find the thread. */
1410 if (lid != 0) {
1411 l = lwp_find(p, lid);
1412 } else {
1413 l = LIST_FIRST(&p->p_lwps);
1414 }
1415 if (l == NULL) {
1416 mutex_exit(p->p_lock);
1417 }
1418 return l;
1419 }
1420
1421 /*
1422 * Look up a live LWP within the specified process.
1423 *
1424 * Must be called with p->p_lock held.
1425 */
1426 struct lwp *
1427 lwp_find(struct proc *p, lwpid_t id)
1428 {
1429 struct lwp *l;
1430
1431 KASSERT(mutex_owned(p->p_lock));
1432
1433 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1434 if (l->l_lid == id)
1435 break;
1436 }
1437
1438 /*
1439 * No need to lock - all of these conditions will
1440 * be visible with the process level mutex held.
1441 */
1442 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1443 l = NULL;
1444
1445 return l;
1446 }
1447
1448 /*
1449 * Update an LWP's cached credentials to mirror the process' master copy.
1450 *
1451 * This happens early in the syscall path, on user trap, and on LWP
1452 * creation. A long-running LWP can also voluntarily choose to update
1453 * its credentials by calling this routine. This may be called from
1454 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1455 */
1456 void
1457 lwp_update_creds(struct lwp *l)
1458 {
1459 kauth_cred_t oc;
1460 struct proc *p;
1461
1462 p = l->l_proc;
1463 oc = l->l_cred;
1464
1465 mutex_enter(p->p_lock);
1466 kauth_cred_hold(p->p_cred);
1467 l->l_cred = p->p_cred;
1468 l->l_prflag &= ~LPR_CRMOD;
1469 mutex_exit(p->p_lock);
1470 if (oc != NULL)
1471 kauth_cred_free(oc);
1472 }
1473
1474 /*
1475 * Verify that an LWP is locked, and optionally verify that the lock matches
1476 * one we specify.
1477 */
1478 int
1479 lwp_locked(struct lwp *l, kmutex_t *mtx)
1480 {
1481 kmutex_t *cur = l->l_mutex;
1482
1483 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1484 }
1485
1486 /*
1487 * Lend a new mutex to an LWP. The old mutex must be held.
1488 */
1489 kmutex_t *
1490 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1491 {
1492 kmutex_t *oldmtx = l->l_mutex;
1493
1494 KASSERT(mutex_owned(oldmtx));
1495
1496 membar_exit();
1497 l->l_mutex = mtx;
1498 return oldmtx;
1499 }
1500
1501 /*
1502 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1503 * must be held.
1504 */
1505 void
1506 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1507 {
1508 kmutex_t *old;
1509
1510 KASSERT(lwp_locked(l, NULL));
1511
1512 old = l->l_mutex;
1513 membar_exit();
1514 l->l_mutex = mtx;
1515 mutex_spin_exit(old);
1516 }
1517
1518 int
1519 lwp_trylock(struct lwp *l)
1520 {
1521 kmutex_t *old;
1522
1523 for (;;) {
1524 if (!mutex_tryenter(old = l->l_mutex))
1525 return 0;
1526 if (__predict_true(l->l_mutex == old))
1527 return 1;
1528 mutex_spin_exit(old);
1529 }
1530 }
1531
1532 void
1533 lwp_unsleep(lwp_t *l, bool unlock)
1534 {
1535
1536 KASSERT(mutex_owned(l->l_mutex));
1537 (*l->l_syncobj->sobj_unsleep)(l, unlock);
1538 }
1539
1540 /*
1541 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1542 * set.
1543 */
1544 void
1545 lwp_userret(struct lwp *l)
1546 {
1547 struct proc *p;
1548 int sig;
1549
1550 KASSERT(l == curlwp);
1551 KASSERT(l->l_stat == LSONPROC);
1552 p = l->l_proc;
1553
1554 #ifndef __HAVE_FAST_SOFTINTS
1555 /* Run pending soft interrupts. */
1556 if (l->l_cpu->ci_data.cpu_softints != 0)
1557 softint_overlay();
1558 #endif
1559
1560 /*
1561 * It is safe to do this read unlocked on a MP system..
1562 */
1563 while ((l->l_flag & LW_USERRET) != 0) {
1564 /*
1565 * Process pending signals first, unless the process
1566 * is dumping core or exiting, where we will instead
1567 * enter the LW_WSUSPEND case below.
