kern_lwp.c revision 1.226 1 /* $NetBSD: kern_lwp.c,v 1.226 2020/02/15 17:13:55 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Nathan J. Williams, and Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Overview
35 *
36 * Lightweight processes (LWPs) are the basic unit or thread of
37 * execution within the kernel. The core state of an LWP is described
38 * by "struct lwp", also known as lwp_t.
39 *
40 * Each LWP is contained within a process (described by "struct proc"),
41 * Every process contains at least one LWP, but may contain more. The
42 * process describes attributes shared among all of its LWPs such as a
43 * private address space, global execution state (stopped, active,
44 * zombie, ...), signal disposition and so on. On a multiprocessor
45 * machine, multiple LWPs be executing concurrently in the kernel.
46 *
47 * Execution states
48 *
49 * At any given time, an LWP has overall state that is described by
50 * lwp::l_stat. The states are broken into two sets below. The first
51 * set is guaranteed to represent the absolute, current state of the
52 * LWP:
53 *
54 * LSONPROC
55 *
56 * On processor: the LWP is executing on a CPU, either in the
57 * kernel or in user space.
58 *
59 * LSRUN
60 *
61 * Runnable: the LWP is parked on a run queue, and may soon be
62 * chosen to run by an idle processor, or by a processor that
63 * has been asked to preempt a currently runnning but lower
64 * priority LWP.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is about to switch away into oblivion, or has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > SLEEP
125 * > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 * > IDL (special cases)
129 *
130 * STOPPED ---> RUN SUSPENDED --> RUN
131 * > SLEEP
132 *
133 * SLEEP -----> ONPROC IDL --------> RUN
134 * > RUN > SUSPENDED
135 * > STOPPED > STOPPED
136 * > ONPROC (special cases)
137 *
138 * Some state transitions are only possible with kernel threads (eg
139 * ONPROC -> IDL) and happen under tightly controlled circumstances
140 * free of unwanted side effects.
141 *
142 * Migration
143 *
144 * Migration of threads from one CPU to another could be performed
145 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
146 * functions. The universal lwp_migrate() function should be used for
147 * any other cases. Subsystems in the kernel must be aware that CPU
148 * of LWP may change, while it is not locked.
149 *
150 * Locking
151 *
152 * The majority of fields in 'struct lwp' are covered by a single,
153 * general spin lock pointed to by lwp::l_mutex. The locks covering
154 * each field are documented in sys/lwp.h.
155 *
156 * State transitions must be made with the LWP's general lock held,
157 * and may cause the LWP's lock pointer to change. Manipulation of
158 * the general lock is not performed directly, but through calls to
159 * lwp_lock(), lwp_unlock() and others. It should be noted that the
160 * adaptive locks are not allowed to be released while the LWP's lock
161 * is being held (unlike for other spin-locks).
162 *
163 * States and their associated locks:
164 *
165 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
166 *
167 * Always covered by spc_lwplock, which protects LWPs not
168 * associated with any other sync object. This is a per-CPU
169 * lock and matches lwp::l_cpu.
170 *
171 * LSRUN:
172 *
173 * Always covered by spc_mutex, which protects the run queues.
174 * This is a per-CPU lock and matches lwp::l_cpu.
175 *
176 * LSSLEEP:
177 *
178 * Covered by a lock associated with the sleep queue (sometimes
179 * a turnstile sleep queue) that the LWP resides on. This can
180 * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
181 *
182 * LSSTOP:
183 *
184 * If the LWP was previously sleeping (l_wchan != NULL), then
185 * l_mutex references the sleep queue lock. If the LWP was
186 * runnable or on the CPU when halted, or has been removed from
187 * the sleep queue since halted, then the lock is spc_lwplock.
188 *
189 * The lock order is as follows:
190 *
191 * sleepq -> turnstile -> spc_lwplock -> spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above: soft interrupts, and the idle loops.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.226 2020/02/15 17:13:55 ad Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219
220 #define _LWP_API_PRIVATE
221
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/sleepq.h>
231 #include <sys/lockdebug.h>
232 #include <sys/kmem.h>
233 #include <sys/pset.h>
234 #include <sys/intr.h>
235 #include <sys/lwpctl.h>
236 #include <sys/atomic.h>
237 #include <sys/filedesc.h>
238 #include <sys/fstrans.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 #include <sys/ptrace.h>
242 #include <sys/xcall.h>
243 #include <sys/uidinfo.h>
244 #include <sys/sysctl.h>
245 #include <sys/psref.h>
246 #include <sys/msan.h>
247
248 #include <uvm/uvm_extern.h>
249 #include <uvm/uvm_object.h>
250
251 static pool_cache_t lwp_cache __read_mostly;
252 struct lwplist alllwp __cacheline_aligned;
253
254 static void lwp_dtor(void *, void *);
255
256 /* DTrace proc provider probes */
257 SDT_PROVIDER_DEFINE(proc);
258
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
261 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
262
263 struct turnstile turnstile0 __cacheline_aligned;
264 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
265 #ifdef LWP0_CPU_INFO
266 .l_cpu = LWP0_CPU_INFO,
267 #endif
268 #ifdef LWP0_MD_INITIALIZER
269 .l_md = LWP0_MD_INITIALIZER,
270 #endif
271 .l_proc = &proc0,
272 .l_lid = 1,
273 .l_flag = LW_SYSTEM,
274 .l_stat = LSONPROC,
275 .l_ts = &turnstile0,
276 .l_syncobj = &sched_syncobj,
277 .l_refcnt = 1,
278 .l_priority = PRI_USER + NPRI_USER - 1,
279 .l_inheritedprio = -1,
280 .l_class = SCHED_OTHER,
281 .l_psid = PS_NONE,
282 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
283 .l_name = __UNCONST("swapper"),
284 .l_fd = &filedesc0,
285 };
286
287 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
288
289 /*
290 * sysctl helper routine for kern.maxlwp. Ensures that the new
291 * values are not too low or too high.
292 */
293 static int
294 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
295 {
296 int error, nmaxlwp;
297 struct sysctlnode node;
298
299 nmaxlwp = maxlwp;
300 node = *rnode;
301 node.sysctl_data = &nmaxlwp;
302 error = sysctl_lookup(SYSCTLFN_CALL(&node));
303 if (error || newp == NULL)
304 return error;
305
306 if (nmaxlwp < 0 || nmaxlwp >= 65536)
307 return EINVAL;
308 if (nmaxlwp > cpu_maxlwp())
309 return EINVAL;
310 maxlwp = nmaxlwp;
311
312 return 0;
313 }
314
315 static void
316 sysctl_kern_lwp_setup(void)
317 {
318 struct sysctllog *clog = NULL;
319
320 sysctl_createv(&clog, 0, NULL, NULL,
321 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
322 CTLTYPE_INT, "maxlwp",
323 SYSCTL_DESCR("Maximum number of simultaneous threads"),
324 sysctl_kern_maxlwp, 0, NULL, 0,
325 CTL_KERN, CTL_CREATE, CTL_EOL);
326 }
327
328 void
329 lwpinit(void)
330 {
331
332 LIST_INIT(&alllwp);
333 lwpinit_specificdata();
334 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
335 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
336
337 maxlwp = cpu_maxlwp();
338 sysctl_kern_lwp_setup();
339 }
340
341 void
342 lwp0_init(void)
343 {
344 struct lwp *l = &lwp0;
345
346 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
347 KASSERT(l->l_lid == proc0.p_nlwpid);
348
349 LIST_INSERT_HEAD(&alllwp, l, l_list);
350
351 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
352 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
353 cv_init(&l->l_sigcv, "sigwait");
354 cv_init(&l->l_waitcv, "vfork");
355
356 kauth_cred_hold(proc0.p_cred);
357 l->l_cred = proc0.p_cred;
358
359 kdtrace_thread_ctor(NULL, l);
360 lwp_initspecific(l);
361
362 SYSCALL_TIME_LWP_INIT(l);
363 }
364
365 static void
366 lwp_dtor(void *arg, void *obj)
367 {
368 lwp_t *l = obj;
369 (void)l;
370
371 /*
372 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
373 * calls will exit before memory of LWP is returned to the pool, where
374 * KVA of LWP structure might be freed and re-used for other purposes.
