kern_lwp.c revision 1.232 1 /* $NetBSD: kern_lwp.c,v 1.232 2020/04/04 06:51:46 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Nathan J. Williams, and Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Overview
35 *
36 * Lightweight processes (LWPs) are the basic unit or thread of
37 * execution within the kernel. The core state of an LWP is described
38 * by "struct lwp", also known as lwp_t.
39 *
40 * Each LWP is contained within a process (described by "struct proc"),
41 * Every process contains at least one LWP, but may contain more. The
42 * process describes attributes shared among all of its LWPs such as a
43 * private address space, global execution state (stopped, active,
44 * zombie, ...), signal disposition and so on. On a multiprocessor
45 * machine, multiple LWPs be executing concurrently in the kernel.
46 *
47 * Execution states
48 *
49 * At any given time, an LWP has overall state that is described by
50 * lwp::l_stat. The states are broken into two sets below. The first
51 * set is guaranteed to represent the absolute, current state of the
52 * LWP:
53 *
54 * LSONPROC
55 *
56 * On processor: the LWP is executing on a CPU, either in the
57 * kernel or in user space.
58 *
59 * LSRUN
60 *
61 * Runnable: the LWP is parked on a run queue, and may soon be
62 * chosen to run by an idle processor, or by a processor that
63 * has been asked to preempt a currently runnning but lower
64 * priority LWP.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSZOMB:
87 *
88 * Dead or dying: the LWP has released most of its resources
89 * and is about to switch away into oblivion, or has already
90 * switched away. When it switches away, its few remaining
91 * resources can be collected.
92 *
93 * LSSLEEP:
94 *
95 * Sleeping: the LWP has entered itself onto a sleep queue, and
96 * has switched away or will switch away shortly to allow other
97 * LWPs to run on the CPU.
98 *
99 * LSSTOP:
100 *
101 * Stopped: the LWP has been stopped as a result of a job
102 * control signal, or as a result of the ptrace() interface.
103 *
104 * Stopped LWPs may run briefly within the kernel to handle
105 * signals that they receive, but will not return to user space
106 * until their process' state is changed away from stopped.
107 *
108 * Single LWPs within a process can not be set stopped
109 * selectively: all actions that can stop or continue LWPs
110 * occur at the process level.
111 *
112 * State transitions
113 *
114 * Note that the LSSTOP state may only be set when returning to
115 * user space in userret(), or when sleeping interruptably. The
116 * LSSUSPENDED state may only be set in userret(). Before setting
117 * those states, we try to ensure that the LWPs will release all
118 * locks that they hold, and at a minimum try to ensure that the
119 * LWP can be set runnable again by a signal.
120 *
121 * LWPs may transition states in the following ways:
122 *
123 * RUN -------> ONPROC ONPROC -----> RUN
124 * > SLEEP
125 * > STOPPED
126 * > SUSPENDED
127 * > ZOMB
128 * > IDL (special cases)
129 *
130 * STOPPED ---> RUN SUSPENDED --> RUN
131 * > SLEEP
132 *
133 * SLEEP -----> ONPROC IDL --------> RUN
134 * > RUN > SUSPENDED
135 * > STOPPED > STOPPED
136 * > ONPROC (special cases)
137 *
138 * Some state transitions are only possible with kernel threads (eg
139 * ONPROC -> IDL) and happen under tightly controlled circumstances
140 * free of unwanted side effects.
141 *
142 * Migration
143 *
144 * Migration of threads from one CPU to another could be performed
145 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
146 * functions. The universal lwp_migrate() function should be used for
147 * any other cases. Subsystems in the kernel must be aware that CPU
148 * of LWP may change, while it is not locked.
149 *
150 * Locking
151 *
152 * The majority of fields in 'struct lwp' are covered by a single,
153 * general spin lock pointed to by lwp::l_mutex. The locks covering
154 * each field are documented in sys/lwp.h.
155 *
156 * State transitions must be made with the LWP's general lock held,
157 * and may cause the LWP's lock pointer to change. Manipulation of
158 * the general lock is not performed directly, but through calls to
159 * lwp_lock(), lwp_unlock() and others. It should be noted that the
160 * adaptive locks are not allowed to be released while the LWP's lock
161 * is being held (unlike for other spin-locks).
162 *
163 * States and their associated locks:
164 *
165 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
166 *
167 * Always covered by spc_lwplock, which protects LWPs not
168 * associated with any other sync object. This is a per-CPU
169 * lock and matches lwp::l_cpu.
170 *
171 * LSRUN:
172 *
173 * Always covered by spc_mutex, which protects the run queues.
174 * This is a per-CPU lock and matches lwp::l_cpu.
175 *
176 * LSSLEEP:
177 *
178 * Covered by a lock associated with the sleep queue (sometimes
179 * a turnstile sleep queue) that the LWP resides on. This can
180 * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
181 *
182 * LSSTOP:
183 *
184 * If the LWP was previously sleeping (l_wchan != NULL), then
185 * l_mutex references the sleep queue lock. If the LWP was
186 * runnable or on the CPU when halted, or has been removed from
187 * the sleep queue since halted, then the lock is spc_lwplock.