1568 */
1569 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1570 LW_PENDSIG) {
1571 mutex_enter(p->p_lock);
1572 while ((sig = issignal(l)) != 0)
1573 postsig(sig);
1574 mutex_exit(p->p_lock);
1575 }
1576
1577 /*
1578 * Core-dump or suspend pending.
1579 *
1580 * In case of core dump, suspend ourselves, so that the kernel
1581 * stack and therefore the userland registers saved in the
1582 * trapframe are around for coredump() to write them out.
1583 * We also need to save any PCU resources that we have so that
1584 * they accessible for coredump(). We issue a wakeup on
1585 * p->p_lwpcv so that sigexit() will write the core file out
1586 * once all other LWPs are suspended.
1587 */
1588 if ((l->l_flag & LW_WSUSPEND) != 0) {
1589 pcu_save_all(l);
1590 mutex_enter(p->p_lock);
1591 p->p_nrlwps--;
1592 cv_broadcast(&p->p_lwpcv);
1593 lwp_lock(l);
1594 l->l_stat = LSSUSPENDED;
1595 lwp_unlock(l);
1596 mutex_exit(p->p_lock);
1597 lwp_lock(l);
1598 spc_lock(l->l_cpu);
1599 mi_switch(l);
1600 }
1601
1602 /* Process is exiting. */
1603 if ((l->l_flag & LW_WEXIT) != 0) {
1604 lwp_exit(l);
1605 KASSERT(0);
1606 /* NOTREACHED */
1607 }
1608
1609 /* update lwpctl processor (for vfork child_return) */
1610 if (l->l_flag & LW_LWPCTL) {
1611 lwp_lock(l);
1612 KASSERT(kpreempt_disabled());
1613 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1614 l->l_lwpctl->lc_pctr++;
1615 l->l_flag &= ~LW_LWPCTL;
1616 lwp_unlock(l);
1617 }
1618 }
1619 }
1620
1621 /*
1622 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1623 */
1624 void
1625 lwp_need_userret(struct lwp *l)
1626 {
1627
1628 KASSERT(!cpu_intr_p());
1629 KASSERT(lwp_locked(l, NULL));
1630
1631 /*
1632 * If the LWP is in any state other than LSONPROC, we know that it
1633 * is executing in-kernel and will hit userret() on the way out.
1634 *
1635 * If the LWP is curlwp, then we know we'll be back out to userspace
1636 * soon (can't be called from a hardware interrupt here).
1637 *
1638 * Otherwise, we can't be sure what the LWP is doing, so first make
1639 * sure the update to l_flag will be globally visible, and then
1640 * force the LWP to take a trip through trap() where it will do
1641 * userret().
1642 */
1643 if (l->l_stat == LSONPROC && l != curlwp) {
1644 membar_producer();
1645 cpu_signotify(l);
1646 }
1647 }
1648
1649 /*
1650 * Add one reference to an LWP. This will prevent the LWP from
1651 * exiting, thus keep the lwp structure and PCB around to inspect.
1652 */
1653 void
1654 lwp_addref(struct lwp *l)
1655 {
1656
1657 KASSERT(mutex_owned(l->l_proc->p_lock));
1658 KASSERT(l->l_stat != LSZOMB);
1659 KASSERT(l->l_refcnt != 0);
1660
1661 l->l_refcnt++;
1662 }
1663
1664 /*
1665 * Remove one reference to an LWP. If this is the last reference,
1666 * then we must finalize the LWP's death.
1667 */
1668 void
1669 lwp_delref(struct lwp *l)
1670 {
1671 struct proc *p = l->l_proc;
1672
1673 mutex_enter(p->p_lock);
1674 lwp_delref2(l);
1675 mutex_exit(p->p_lock);
1676 }
1677
1678 /*
1679 * Remove one reference to an LWP. If this is the last reference,
1680 * then we must finalize the LWP's death. The proc mutex is held
1681 * on entry.
1682 */
1683 void
1684 lwp_delref2(struct lwp *l)
1685 {
1686 struct proc *p = l->l_proc;
1687
1688 KASSERT(mutex_owned(p->p_lock));
1689 KASSERT(l->l_stat != LSZOMB);
1690 KASSERT(l->l_refcnt > 0);
1691 if (--l->l_refcnt == 0)
1692 cv_broadcast(&p->p_lwpcv);
1693 }
1694
1695 /*
1696 * Drain all references to the current LWP.