375 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
376 * callers, therefore cross-call to all CPUs will do the job. Also,
377 * the value of l->l_cpu must be still valid at this point.
378 */
379 KASSERT(l->l_cpu != NULL);
380 xc_barrier(0);
381 }
382
383 /*
384 * Set an suspended.
385 *
386 * Must be called with p_lock held, and the LWP locked. Will unlock the
387 * LWP before return.
388 */
389 int
390 lwp_suspend(struct lwp *curl, struct lwp *t)
391 {
392 int error;
393
394 KASSERT(mutex_owned(t->l_proc->p_lock));
395 KASSERT(lwp_locked(t, NULL));
396
397 KASSERT(curl != t || curl->l_stat == LSONPROC);
398
399 /*
400 * If the current LWP has been told to exit, we must not suspend anyone
401 * else or deadlock could occur. We won't return to userspace.
402 */
403 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
404 lwp_unlock(t);
405 return (EDEADLK);
406 }
407
408 if ((t->l_flag & LW_DBGSUSPEND) != 0) {
409 lwp_unlock(t);
410 return 0;
411 }
412
413 error = 0;
414
415 switch (t->l_stat) {
416 case LSRUN:
417 case LSONPROC:
418 t->l_flag |= LW_WSUSPEND;
419 lwp_need_userret(t);
420 lwp_unlock(t);
421 break;
422
423 case LSSLEEP:
424 t->l_flag |= LW_WSUSPEND;
425
426 /*
427 * Kick the LWP and try to get it to the kernel boundary
428 * so that it will release any locks that it holds.
429 * setrunnable() will release the lock.
430 */
431 if ((t->l_flag & LW_SINTR) != 0)
432 setrunnable(t);
433 else
434 lwp_unlock(t);
435 break;
436
437 case LSSUSPENDED:
438 lwp_unlock(t);
439 break;
440
441 case LSSTOP:
442 t->l_flag |= LW_WSUSPEND;
443 setrunnable(t);
444 break;
445
446 case LSIDL:
447 case LSZOMB:
448 error = EINTR; /* It's what Solaris does..... */
449 lwp_unlock(t);
450 break;
451 }
452
453 return (error);
454 }
455
456 /*
457 * Restart a suspended LWP.
458 *
459 * Must be called with p_lock held, and the LWP locked. Will unlock the
460 * LWP before return.
461 */
462 void
463 lwp_continue(struct lwp *l)
464 {
465
466 KASSERT(mutex_owned(l->l_proc->p_lock));
467 KASSERT(lwp_locked(l, NULL));
468
469 /* If rebooting or not suspended, then just bail out. */
470 if ((l->l_flag & LW_WREBOOT) != 0) {
471 lwp_unlock(l);
472 return;
473 }
474
475 l->l_flag &= ~LW_WSUSPEND;
476
477 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
478 lwp_unlock(l);
479 return;
480 }
481
482 /* setrunnable() will release the lock. */
483 setrunnable(l);
484 }
485
486 /*
487 * Restart a stopped LWP.
488 *
489 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
490 * LWP before return.
491 */
492 void
493 lwp_unstop(struct lwp *l)
494 {
495 struct proc *p = l->l_proc;
496
497 KASSERT(mutex_owned(proc_lock));
498 KASSERT(mutex_owned(p->p_lock));
499
500 lwp_lock(l);
501
502 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
503
504 /* If not stopped, then just bail out. */
505 if (l->l_stat != LSSTOP) {
506 lwp_unlock(l);
507 return;
508 }
509
510 p->p_stat = SACTIVE;
511 p->p_sflag &= ~PS_STOPPING;
512
513 if (!p->p_waited)
514 p->p_pptr->p_nstopchild--;
515
516 if (l->l_wchan == NULL) {
517 /* setrunnable() will release the lock. */
518 setrunnable(l);
519 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
520 /* setrunnable() so we can receive the signal */
521 setrunnable(l);
522 } else {
523 l->l_stat = LSSLEEP;
524 p->p_nrlwps++;
525 lwp_unlock(l);
526 }
527 }
528
529 /*
530 * Wait for an LWP within the current process to exit. If 'lid' is
531 * non-zero, we are waiting for a specific LWP.
532 *
533 * Must be called with p->p_lock held.
534 */
535 int
536 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
537 {
538 const lwpid_t curlid = l->l_lid;
539 proc_t *p = l->l_proc;
540 lwp_t *l2, *next;
541 int error;
542
543 KASSERT(mutex_owned(p->p_lock));
544
545 p->p_nlwpwait++;
546 l->l_waitingfor = lid;
547
548 for (;;) {
549 int nfound;
550
551 /*
552 * Avoid a race between exit1() and sigexit(): if the
553 * process is dumping core, then we need to bail out: call
554 * into lwp_userret() where we will be suspended until the
555 * deed is done.
556 */
557 if ((p->p_sflag & PS_WCORE) != 0) {
558 mutex_exit(p->p_lock);
559 lwp_userret(l);
560 KASSERT(false);
561 }
562
563 /*
564 * First off, drain any detached LWP that is waiting to be
565 * reaped.
566 */
567 while ((l2 = p->p_zomblwp) != NULL) {
568 p->p_zomblwp = NULL;
569 lwp_free(l2, false, false);/* releases proc mutex */
570 mutex_enter(p->p_lock);
571 }
572
573 /*
574 * Now look for an LWP to collect. If the whole process is
575 * exiting, count detached LWPs as eligible to be collected,
576 * but don't drain them here.
577 */
578 nfound = 0;
579 error = 0;
580
581 /*
582 * If given a specific LID, go via the tree and make sure
583 * it's not detached.
584 */
585 if (lid != 0) {
586 l2 = radix_tree_lookup_node(&p->p_lwptree,
587 (uint64_t)(lid - 1));
588 if (l2 == NULL) {
589 error = ESRCH;
590 break;
591 }
592 KASSERT(l2->l_lid == lid);
593 if ((l2->l_prflag & LPR_DETACHED) != 0) {
594 error = EINVAL;
595 break;
596 }
597 } else {
598 l2 = LIST_FIRST(&p->p_lwps);
599 }
600 for (; l2 != NULL; l2 = next) {
601 next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
602
603 /*
604 * If a specific wait and the target is waiting on
605 * us, then avoid deadlock. This also traps LWPs
606 * that try to wait on themselves.
607 *
608 * Note that this does not handle more complicated
609 * cycles, like: t1 -> t2 -> t3 -> t1. The process
610 * can still be killed so it is not a major problem.
611 */
612 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
613 error = EDEADLK;
614 break;
615 }
616 if (l2 == l)
617 continue;
618 if ((l2->l_prflag & LPR_DETACHED) != 0) {
619 nfound += exiting;
620 continue;
621 }
622 if (lid != 0) {
623 /*
624 * Mark this LWP as the first waiter, if there
625 * is no other.
626 */
627 if (l2->l_waiter == 0)
628 l2->l_waiter = curlid;
629 } else if (l2->l_waiter != 0) {
630 /*
631 * It already has a waiter - so don't
632 * collect it. If the waiter doesn't
633 * grab it we'll get another chance
634 * later.