188 *
189 * The lock order is as follows:
190 *
191 * sleepq -> turnstile -> spc_lwplock -> spc_mutex
192 *
193 * Each process has an scheduler state lock (proc::p_lock), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_lock must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * (But not always for kernel threads. There are some special cases
202 * as mentioned above: soft interrupts, and the idle loops.)
203 *
204 * Note that an LWP is considered running or likely to run soon if in
205 * one of the following states. This affects the value of p_nrlwps:
206 *
207 * LSRUN, LSONPROC, LSSLEEP
208 *
209 * p_lock does not need to be held when transitioning among these
210 * three states, hence p_lock is rarely taken for state transitions.
211 */
212
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.232 2020/04/04 06:51:46 maxv Exp $");
215
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219
220 #define _LWP_API_PRIVATE
221
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/sleepq.h>
231 #include <sys/lockdebug.h>
232 #include <sys/kmem.h>
233 #include <sys/pset.h>
234 #include <sys/intr.h>
235 #include <sys/lwpctl.h>
236 #include <sys/atomic.h>
237 #include <sys/filedesc.h>
238 #include <sys/fstrans.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 #include <sys/ptrace.h>
242 #include <sys/xcall.h>
243 #include <sys/uidinfo.h>
244 #include <sys/sysctl.h>
245 #include <sys/psref.h>
246 #include <sys/msan.h>
247 #include <sys/kcov.h>
248
249 #include <uvm/uvm_extern.h>
250 #include <uvm/uvm_object.h>
251
252 static pool_cache_t lwp_cache __read_mostly;
253 struct lwplist alllwp __cacheline_aligned;
254
255 static void lwp_dtor(void *, void *);
256
257 /* DTrace proc provider probes */
258 SDT_PROVIDER_DEFINE(proc);
259
260 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
261 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
262 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
263
264 struct turnstile turnstile0 __cacheline_aligned;
265 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
266 #ifdef LWP0_CPU_INFO
267 .l_cpu = LWP0_CPU_INFO,
268 #endif
269 #ifdef LWP0_MD_INITIALIZER
270 .l_md = LWP0_MD_INITIALIZER,
271 #endif
272 .l_proc = &proc0,
273 .l_lid = 1,
274 .l_flag = LW_SYSTEM,
275 .l_stat = LSONPROC,
276 .l_ts = &turnstile0,
277 .l_syncobj = &sched_syncobj,
278 .l_refcnt = 0,
279 .l_priority = PRI_USER + NPRI_USER - 1,
280 .l_inheritedprio = -1,
281 .l_class = SCHED_OTHER,
282 .l_psid = PS_NONE,
283 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
284 .l_name = __UNCONST("swapper"),
285 .l_fd = &filedesc0,
286 };
287
288 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
289
290 /*
291 * sysctl helper routine for kern.maxlwp. Ensures that the new
292 * values are not too low or too high.
293 */
294 static int
295 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
296 {
297 int error, nmaxlwp;
298 struct sysctlnode node;
299
300 nmaxlwp = maxlwp;
301 node = *rnode;
302 node.sysctl_data = &nmaxlwp;
303 error = sysctl_lookup(SYSCTLFN_CALL(&node));
304 if (error || newp == NULL)
305 return error;
306
307 if (nmaxlwp < 0 || nmaxlwp >= 65536)
308 return EINVAL;
309 if (nmaxlwp > cpu_maxlwp())
310 return EINVAL;
311 maxlwp = nmaxlwp;
312
313 return 0;
314 }
315
316 static void
317 sysctl_kern_lwp_setup(void)
318 {
319 struct sysctllog *clog = NULL;
320
321 sysctl_createv(&clog, 0, NULL, NULL,
322 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
323 CTLTYPE_INT, "maxlwp",
324 SYSCTL_DESCR("Maximum number of simultaneous threads"),
325 sysctl_kern_maxlwp, 0, NULL, 0,
326 CTL_KERN, CTL_CREATE, CTL_EOL);
327 }
328
329 void
330 lwpinit(void)
331 {
332
333 LIST_INIT(&alllwp);
334 lwpinit_specificdata();
335 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
336 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
337
338 maxlwp = cpu_maxlwp();
339 sysctl_kern_lwp_setup();
340 }
341
342 void
343 lwp0_init(void)
344 {
345 struct lwp *l = &lwp0;
346
347 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
348 KASSERT(l->l_lid == proc0.p_nlwpid);
349
350 LIST_INSERT_HEAD(&alllwp, l, l_list);
351
352 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
353 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
354 cv_init(&l->l_sigcv, "sigwait");
355 cv_init(&l->l_waitcv, "vfork");
356
357 kauth_cred_hold(proc0.p_cred);
358 l->l_cred = proc0.p_cred;
359
360 kdtrace_thread_ctor(NULL, l);
361 lwp_initspecific(l);
362
363 SYSCALL_TIME_LWP_INIT(l);
364 }
365
366 static void
367 lwp_dtor(void *arg, void *obj)
368 {
369 lwp_t *l = obj;
370 (void)l;
371
372 /*
373 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
374 * calls will exit before memory of LWP is returned to the pool, where
375 * KVA of LWP structure might be freed and re-used for other purposes.
