kern_lwp.c revision 1.231 1 /* $NetBSD: kern_lwp.c,v 1.231 2020/03/26 21:31:55 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Nathan J. Williams, and Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Overview
35 *
36 * Lightweight processes (LWPs) are the basic unit or thread of
37 * execution within the kernel. The core state of an LWP is described
38 * by "struct lwp", also known as lwp_t.
39 *
40 * Each LWP is contained within a process (described by "struct proc"),
41 * Every process contains at least one LWP, but may contain more. The
42 * process describes attributes shared among all of its LWPs such as a
43 * private address space, global execution state (stopped, active,
44 * zombie, ...), signal disposition and so on. On a multiprocessor
45 * machine, multiple LWPs be executing concurrently in the kernel.
46 *
47 * Execution states
48 *
49 * At any given time, an LWP has overall state that is described by
50 * lwp::l_stat. The states are broken into two sets below. The first
51 * set is guaranteed to represent the absolute, current state of the
52 * LWP:
53 *
54 * LSONPROC
55 *
56 * On processor: the LWP is executing on a CPU, either in the
57 * kernel or in user space.
58 *
59 * LSRUN
60 *
61 * Runnable: the LWP is parked on a run queue, and may soon be
62 * chosen to run by an idle processor, or by a processor that
63 * has been asked to preempt a currently runnning but lower
64 * priority LWP.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is about to switch away into oblivion, or has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > SLEEP
125 * > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 * > IDL (special cases)
129 *
130 * STOPPED ---> RUN SUSPENDED --> RUN
131 * > SLEEP
132 *
133 * SLEEP -----> ONPROC IDL --------> RUN
134 * > RUN > SUSPENDED
135 * > STOPPED > STOPPED
136 * > ONPROC (special cases)
137 *
138 * Some state transitions are only possible with kernel threads (eg
139 * ONPROC -> IDL) and happen under tightly controlled circumstances
140 * free of unwanted side effects.
141 *
142 * Migration
143 *
144 * Migration of threads from one CPU to another could be performed
145 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
146 * functions. The universal lwp_migrate() function should be used for
147 * any other cases. Subsystems in the kernel must be aware that CPU
148 * of LWP may change, while it is not locked.
149 *
150 * Locking
151 *
152 * The majority of fields in 'struct lwp' are covered by a single,
153 * general spin lock pointed to by lwp::l_mutex. The locks covering
154 * each field are documented in sys/lwp.h.
155 *
156 * State transitions must be made with the LWP's general lock held,
157 * and may cause the LWP's lock pointer to change. Manipulation of
158 * the general lock is not performed directly, but through calls to
159 * lwp_lock(), lwp_unlock() and others. It should be noted that the
160 * adaptive locks are not allowed to be released while the LWP's lock
161 * is being held (unlike for other spin-locks).
162 *
163 * States and their associated locks:
164 *
165 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
166 *
167 * Always covered by spc_lwplock, which protects LWPs not
168 * associated with any other sync object. This is a per-CPU
169 * lock and matches lwp::l_cpu.
170 *
171 * LSRUN:
172 *
173 * Always covered by spc_mutex, which protects the run queues.
174 * This is a per-CPU lock and matches lwp::l_cpu.
175 *
176 * LSSLEEP:
177 *
178 * Covered by a lock associated with the sleep queue (sometimes
179 * a turnstile sleep queue) that the LWP resides on. This can
180 * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
181 *
182 * LSSTOP:
183 *
184 * If the LWP was previously sleeping (l_wchan != NULL), then
185 * l_mutex references the sleep queue lock. If the LWP was
186 * runnable or on the CPU when halted, or has been removed from
187 * the sleep queue since halted, then the lock is spc_lwplock.
188 *
189 * The lock order is as follows:
190 *
191 * sleepq -> turnstile -> spc_lwplock -> spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above: soft interrupts, and the idle loops.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.231 2020/03/26 21:31:55 ad Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219
220 #define _LWP_API_PRIVATE
221
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/sleepq.h>
231 #include <sys/lockdebug.h>
232 #include <sys/kmem.h>
233 #include <sys/pset.h>
234 #include <sys/intr.h>
235 #include <sys/lwpctl.h>
236 #include <sys/atomic.h>
237 #include <sys/filedesc.h>
238 #include <sys/fstrans.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 #include <sys/ptrace.h>
242 #include <sys/xcall.h>
243 #include <sys/uidinfo.h>
244 #include <sys/sysctl.h>
245 #include <sys/psref.h>
246 #include <sys/msan.h>
247
248 #include <uvm/uvm_extern.h>
249 #include <uvm/uvm_object.h>
250
251 static pool_cache_t lwp_cache __read_mostly;
252 struct lwplist alllwp __cacheline_aligned;
253
254 static void lwp_dtor(void *, void *);
255
256 /* DTrace proc provider probes */
257 SDT_PROVIDER_DEFINE(proc);
258
259 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
261 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
262
263 struct turnstile turnstile0 __cacheline_aligned;
264 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
265 #ifdef LWP0_CPU_INFO
266 .l_cpu = LWP0_CPU_INFO,
267 #endif
268 #ifdef LWP0_MD_INITIALIZER
269 .l_md = LWP0_MD_INITIALIZER,
270 #endif
271 .l_proc = &proc0,
272 .l_lid = 1,
273 .l_flag = LW_SYSTEM,
274 .l_stat = LSONPROC,
275 .l_ts = &turnstile0,
276 .l_syncobj = &sched_syncobj,
277 .l_refcnt = 0,
278 .l_priority = PRI_USER + NPRI_USER - 1,
279 .l_inheritedprio = -1,
280 .l_class = SCHED_OTHER,
281 .l_psid = PS_NONE,
282 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
283 .l_name = __UNCONST("swapper"),
284 .l_fd = &filedesc0,
285 };
286
287 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
288
289 /*
290 * sysctl helper routine for kern.maxlwp. Ensures that the new
291 * values are not too low or too high.
292 */
293 static int
294 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
295 {
296 int error, nmaxlwp;
297 struct sysctlnode node;
298
299 nmaxlwp = maxlwp;
300 node = *rnode;
301 node.sysctl_data = &nmaxlwp;
302 error = sysctl_lookup(SYSCTLFN_CALL(&node));
303 if (error || newp == NULL)
304 return error;
305
306 if (nmaxlwp < 0 || nmaxlwp >= 65536)
307 return EINVAL;
308 if (nmaxlwp > cpu_maxlwp())
309 return EINVAL;
310 maxlwp = nmaxlwp;
311
312 return 0;
313 }
314
315 static void
316 sysctl_kern_lwp_setup(void)
317 {
318 struct sysctllog *clog = NULL;
319
320 sysctl_createv(&clog, 0, NULL, NULL,
321 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
322 CTLTYPE_INT, "maxlwp",
323 SYSCTL_DESCR("Maximum number of simultaneous threads"),
324 sysctl_kern_maxlwp, 0, NULL, 0,
325 CTL_KERN, CTL_CREATE, CTL_EOL);
326 }
327
328 void
329 lwpinit(void)
330 {
331
332 LIST_INIT(&alllwp);
333 lwpinit_specificdata();
334 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
335 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
336
337 maxlwp = cpu_maxlwp();
338 sysctl_kern_lwp_setup();
339 }
340
341 void
342 lwp0_init(void)
343 {
344 struct lwp *l = &lwp0;
345
346 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
347 KASSERT(l->l_lid == proc0.p_nlwpid);
348
349 LIST_INSERT_HEAD(&alllwp, l, l_list);
350
351 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
352 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
353 cv_init(&l->l_sigcv, "sigwait");
354 cv_init(&l->l_waitcv, "vfork");
355
356 kauth_cred_hold(proc0.p_cred);
357 l->l_cred = proc0.p_cred;
358
359 kdtrace_thread_ctor(NULL, l);
360 lwp_initspecific(l);
361
362 SYSCALL_TIME_LWP_INIT(l);
363 }
364
365 static void
366 lwp_dtor(void *arg, void *obj)
367 {
368 lwp_t *l = obj;
369 (void)l;
370
371 /*
372 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
373 * calls will exit before memory of LWP is returned to the pool, where
374 * KVA of LWP structure might be freed and re-used for other purposes.