635 */
636 nfound++;
637 continue;
638 }
639 nfound++;
640
641 /* No need to lock the LWP in order to see LSZOMB. */
642 if (l2->l_stat != LSZOMB)
643 continue;
644
645 /*
646 * We're no longer waiting. Reset the "first waiter"
647 * pointer on the target, in case it was us.
648 */
649 l->l_waitingfor = 0;
650 l2->l_waiter = 0;
651 p->p_nlwpwait--;
652 if (departed)
653 *departed = l2->l_lid;
654 sched_lwp_collect(l2);
655
656 /* lwp_free() releases the proc lock. */
657 lwp_free(l2, false, false);
658 mutex_enter(p->p_lock);
659 return 0;
660 }
661
662 if (error != 0)
663 break;
664 if (nfound == 0) {
665 error = ESRCH;
666 break;
667 }
668
669 /*
670 * Note: since the lock will be dropped, need to restart on
671 * wakeup to run all LWPs again, e.g. there may be new LWPs.
672 */
673 if (exiting) {
674 KASSERT(p->p_nlwps > 1);
675 error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
676 break;
677 }
678
679 /*
680 * If all other LWPs are waiting for exits or suspends
681 * and the supply of zombies and potential zombies is
682 * exhausted, then we are about to deadlock.
683 */
684 if ((p->p_sflag & PS_WEXIT) != 0 ||
685 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
686 error = EDEADLK;
687 break;
688 }
689
690 /*
691 * Sit around and wait for something to happen. We'll be
692 * awoken if any of the conditions examined change: if an
693 * LWP exits, is collected, or is detached.
694 */
695 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
696 break;
697 }
698
699 /*
700 * We didn't find any LWPs to collect, we may have received a
701 * signal, or some other condition has caused us to bail out.
702 *
703 * If waiting on a specific LWP, clear the waiters marker: some
704 * other LWP may want it. Then, kick all the remaining waiters
705 * so that they can re-check for zombies and for deadlock.
706 */
707 if (lid != 0) {
708 l2 = radix_tree_lookup_node(&p->p_lwptree,
709 (uint64_t)(lid - 1));
710 KASSERT(l2 == NULL || l2->l_lid == lid);
711
712 if (l2 != NULL && l2->l_waiter == curlid)
713 l2->l_waiter = 0;
714 }
715 p->p_nlwpwait--;
716 l->l_waitingfor = 0;
717 cv_broadcast(&p->p_lwpcv);
718
719 return error;
720 }
721
722 /*
723 * Find an unused LID for a new LWP.
724 */
725 static lwpid_t
726 lwp_find_free_lid(struct proc *p)
727 {
728 struct lwp *gang[32];
729 lwpid_t lid;
730 unsigned n;
731
732 KASSERT(mutex_owned(p->p_lock));
733 KASSERT(p->p_nlwpid > 0);
734
735 /*
736 * Scoot forward through the tree in blocks of LIDs doing gang
737 * lookup with dense=true, meaning the lookup will terminate the
738 * instant a hole is encountered. Most of the time the first entry
739 * (p->p_nlwpid) is free and the lookup fails fast.
740 */
741 for (lid = p->p_nlwpid;;) {
742 n = radix_tree_gang_lookup_node(&p->p_lwptree, lid - 1,
743 (void **)gang, __arraycount(gang), true);
744 if (n == 0) {
745 /* Start point was empty. */
746 break;
747 }
748 KASSERT(gang[0]->l_lid == lid);
749 lid = gang[n - 1]->l_lid + 1;
750 if (n < __arraycount(gang)) {
751 /* Scan encountered a hole. */
752 break;
753 }
754 }
755
756 return (lwpid_t)lid;
757 }
758
759 /*
760 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
761 * The new LWP is created in state LSIDL and must be set running,
762 * suspended, or stopped by the caller.
763 */
764 int
765 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
766 void *stack, size_t stacksize, void (*func)(void *), void *arg,
767 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
768 const stack_t *sigstk)
769 {
770 struct lwp *l2;
771 turnstile_t *ts;
772 lwpid_t lid;
773
774 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
775
776 /*
777 * Enforce limits, excluding the first lwp and kthreads. We must
778 * use the process credentials here when adjusting the limit, as
779 * they are what's tied to the accounting entity. However for
780 * authorizing the action, we'll use the LWP's credentials.
781 */
782 mutex_enter(p2->p_lock);
783 if (p2->p_nlwps != 0 && p2 != &proc0) {
784 uid_t uid = kauth_cred_getuid(p2->p_cred);
785 int count = chglwpcnt(uid, 1);
786 if (__predict_false(count >
787 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
788 if (kauth_authorize_process(l1->l_cred,
789 KAUTH_PROCESS_RLIMIT, p2,
790 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
791 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
792 != 0) {
793 (void)chglwpcnt(uid, -1);
794 mutex_exit(p2->p_lock);
795 return EAGAIN;
796 }
797 }
798 }
799
800 /*
801 * First off, reap any detached LWP waiting to be collected.
802 * We can re-use its LWP structure and turnstile.
803 */
804 if ((l2 = p2->p_zomblwp) != NULL) {
805 p2->p_zomblwp = NULL;
806 lwp_free(l2, true, false);
807 /* p2 now unlocked by lwp_free() */
808 ts = l2->l_ts;
809 KASSERT(l2->l_inheritedprio == -1);
810 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
811 memset(l2, 0, sizeof(*l2));
812 l2->l_ts = ts;
813 } else {
814 mutex_exit(p2->p_lock);
815 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
816 memset(l2, 0, sizeof(*l2));
817 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
818 SLIST_INIT(&l2->l_pi_lenders);
819 }
820
821 l2->l_stat = LSIDL;
822 l2->l_proc = p2;
823 l2->l_refcnt = 1;
824 l2->l_class = sclass;
825
826 /*
827 * If vfork(), we want the LWP to run fast and on the same CPU
828 * as its parent, so that it can reuse the VM context and cache
829 * footprint on the local CPU.
830 */
831 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
832 l2->l_kpribase = PRI_KERNEL;
833 l2->l_priority = l1->l_priority;
834 l2->l_inheritedprio = -1;
835 l2->l_protectprio = -1;
836 l2->l_auxprio = -1;
837 l2->l_flag = 0;
838 l2->l_pflag = LP_MPSAFE;
839 TAILQ_INIT(&l2->l_ld_locks);
840 l2->l_psrefs = 0;
841 kmsan_lwp_alloc(l2);
842
843 /*
844 * For vfork, borrow parent's lwpctl context if it exists.
845 * This also causes us to return via lwp_userret.
846 */
847 if (flags & LWP_VFORK && l1->l_lwpctl) {
848 l2->l_lwpctl = l1->l_lwpctl;
849 l2->l_flag |= LW_LWPCTL;
850 }
851
852 /*
853 * If not the first LWP in the process, grab a reference to the
854 * descriptor table.