376 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
377 * callers, therefore cross-call to all CPUs will do the job. Also,
378 * the value of l->l_cpu must be still valid at this point.
379 */
380 KASSERT(l->l_cpu != NULL);
381 xc_barrier(0);
382 }
383
384 /*
385 * Set an suspended.
386 *
387 * Must be called with p_lock held, and the LWP locked. Will unlock the
388 * LWP before return.
389 */
390 int
391 lwp_suspend(struct lwp *curl, struct lwp *t)
392 {
393 int error;
394
395 KASSERT(mutex_owned(t->l_proc->p_lock));
396 KASSERT(lwp_locked(t, NULL));
397
398 KASSERT(curl != t || curl->l_stat == LSONPROC);
399
400 /*
401 * If the current LWP has been told to exit, we must not suspend anyone
402 * else or deadlock could occur. We won't return to userspace.
403 */
404 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
405 lwp_unlock(t);
406 return (EDEADLK);
407 }
408
409 if ((t->l_flag & LW_DBGSUSPEND) != 0) {
410 lwp_unlock(t);
411 return 0;
412 }
413
414 error = 0;
415
416 switch (t->l_stat) {
417 case LSRUN:
418 case LSONPROC:
419 t->l_flag |= LW_WSUSPEND;
420 lwp_need_userret(t);
421 lwp_unlock(t);
422 break;
423
424 case LSSLEEP:
425 t->l_flag |= LW_WSUSPEND;
426
427 /*
428 * Kick the LWP and try to get it to the kernel boundary
429 * so that it will release any locks that it holds.
430 * setrunnable() will release the lock.
431 */
432 if ((t->l_flag & LW_SINTR) != 0)
433 setrunnable(t);
434 else
435 lwp_unlock(t);
436 break;
437
438 case LSSUSPENDED:
439 lwp_unlock(t);
440 break;
441
442 case LSSTOP:
443 t->l_flag |= LW_WSUSPEND;
444 setrunnable(t);
445 break;
446
447 case LSIDL:
448 case LSZOMB:
449 error = EINTR; /* It's what Solaris does..... */
450 lwp_unlock(t);
451 break;
452 }
453
454 return (error);
455 }
456
457 /*
458 * Restart a suspended LWP.
459 *
460 * Must be called with p_lock held, and the LWP locked. Will unlock the
461 * LWP before return.
462 */
463 void
464 lwp_continue(struct lwp *l)
465 {
466
467 KASSERT(mutex_owned(l->l_proc->p_lock));
468 KASSERT(lwp_locked(l, NULL));
469
470 /* If rebooting or not suspended, then just bail out. */
471 if ((l->l_flag & LW_WREBOOT) != 0) {
472 lwp_unlock(l);
473 return;
474 }
475
476 l->l_flag &= ~LW_WSUSPEND;
477
478 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
479 lwp_unlock(l);
480 return;
481 }
482
483 /* setrunnable() will release the lock. */
484 setrunnable(l);
485 }
486
487 /*
488 * Restart a stopped LWP.
489 *
490 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
491 * LWP before return.
492 */
493 void
494 lwp_unstop(struct lwp *l)
495 {
496 struct proc *p = l->l_proc;
497
498 KASSERT(mutex_owned(proc_lock));
499 KASSERT(mutex_owned(p->p_lock));
500
501 lwp_lock(l);
502
503 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
504
505 /* If not stopped, then just bail out. */
506 if (l->l_stat != LSSTOP) {
507 lwp_unlock(l);
508 return;
509 }
510
511 p->p_stat = SACTIVE;
512 p->p_sflag &= ~PS_STOPPING;
513
514 if (!p->p_waited)
515 p->p_pptr->p_nstopchild--;
516
517 if (l->l_wchan == NULL) {
518 /* setrunnable() will release the lock. */
519 setrunnable(l);
520 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
521 /* setrunnable() so we can receive the signal */
522 setrunnable(l);
523 } else {
524 l->l_stat = LSSLEEP;
525 p->p_nrlwps++;
526 lwp_unlock(l);
527 }
528 }
529
530 /*
531 * Wait for an LWP within the current process to exit. If 'lid' is
532 * non-zero, we are waiting for a specific LWP.
533 *
534 * Must be called with p->p_lock held.
535 */
536 int
537 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
538 {
539 const lwpid_t curlid = l->l_lid;
540 proc_t *p = l->l_proc;
541 lwp_t *l2, *next;
542 int error;
543
544 KASSERT(mutex_owned(p->p_lock));
545
546 p->p_nlwpwait++;
547 l->l_waitingfor = lid;
548
549 for (;;) {
550 int nfound;
551
552 /*
553 * Avoid a race between exit1() and sigexit(): if the
554 * process is dumping core, then we need to bail out: call
555 * into lwp_userret() where we will be suspended until the
556 * deed is done.
557 */
558 if ((p->p_sflag & PS_WCORE) != 0) {
559 mutex_exit(p->p_lock);
560 lwp_userret(l);
561 KASSERT(false);
562 }
563
564 /*
565 * First off, drain any detached LWP that is waiting to be
566 * reaped.