375 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
376 * callers, therefore cross-call to all CPUs will do the job. Also,
377 * the value of l->l_cpu must be still valid at this point.
378 */
379 KASSERT(l->l_cpu != NULL);
380 xc_barrier(0);
381 }
382
383 /*
384 * Set an suspended.
385 *
386 * Must be called with p_lock held, and the LWP locked. Will unlock the
387 * LWP before return.
388 */
389 int
390 lwp_suspend(struct lwp *curl, struct lwp *t)
391 {
392 int error;
393
394 KASSERT(mutex_owned(t->l_proc->p_lock));
395 KASSERT(lwp_locked(t, NULL));
396
397 KASSERT(curl != t || curl->l_stat == LSONPROC);
398
399 /*
400 * If the current LWP has been told to exit, we must not suspend anyone
401 * else or deadlock could occur. We won't return to userspace.
402 */
403 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
404 lwp_unlock(t);
405 return (EDEADLK);
406 }
407
408 if ((t->l_flag & LW_DBGSUSPEND) != 0) {
409 lwp_unlock(t);
410 return 0;
411 }
412
413 error = 0;
414
415 switch (t->l_stat) {
416 case LSRUN:
417 case LSONPROC:
418 t->l_flag |= LW_WSUSPEND;
419 lwp_need_userret(t);
420 lwp_unlock(t);
421 break;
422
423 case LSSLEEP:
424 t->l_flag |= LW_WSUSPEND;
425
426 /*
427 * Kick the LWP and try to get it to the kernel boundary
428 * so that it will release any locks that it holds.
429 * setrunnable() will release the lock.
430 */
431 if ((t->l_flag & LW_SINTR) != 0)
432 setrunnable(t);
433 else
434 lwp_unlock(t);
435 break;
436
437 case LSSUSPENDED:
438 lwp_unlock(t);
439 break;
440
441 case LSSTOP:
442 t->l_flag |= LW_WSUSPEND;
443 setrunnable(t);
444 break;
445
446 case LSIDL:
447 case LSZOMB:
448 error = EINTR; /* It's what Solaris does..... */
449 lwp_unlock(t);
450 break;
451 }
452
453 return (error);
454 }
455
456 /*
457 * Restart a suspended LWP.
458 *
459 * Must be called with p_lock held, and the LWP locked. Will unlock the
460 * LWP before return.
461 */
462 void
463 lwp_continue(struct lwp *l)
464 {
465
466 KASSERT(mutex_owned(l->l_proc->p_lock));
467 KASSERT(lwp_locked(l, NULL));
468
469 /* If rebooting or not suspended, then just bail out. */
470 if ((l->l_flag & LW_WREBOOT) != 0) {
471 lwp_unlock(l);
472 return;
473 }
474
475 l->l_flag &= ~LW_WSUSPEND;
476
477 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
478 lwp_unlock(l);
479 return;
480 }
481
482 /* setrunnable() will release the lock. */
483 setrunnable(l);
484 }
485
486 /*
487 * Restart a stopped LWP.
488 *
489 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
490 * LWP before return.
491 */
492 void
493 lwp_unstop(struct lwp *l)
494 {
495 struct proc *p = l->l_proc;
496
497 KASSERT(mutex_owned(proc_lock));
498 KASSERT(mutex_owned(p->p_lock));
499
500 lwp_lock(l);
501
502 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
503
504 /* If not stopped, then just bail out. */
505 if (l->l_stat != LSSTOP) {
506 lwp_unlock(l);
507 return;
508 }
509
510 p->p_stat = SACTIVE;
511 p->p_sflag &= ~PS_STOPPING;
512
513 if (!p->p_waited)
514 p->p_pptr->p_nstopchild--;
515
516 if (l->l_wchan == NULL) {
517 /* setrunnable() will release the lock. */
518 setrunnable(l);
519 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
520 /* setrunnable() so we can receive the signal */
521 setrunnable(l);
522 } else {
523 l->l_stat = LSSLEEP;
524 p->p_nrlwps++;
525 lwp_unlock(l);
526 }
527 }
528
529 /*
530 * Wait for an LWP within the current process to exit. If 'lid' is
531 * non-zero, we are waiting for a specific LWP.
532 *
533 * Must be called with p->p_lock held.
534 */
535 int
536 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
537 {
538 const lwpid_t curlid = l->l_lid;
539 proc_t *p = l->l_proc;
540 lwp_t *l2, *next;
541 int error;
542
543 KASSERT(mutex_owned(p->p_lock));
544
545 p->p_nlwpwait++;
546 l->l_waitingfor = lid;
547
548 for (;;) {
549 int nfound;
550
551 /*
552 * Avoid a race between exit1() and sigexit(): if the
553 * process is dumping core, then we need to bail out: call
554 * into lwp_userret() where we will be suspended until the
555 * deed is done.
556 */
557 if ((p->p_sflag & PS_WCORE) != 0) {
558 mutex_exit(p->p_lock);
559 lwp_userret(l);
560 KASSERT(false);
561 }
562
563 /*
564 * First off, drain any detached LWP that is waiting to be
565 * reaped.
566 */
567 while ((l2 = p->p_zomblwp) != NULL) {
568 p->p_zomblwp = NULL;
569 lwp_free(l2, false, false);/* releases proc mutex */
570 mutex_enter(p->p_lock);
571 }
572
573 /*
574 * Now look for an LWP to collect. If the whole process is
575 * exiting, count detached LWPs as eligible to be collected,
576 * but don't drain them here.
577 */
578 nfound = 0;
579 error = 0;
580
581 /*
582 * If given a specific LID, go via the tree and make sure
583 * it's not detached.
584 */
585 if (lid != 0) {
586 l2 = radix_tree_lookup_node(&p->p_lwptree,
587 (uint64_t)(lid - 1));
588 if (l2 == NULL) {
589 error = ESRCH;
590 break;
591 }
592 KASSERT(l2->l_lid == lid);
593 if ((l2->l_prflag & LPR_DETACHED) != 0) {
594 error = EINVAL;
595 break;
596 }
597 } else {
598 l2 = LIST_FIRST(&p->p_lwps);
599 }
600 for (; l2 != NULL; l2 = next) {
601 next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
602
603 /*
604 * If a specific wait and the target is waiting on
605 * us, then avoid deadlock. This also traps LWPs
606 * that try to wait on themselves.
607 *
608 * Note that this does not handle more complicated
609 * cycles, like: t1 -> t2 -> t3 -> t1. The process
610 * can still be killed so it is not a major problem.
611 */
612 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
613 error = EDEADLK;
614 break;
615 }
616 if (l2 == l)
617 continue;
618 if ((l2->l_prflag & LPR_DETACHED) != 0) {
619 nfound += exiting;
620 continue;
621 }
622 if (lid != 0) {
623 /*
624 * Mark this LWP as the first waiter, if there
625 * is no other.
626 */
627 if (l2->l_waiter == 0)
628 l2->l_waiter = curlid;
629 } else if (l2->l_waiter != 0) {
630 /*
631 * It already has a waiter - so don't
632 * collect it. If the waiter doesn't
633 * grab it we'll get another chance
634 * later.