855 */
856 l2->l_fd = p2->p_fd;
857 if (p2->p_nlwps != 0) {
858 KASSERT(l1->l_proc == p2);
859 fd_hold(l2);
860 } else {
861 KASSERT(l1->l_proc != p2);
862 }
863
864 if (p2->p_flag & PK_SYSTEM) {
865 /* Mark it as a system LWP. */
866 l2->l_flag |= LW_SYSTEM;
867 }
868
869 kpreempt_disable();
870 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
871 l2->l_cpu = l1->l_cpu;
872 kpreempt_enable();
873
874 kdtrace_thread_ctor(NULL, l2);
875 lwp_initspecific(l2);
876 sched_lwp_fork(l1, l2);
877 lwp_update_creds(l2);
878 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
879 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
880 cv_init(&l2->l_sigcv, "sigwait");
881 cv_init(&l2->l_waitcv, "vfork");
882 l2->l_syncobj = &sched_syncobj;
883 PSREF_DEBUG_INIT_LWP(l2);
884
885 if (rnewlwpp != NULL)
886 *rnewlwpp = l2;
887
888 /*
889 * PCU state needs to be saved before calling uvm_lwp_fork() so that
890 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
891 */
892 pcu_save_all(l1);
893 #if PCU_UNIT_COUNT > 0
894 l2->l_pcu_valid = l1->l_pcu_valid;
895 #endif
896
897 uvm_lwp_setuarea(l2, uaddr);
898 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
899
900 if ((flags & LWP_PIDLID) != 0) {
901 /* Linux threads: use a PID. */
902 lid = proc_alloc_pid(p2);
903 l2->l_pflag |= LP_PIDLID;
904 } else if (p2->p_nlwps == 0) {
905 /*
906 * First LWP in process. Copy the parent's LID to avoid
907 * causing problems for fork() + threads. Don't give
908 * subsequent threads the distinction of using LID 1.
909 */
910 lid = l1->l_lid;
911 p2->p_nlwpid = 2;
912 } else {
913 /* Scan the radix tree for a free LID. */
914 lid = 0;
915 }
916
917 /*
918 * Allocate LID if needed, and insert into the radix tree. The
919 * first LWP in most processes has a LID of 1. It turns out that if
920 * you insert an item with a key of zero to a radixtree, it's stored
921 * directly in the root (p_lwptree) and no extra memory is
922 * allocated. We therefore always subtract 1 from the LID, which
923 * means no memory is allocated for the tree unless the program is
924 * using threads. NB: the allocation and insert must take place
925 * under the same hold of p_lock.
926 */
927 mutex_enter(p2->p_lock);
928 for (;;) {
929 int error;
930
931 l2->l_lid = (lid == 0 ? lwp_find_free_lid(p2) : lid);
932
933 rw_enter(&p2->p_treelock, RW_WRITER);
934 error = radix_tree_insert_node(&p2->p_lwptree,
935 (uint64_t)(l2->l_lid - 1), l2);
936 rw_exit(&p2->p_treelock);
937
938 if (__predict_true(error == 0)) {
939 if (lid == 0)
940 p2->p_nlwpid = l2->l_lid + 1;
941 break;
942 }
943
944 KASSERT(error == ENOMEM);
945 mutex_exit(p2->p_lock);
946 radix_tree_await_memory();
947 mutex_enter(p2->p_lock);
948 }
949
950 if ((flags & LWP_DETACHED) != 0) {
951 l2->l_prflag = LPR_DETACHED;
952 p2->p_ndlwps++;
953 } else
954 l2->l_prflag = 0;
955
956 if (l1->l_proc == p2) {
957 /*
958 * These flags are set while p_lock is held. Copy with
959 * p_lock held too, so the LWP doesn't sneak into the
960 * process without them being set.
961 */
962 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
963 } else {
964 /* fork(): pending core/exit doesn't apply to child. */
965 l2->l_flag |= (l1->l_flag & LW_WREBOOT);
966 }
967
968 l2->l_sigstk = *sigstk;
969 l2->l_sigmask = *sigmask;
970 TAILQ_INIT(&l2->l_sigpend.sp_info);
971 sigemptyset(&l2->l_sigpend.sp_set);
972 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
973 p2->p_nlwps++;
974 p2->p_nrlwps++;
975
976 KASSERT(l2->l_affinity == NULL);
977
978 /* Inherit the affinity mask. */
979 if (l1->l_affinity) {
980 /*
981 * Note that we hold the state lock while inheriting
982 * the affinity to avoid race with sched_setaffinity().
983 */
984 lwp_lock(l1);
985 if (l1->l_affinity) {
986 kcpuset_use(l1->l_affinity);
987 l2->l_affinity = l1->l_affinity;
988 }
989 lwp_unlock(l1);
990 }
991
992 /* This marks the end of the "must be atomic" section. */
993 mutex_exit(p2->p_lock);
994
995 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
996
997 mutex_enter(proc_lock);
998 LIST_INSERT_HEAD(&alllwp, l2, l_list);
999 /* Inherit a processor-set */
1000 l2->l_psid = l1->l_psid;
1001 mutex_exit(proc_lock);
1002
1003 SYSCALL_TIME_LWP_INIT(l2);
1004
1005 if (p2->p_emul->e_lwp_fork)
1006 (*p2->p_emul->e_lwp_fork)(l1, l2);
1007
1008 return (0);
1009 }
1010
1011 /*
1012 * Set a new LWP running. If the process is stopping, then the LWP is
1013 * created stopped.
1014 */
1015 void
1016 lwp_start(lwp_t *l, int flags)
1017 {
1018 proc_t *p = l->l_proc;
1019
1020 mutex_enter(p->p_lock);
1021 lwp_lock(l);
1022 KASSERT(l->l_stat == LSIDL);
1023 if ((flags & LWP_SUSPENDED) != 0) {
1024 /* It'll suspend itself in lwp_userret(). */
1025 l->l_flag |= LW_WSUSPEND;
1026 }
1027 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1028 KASSERT(l->l_wchan == NULL);
1029 l->l_stat = LSSTOP;
1030 p->p_nrlwps--;
1031 lwp_unlock(l);
1032 } else {
1033 setrunnable(l);
1034 /* LWP now unlocked */
1035 }
1036 mutex_exit(p->p_lock);
1037 }
1038
1039 /*
1040 * Called by MD code when a new LWP begins execution. Must be called
1041 * with the previous LWP locked (so at splsched), or if there is no
1042 * previous LWP, at splsched.
1043 */
1044 void
1045 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1046 {
1047
1048 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1049 KASSERT(kpreempt_disabled());
1050 KASSERT(prev != NULL);
1051 KASSERT((prev->l_flag & LW_RUNNING) != 0);
1052 KASSERT(curcpu()->ci_mtx_count == -2);
1053
1054 /* Immediately mark previous LWP as no longer running, and unlock. */
1055 prev->l_flag &= ~LW_RUNNING;
1056 lwp_unlock(prev);
1057
1058 /* Correct spin mutex count after mi_switch(). */
1059 curcpu()->ci_mtx_count = 0;
1060
1061 /* Install new VM context. */
1062 if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1063 pmap_activate(new_lwp);
1064 }
1065
1066 /* We remain at IPL_SCHED from mi_switch() - reset it. */
1067 spl0();
1068
1069 LOCKDEBUG_BARRIER(NULL, 0);
1070 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1071
1072 /* For kthreads, acquire kernel lock if not MPSAFE. */
1073 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1074 KERNEL_LOCK(1, new_lwp);
1075 }
1076 }
1077
1078 /*
1079 * Exit an LWP.
1080 */
1081 void
1082 lwp_exit(struct lwp *l)
1083 {
1084 struct proc *p = l->l_proc;
1085 struct lwp *l2;
1086 bool current;
1087
1088 current = (l == curlwp);
1089
1090 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1091 KASSERT(p == curproc);
1092
1093 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1094
1095 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1096 LOCKDEBUG_BARRIER(NULL, 0);
1097 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1098
1099 /*
1100 * If we are the last live LWP in a process, we need to exit the
1101 * entire process. We do so with an exit status of zero, because
1102 * it's a "controlled" exit, and because that's what Solaris does.
1103 *
1104 * We are not quite a zombie yet, but for accounting purposes we
1105 * must increment the count of zombies here.