567 */
568 while ((l2 = p->p_zomblwp) != NULL) {
569 p->p_zomblwp = NULL;
570 lwp_free(l2, false, false);/* releases proc mutex */
571 mutex_enter(p->p_lock);
572 }
573
574 /*
575 * Now look for an LWP to collect. If the whole process is
576 * exiting, count detached LWPs as eligible to be collected,
577 * but don't drain them here.
578 */
579 nfound = 0;
580 error = 0;
581
582 /*
583 * If given a specific LID, go via the tree and make sure
584 * it's not detached.
585 */
586 if (lid != 0) {
587 l2 = radix_tree_lookup_node(&p->p_lwptree,
588 (uint64_t)(lid - 1));
589 if (l2 == NULL) {
590 error = ESRCH;
591 break;
592 }
593 KASSERT(l2->l_lid == lid);
594 if ((l2->l_prflag & LPR_DETACHED) != 0) {
595 error = EINVAL;
596 break;
597 }
598 } else {
599 l2 = LIST_FIRST(&p->p_lwps);
600 }
601 for (; l2 != NULL; l2 = next) {
602 next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
603
604 /*
605 * If a specific wait and the target is waiting on
606 * us, then avoid deadlock. This also traps LWPs
607 * that try to wait on themselves.
608 *
609 * Note that this does not handle more complicated
610 * cycles, like: t1 -> t2 -> t3 -> t1. The process
611 * can still be killed so it is not a major problem.
612 */
613 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
614 error = EDEADLK;
615 break;
616 }
617 if (l2 == l)
618 continue;
619 if ((l2->l_prflag & LPR_DETACHED) != 0) {
620 nfound += exiting;
621 continue;
622 }
623 if (lid != 0) {
624 /*
625 * Mark this LWP as the first waiter, if there
626 * is no other.
627 */
628 if (l2->l_waiter == 0)
629 l2->l_waiter = curlid;
630 } else if (l2->l_waiter != 0) {
631 /*
632 * It already has a waiter - so don't
633 * collect it. If the waiter doesn't
634 * grab it we'll get another chance
635 * later.
636 */
637 nfound++;
638 continue;
639 }
640 nfound++;
641
642 /* No need to lock the LWP in order to see LSZOMB. */
643 if (l2->l_stat != LSZOMB)
644 continue;
645
646 /*
647 * We're no longer waiting. Reset the "first waiter"
648 * pointer on the target, in case it was us.
649 */
650 l->l_waitingfor = 0;
651 l2->l_waiter = 0;
652 p->p_nlwpwait--;
653 if (departed)
654 *departed = l2->l_lid;
655 sched_lwp_collect(l2);
656
657 /* lwp_free() releases the proc lock. */
658 lwp_free(l2, false, false);
659 mutex_enter(p->p_lock);
660 return 0;
661 }
662
663 if (error != 0)
664 break;
665 if (nfound == 0) {
666 error = ESRCH;
667 break;
668 }
669
670 /*
671 * Note: since the lock will be dropped, need to restart on
672 * wakeup to run all LWPs again, e.g. there may be new LWPs.
673 */
674 if (exiting) {
675 KASSERT(p->p_nlwps > 1);
676 error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
677 break;
678 }
679
680 /*
681 * Break out if the process is exiting, or if all LWPs are
682 * in _lwp_wait(). There are other ways to hang the process
683 * with _lwp_wait(), but the sleep is interruptable so
684 * little point checking for them.
685 */
686 if ((p->p_sflag & PS_WEXIT) != 0 ||
687 p->p_nlwpwait == p->p_nlwps) {
688 error = EDEADLK;
689 break;
690 }
691
692 /*
693 * Sit around and wait for something to happen. We'll be
694 * awoken if any of the conditions examined change: if an
695 * LWP exits, is collected, or is detached.
696 */
697 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
698 break;
699 }
700
701 /*
702 * We didn't find any LWPs to collect, we may have received a
703 * signal, or some other condition has caused us to bail out.
704 *
705 * If waiting on a specific LWP, clear the waiters marker: some
706 * other LWP may want it. Then, kick all the remaining waiters
707 * so that they can re-check for zombies and for deadlock.
708 */
709 if (lid != 0) {
710 l2 = radix_tree_lookup_node(&p->p_lwptree,
711 (uint64_t)(lid - 1));
712 KASSERT(l2 == NULL || l2->l_lid == lid);
713
714 if (l2 != NULL && l2->l_waiter == curlid)
715 l2->l_waiter = 0;
716 }
717 p->p_nlwpwait--;
718 l->l_waitingfor = 0;
719 cv_broadcast(&p->p_lwpcv);
720
721 return error;
722 }
723
724 /*
725 * Find an unused LID for a new LWP.
726 */
727 static lwpid_t
728 lwp_find_free_lid(struct proc *p)
729 {
730 struct lwp *gang[32];
731 lwpid_t lid;
732 unsigned n;
733
734 KASSERT(mutex_owned(p->p_lock));
735 KASSERT(p->p_nlwpid > 0);
736
737 /*
738 * Scoot forward through the tree in blocks of LIDs doing gang
739 * lookup with dense=true, meaning the lookup will terminate the
740 * instant a hole is encountered. Most of the time the first entry
741 * (p->p_nlwpid) is free and the lookup fails fast.