635 */
636 nfound++;
637 continue;
638 }
639 nfound++;
640
641 /* No need to lock the LWP in order to see LSZOMB. */
642 if (l2->l_stat != LSZOMB)
643 continue;
644
645 /*
646 * We're no longer waiting. Reset the "first waiter"
647 * pointer on the target, in case it was us.
648 */
649 l->l_waitingfor = 0;
650 l2->l_waiter = 0;
651 p->p_nlwpwait--;
652 if (departed)
653 *departed = l2->l_lid;
654 sched_lwp_collect(l2);
655
656 /* lwp_free() releases the proc lock. */
657 lwp_free(l2, false, false);
658 mutex_enter(p->p_lock);
659 return 0;
660 }
661
662 if (error != 0)
663 break;
664 if (nfound == 0) {
665 error = ESRCH;
666 break;
667 }
668
669 /*
670 * Note: since the lock will be dropped, need to restart on
671 * wakeup to run all LWPs again, e.g. there may be new LWPs.
672 */
673 if (exiting) {
674 KASSERT(p->p_nlwps > 1);
675 error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
676 break;
677 }
678
679 /*
680 * Break out if the process is exiting, or if all LWPs are
681 * in _lwp_wait(). There are other ways to hang the process
682 * with _lwp_wait(), but the sleep is interruptable so
683 * little point checking for them.
684 */
685 if ((p->p_sflag & PS_WEXIT) != 0 ||
686 p->p_nlwpwait == p->p_nlwps) {
687 error = EDEADLK;
688 break;
689 }
690
691 /*
692 * Sit around and wait for something to happen. We'll be
693 * awoken if any of the conditions examined change: if an
694 * LWP exits, is collected, or is detached.
695 */
696 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
697 break;
698 }
699
700 /*
701 * We didn't find any LWPs to collect, we may have received a
702 * signal, or some other condition has caused us to bail out.
703 *
704 * If waiting on a specific LWP, clear the waiters marker: some
705 * other LWP may want it. Then, kick all the remaining waiters
706 * so that they can re-check for zombies and for deadlock.
707 */
708 if (lid != 0) {
709 l2 = radix_tree_lookup_node(&p->p_lwptree,
710 (uint64_t)(lid - 1));
711 KASSERT(l2 == NULL || l2->l_lid == lid);
712
713 if (l2 != NULL && l2->l_waiter == curlid)
714 l2->l_waiter = 0;
715 }
716 p->p_nlwpwait--;
717 l->l_waitingfor = 0;
718 cv_broadcast(&p->p_lwpcv);
719
720 return error;
721 }
722
723 /*
724 * Find an unused LID for a new LWP.
725 */
726 static lwpid_t
727 lwp_find_free_lid(struct proc *p)
728 {
729 struct lwp *gang[32];
730 lwpid_t lid;
731 unsigned n;
732
733 KASSERT(mutex_owned(p->p_lock));
734 KASSERT(p->p_nlwpid > 0);
735
736 /*
737 * Scoot forward through the tree in blocks of LIDs doing gang
738 * lookup with dense=true, meaning the lookup will terminate the
739 * instant a hole is encountered. Most of the time the first entry
740 * (p->p_nlwpid) is free and the lookup fails fast.
741 */
742 for (lid = p->p_nlwpid;;) {
743 n = radix_tree_gang_lookup_node(&p->p_lwptree, lid - 1,
744 (void **)gang, __arraycount(gang), true);
745 if (n == 0) {
746 /* Start point was empty. */
747 break;
748 }
749 KASSERT(gang[0]->l_lid == lid);
750 lid = gang[n - 1]->l_lid + 1;
751 if (n < __arraycount(gang)) {
752 /* Scan encountered a hole. */
753 break;
754 }
755 }
756
757 return (lwpid_t)lid;
758 }
759
760 /*
761 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
762 * The new LWP is created in state LSIDL and must be set running,
763 * suspended, or stopped by the caller.
764 */
765 int
766 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
767 void *stack, size_t stacksize, void (*func)(void *), void *arg,
768 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
769 const stack_t *sigstk)
770 {
771 struct lwp *l2;
772 turnstile_t *ts;
773 lwpid_t lid;
774
775 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
776
777 /*
778 * Enforce limits, excluding the first lwp and kthreads. We must
779 * use the process credentials here when adjusting the limit, as
780 * they are what's tied to the accounting entity. However for
781 * authorizing the action, we'll use the LWP's credentials.
782 */
783 mutex_enter(p2->p_lock);
784 if (p2->p_nlwps != 0 && p2 != &proc0) {
785 uid_t uid = kauth_cred_getuid(p2->p_cred);
786 int count = chglwpcnt(uid, 1);
787 if (__predict_false(count >
788 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
789 if (kauth_authorize_process(l1->l_cred,
790 KAUTH_PROCESS_RLIMIT, p2,
791 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
792 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
793 != 0) {
794 (void)chglwpcnt(uid, -1);
795 mutex_exit(p2->p_lock);
796 return EAGAIN;
797 }
798 }
799 }
800
801 /*
802 * First off, reap any detached LWP waiting to be collected.
803 * We can re-use its LWP structure and turnstile.
804 */
805 if ((l2 = p2->p_zomblwp) != NULL) {
806 p2->p_zomblwp = NULL;
807 lwp_free(l2, true, false);
808 /* p2 now unlocked by lwp_free() */
809 ts = l2->l_ts;
810 KASSERT(l2->l_inheritedprio == -1);
811 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
812 memset(l2, 0, sizeof(*l2));
813 l2->l_ts = ts;
814 } else {
815 mutex_exit(p2->p_lock);
816 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
817 memset(l2, 0, sizeof(*l2));
818 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
819 SLIST_INIT(&l2->l_pi_lenders);
820 }
821
822 l2->l_stat = LSIDL;
823 l2->l_proc = p2;
824 l2->l_refcnt = 0;
825 l2->l_class = sclass;
826
827 /*
828 * If vfork(), we want the LWP to run fast and on the same CPU
829 * as its parent, so that it can reuse the VM context and cache
830 * footprint on the local CPU.
831 */
832 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
833 l2->l_kpribase = PRI_KERNEL;
834 l2->l_priority = l1->l_priority;
835 l2->l_inheritedprio = -1;
836 l2->l_protectprio = -1;
837 l2->l_auxprio = -1;
838 l2->l_flag = 0;
839 l2->l_pflag = LP_MPSAFE;
840 TAILQ_INIT(&l2->l_ld_locks);
841 l2->l_psrefs = 0;
842 kmsan_lwp_alloc(l2);
843
844 /*
845 * For vfork, borrow parent's lwpctl context if it exists.
846 * This also causes us to return via lwp_userret.
847 */
848 if (flags & LWP_VFORK && l1->l_lwpctl) {
849 l2->l_lwpctl = l1->l_lwpctl;
850 l2->l_flag |= LW_LWPCTL;
851 }
852
853 /*
854 * If not the first LWP in the process, grab a reference to the
855 * descriptor table.