1106 *
1107 * Note: the last LWP's specificdata will be deleted here.
1108 */
1109 mutex_enter(p->p_lock);
1110 if (p->p_nlwps - p->p_nzlwps == 1) {
1111 KASSERT(current == true);
1112 KASSERT(p != &proc0);
1113 exit1(l, 0, 0);
1114 /* NOTREACHED */
1115 }
1116 p->p_nzlwps++;
1117 mutex_exit(p->p_lock);
1118
1119 if (p->p_emul->e_lwp_exit)
1120 (*p->p_emul->e_lwp_exit)(l);
1121
1122 /* Drop filedesc reference. */
1123 fd_free();
1124
1125 /* Release fstrans private data. */
1126 fstrans_lwp_dtor(l);
1127
1128 /* Delete the specificdata while it's still safe to sleep. */
1129 lwp_finispecific(l);
1130
1131 /*
1132 * Release our cached credentials.
1133 */
1134 kauth_cred_free(l->l_cred);
1135 callout_destroy(&l->l_timeout_ch);
1136
1137 /*
1138 * If traced, report LWP exit event to the debugger.
1139 *
1140 * Remove the LWP from the global list.
1141 * Free its LID from the PID namespace if needed.
1142 */
1143 mutex_enter(proc_lock);
1144
1145 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1146 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1147 mutex_enter(p->p_lock);
1148 if (ISSET(p->p_sflag, PS_WEXIT)) {
1149 mutex_exit(p->p_lock);
1150 /*
1151 * We are exiting, bail out without informing parent
1152 * about a terminating LWP as it would deadlock.
1153 */
1154 } else {
1155 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1156 mutex_enter(proc_lock);
1157 }
1158 }
1159
1160 LIST_REMOVE(l, l_list);
1161 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1162 proc_free_pid(l->l_lid);
1163 }
1164 mutex_exit(proc_lock);
1165
1166 /*
1167 * Get rid of all references to the LWP that others (e.g. procfs)
1168 * may have, and mark the LWP as a zombie. If the LWP is detached,
1169 * mark it waiting for collection in the proc structure. Note that
1170 * before we can do that, we need to free any other dead, deatched
1171 * LWP waiting to meet its maker.
1172 */
1173 mutex_enter(p->p_lock);
1174 lwp_drainrefs(l);
1175
1176 if ((l->l_prflag & LPR_DETACHED) != 0) {
1177 while ((l2 = p->p_zomblwp) != NULL) {
1178 p->p_zomblwp = NULL;
1179 lwp_free(l2, false, false);/* releases proc mutex */
1180 mutex_enter(p->p_lock);
1181 l->l_refcnt++;
1182 lwp_drainrefs(l);
1183 }
1184 p->p_zomblwp = l;
1185 }
1186
1187 /*
1188 * If we find a pending signal for the process and we have been
1189 * asked to check for signals, then we lose: arrange to have
1190 * all other LWPs in the process check for signals.
1191 */
1192 if ((l->l_flag & LW_PENDSIG) != 0 &&
1193 firstsig(&p->p_sigpend.sp_set) != 0) {
1194 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1195 lwp_lock(l2);
1196 signotify(l2);
1197 lwp_unlock(l2);
1198 }
1199 }
1200
1201 /*
1202 * Release any PCU resources before becoming a zombie.
1203 */
1204 pcu_discard_all(l);
1205
1206 lwp_lock(l);
1207 l->l_stat = LSZOMB;
1208 if (l->l_name != NULL) {
1209 strcpy(l->l_name, "(zombie)");
1210 }
1211 lwp_unlock(l);
1212 p->p_nrlwps--;
1213 cv_broadcast(&p->p_lwpcv);
1214 if (l->l_lwpctl != NULL)
1215 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1216 mutex_exit(p->p_lock);
1217
1218 /*
1219 * We can no longer block. At this point, lwp_free() may already
1220 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1221 *
1222 * Free MD LWP resources.
1223 */
1224 cpu_lwp_free(l, 0);
1225
1226 if (current) {
1227 /* For the LW_RUNNING check in lwp_free(). */
1228 membar_exit();
1229 /* Switch away into oblivion. */
1230 lwp_lock(l);
1231 spc_lock(l->l_cpu);
1232 mi_switch(l);
1233 panic("lwp_exit");
1234 }
1235 }
1236
1237 /*
1238 * Free a dead LWP's remaining resources.
1239 *
1240 * XXXLWP limits.
1241 */
1242 void
1243 lwp_free(struct lwp *l, bool recycle, bool last)
1244 {
1245 struct proc *p = l->l_proc;
1246 struct rusage *ru;
1247 struct lwp *l2 __diagused;
1248 ksiginfoq_t kq;
1249
1250 KASSERT(l != curlwp);
1251 KASSERT(last || mutex_owned(p->p_lock));
1252
1253 /*
1254 * We use the process credentials instead of the lwp credentials here
1255 * because the lwp credentials maybe cached (just after a setuid call)
1256 * and we don't want pay for syncing, since the lwp is going away
1257 * anyway
1258 */
1259 if (p != &proc0 && p->p_nlwps != 1)
1260 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1261
1262 /*
1263 * If this was not the last LWP in the process, then adjust counters
1264 * and unlock. This is done differently for the last LWP in exit1().
1265 */
1266 if (!last) {
1267 /*
1268 * Add the LWP's run time to the process' base value.
1269 * This needs to co-incide with coming off p_lwps.
1270 */
1271 bintime_add(&p->p_rtime, &l->l_rtime);
1272 p->p_pctcpu += l->l_pctcpu;
1273 ru = &p->p_stats->p_ru;
1274 ruadd(ru, &l->l_ru);
1275 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1276 ru->ru_nivcsw += l->l_nivcsw;
1277 LIST_REMOVE(l, l_sibling);
1278 p->p_nlwps--;
1279 p->p_nzlwps--;
1280 if ((l->l_prflag & LPR_DETACHED) != 0)
1281 p->p_ndlwps--;
1282
1283 /* Make note of the LID being free, and remove from tree. */
1284 if (l->l_lid < p->p_nlwpid)
1285 p->p_nlwpid = l->l_lid;
1286 rw_enter(&p->p_treelock, RW_WRITER);
1287 l2 = radix_tree_remove_node(&p->p_lwptree,
1288 (uint64_t)(l->l_lid - 1));
1289 KASSERT(l2 == l);
1290 rw_exit(&p->p_treelock);
1291
1292 /*
1293 * Have any LWPs sleeping in lwp_wait() recheck for
1294 * deadlock.
1295 */
1296 cv_broadcast(&p->p_lwpcv);
1297 mutex_exit(p->p_lock);
1298 }
1299
1300 #ifdef MULTIPROCESSOR
1301 /*
1302 * In the unlikely event that the LWP is still on the CPU,
1303 * then spin until it has switched away. We need to release
1304 * all locks to avoid deadlock against interrupt handlers on
1305 * the target CPU.
1306 */
1307 membar_enter();
1308 while (__predict_false((l->l_flag & LW_RUNNING) != 0)) {
1309 SPINLOCK_BACKOFF_HOOK;
1310 }
1311 #endif
1312
1313 /*
1314 * Destroy the LWP's remaining signal information.
1315 */
1316 ksiginfo_queue_init(&kq);
1317 sigclear(&l->l_sigpend, NULL, &kq);
1318 ksiginfo_queue_drain(&kq);
1319 cv_destroy(&l->l_sigcv);
1320 cv_destroy(&l->l_waitcv);
1321
1322 /*
1323 * Free lwpctl structure and affinity.