742 */
743 for (lid = p->p_nlwpid;;) {
744 n = radix_tree_gang_lookup_node(&p->p_lwptree, lid - 1,
745 (void **)gang, __arraycount(gang), true);
746 if (n == 0) {
747 /* Start point was empty. */
748 break;
749 }
750 KASSERT(gang[0]->l_lid == lid);
751 lid = gang[n - 1]->l_lid + 1;
752 if (n < __arraycount(gang)) {
753 /* Scan encountered a hole. */
754 break;
755 }
756 }
757
758 return (lwpid_t)lid;
759 }
760
761 /*
762 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
763 * The new LWP is created in state LSIDL and must be set running,
764 * suspended, or stopped by the caller.
765 */
766 int
767 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
768 void *stack, size_t stacksize, void (*func)(void *), void *arg,
769 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
770 const stack_t *sigstk)
771 {
772 struct lwp *l2;
773 turnstile_t *ts;
774 lwpid_t lid;
775
776 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
777
778 /*
779 * Enforce limits, excluding the first lwp and kthreads. We must
780 * use the process credentials here when adjusting the limit, as
781 * they are what's tied to the accounting entity. However for
782 * authorizing the action, we'll use the LWP's credentials.
783 */
784 mutex_enter(p2->p_lock);
785 if (p2->p_nlwps != 0 && p2 != &proc0) {
786 uid_t uid = kauth_cred_getuid(p2->p_cred);
787 int count = chglwpcnt(uid, 1);
788 if (__predict_false(count >
789 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
790 if (kauth_authorize_process(l1->l_cred,
791 KAUTH_PROCESS_RLIMIT, p2,
792 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
793 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
794 != 0) {
795 (void)chglwpcnt(uid, -1);
796 mutex_exit(p2->p_lock);
797 return EAGAIN;
798 }
799 }
800 }
801
802 /*
803 * First off, reap any detached LWP waiting to be collected.
804 * We can re-use its LWP structure and turnstile.
805 */
806 if ((l2 = p2->p_zomblwp) != NULL) {
807 p2->p_zomblwp = NULL;
808 lwp_free(l2, true, false);
809 /* p2 now unlocked by lwp_free() */
810 ts = l2->l_ts;
811 KASSERT(l2->l_inheritedprio == -1);
812 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
813 memset(l2, 0, sizeof(*l2));
814 l2->l_ts = ts;
815 } else {
816 mutex_exit(p2->p_lock);
817 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
818 memset(l2, 0, sizeof(*l2));
819 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
820 SLIST_INIT(&l2->l_pi_lenders);
821 }
822
823 l2->l_stat = LSIDL;
824 l2->l_proc = p2;
825 l2->l_refcnt = 0;
826 l2->l_class = sclass;
827
828 /*
829 * If vfork(), we want the LWP to run fast and on the same CPU
830 * as its parent, so that it can reuse the VM context and cache
831 * footprint on the local CPU.
832 */
833 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
834 l2->l_kpribase = PRI_KERNEL;
835 l2->l_priority = l1->l_priority;
836 l2->l_inheritedprio = -1;
837 l2->l_protectprio = -1;
838 l2->l_auxprio = -1;
839 l2->l_flag = 0;
840 l2->l_pflag = LP_MPSAFE;
841 TAILQ_INIT(&l2->l_ld_locks);
842 l2->l_psrefs = 0;
843 kmsan_lwp_alloc(l2);
844
845 /*
846 * For vfork, borrow parent's lwpctl context if it exists.
847 * This also causes us to return via lwp_userret.
848 */
849 if (flags & LWP_VFORK && l1->l_lwpctl) {
850 l2->l_lwpctl = l1->l_lwpctl;
851 l2->l_flag |= LW_LWPCTL;
852 }
853
854 /*
855 * If not the first LWP in the process, grab a reference to the
856 * descriptor table.
857 */
858 l2->l_fd = p2->p_fd;
859 if (p2->p_nlwps != 0) {
860 KASSERT(l1->l_proc == p2);
861 fd_hold(l2);
862 } else {
863 KASSERT(l1->l_proc != p2);
864 }
865
866 if (p2->p_flag & PK_SYSTEM) {
867 /* Mark it as a system LWP. */
868 l2->l_flag |= LW_SYSTEM;
869 }
870
871 kpreempt_disable();
872 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
873 l2->l_cpu = l1->l_cpu;
874 kpreempt_enable();
875
876 kdtrace_thread_ctor(NULL, l2);
877 lwp_initspecific(l2);
878 sched_lwp_fork(l1, l2);
879 lwp_update_creds(l2);
880 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
881 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
882 cv_init(&l2->l_sigcv, "sigwait");
883 cv_init(&l2->l_waitcv, "vfork");
884 l2->l_syncobj = &sched_syncobj;
885 PSREF_DEBUG_INIT_LWP(l2);
886
887 if (rnewlwpp != NULL)
888 *rnewlwpp = l2;
889
890 /*
891 * PCU state needs to be saved before calling uvm_lwp_fork() so that
892 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
893 */
894 pcu_save_all(l1);
895 #if PCU_UNIT_COUNT > 0
896 l2->l_pcu_valid = l1->l_pcu_valid;
897 #endif
898
899 uvm_lwp_setuarea(l2, uaddr);
900 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
901
902 if ((flags & LWP_PIDLID) != 0) {
903 /* Linux threads: use a PID. */
904 lid = proc_alloc_pid(p2);
905 l2->l_pflag |= LP_PIDLID;
906 } else if (p2->p_nlwps == 0) {
907 /*
908 * First LWP in process. Copy the parent's LID to avoid
909 * causing problems for fork() + threads. Don't give
910 * subsequent threads the distinction of using LID 1.