856 */
857 l2->l_fd = p2->p_fd;
858 if (p2->p_nlwps != 0) {
859 KASSERT(l1->l_proc == p2);
860 fd_hold(l2);
861 } else {
862 KASSERT(l1->l_proc != p2);
863 }
864
865 if (p2->p_flag & PK_SYSTEM) {
866 /* Mark it as a system LWP. */
867 l2->l_flag |= LW_SYSTEM;
868 }
869
870 kpreempt_disable();
871 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
872 l2->l_cpu = l1->l_cpu;
873 kpreempt_enable();
874
875 kdtrace_thread_ctor(NULL, l2);
876 lwp_initspecific(l2);
877 sched_lwp_fork(l1, l2);
878 lwp_update_creds(l2);
879 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
880 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
881 cv_init(&l2->l_sigcv, "sigwait");
882 cv_init(&l2->l_waitcv, "vfork");
883 l2->l_syncobj = &sched_syncobj;
884 PSREF_DEBUG_INIT_LWP(l2);
885
886 if (rnewlwpp != NULL)
887 *rnewlwpp = l2;
888
889 /*
890 * PCU state needs to be saved before calling uvm_lwp_fork() so that
891 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
892 */
893 pcu_save_all(l1);
894 #if PCU_UNIT_COUNT > 0
895 l2->l_pcu_valid = l1->l_pcu_valid;
896 #endif
897
898 uvm_lwp_setuarea(l2, uaddr);
899 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
900
901 if ((flags & LWP_PIDLID) != 0) {
902 /* Linux threads: use a PID. */
903 lid = proc_alloc_pid(p2);
904 l2->l_pflag |= LP_PIDLID;
905 } else if (p2->p_nlwps == 0) {
906 /*
907 * First LWP in process. Copy the parent's LID to avoid
908 * causing problems for fork() + threads. Don't give
909 * subsequent threads the distinction of using LID 1.
910 */
911 lid = l1->l_lid;
912 p2->p_nlwpid = 2;
913 } else {
914 /* Scan the radix tree for a free LID. */
915 lid = 0;
916 }
917
918 /*
919 * Allocate LID if needed, and insert into the radix tree. The
920 * first LWP in most processes has a LID of 1. It turns out that if
921 * you insert an item with a key of zero to a radixtree, it's stored
922 * directly in the root (p_lwptree) and no extra memory is
923 * allocated. We therefore always subtract 1 from the LID, which
924 * means no memory is allocated for the tree unless the program is
925 * using threads. NB: the allocation and insert must take place
926 * under the same hold of p_lock.
927 */
928 mutex_enter(p2->p_lock);
929 for (;;) {
930 int error;
931
932 l2->l_lid = (lid == 0 ? lwp_find_free_lid(p2) : lid);
933
934 rw_enter(&p2->p_treelock, RW_WRITER);
935 error = radix_tree_insert_node(&p2->p_lwptree,
936 (uint64_t)(l2->l_lid - 1), l2);
937 rw_exit(&p2->p_treelock);
938
939 if (__predict_true(error == 0)) {
940 if (lid == 0)
941 p2->p_nlwpid = l2->l_lid + 1;
942 break;
943 }
944
945 KASSERT(error == ENOMEM);
946 mutex_exit(p2->p_lock);
947 radix_tree_await_memory();
948 mutex_enter(p2->p_lock);
949 }
950
951 if ((flags & LWP_DETACHED) != 0) {
952 l2->l_prflag = LPR_DETACHED;
953 p2->p_ndlwps++;
954 } else
955 l2->l_prflag = 0;
956
957 if (l1->l_proc == p2) {
958 /*
959 * These flags are set while p_lock is held. Copy with
960 * p_lock held too, so the LWP doesn't sneak into the
961 * process without them being set.
962 */
963 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
964 } else {
965 /* fork(): pending core/exit doesn't apply to child. */
966 l2->l_flag |= (l1->l_flag & LW_WREBOOT);
967 }
968
969 l2->l_sigstk = *sigstk;
970 l2->l_sigmask = *sigmask;
971 TAILQ_INIT(&l2->l_sigpend.sp_info);
972 sigemptyset(&l2->l_sigpend.sp_set);
973 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
974 p2->p_nlwps++;
975 p2->p_nrlwps++;
976
977 KASSERT(l2->l_affinity == NULL);
978
979 /* Inherit the affinity mask. */
980 if (l1->l_affinity) {
981 /*
982 * Note that we hold the state lock while inheriting
983 * the affinity to avoid race with sched_setaffinity().
984 */
985 lwp_lock(l1);
986 if (l1->l_affinity) {
987 kcpuset_use(l1->l_affinity);
988 l2->l_affinity = l1->l_affinity;
989 }
990 lwp_unlock(l1);
991 }
992
993 /* This marks the end of the "must be atomic" section. */
994 mutex_exit(p2->p_lock);
995
996 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
997
998 mutex_enter(proc_lock);
999 LIST_INSERT_HEAD(&alllwp, l2, l_list);
1000 /* Inherit a processor-set */
1001 l2->l_psid = l1->l_psid;
1002 mutex_exit(proc_lock);
1003
1004 SYSCALL_TIME_LWP_INIT(l2);
1005
1006 if (p2->p_emul->e_lwp_fork)
1007 (*p2->p_emul->e_lwp_fork)(l1, l2);
1008
1009 return (0);
1010 }
1011
1012 /*
1013 * Set a new LWP running. If the process is stopping, then the LWP is
1014 * created stopped.
1015 */
1016 void
1017 lwp_start(lwp_t *l, int flags)
1018 {
1019 proc_t *p = l->l_proc;
1020
1021 mutex_enter(p->p_lock);
1022 lwp_lock(l);
1023 KASSERT(l->l_stat == LSIDL);
1024 if ((flags & LWP_SUSPENDED) != 0) {
1025 /* It'll suspend itself in lwp_userret(). */
1026 l->l_flag |= LW_WSUSPEND;
1027 }
1028 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1029 KASSERT(l->l_wchan == NULL);
1030 l->l_stat = LSSTOP;
1031 p->p_nrlwps--;
1032 lwp_unlock(l);
1033 } else {
1034 setrunnable(l);
1035 /* LWP now unlocked */
1036 }
1037 mutex_exit(p->p_lock);
1038 }
1039
1040 /*
1041 * Called by MD code when a new LWP begins execution. Must be called
1042 * with the previous LWP locked (so at splsched), or if there is no
1043 * previous LWP, at splsched.
1044 */
1045 void
1046 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1047 {
1048 kmutex_t *lock;
1049
1050 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1051 KASSERT(kpreempt_disabled());
1052 KASSERT(prev != NULL);
1053 KASSERT((prev->l_pflag & LP_RUNNING) != 0);
1054 KASSERT(curcpu()->ci_mtx_count == -2);
1055
1056 /*
1057 * Immediately mark the previous LWP as no longer running and unlock
1058 * (to keep lock wait times short as possible). If a zombie, don't
1059 * touch after clearing LP_RUNNING as it could be reaped by another
1060 * CPU. Issue a memory barrier to ensure this.
1061 */
1062 lock = prev->l_mutex;
1063 if (__predict_false(prev->l_stat == LSZOMB)) {
1064 membar_sync();
1065 }
1066 prev->l_pflag &= ~LP_RUNNING;
1067 mutex_spin_exit(lock);
1068
1069 /* Correct spin mutex count after mi_switch(). */
1070 curcpu()->ci_mtx_count = 0;
1071
1072 /* Install new VM context. */
1073 if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1074 pmap_activate(new_lwp);
1075 }
1076
1077 /* We remain at IPL_SCHED from mi_switch() - reset it. */
1078 spl0();
1079
1080 LOCKDEBUG_BARRIER(NULL, 0);
1081 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1082
1083 /* For kthreads, acquire kernel lock if not MPSAFE. */
1084 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1085 KERNEL_LOCK(1, new_lwp);
1086 }
1087 }
1088
1089 /*
1090 * Exit an LWP.