1697 */
1698 void
1699 lwp_drainrefs(struct lwp *l)
1700 {
1701 struct proc *p = l->l_proc;
1702
1703 KASSERT(mutex_owned(p->p_lock));
1704 KASSERT(l->l_refcnt != 0);
1705
1706 l->l_refcnt--;
1707 while (l->l_refcnt != 0)
1708 cv_wait(&p->p_lwpcv, p->p_lock);
1709 }
1710
1711 /*
1712 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1713 * be held.
1714 */
1715 bool
1716 lwp_alive(lwp_t *l)
1717 {
1718
1719 KASSERT(mutex_owned(l->l_proc->p_lock));
1720
1721 switch (l->l_stat) {
1722 case LSSLEEP:
1723 case LSRUN:
1724 case LSONPROC:
1725 case LSSTOP:
1726 case LSSUSPENDED:
1727 return true;
1728 default:
1729 return false;
1730 }
1731 }
1732
1733 /*
1734 * Return first live LWP in the process.
1735 */
1736 lwp_t *
1737 lwp_find_first(proc_t *p)
1738 {
1739 lwp_t *l;
1740
1741 KASSERT(mutex_owned(p->p_lock));
1742
1743 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1744 if (lwp_alive(l)) {
1745 return l;
1746 }
1747 }
1748
1749 return NULL;
1750 }
1751
1752 /*
1753 * Allocate a new lwpctl structure for a user LWP.
1754 */
1755 int
1756 lwp_ctl_alloc(vaddr_t *uaddr)
1757 {
1758 lcproc_t *lp;
1759 u_int bit, i, offset;
1760 struct uvm_object *uao;
1761 int error;
1762 lcpage_t *lcp;
1763 proc_t *p;
1764 lwp_t *l;
1765
1766 l = curlwp;
1767 p = l->l_proc;
1768
1769 /* don't allow a vforked process to create lwp ctls */
1770 if (p->p_lflag & PL_PPWAIT)
1771 return EBUSY;
1772
1773 if (l->l_lcpage != NULL) {
1774 lcp = l->l_lcpage;
1775 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1776 return 0;
1777 }
1778
1779 /* First time around, allocate header structure for the process. */
1780 if ((lp = p->p_lwpctl) == NULL) {
1781 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1782 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1783 lp->lp_uao = NULL;
1784 TAILQ_INIT(&lp->lp_pages);
1785 mutex_enter(p->p_lock);
1786 if (p->p_lwpctl == NULL) {
1787 p->p_lwpctl = lp;
1788 mutex_exit(p->p_lock);
1789 } else {
1790 mutex_exit(p->p_lock);
1791 mutex_destroy(&lp->lp_lock);
1792 kmem_free(lp, sizeof(*lp));
1793 lp = p->p_lwpctl;
1794 }
1795 }
1796
1797 /*
1798 * Set up an anonymous memory region to hold the shared pages.
1799 * Map them into the process' address space. The user vmspace
1800 * gets the first reference on the UAO.
1801 */
1802 mutex_enter(&lp->lp_lock);
1803 if (lp->lp_uao == NULL) {
1804 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1805 lp->lp_cur = 0;
1806 lp->lp_max = LWPCTL_UAREA_SZ;
1807 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1808 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1809 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1810 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1811 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1812 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1813 if (error != 0) {
1814 uao_detach(lp->lp_uao);
1815 lp->lp_uao = NULL;
1816 mutex_exit(&lp->lp_lock);
1817 return error;
1818 }
1819 }
1820
1821 /* Get a free block and allocate for this LWP. */
1822 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1823 if (lcp->lcp_nfree != 0)
1824 break;
1825 }
1826 if (lcp == NULL) {
1827 /* Nothing available - try to set up a free page. */
1828 if (lp->lp_cur == lp->lp_max) {
1829 mutex_exit(&lp->lp_lock);
1830 return ENOMEM;
1831 }
1832 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1833
1834 /*
1835 * Wire the next page down in kernel space. Since this
1836 * is a new mapping, we must add a reference.