1324 */
1325 if (l->l_lwpctl) {
1326 lwp_ctl_free(l);
1327 }
1328 if (l->l_affinity) {
1329 kcpuset_unuse(l->l_affinity, NULL);
1330 l->l_affinity = NULL;
1331 }
1332
1333 /*
1334 * Free the LWP's turnstile and the LWP structure itself unless the
1335 * caller wants to recycle them. Also, free the scheduler specific
1336 * data.
1337 *
1338 * We can't return turnstile0 to the pool (it didn't come from it),
1339 * so if it comes up just drop it quietly and move on.
1340 *
1341 * We don't recycle the VM resources at this time.
1342 */
1343
1344 if (!recycle && l->l_ts != &turnstile0)
1345 pool_cache_put(turnstile_cache, l->l_ts);
1346 if (l->l_name != NULL)
1347 kmem_free(l->l_name, MAXCOMLEN);
1348
1349 kmsan_lwp_free(l);
1350 cpu_lwp_free2(l);
1351 uvm_lwp_exit(l);
1352
1353 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1354 KASSERT(l->l_inheritedprio == -1);
1355 KASSERT(l->l_blcnt == 0);
1356 kdtrace_thread_dtor(NULL, l);
1357 if (!recycle)
1358 pool_cache_put(lwp_cache, l);
1359 }
1360
1361 /*
1362 * Migrate the LWP to the another CPU. Unlocks the LWP.
1363 */
1364 void
1365 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1366 {
1367 struct schedstate_percpu *tspc;
1368 int lstat = l->l_stat;
1369
1370 KASSERT(lwp_locked(l, NULL));
1371 KASSERT(tci != NULL);
1372
1373 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1374 if ((l->l_flag & LW_RUNNING) != 0) {
1375 lstat = LSONPROC;
1376 }
1377
1378 /*
1379 * The destination CPU could be changed while previous migration
1380 * was not finished.
1381 */
1382 if (l->l_target_cpu != NULL) {
1383 l->l_target_cpu = tci;
1384 lwp_unlock(l);
1385 return;
1386 }
1387
1388 /* Nothing to do if trying to migrate to the same CPU */
1389 if (l->l_cpu == tci) {
1390 lwp_unlock(l);
1391 return;
1392 }
1393
1394 KASSERT(l->l_target_cpu == NULL);
1395 tspc = &tci->ci_schedstate;
1396 switch (lstat) {
1397 case LSRUN:
1398 l->l_target_cpu = tci;
1399 break;
1400 case LSSLEEP:
1401 l->l_cpu = tci;
1402 break;
1403 case LSIDL:
1404 case LSSTOP:
1405 case LSSUSPENDED:
1406 l->l_cpu = tci;
1407 if (l->l_wchan == NULL) {
1408 lwp_unlock_to(l, tspc->spc_lwplock);
1409 return;
1410 }
1411 break;
1412 case LSONPROC:
1413 l->l_target_cpu = tci;
1414 spc_lock(l->l_cpu);
1415 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1416 /* spc now unlocked */
1417 break;
1418 }
1419 lwp_unlock(l);
1420 }
1421
1422 /*
1423 * Find the LWP in the process. Arguments may be zero, in such case,
1424 * the calling process and first LWP in the list will be used.
1425 * On success - returns proc locked.
1426 */
1427 struct lwp *
1428 lwp_find2(pid_t pid, lwpid_t lid)
1429 {
1430 proc_t *p;
1431 lwp_t *l;
1432
1433 /* Find the process. */
1434 if (pid != 0) {
1435 mutex_enter(proc_lock);
1436 p = proc_find(pid);
1437 if (p == NULL) {
1438 mutex_exit(proc_lock);
1439 return NULL;
1440 }
1441 mutex_enter(p->p_lock);
1442 mutex_exit(proc_lock);
1443 } else {
1444 p = curlwp->l_proc;
1445 mutex_enter(p->p_lock);
1446 }
1447 /* Find the thread. */
1448 if (lid != 0) {
1449 l = lwp_find(p, lid);
1450 } else {
1451 l = LIST_FIRST(&p->p_lwps);
1452 }
1453 if (l == NULL) {
1454 mutex_exit(p->p_lock);
1455 }
1456 return l;
1457 }
1458
1459 /*
1460 * Look up a live LWP within the specified process.
1461 *
1462 * Must be called with p->p_lock held (as it looks at the radix tree,
1463 * and also wants to exclude idle and zombie LWPs).
1464 */
1465 struct lwp *
1466 lwp_find(struct proc *p, lwpid_t id)
1467 {
1468 struct lwp *l;
1469
1470 KASSERT(mutex_owned(p->p_lock));
1471
1472 l = radix_tree_lookup_node(&p->p_lwptree, (uint64_t)(id - 1));
1473 KASSERT(l == NULL || l->l_lid == id);
1474
1475 /*
1476 * No need to lock - all of these conditions will
1477 * be visible with the process level mutex held.
1478 */
1479 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1480 l = NULL;
1481
1482 return l;
1483 }
1484
1485 /*
1486 * Update an LWP's cached credentials to mirror the process' master copy.
1487 *
1488 * This happens early in the syscall path, on user trap, and on LWP
1489 * creation. A long-running LWP can also voluntarily choose to update
1490 * its credentials by calling this routine. This may be called from
1491 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1492 */
1493 void
1494 lwp_update_creds(struct lwp *l)
1495 {
1496 kauth_cred_t oc;
1497 struct proc *p;
1498
1499 p = l->l_proc;
1500 oc = l->l_cred;
1501
1502 mutex_enter(p->p_lock);
1503 kauth_cred_hold(p->p_cred);
1504 l->l_cred = p->p_cred;
1505 l->l_prflag &= ~LPR_CRMOD;
1506 mutex_exit(p->p_lock);
1507 if (oc != NULL)
1508 kauth_cred_free(oc);
1509 }
1510
1511 /*
1512 * Verify that an LWP is locked, and optionally verify that the lock matches
1513 * one we specify.
1514 */
1515 int
1516 lwp_locked(struct lwp *l, kmutex_t *mtx)
1517 {
1518 kmutex_t *cur = l->l_mutex;
1519
1520 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1521 }
1522
1523 /*
1524 * Lend a new mutex to an LWP. The old mutex must be held.
1525 */
1526 kmutex_t *
1527 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1528 {
1529 kmutex_t *oldmtx = l->l_mutex;
1530
1531 KASSERT(mutex_owned(oldmtx));
1532
1533 membar_exit();
1534 l->l_mutex = mtx;
1535 return oldmtx;
1536 }
1537
1538 /*
1539 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1540 * must be held.
1541 */
1542 void
1543 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1544 {
1545 kmutex_t *old;
1546
1547 KASSERT(lwp_locked(l, NULL));
1548
1549 old = l->l_mutex;
1550 membar_exit();
1551 l->l_mutex = mtx;
1552 mutex_spin_exit(old);
1553 }
1554
1555 int
1556 lwp_trylock(struct lwp *l)
1557 {
1558 kmutex_t *old;
1559
1560 for (;;) {
1561 if (!mutex_tryenter(old = l->l_mutex))
1562 return 0;
1563 if (__predict_true(l->l_mutex == old))
1564 return 1;
1565 mutex_spin_exit(old);
1566 }
1567 }
1568
1569 void
1570 lwp_unsleep(lwp_t *l, bool unlock)
1571 {
1572
1573 KASSERT(mutex_owned(l->l_mutex));
1574 (*l->l_syncobj->sobj_unsleep)(l, unlock);
1575 }
1576
1577 /*
1578 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1579 * set.