1091 */
1092 void
1093 lwp_exit(struct lwp *l)
1094 {
1095 struct proc *p = l->l_proc;
1096 struct lwp *l2;
1097 bool current;
1098
1099 current = (l == curlwp);
1100
1101 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1102 KASSERT(p == curproc);
1103
1104 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1105
1106 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1107 LOCKDEBUG_BARRIER(NULL, 0);
1108 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1109
1110 /*
1111 * If we are the last live LWP in a process, we need to exit the
1112 * entire process. We do so with an exit status of zero, because
1113 * it's a "controlled" exit, and because that's what Solaris does.
1114 *
1115 * We are not quite a zombie yet, but for accounting purposes we
1116 * must increment the count of zombies here.
1117 *
1118 * Note: the last LWP's specificdata will be deleted here.
1119 */
1120 mutex_enter(p->p_lock);
1121 if (p->p_nlwps - p->p_nzlwps == 1) {
1122 KASSERT(current == true);
1123 KASSERT(p != &proc0);
1124 exit1(l, 0, 0);
1125 /* NOTREACHED */
1126 }
1127 p->p_nzlwps++;
1128 mutex_exit(p->p_lock);
1129
1130 if (p->p_emul->e_lwp_exit)
1131 (*p->p_emul->e_lwp_exit)(l);
1132
1133 /* Drop filedesc reference. */
1134 fd_free();
1135
1136 /* Release fstrans private data. */
1137 fstrans_lwp_dtor(l);
1138
1139 /* Delete the specificdata while it's still safe to sleep. */
1140 lwp_finispecific(l);
1141
1142 /*
1143 * Release our cached credentials.
1144 */
1145 kauth_cred_free(l->l_cred);
1146 callout_destroy(&l->l_timeout_ch);
1147
1148 /*
1149 * If traced, report LWP exit event to the debugger.
1150 *
1151 * Remove the LWP from the global list.
1152 * Free its LID from the PID namespace if needed.
1153 */
1154 mutex_enter(proc_lock);
1155
1156 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1157 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1158 mutex_enter(p->p_lock);
1159 if (ISSET(p->p_sflag, PS_WEXIT)) {
1160 mutex_exit(p->p_lock);
1161 /*
1162 * We are exiting, bail out without informing parent
1163 * about a terminating LWP as it would deadlock.
1164 */
1165 } else {
1166 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1167 mutex_enter(proc_lock);
1168 }
1169 }
1170
1171 LIST_REMOVE(l, l_list);
1172 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1173 proc_free_pid(l->l_lid);
1174 }
1175 mutex_exit(proc_lock);
1176
1177 /*
1178 * Get rid of all references to the LWP that others (e.g. procfs)
1179 * may have, and mark the LWP as a zombie. If the LWP is detached,
1180 * mark it waiting for collection in the proc structure. Note that
1181 * before we can do that, we need to free any other dead, deatched
1182 * LWP waiting to meet its maker.
1183 *
1184 * All conditions need to be observed upon under the same hold of
1185 * p_lock, because if the lock is dropped any of them can change.
1186 */
1187 mutex_enter(p->p_lock);
1188 for (;;) {
1189 if (l->l_refcnt > 0) {
1190 lwp_drainrefs(l);
1191 continue;
1192 }
1193 if ((l->l_prflag & LPR_DETACHED) != 0) {
1194 if ((l2 = p->p_zomblwp) != NULL) {
1195 p->p_zomblwp = NULL;
1196 lwp_free(l2, false, false);
1197 /* proc now unlocked */
1198 mutex_enter(p->p_lock);
1199 continue;
1200 }
1201 p->p_zomblwp = l;
1202 }
1203 break;
1204 }
1205
1206 /*
1207 * If we find a pending signal for the process and we have been
1208 * asked to check for signals, then we lose: arrange to have
1209 * all other LWPs in the process check for signals.
1210 */
1211 if ((l->l_flag & LW_PENDSIG) != 0 &&
1212 firstsig(&p->p_sigpend.sp_set) != 0) {
1213 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1214 lwp_lock(l2);
1215 signotify(l2);
1216 lwp_unlock(l2);
1217 }
1218 }
1219
1220 /*
1221 * Release any PCU resources before becoming a zombie.
1222 */
1223 pcu_discard_all(l);
1224
1225 lwp_lock(l);
1226 l->l_stat = LSZOMB;
1227 if (l->l_name != NULL) {
1228 strcpy(l->l_name, "(zombie)");
1229 }
1230 lwp_unlock(l);
1231 p->p_nrlwps--;
1232 cv_broadcast(&p->p_lwpcv);
1233 if (l->l_lwpctl != NULL)
1234 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1235 mutex_exit(p->p_lock);
1236
1237 /*
1238 * We can no longer block. At this point, lwp_free() may already
1239 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1240 *
1241 * Free MD LWP resources.
1242 */
1243 cpu_lwp_free(l, 0);
1244
1245 if (current) {
1246 /* Switch away into oblivion. */
1247 lwp_lock(l);
1248 spc_lock(l->l_cpu);
1249 mi_switch(l);
1250 panic("lwp_exit");
1251 }
1252 }
1253
1254 /*
1255 * Free a dead LWP's remaining resources.
1256 *
1257 * XXXLWP limits.
1258 */
1259 void
1260 lwp_free(struct lwp *l, bool recycle, bool last)
1261 {
1262 struct proc *p = l->l_proc;
1263 struct rusage *ru;
1264 struct lwp *l2 __diagused;
1265 ksiginfoq_t kq;
1266
1267 KASSERT(l != curlwp);
1268 KASSERT(last || mutex_owned(p->p_lock));
1269
1270 /*
1271 * We use the process credentials instead of the lwp credentials here
1272 * because the lwp credentials maybe cached (just after a setuid call)
1273 * and we don't want pay for syncing, since the lwp is going away
1274 * anyway
1275 */
1276 if (p != &proc0 && p->p_nlwps != 1)
1277 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1278
1279 /*
1280 * If this was not the last LWP in the process, then adjust counters
1281 * and unlock. This is done differently for the last LWP in exit1().
1282 */
1283 if (!last) {
1284 /*
1285 * Add the LWP's run time to the process' base value.
1286 * This needs to co-incide with coming off p_lwps.
1287 */
1288 bintime_add(&p->p_rtime, &l->l_rtime);
1289 p->p_pctcpu += l->l_pctcpu;
1290 ru = &p->p_stats->p_ru;
1291 ruadd(ru, &l->l_ru);
1292 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1293 ru->ru_nivcsw += l->l_nivcsw;
1294 LIST_REMOVE(l, l_sibling);
1295 p->p_nlwps--;
1296 p->p_nzlwps--;
1297 if ((l->l_prflag & LPR_DETACHED) != 0)
1298 p->p_ndlwps--;
1299
1300 /* Make note of the LID being free, and remove from tree. */
1301 if (l->l_lid < p->p_nlwpid)
1302 p->p_nlwpid = l->l_lid;
1303 rw_enter(&p->p_treelock, RW_WRITER);
1304 l2 = radix_tree_remove_node(&p->p_lwptree,
1305 (uint64_t)(l->l_lid - 1));
1306 KASSERT(l2 == l);
1307 rw_exit(&p->p_treelock);
1308
1309 /*
1310 * Have any LWPs sleeping in lwp_wait() recheck for
1311 * deadlock.
1312 */
1313 cv_broadcast(&p->p_lwpcv);
1314 mutex_exit(p->p_lock);
1315 }
1316
1317 /*
1318 * In the unlikely event that the LWP is still on the CPU,
1319 * then spin until it has switched away.
1320 */
1321 membar_consumer();
1322 while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) {
1323 SPINLOCK_BACKOFF_HOOK;
1324 }
1325
1326 /*
1327 * Destroy the LWP's remaining signal information.