911 */
912 lid = l1->l_lid;
913 p2->p_nlwpid = 2;
914 } else {
915 /* Scan the radix tree for a free LID. */
916 lid = 0;
917 }
918
919 /*
920 * Allocate LID if needed, and insert into the radix tree. The
921 * first LWP in most processes has a LID of 1. It turns out that if
922 * you insert an item with a key of zero to a radixtree, it's stored
923 * directly in the root (p_lwptree) and no extra memory is
924 * allocated. We therefore always subtract 1 from the LID, which
925 * means no memory is allocated for the tree unless the program is
926 * using threads. NB: the allocation and insert must take place
927 * under the same hold of p_lock.
928 */
929 mutex_enter(p2->p_lock);
930 for (;;) {
931 int error;
932
933 l2->l_lid = (lid == 0 ? lwp_find_free_lid(p2) : lid);
934
935 rw_enter(&p2->p_treelock, RW_WRITER);
936 error = radix_tree_insert_node(&p2->p_lwptree,
937 (uint64_t)(l2->l_lid - 1), l2);
938 rw_exit(&p2->p_treelock);
939
940 if (__predict_true(error == 0)) {
941 if (lid == 0)
942 p2->p_nlwpid = l2->l_lid + 1;
943 break;
944 }
945
946 KASSERT(error == ENOMEM);
947 mutex_exit(p2->p_lock);
948 radix_tree_await_memory();
949 mutex_enter(p2->p_lock);
950 }
951
952 if ((flags & LWP_DETACHED) != 0) {
953 l2->l_prflag = LPR_DETACHED;
954 p2->p_ndlwps++;
955 } else
956 l2->l_prflag = 0;
957
958 if (l1->l_proc == p2) {
959 /*
960 * These flags are set while p_lock is held. Copy with
961 * p_lock held too, so the LWP doesn't sneak into the
962 * process without them being set.
963 */
964 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
965 } else {
966 /* fork(): pending core/exit doesn't apply to child. */
967 l2->l_flag |= (l1->l_flag & LW_WREBOOT);
968 }
969
970 l2->l_sigstk = *sigstk;
971 l2->l_sigmask = *sigmask;
972 TAILQ_INIT(&l2->l_sigpend.sp_info);
973 sigemptyset(&l2->l_sigpend.sp_set);
974 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
975 p2->p_nlwps++;
976 p2->p_nrlwps++;
977
978 KASSERT(l2->l_affinity == NULL);
979
980 /* Inherit the affinity mask. */
981 if (l1->l_affinity) {
982 /*
983 * Note that we hold the state lock while inheriting
984 * the affinity to avoid race with sched_setaffinity().
985 */
986 lwp_lock(l1);
987 if (l1->l_affinity) {
988 kcpuset_use(l1->l_affinity);
989 l2->l_affinity = l1->l_affinity;
990 }
991 lwp_unlock(l1);
992 }
993
994 /* This marks the end of the "must be atomic" section. */
995 mutex_exit(p2->p_lock);
996
997 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
998
999 mutex_enter(proc_lock);
1000 LIST_INSERT_HEAD(&alllwp, l2, l_list);
1001 /* Inherit a processor-set */
1002 l2->l_psid = l1->l_psid;
1003 mutex_exit(proc_lock);
1004
1005 SYSCALL_TIME_LWP_INIT(l2);
1006
1007 if (p2->p_emul->e_lwp_fork)
1008 (*p2->p_emul->e_lwp_fork)(l1, l2);
1009
1010 return (0);
1011 }
1012
1013 /*
1014 * Set a new LWP running. If the process is stopping, then the LWP is
1015 * created stopped.
1016 */
1017 void
1018 lwp_start(lwp_t *l, int flags)
1019 {
1020 proc_t *p = l->l_proc;
1021
1022 mutex_enter(p->p_lock);
1023 lwp_lock(l);
1024 KASSERT(l->l_stat == LSIDL);
1025 if ((flags & LWP_SUSPENDED) != 0) {
1026 /* It'll suspend itself in lwp_userret(). */
1027 l->l_flag |= LW_WSUSPEND;
1028 }
1029 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1030 KASSERT(l->l_wchan == NULL);
1031 l->l_stat = LSSTOP;
1032 p->p_nrlwps--;
1033 lwp_unlock(l);
1034 } else {
1035 setrunnable(l);
1036 /* LWP now unlocked */
1037 }
1038 mutex_exit(p->p_lock);
1039 }
1040
1041 /*
1042 * Called by MD code when a new LWP begins execution. Must be called
1043 * with the previous LWP locked (so at splsched), or if there is no
1044 * previous LWP, at splsched.