1580 */
1581 void
1582 lwp_userret(struct lwp *l)
1583 {
1584 struct proc *p;
1585 int sig;
1586
1587 KASSERT(l == curlwp);
1588 KASSERT(l->l_stat == LSONPROC);
1589 p = l->l_proc;
1590
1591 #ifndef __HAVE_FAST_SOFTINTS
1592 /* Run pending soft interrupts. */
1593 if (l->l_cpu->ci_data.cpu_softints != 0)
1594 softint_overlay();
1595 #endif
1596
1597 /*
1598 * It is safe to do this read unlocked on a MP system..
1599 */
1600 while ((l->l_flag & LW_USERRET) != 0) {
1601 /*
1602 * Process pending signals first, unless the process
1603 * is dumping core or exiting, where we will instead
1604 * enter the LW_WSUSPEND case below.
1605 */
1606 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1607 LW_PENDSIG) {
1608 mutex_enter(p->p_lock);
1609 while ((sig = issignal(l)) != 0)
1610 postsig(sig);
1611 mutex_exit(p->p_lock);
1612 }
1613
1614 /*
1615 * Core-dump or suspend pending.
1616 *
1617 * In case of core dump, suspend ourselves, so that the kernel
1618 * stack and therefore the userland registers saved in the
1619 * trapframe are around for coredump() to write them out.
1620 * We also need to save any PCU resources that we have so that
1621 * they accessible for coredump(). We issue a wakeup on
1622 * p->p_lwpcv so that sigexit() will write the core file out
1623 * once all other LWPs are suspended.
1624 */
1625 if ((l->l_flag & LW_WSUSPEND) != 0) {
1626 pcu_save_all(l);
1627 mutex_enter(p->p_lock);
1628 p->p_nrlwps--;
1629 cv_broadcast(&p->p_lwpcv);
1630 lwp_lock(l);
1631 l->l_stat = LSSUSPENDED;
1632 lwp_unlock(l);
1633 mutex_exit(p->p_lock);
1634 lwp_lock(l);
1635 spc_lock(l->l_cpu);
1636 mi_switch(l);
1637 }
1638
1639 /* Process is exiting. */
1640 if ((l->l_flag & LW_WEXIT) != 0) {
1641 lwp_exit(l);
1642 KASSERT(0);
1643 /* NOTREACHED */
1644 }
1645
1646 /* update lwpctl processor (for vfork child_return) */
1647 if (l->l_flag & LW_LWPCTL) {
1648 lwp_lock(l);
1649 KASSERT(kpreempt_disabled());
1650 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1651 l->l_lwpctl->lc_pctr++;
1652 l->l_flag &= ~LW_LWPCTL;
1653 lwp_unlock(l);
1654 }
1655 }
1656 }
1657
1658 /*
1659 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1660 */
1661 void
1662 lwp_need_userret(struct lwp *l)
1663 {
1664
1665 KASSERT(!cpu_intr_p());
1666 KASSERT(lwp_locked(l, NULL));
1667
1668 /*
1669 * If the LWP is in any state other than LSONPROC, we know that it
1670 * is executing in-kernel and will hit userret() on the way out.
1671 *
1672 * If the LWP is curlwp, then we know we'll be back out to userspace
1673 * soon (can't be called from a hardware interrupt here).
1674 *
1675 * Otherwise, we can't be sure what the LWP is doing, so first make
1676 * sure the update to l_flag will be globally visible, and then
1677 * force the LWP to take a trip through trap() where it will do
1678 * userret().
1679 */
1680 if (l->l_stat == LSONPROC && l != curlwp) {
1681 membar_producer();
1682 cpu_signotify(l);
1683 }
1684 }
1685
1686 /*
1687 * Add one reference to an LWP. This will prevent the LWP from
1688 * exiting, thus keep the lwp structure and PCB around to inspect.
1689 */
1690 void
1691 lwp_addref(struct lwp *l)
1692 {
1693
1694 KASSERT(mutex_owned(l->l_proc->p_lock));
1695 KASSERT(l->l_stat != LSZOMB);
1696 KASSERT(l->l_refcnt != 0);
1697
1698 l->l_refcnt++;
1699 }
1700
1701 /*
1702 * Remove one reference to an LWP. If this is the last reference,
1703 * then we must finalize the LWP's death.
1704 */
1705 void
1706 lwp_delref(struct lwp *l)
1707 {
1708 struct proc *p = l->l_proc;
1709
1710 mutex_enter(p->p_lock);
1711 lwp_delref2(l);
1712 mutex_exit(p->p_lock);
1713 }
1714
1715 /*
1716 * Remove one reference to an LWP. If this is the last reference,
1717 * then we must finalize the LWP's death. The proc mutex is held
1718 * on entry.
1719 */
1720 void
1721 lwp_delref2(struct lwp *l)
1722 {
1723 struct proc *p = l->l_proc;
1724
1725 KASSERT(mutex_owned(p->p_lock));
1726 KASSERT(l->l_stat != LSZOMB);
1727 KASSERT(l->l_refcnt > 0);
1728 if (--l->l_refcnt == 0)
1729 cv_broadcast(&p->p_lwpcv);
1730 }
1731
1732 /*
1733 * Drain all references to the current LWP.
1734 */
1735 void
1736 lwp_drainrefs(struct lwp *l)
1737 {
1738 struct proc *p = l->l_proc;
1739
1740 KASSERT(mutex_owned(p->p_lock));
1741 KASSERT(l->l_refcnt != 0);
1742
1743 l->l_refcnt--;
1744 while (l->l_refcnt != 0)
1745 cv_wait(&p->p_lwpcv, p->p_lock);
1746 }
1747
1748 /*
1749 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1750 * be held.
1751 */
1752 bool
1753 lwp_alive(lwp_t *l)
1754 {
1755
1756 KASSERT(mutex_owned(l->l_proc->p_lock));
1757
1758 switch (l->l_stat) {
1759 case LSSLEEP:
1760 case LSRUN:
1761 case LSONPROC:
1762 case LSSTOP:
1763 case LSSUSPENDED:
1764 return true;
1765 default:
1766 return false;
1767 }
1768 }
1769
1770 /*
1771 * Return first live LWP in the process.
1772 */
1773 lwp_t *
1774 lwp_find_first(proc_t *p)
1775 {
1776 lwp_t *l;
1777
1778 KASSERT(mutex_owned(p->p_lock));
1779
1780 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1781 if (lwp_alive(l)) {
1782 return l;
1783 }
1784 }
1785
1786 return NULL;
1787 }
1788
1789 /*
1790 * Allocate a new lwpctl structure for a user LWP.
1791 */
1792 int
1793 lwp_ctl_alloc(vaddr_t *uaddr)
1794 {
1795 lcproc_t *lp;
1796 u_int bit, i, offset;
1797 struct uvm_object *uao;
1798 int error;
1799 lcpage_t *lcp;
1800 proc_t *p;
1801 lwp_t *l;
1802
1803 l = curlwp;
1804 p = l->l_proc;
1805
1806 /* don't allow a vforked process to create lwp ctls */
1807 if (p->p_lflag & PL_PPWAIT)
1808 return EBUSY;
1809
1810 if (l->l_lcpage != NULL) {
1811 lcp = l->l_lcpage;
1812 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1813 return 0;
1814 }
1815
1816 /* First time around, allocate header structure for the process. */
1817 if ((lp = p->p_lwpctl) == NULL) {
1818 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1819 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1820 lp->lp_uao = NULL;
1821 TAILQ_INIT(&lp->lp_pages);
1822 mutex_enter(p->p_lock);
1823 if (p->p_lwpctl == NULL) {
1824 p->p_lwpctl = lp;
1825 mutex_exit(p->p_lock);
1826 } else {
1827 mutex_exit(p->p_lock);
1828 mutex_destroy(&lp->lp_lock);
1829 kmem_free(lp, sizeof(*lp));
1830 lp = p->p_lwpctl;
1831 }
1832 }
1833
1834 /*
1835 * Set up an anonymous memory region to hold the shared pages.