1328 */
1329 ksiginfo_queue_init(&kq);
1330 sigclear(&l->l_sigpend, NULL, &kq);
1331 ksiginfo_queue_drain(&kq);
1332 cv_destroy(&l->l_sigcv);
1333 cv_destroy(&l->l_waitcv);
1334
1335 /*
1336 * Free lwpctl structure and affinity.
1337 */
1338 if (l->l_lwpctl) {
1339 lwp_ctl_free(l);
1340 }
1341 if (l->l_affinity) {
1342 kcpuset_unuse(l->l_affinity, NULL);
1343 l->l_affinity = NULL;
1344 }
1345
1346 /*
1347 * Free the LWP's turnstile and the LWP structure itself unless the
1348 * caller wants to recycle them. Also, free the scheduler specific
1349 * data.
1350 *
1351 * We can't return turnstile0 to the pool (it didn't come from it),
1352 * so if it comes up just drop it quietly and move on.
1353 *
1354 * We don't recycle the VM resources at this time.
1355 */
1356
1357 if (!recycle && l->l_ts != &turnstile0)
1358 pool_cache_put(turnstile_cache, l->l_ts);
1359 if (l->l_name != NULL)
1360 kmem_free(l->l_name, MAXCOMLEN);
1361
1362 kmsan_lwp_free(l);
1363 cpu_lwp_free2(l);
1364 uvm_lwp_exit(l);
1365
1366 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1367 KASSERT(l->l_inheritedprio == -1);
1368 KASSERT(l->l_blcnt == 0);
1369 kdtrace_thread_dtor(NULL, l);
1370 if (!recycle)
1371 pool_cache_put(lwp_cache, l);
1372 }
1373
1374 /*
1375 * Migrate the LWP to the another CPU. Unlocks the LWP.
1376 */
1377 void
1378 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1379 {
1380 struct schedstate_percpu *tspc;
1381 int lstat = l->l_stat;
1382
1383 KASSERT(lwp_locked(l, NULL));
1384 KASSERT(tci != NULL);
1385
1386 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1387 if ((l->l_pflag & LP_RUNNING) != 0) {
1388 lstat = LSONPROC;
1389 }
1390
1391 /*
1392 * The destination CPU could be changed while previous migration
1393 * was not finished.
1394 */
1395 if (l->l_target_cpu != NULL) {
1396 l->l_target_cpu = tci;
1397 lwp_unlock(l);
1398 return;
1399 }
1400
1401 /* Nothing to do if trying to migrate to the same CPU */
1402 if (l->l_cpu == tci) {
1403 lwp_unlock(l);
1404 return;
1405 }
1406
1407 KASSERT(l->l_target_cpu == NULL);
1408 tspc = &tci->ci_schedstate;
1409 switch (lstat) {
1410 case LSRUN:
1411 l->l_target_cpu = tci;
1412 break;
1413 case LSSLEEP:
1414 l->l_cpu = tci;
1415 break;
1416 case LSIDL:
1417 case LSSTOP:
1418 case LSSUSPENDED:
1419 l->l_cpu = tci;
1420 if (l->l_wchan == NULL) {
1421 lwp_unlock_to(l, tspc->spc_lwplock);
1422 return;
1423 }
1424 break;
1425 case LSONPROC:
1426 l->l_target_cpu = tci;
1427 spc_lock(l->l_cpu);
1428 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1429 /* spc now unlocked */
1430 break;
1431 }
1432 lwp_unlock(l);
1433 }
1434
1435 /*
1436 * Find the LWP in the process. Arguments may be zero, in such case,
1437 * the calling process and first LWP in the list will be used.
1438 * On success - returns proc locked.
1439 */
1440 struct lwp *
1441 lwp_find2(pid_t pid, lwpid_t lid)
1442 {
1443 proc_t *p;
1444 lwp_t *l;
1445
1446 /* Find the process. */
1447 if (pid != 0) {
1448 mutex_enter(proc_lock);
1449 p = proc_find(pid);
1450 if (p == NULL) {
1451 mutex_exit(proc_lock);
1452 return NULL;
1453 }
1454 mutex_enter(p->p_lock);
1455 mutex_exit(proc_lock);
1456 } else {
1457 p = curlwp->l_proc;
1458 mutex_enter(p->p_lock);
1459 }
1460 /* Find the thread. */
1461 if (lid != 0) {
1462 l = lwp_find(p, lid);
1463 } else {
1464 l = LIST_FIRST(&p->p_lwps);
1465 }
1466 if (l == NULL) {
1467 mutex_exit(p->p_lock);
1468 }
1469 return l;
1470 }
1471
1472 /*
1473 * Look up a live LWP within the specified process.
1474 *
1475 * Must be called with p->p_lock held (as it looks at the radix tree,
1476 * and also wants to exclude idle and zombie LWPs).
1477 */
1478 struct lwp *
1479 lwp_find(struct proc *p, lwpid_t id)
1480 {
1481 struct lwp *l;
1482
1483 KASSERT(mutex_owned(p->p_lock));
1484
1485 l = radix_tree_lookup_node(&p->p_lwptree, (uint64_t)(id - 1));
1486 KASSERT(l == NULL || l->l_lid == id);
1487
1488 /*
1489 * No need to lock - all of these conditions will
1490 * be visible with the process level mutex held.
1491 */
1492 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1493 l = NULL;
1494
1495 return l;
1496 }
1497
1498 /*
1499 * Update an LWP's cached credentials to mirror the process' master copy.
1500 *
1501 * This happens early in the syscall path, on user trap, and on LWP
1502 * creation. A long-running LWP can also voluntarily choose to update
1503 * its credentials by calling this routine. This may be called from
1504 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1505 */
1506 void
1507 lwp_update_creds(struct lwp *l)
1508 {
1509 kauth_cred_t oc;
1510 struct proc *p;
1511
1512 p = l->l_proc;
1513 oc = l->l_cred;
1514
1515 mutex_enter(p->p_lock);
1516 kauth_cred_hold(p->p_cred);
1517 l->l_cred = p->p_cred;
1518 l->l_prflag &= ~LPR_CRMOD;
1519 mutex_exit(p->p_lock);
1520 if (oc != NULL)
1521 kauth_cred_free(oc);
1522 }
1523
1524 /*
1525 * Verify that an LWP is locked, and optionally verify that the lock matches
1526 * one we specify.
1527 */
1528 int
1529 lwp_locked(struct lwp *l, kmutex_t *mtx)
1530 {
1531 kmutex_t *cur = l->l_mutex;
1532
1533 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1534 }
1535
1536 /*
1537 * Lend a new mutex to an LWP. The old mutex must be held.
1538 */
1539 kmutex_t *
1540 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1541 {
1542 kmutex_t *oldmtx = l->l_mutex;
1543
1544 KASSERT(mutex_owned(oldmtx));
1545
1546 membar_exit();
1547 l->l_mutex = mtx;
1548 return oldmtx;
1549 }
1550
1551 /*
1552 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1553 * must be held.
1554 */
1555 void
1556 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1557 {
1558 kmutex_t *old;
1559
1560 KASSERT(lwp_locked(l, NULL));
1561
1562 old = l->l_mutex;
1563 membar_exit();
1564 l->l_mutex = mtx;
1565 mutex_spin_exit(old);
1566 }
1567
1568 int
1569 lwp_trylock(struct lwp *l)
1570 {
1571 kmutex_t *old;
1572
1573 for (;;) {
1574 if (!mutex_tryenter(old = l->l_mutex))
1575 return 0;
1576 if (__predict_true(l->l_mutex == old))
1577 return 1;
1578 mutex_spin_exit(old);
1579 }
1580 }
1581
1582 void
1583 lwp_unsleep(lwp_t *l, bool unlock)
1584 {
1585
1586 KASSERT(mutex_owned(l->l_mutex));
1587 (*l->l_syncobj->sobj_unsleep)(l, unlock);
1588 }
1589
1590 /*
1591 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1592 * set.