1045 */
1046 void
1047 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1048 {
1049 kmutex_t *lock;
1050
1051 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1052 KASSERT(kpreempt_disabled());
1053 KASSERT(prev != NULL);
1054 KASSERT((prev->l_pflag & LP_RUNNING) != 0);
1055 KASSERT(curcpu()->ci_mtx_count == -2);
1056
1057 /*
1058 * Immediately mark the previous LWP as no longer running and unlock
1059 * (to keep lock wait times short as possible). If a zombie, don't
1060 * touch after clearing LP_RUNNING as it could be reaped by another
1061 * CPU. Issue a memory barrier to ensure this.
1062 */
1063 lock = prev->l_mutex;
1064 if (__predict_false(prev->l_stat == LSZOMB)) {
1065 membar_sync();
1066 }
1067 prev->l_pflag &= ~LP_RUNNING;
1068 mutex_spin_exit(lock);
1069
1070 /* Correct spin mutex count after mi_switch(). */
1071 curcpu()->ci_mtx_count = 0;
1072
1073 /* Install new VM context. */
1074 if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1075 pmap_activate(new_lwp);
1076 }
1077
1078 /* We remain at IPL_SCHED from mi_switch() - reset it. */
1079 spl0();
1080
1081 LOCKDEBUG_BARRIER(NULL, 0);
1082 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1083
1084 /* For kthreads, acquire kernel lock if not MPSAFE. */
1085 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1086 KERNEL_LOCK(1, new_lwp);
1087 }
1088 }
1089
1090 /*
1091 * Exit an LWP.
1092 */
1093 void
1094 lwp_exit(struct lwp *l)
1095 {
1096 struct proc *p = l->l_proc;
1097 struct lwp *l2;
1098 bool current;
1099
1100 current = (l == curlwp);
1101
1102 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1103 KASSERT(p == curproc);
1104
1105 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1106
1107 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1108 LOCKDEBUG_BARRIER(NULL, 0);
1109 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1110
1111 /*
1112 * If we are the last live LWP in a process, we need to exit the
1113 * entire process. We do so with an exit status of zero, because
1114 * it's a "controlled" exit, and because that's what Solaris does.
1115 *
1116 * We are not quite a zombie yet, but for accounting purposes we
1117 * must increment the count of zombies here.
1118 *
1119 * Note: the last LWP's specificdata will be deleted here.
1120 */
1121 mutex_enter(p->p_lock);
1122 if (p->p_nlwps - p->p_nzlwps == 1) {
1123 KASSERT(current == true);
1124 KASSERT(p != &proc0);
1125 exit1(l, 0, 0);
1126 /* NOTREACHED */
1127 }
1128 p->p_nzlwps++;
1129 mutex_exit(p->p_lock);
1130
1131 if (p->p_emul->e_lwp_exit)
1132 (*p->p_emul->e_lwp_exit)(l);
1133
1134 /* Drop filedesc reference. */
1135 fd_free();
1136
1137 /* Release fstrans private data. */
1138 fstrans_lwp_dtor(l);
1139
1140 /* Delete the specificdata while it's still safe to sleep. */
1141 lwp_finispecific(l);
1142
1143 /*
1144 * Release our cached credentials.
1145 */
1146 kauth_cred_free(l->l_cred);
1147 callout_destroy(&l->l_timeout_ch);
1148
1149 /*
1150 * If traced, report LWP exit event to the debugger.
1151 *
1152 * Remove the LWP from the global list.
1153 * Free its LID from the PID namespace if needed.
1154 */
1155 mutex_enter(proc_lock);
1156
1157 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1158 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1159 mutex_enter(p->p_lock);
1160 if (ISSET(p->p_sflag, PS_WEXIT)) {
1161 mutex_exit(p->p_lock);
1162 /*
1163 * We are exiting, bail out without informing parent
1164 * about a terminating LWP as it would deadlock.
1165 */
1166 } else {
1167 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1168 mutex_enter(proc_lock);
1169 }
1170 }
1171
1172 LIST_REMOVE(l, l_list);
1173 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1174 proc_free_pid(l->l_lid);
1175 }
1176 mutex_exit(proc_lock);
1177
1178 /*
1179 * Get rid of all references to the LWP that others (e.g. procfs)
1180 * may have, and mark the LWP as a zombie. If the LWP is detached,
1181 * mark it waiting for collection in the proc structure. Note that
1182 * before we can do that, we need to free any other dead, deatched
1183 * LWP waiting to meet its maker.
1184 *
1185 * All conditions need to be observed upon under the same hold of
1186 * p_lock, because if the lock is dropped any of them can change.