1837 */
1838 uao = lp->lp_uao;
1839 (*uao->pgops->pgo_reference)(uao);
1840 lcp->lcp_kaddr = vm_map_min(kernel_map);
1841 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1842 uao, lp->lp_cur, PAGE_SIZE,
1843 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1844 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1845 if (error != 0) {
1846 mutex_exit(&lp->lp_lock);
1847 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1848 (*uao->pgops->pgo_detach)(uao);
1849 return error;
1850 }
1851 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1852 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1853 if (error != 0) {
1854 mutex_exit(&lp->lp_lock);
1855 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1856 lcp->lcp_kaddr + PAGE_SIZE);
1857 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1858 return error;
1859 }
1860 /* Prepare the page descriptor and link into the list. */
1861 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1862 lp->lp_cur += PAGE_SIZE;
1863 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1864 lcp->lcp_rotor = 0;
1865 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1866 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1867 }
1868 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1869 if (++i >= LWPCTL_BITMAP_ENTRIES)
1870 i = 0;
1871 }
1872 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1873 lcp->lcp_bitmap[i] ^= (1U << bit);
1874 lcp->lcp_rotor = i;
1875 lcp->lcp_nfree--;
1876 l->l_lcpage = lcp;
1877 offset = (i << 5) + bit;
1878 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1879 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1880 mutex_exit(&lp->lp_lock);
1881
1882 KPREEMPT_DISABLE(l);
1883 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1884 KPREEMPT_ENABLE(l);
1885
1886 return 0;
1887 }
1888
1889 /*
1890 * Free an lwpctl structure back to the per-process list.
1891 */
1892 void
1893 lwp_ctl_free(lwp_t *l)
1894 {
1895 struct proc *p = l->l_proc;
1896 lcproc_t *lp;
1897 lcpage_t *lcp;
1898 u_int map, offset;
1899
1900 /* don't free a lwp context we borrowed for vfork */
1901 if (p->p_lflag & PL_PPWAIT) {
1902 l->l_lwpctl = NULL;
1903 return;
1904 }
1905
1906 lp = p->p_lwpctl;
1907 KASSERT(lp != NULL);
1908
1909 lcp = l->l_lcpage;
1910 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1911 KASSERT(offset < LWPCTL_PER_PAGE);
1912
1913 mutex_enter(&lp->lp_lock);
1914 lcp->lcp_nfree++;
1915 map = offset >> 5;
1916 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1917 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1918 lcp->lcp_rotor = map;
1919 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1920 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1921 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1922 }
1923 mutex_exit(&lp->lp_lock);
1924 }
1925
1926 /*
1927 * Process is exiting; tear down lwpctl state. This can only be safely
1928 * called by the last LWP in the process.
1929 */
1930 void
1931 lwp_ctl_exit(void)
1932 {
1933 lcpage_t *lcp, *next;
1934 lcproc_t *lp;
1935 proc_t *p;
1936 lwp_t *l;
1937
1938 l = curlwp;
1939 l->l_lwpctl = NULL;
1940 l->l_lcpage = NULL;
1941 p = l->l_proc;
1942 lp = p->p_lwpctl;
1943
1944 KASSERT(lp != NULL);
1945 KASSERT(p->p_nlwps == 1);
1946
1947 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1948 next = TAILQ_NEXT(lcp, lcp_chain);
1949 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1950 lcp->lcp_kaddr + PAGE_SIZE);
1951 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1952 }
1953
1954 if (lp->lp_uao != NULL) {
1955 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1956 lp->lp_uva + LWPCTL_UAREA_SZ);
1957 }
1958
1959 mutex_destroy(&lp->lp_lock);
1960 kmem_free(lp, sizeof(*lp));
1961 p->p_lwpctl = NULL;
1962 }
1963
1964 /*
1965 * Return the current LWP's "preemption counter". Used to detect
1966 * preemption across operations that can tolerate preemption without
1967 * crashing, but which may generate incorrect results if preempted.
1968 */
1969 uint64_t
1970 lwp_pctr(void)
1971 {
1972
1973 return curlwp->l_ncsw;
1974 }
1975
1976 /*
1977 * Set an LWP's private data pointer.
1978 */
1979 int
1980 lwp_setprivate(struct lwp *l, void *ptr)
1981 {
1982 int error = 0;
1983
1984 l->l_private = ptr;
1985 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1986 error = cpu_lwp_setprivate(l, ptr);
1987 #endif
1988 return error;
1989 }
1990
1991 #if defined(DDB)
1992 #include <machine/pcb.h>
1993
1994 void
1995 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1996 {
1997 lwp_t *l;
1998
1999 LIST_FOREACH(l, &alllwp, l_list) {
2000 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2001
2002 if (addr < stack || stack + KSTACK_SIZE <= addr) {
2003 continue;
2004 }
2005 (*pr)("%p is %p+%zu, LWP %p's stack\n",
2006 (void *)addr, (void *)stack,
2007 (size_t)(addr - stack), l);
2008 }
2009 }
2010 #endif /* defined(DDB) */
2011