1593 */
1594 void
1595 lwp_userret(struct lwp *l)
1596 {
1597 struct proc *p;
1598 int sig;
1599
1600 KASSERT(l == curlwp);
1601 KASSERT(l->l_stat == LSONPROC);
1602 p = l->l_proc;
1603
1604 /*
1605 * It is safe to do this read unlocked on a MP system..
1606 */
1607 while ((l->l_flag & LW_USERRET) != 0) {
1608 /*
1609 * Process pending signals first, unless the process
1610 * is dumping core or exiting, where we will instead
1611 * enter the LW_WSUSPEND case below.
1612 */
1613 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1614 LW_PENDSIG) {
1615 mutex_enter(p->p_lock);
1616 while ((sig = issignal(l)) != 0)
1617 postsig(sig);
1618 mutex_exit(p->p_lock);
1619 }
1620
1621 /*
1622 * Core-dump or suspend pending.
1623 *
1624 * In case of core dump, suspend ourselves, so that the kernel
1625 * stack and therefore the userland registers saved in the
1626 * trapframe are around for coredump() to write them out.
1627 * We also need to save any PCU resources that we have so that
1628 * they accessible for coredump(). We issue a wakeup on
1629 * p->p_lwpcv so that sigexit() will write the core file out
1630 * once all other LWPs are suspended.
1631 */
1632 if ((l->l_flag & LW_WSUSPEND) != 0) {
1633 pcu_save_all(l);
1634 mutex_enter(p->p_lock);
1635 p->p_nrlwps--;
1636 cv_broadcast(&p->p_lwpcv);
1637 lwp_lock(l);
1638 l->l_stat = LSSUSPENDED;
1639 lwp_unlock(l);
1640 mutex_exit(p->p_lock);
1641 lwp_lock(l);
1642 spc_lock(l->l_cpu);
1643 mi_switch(l);
1644 }
1645
1646 /* Process is exiting. */
1647 if ((l->l_flag & LW_WEXIT) != 0) {
1648 lwp_exit(l);
1649 KASSERT(0);
1650 /* NOTREACHED */
1651 }
1652
1653 /* update lwpctl processor (for vfork child_return) */
1654 if (l->l_flag & LW_LWPCTL) {
1655 lwp_lock(l);
1656 KASSERT(kpreempt_disabled());
1657 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1658 l->l_lwpctl->lc_pctr++;
1659 l->l_flag &= ~LW_LWPCTL;
1660 lwp_unlock(l);
1661 }
1662 }
1663 }
1664
1665 /*
1666 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1667 */
1668 void
1669 lwp_need_userret(struct lwp *l)
1670 {
1671
1672 KASSERT(!cpu_intr_p());
1673 KASSERT(lwp_locked(l, NULL));
1674
1675 /*
1676 * If the LWP is in any state other than LSONPROC, we know that it
1677 * is executing in-kernel and will hit userret() on the way out.
1678 *
1679 * If the LWP is curlwp, then we know we'll be back out to userspace
1680 * soon (can't be called from a hardware interrupt here).
1681 *
1682 * Otherwise, we can't be sure what the LWP is doing, so first make
1683 * sure the update to l_flag will be globally visible, and then
1684 * force the LWP to take a trip through trap() where it will do
1685 * userret().
1686 */
1687 if (l->l_stat == LSONPROC && l != curlwp) {
1688 membar_producer();
1689 cpu_signotify(l);
1690 }
1691 }
1692
1693 /*
1694 * Add one reference to an LWP. This will prevent the LWP from
1695 * exiting, thus keep the lwp structure and PCB around to inspect.
1696 */
1697 void
1698 lwp_addref(struct lwp *l)
1699 {
1700
1701 KASSERT(mutex_owned(l->l_proc->p_lock));
1702 KASSERT(l->l_stat != LSZOMB);
1703
1704 l->l_refcnt++;
1705 }
1706
1707 /*
1708 * Remove one reference to an LWP. If this is the last reference,
1709 * then we must finalize the LWP's death.
1710 */
1711 void
1712 lwp_delref(struct lwp *l)
1713 {
1714 struct proc *p = l->l_proc;
1715
1716 mutex_enter(p->p_lock);
1717 lwp_delref2(l);
1718 mutex_exit(p->p_lock);
1719 }
1720
1721 /*
1722 * Remove one reference to an LWP. If this is the last reference,
1723 * then we must finalize the LWP's death. The proc mutex is held
1724 * on entry.
1725 */
1726 void
1727 lwp_delref2(struct lwp *l)
1728 {
1729 struct proc *p = l->l_proc;
1730
1731 KASSERT(mutex_owned(p->p_lock));
1732 KASSERT(l->l_stat != LSZOMB);
1733 KASSERT(l->l_refcnt > 0);
1734
1735 if (--l->l_refcnt == 0)
1736 cv_broadcast(&p->p_lwpcv);
1737 }
1738
1739 /*
1740 * Drain all references to the current LWP.
1741 */
1742 void
1743 lwp_drainrefs(struct lwp *l)
1744 {
1745 struct proc *p = l->l_proc;
1746
1747 KASSERT(mutex_owned(p->p_lock));
1748
1749 while (l->l_refcnt > 0)
1750 cv_wait(&p->p_lwpcv, p->p_lock);
1751 }
1752
1753 /*
1754 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1755 * be held.
1756 */
1757 bool
1758 lwp_alive(lwp_t *l)
1759 {
1760
1761 KASSERT(mutex_owned(l->l_proc->p_lock));
1762
1763 switch (l->l_stat) {
1764 case LSSLEEP:
1765 case LSRUN:
1766 case LSONPROC:
1767 case LSSTOP:
1768 case LSSUSPENDED:
1769 return true;
1770 default:
1771 return false;
1772 }
1773 }
1774
1775 /*
1776 * Return first live LWP in the process.
1777 */
1778 lwp_t *
1779 lwp_find_first(proc_t *p)
1780 {
1781 lwp_t *l;
1782
1783 KASSERT(mutex_owned(p->p_lock));
1784
1785 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1786 if (lwp_alive(l)) {
1787 return l;
1788 }
1789 }
1790
1791 return NULL;
1792 }
1793
1794 /*
1795 * Allocate a new lwpctl structure for a user LWP.
1796 */
1797 int
1798 lwp_ctl_alloc(vaddr_t *uaddr)
1799 {
1800 lcproc_t *lp;
1801 u_int bit, i, offset;
1802 struct uvm_object *uao;
1803 int error;
1804 lcpage_t *lcp;
1805 proc_t *p;
1806 lwp_t *l;
1807
1808 l = curlwp;
1809 p = l->l_proc;
1810
1811 /* don't allow a vforked process to create lwp ctls */
1812 if (p->p_lflag & PL_PPWAIT)
1813 return EBUSY;
1814
1815 if (l->l_lcpage != NULL) {
1816 lcp = l->l_lcpage;
1817 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1818 return 0;
1819 }
1820
1821 /* First time around, allocate header structure for the process. */
1822 if ((lp = p->p_lwpctl) == NULL) {
1823 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1824 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1825 lp->lp_uao = NULL;
1826 TAILQ_INIT(&lp->lp_pages);
1827 mutex_enter(p->p_lock);
1828 if (p->p_lwpctl == NULL) {
1829 p->p_lwpctl = lp;
1830 mutex_exit(p->p_lock);
1831 } else {
1832 mutex_exit(p->p_lock);
1833 mutex_destroy(&lp->lp_lock);
1834 kmem_free(lp, sizeof(*lp));
1835 lp = p->p_lwpctl;
1836 }
1837 }
1838
1839 /*
1840 * Set up an anonymous memory region to hold the shared pages.