1836 * Map them into the process' address space. The user vmspace
1837 * gets the first reference on the UAO.
1838 */
1839 mutex_enter(&lp->lp_lock);
1840 if (lp->lp_uao == NULL) {
1841 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1842 lp->lp_cur = 0;
1843 lp->lp_max = LWPCTL_UAREA_SZ;
1844 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1845 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1846 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1847 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1848 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1849 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1850 if (error != 0) {
1851 uao_detach(lp->lp_uao);
1852 lp->lp_uao = NULL;
1853 mutex_exit(&lp->lp_lock);
1854 return error;
1855 }
1856 }
1857
1858 /* Get a free block and allocate for this LWP. */
1859 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1860 if (lcp->lcp_nfree != 0)
1861 break;
1862 }
1863 if (lcp == NULL) {
1864 /* Nothing available - try to set up a free page. */
1865 if (lp->lp_cur == lp->lp_max) {
1866 mutex_exit(&lp->lp_lock);
1867 return ENOMEM;
1868 }
1869 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1870
1871 /*
1872 * Wire the next page down in kernel space. Since this
1873 * is a new mapping, we must add a reference.
1874 */
1875 uao = lp->lp_uao;
1876 (*uao->pgops->pgo_reference)(uao);
1877 lcp->lcp_kaddr = vm_map_min(kernel_map);
1878 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1879 uao, lp->lp_cur, PAGE_SIZE,
1880 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1881 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1882 if (error != 0) {
1883 mutex_exit(&lp->lp_lock);
1884 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1885 (*uao->pgops->pgo_detach)(uao);
1886 return error;
1887 }
1888 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1889 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1890 if (error != 0) {
1891 mutex_exit(&lp->lp_lock);
1892 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1893 lcp->lcp_kaddr + PAGE_SIZE);
1894 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1895 return error;
1896 }
1897 /* Prepare the page descriptor and link into the list. */
1898 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1899 lp->lp_cur += PAGE_SIZE;
1900 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1901 lcp->lcp_rotor = 0;
1902 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1903 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1904 }
1905 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1906 if (++i >= LWPCTL_BITMAP_ENTRIES)
1907 i = 0;
1908 }
1909 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1910 lcp->lcp_bitmap[i] ^= (1U << bit);
1911 lcp->lcp_rotor = i;
1912 lcp->lcp_nfree--;
1913 l->l_lcpage = lcp;
1914 offset = (i << 5) + bit;
1915 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1916 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1917 mutex_exit(&lp->lp_lock);
1918
1919 KPREEMPT_DISABLE(l);
1920 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1921 KPREEMPT_ENABLE(l);
1922
1923 return 0;
1924 }
1925
1926 /*
1927 * Free an lwpctl structure back to the per-process list.
1928 */
1929 void
1930 lwp_ctl_free(lwp_t *l)
1931 {
1932 struct proc *p = l->l_proc;
1933 lcproc_t *lp;
1934 lcpage_t *lcp;
1935 u_int map, offset;
1936
1937 /* don't free a lwp context we borrowed for vfork */
1938 if (p->p_lflag & PL_PPWAIT) {
1939 l->l_lwpctl = NULL;
1940 return;
1941 }
1942
1943 lp = p->p_lwpctl;
1944 KASSERT(lp != NULL);
1945
1946 lcp = l->l_lcpage;
1947 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1948 KASSERT(offset < LWPCTL_PER_PAGE);
1949
1950 mutex_enter(&lp->lp_lock);
1951 lcp->lcp_nfree++;
1952 map = offset >> 5;
1953 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1954 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1955 lcp->lcp_rotor = map;
1956 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1957 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1958 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1959 }
1960 mutex_exit(&lp->lp_lock);
1961 }
1962
1963 /*
1964 * Process is exiting; tear down lwpctl state. This can only be safely
1965 * called by the last LWP in the process.
1966 */
1967 void
1968 lwp_ctl_exit(void)
1969 {
1970 lcpage_t *lcp, *next;
1971 lcproc_t *lp;
1972 proc_t *p;
1973 lwp_t *l;
1974
1975 l = curlwp;
1976 l->l_lwpctl = NULL;
1977 l->l_lcpage = NULL;
1978 p = l->l_proc;
1979 lp = p->p_lwpctl;
1980
1981 KASSERT(lp != NULL);
1982 KASSERT(p->p_nlwps == 1);
1983
1984 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1985 next = TAILQ_NEXT(lcp, lcp_chain);
1986 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1987 lcp->lcp_kaddr + PAGE_SIZE);
1988 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1989 }
1990
1991 if (lp->lp_uao != NULL) {
1992 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1993 lp->lp_uva + LWPCTL_UAREA_SZ);
1994 }
1995
1996 mutex_destroy(&lp->lp_lock);
1997 kmem_free(lp, sizeof(*lp));
1998 p->p_lwpctl = NULL;
1999 }
2000
2001 /*
2002 * Return the current LWP's "preemption counter". Used to detect
2003 * preemption across operations that can tolerate preemption without
2004 * crashing, but which may generate incorrect results if preempted.
2005 */
2006 uint64_t
2007 lwp_pctr(void)
2008 {
2009
2010 return curlwp->l_ncsw;
2011 }
2012
2013 /*
2014 * Set an LWP's private data pointer.
2015 */
2016 int
2017 lwp_setprivate(struct lwp *l, void *ptr)
2018 {
2019 int error = 0;
2020
2021 l->l_private = ptr;
2022 #ifdef __HAVE_CPU_LWP_SETPRIVATE
2023 error = cpu_lwp_setprivate(l, ptr);
2024 #endif
2025 return error;
2026 }
2027
2028 /*
2029 * Renumber the first and only LWP in a process on exec() or fork().
2030 * Don't bother with p_treelock here as this is the only live LWP in
2031 * the proc right now.
2032 */
2033 void
2034 lwp_renumber(lwp_t *l, lwpid_t lid)
2035 {
2036 lwp_t *l2 __diagused;
2037 proc_t *p = l->l_proc;
2038 int error;
2039
2040 KASSERT(p->p_nlwps == 1);
2041
2042 while (l->l_lid != lid) {
2043 mutex_enter(p->p_lock);
2044 error = radix_tree_insert_node(&p->p_lwptree, lid - 1, l);
2045 if (error == 0) {
2046 l2 = radix_tree_remove_node(&p->p_lwptree,
2047 (uint64_t)(l->l_lid - 1));
2048 KASSERT(l2 == l);
2049 p->p_nlwpid = lid + 1;
2050 l->l_lid = lid;
2051 }
2052 mutex_exit(p->p_lock);
2053
2054 if (error == 0)
2055 break;
2056
2057 KASSERT(error == ENOMEM);
2058 radix_tree_await_memory();
2059 }
2060 }
2061
2062 #if defined(DDB)
2063 #include <machine/pcb.h>
2064
2065 void
2066 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2067 {
2068 lwp_t *l;
2069
2070 LIST_FOREACH(l, &alllwp, l_list) {
2071 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2072
2073 if (addr < stack || stack + KSTACK_SIZE <= addr) {
2074 continue;
2075 }
2076 (*pr)("%p is %p+%zu, LWP %p's stack\n",
2077 (void *)addr, (void *)stack,
2078 (size_t)(addr - stack), l);
2079 }
2080 }
2081 #endif /* defined(DDB) */
2082