1841 * Map them into the process' address space. The user vmspace
1842 * gets the first reference on the UAO.
1843 */
1844 mutex_enter(&lp->lp_lock);
1845 if (lp->lp_uao == NULL) {
1846 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1847 lp->lp_cur = 0;
1848 lp->lp_max = LWPCTL_UAREA_SZ;
1849 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1850 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1851 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1852 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1853 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1854 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1855 if (error != 0) {
1856 uao_detach(lp->lp_uao);
1857 lp->lp_uao = NULL;
1858 mutex_exit(&lp->lp_lock);
1859 return error;
1860 }
1861 }
1862
1863 /* Get a free block and allocate for this LWP. */
1864 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1865 if (lcp->lcp_nfree != 0)
1866 break;
1867 }
1868 if (lcp == NULL) {
1869 /* Nothing available - try to set up a free page. */
1870 if (lp->lp_cur == lp->lp_max) {
1871 mutex_exit(&lp->lp_lock);
1872 return ENOMEM;
1873 }
1874 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1875
1876 /*
1877 * Wire the next page down in kernel space. Since this
1878 * is a new mapping, we must add a reference.
1879 */
1880 uao = lp->lp_uao;
1881 (*uao->pgops->pgo_reference)(uao);
1882 lcp->lcp_kaddr = vm_map_min(kernel_map);
1883 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1884 uao, lp->lp_cur, PAGE_SIZE,
1885 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1886 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1887 if (error != 0) {
1888 mutex_exit(&lp->lp_lock);
1889 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1890 (*uao->pgops->pgo_detach)(uao);
1891 return error;
1892 }
1893 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1894 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1895 if (error != 0) {
1896 mutex_exit(&lp->lp_lock);
1897 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1898 lcp->lcp_kaddr + PAGE_SIZE);
1899 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1900 return error;
1901 }
1902 /* Prepare the page descriptor and link into the list. */
1903 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1904 lp->lp_cur += PAGE_SIZE;
1905 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1906 lcp->lcp_rotor = 0;
1907 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1908 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1909 }
1910 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1911 if (++i >= LWPCTL_BITMAP_ENTRIES)
1912 i = 0;
1913 }
1914 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1915 lcp->lcp_bitmap[i] ^= (1U << bit);
1916 lcp->lcp_rotor = i;
1917 lcp->lcp_nfree--;
1918 l->l_lcpage = lcp;
1919 offset = (i << 5) + bit;
1920 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1921 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1922 mutex_exit(&lp->lp_lock);
1923
1924 KPREEMPT_DISABLE(l);
1925 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1926 KPREEMPT_ENABLE(l);
1927
1928 return 0;
1929 }
1930
1931 /*
1932 * Free an lwpctl structure back to the per-process list.
1933 */
1934 void
1935 lwp_ctl_free(lwp_t *l)
1936 {
1937 struct proc *p = l->l_proc;
1938 lcproc_t *lp;
1939 lcpage_t *lcp;
1940 u_int map, offset;
1941
1942 /* don't free a lwp context we borrowed for vfork */
1943 if (p->p_lflag & PL_PPWAIT) {
1944 l->l_lwpctl = NULL;
1945 return;
1946 }
1947
1948 lp = p->p_lwpctl;
1949 KASSERT(lp != NULL);
1950
1951 lcp = l->l_lcpage;
1952 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1953 KASSERT(offset < LWPCTL_PER_PAGE);
1954
1955 mutex_enter(&lp->lp_lock);
1956 lcp->lcp_nfree++;
1957 map = offset >> 5;
1958 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1959 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1960 lcp->lcp_rotor = map;
1961 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1962 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1963 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1964 }
1965 mutex_exit(&lp->lp_lock);
1966 }
1967
1968 /*
1969 * Process is exiting; tear down lwpctl state. This can only be safely
1970 * called by the last LWP in the process.
1971 */
1972 void
1973 lwp_ctl_exit(void)
1974 {
1975 lcpage_t *lcp, *next;
1976 lcproc_t *lp;
1977 proc_t *p;
1978 lwp_t *l;
1979
1980 l = curlwp;
1981 l->l_lwpctl = NULL;
1982 l->l_lcpage = NULL;
1983 p = l->l_proc;
1984 lp = p->p_lwpctl;
1985
1986 KASSERT(lp != NULL);
1987 KASSERT(p->p_nlwps == 1);
1988
1989 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1990 next = TAILQ_NEXT(lcp, lcp_chain);
1991 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1992 lcp->lcp_kaddr + PAGE_SIZE);
1993 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1994 }
1995
1996 if (lp->lp_uao != NULL) {
1997 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1998 lp->lp_uva + LWPCTL_UAREA_SZ);
1999 }
2000
2001 mutex_destroy(&lp->lp_lock);
2002 kmem_free(lp, sizeof(*lp));
2003 p->p_lwpctl = NULL;
2004 }
2005
2006 /*
2007 * Return the current LWP's "preemption counter". Used to detect
2008 * preemption across operations that can tolerate preemption without
2009 * crashing, but which may generate incorrect results if preempted.
2010 */
2011 uint64_t
2012 lwp_pctr(void)
2013 {
2014
2015 return curlwp->l_ncsw;
2016 }
2017
2018 /*
2019 * Set an LWP's private data pointer.
2020 */
2021 int
2022 lwp_setprivate(struct lwp *l, void *ptr)
2023 {
2024 int error = 0;
2025
2026 l->l_private = ptr;
2027 #ifdef __HAVE_CPU_LWP_SETPRIVATE
2028 error = cpu_lwp_setprivate(l, ptr);
2029 #endif
2030 return error;
2031 }
2032
2033 /*
2034 * Renumber the first and only LWP in a process on exec() or fork().
2035 * Don't bother with p_treelock here as this is the only live LWP in
2036 * the proc right now.
2037 */
2038 void
2039 lwp_renumber(lwp_t *l, lwpid_t lid)
2040 {
2041 lwp_t *l2 __diagused;
2042 proc_t *p = l->l_proc;
2043 int error;
2044
2045 KASSERT(p->p_nlwps == 1);
2046
2047 while (l->l_lid != lid) {
2048 mutex_enter(p->p_lock);
2049 error = radix_tree_insert_node(&p->p_lwptree, lid - 1, l);
2050 if (error == 0) {
2051 l2 = radix_tree_remove_node(&p->p_lwptree,
2052 (uint64_t)(l->l_lid - 1));
2053 KASSERT(l2 == l);
2054 p->p_nlwpid = lid + 1;
2055 l->l_lid = lid;
2056 }
2057 mutex_exit(p->p_lock);
2058
2059 if (error == 0)
2060 break;
2061
2062 KASSERT(error == ENOMEM);
2063 radix_tree_await_memory();
2064 }
2065 }
2066
2067 #if defined(DDB)
2068 #include <machine/pcb.h>
2069
2070 void
2071 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2072 {
2073 lwp_t *l;
2074
2075 LIST_FOREACH(l, &alllwp, l_list) {
2076 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2077
2078 if (addr < stack || stack + KSTACK_SIZE <= addr) {
2079 continue;
2080 }
2081 (*pr)("%p is %p+%zu, LWP %p's stack\n",
2082 (void *)addr, (void *)stack,
2083 (size_t)(addr - stack), l);
2084 }
2085 }
2086 #endif /* defined(DDB) */
2087