1187 */
1188 mutex_enter(p->p_lock);
1189 for (;;) {
1190 if (l->l_refcnt > 0) {
1191 lwp_drainrefs(l);
1192 continue;
1193 }
1194 if ((l->l_prflag & LPR_DETACHED) != 0) {
1195 if ((l2 = p->p_zomblwp) != NULL) {
1196 p->p_zomblwp = NULL;
1197 lwp_free(l2, false, false);
1198 /* proc now unlocked */
1199 mutex_enter(p->p_lock);
1200 continue;
1201 }
1202 p->p_zomblwp = l;
1203 }
1204 break;
1205 }
1206
1207 /*
1208 * If we find a pending signal for the process and we have been
1209 * asked to check for signals, then we lose: arrange to have
1210 * all other LWPs in the process check for signals.
1211 */
1212 if ((l->l_flag & LW_PENDSIG) != 0 &&
1213 firstsig(&p->p_sigpend.sp_set) != 0) {
1214 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1215 lwp_lock(l2);
1216 signotify(l2);
1217 lwp_unlock(l2);
1218 }
1219 }
1220
1221 /*
1222 * Release any PCU resources before becoming a zombie.
1223 */
1224 pcu_discard_all(l);
1225
1226 lwp_lock(l);
1227 l->l_stat = LSZOMB;
1228 if (l->l_name != NULL) {
1229 strcpy(l->l_name, "(zombie)");
1230 }
1231 lwp_unlock(l);
1232 p->p_nrlwps--;
1233 cv_broadcast(&p->p_lwpcv);
1234 if (l->l_lwpctl != NULL)
1235 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1236 mutex_exit(p->p_lock);
1237
1238 /*
1239 * We can no longer block. At this point, lwp_free() may already
1240 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1241 *
1242 * Free MD LWP resources.
1243 */
1244 cpu_lwp_free(l, 0);
1245
1246 if (current) {
1247 /* Switch away into oblivion. */
1248 lwp_lock(l);
1249 spc_lock(l->l_cpu);
1250 mi_switch(l);
1251 panic("lwp_exit");
1252 }
1253 }
1254
1255 /*
1256 * Free a dead LWP's remaining resources.
1257 *
1258 * XXXLWP limits.
1259 */
1260 void
1261 lwp_free(struct lwp *l, bool recycle, bool last)
1262 {
1263 struct proc *p = l->l_proc;
1264 struct rusage *ru;
1265 struct lwp *l2 __diagused;
1266 ksiginfoq_t kq;
1267
1268 KASSERT(l != curlwp);
1269 KASSERT(last || mutex_owned(p->p_lock));
1270
1271 /*
1272 * We use the process credentials instead of the lwp credentials here
1273 * because the lwp credentials maybe cached (just after a setuid call)
1274 * and we don't want pay for syncing, since the lwp is going away
1275 * anyway
1276 */
1277 if (p != &proc0 && p->p_nlwps != 1)
1278 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1279
1280 /*
1281 * If this was not the last LWP in the process, then adjust counters
1282 * and unlock. This is done differently for the last LWP in exit1().
1283 */
1284 if (!last) {
1285 /*
1286 * Add the LWP's run time to the process' base value.
1287 * This needs to co-incide with coming off p_lwps.
1288 */
1289 bintime_add(&p->p_rtime, &l->l_rtime);
1290 p->p_pctcpu += l->l_pctcpu;
1291 ru = &p->p_stats->p_ru;
1292 ruadd(ru, &l->l_ru);
1293 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1294 ru->ru_nivcsw += l->l_nivcsw;
1295 LIST_REMOVE(l, l_sibling);
1296 p->p_nlwps--;
1297 p->p_nzlwps--;
1298 if ((l->l_prflag & LPR_DETACHED) != 0)
1299 p->p_ndlwps--;
1300
1301 /* Make note of the LID being free, and remove from tree. */
1302 if (l->l_lid < p->p_nlwpid)
1303 p->p_nlwpid = l->l_lid;
1304 rw_enter(&p->p_treelock, RW_WRITER);
1305 l2 = radix_tree_remove_node(&p->p_lwptree,
1306 (uint64_t)(l->l_lid - 1));
1307 KASSERT(l2 == l);
1308 rw_exit(&p->p_treelock);
1309
1310 /*
1311 * Have any LWPs sleeping in lwp_wait() recheck for
1312 * deadlock.
1313 */
1314 cv_broadcast(&p->p_lwpcv);
1315 mutex_exit(p->p_lock);
1316 }
1317
1318 /*
1319 * In the unlikely event that the LWP is still on the CPU,
1320 * then spin until it has switched away.
1321 */
1322 membar_consumer();
1323 while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) {
1324 SPINLOCK_BACKOFF_HOOK;
1325 }
1326
1327 /*
1328 * Destroy the LWP's remaining signal information.
1329 */
1330 ksiginfo_queue_init(&kq);
1331 sigclear(&l->l_sigpend, NULL, &kq);
1332 ksiginfo_queue_drain(&kq);
1333 cv_destroy(&l->l_sigcv);
1334 cv_destroy(&l->l_waitcv);
1335
1336 /*
1337 * Free lwpctl structure and affinity.
1338 */
1339 if (l->l_lwpctl) {
1340 lwp_ctl_free(l);
1341 }
1342 if (l->l_affinity) {
1343 kcpuset_unuse(l->l_affinity, NULL);
1344 l->l_affinity = NULL;
1345 }
1346
1347 /*
1348 * Free the LWP's turnstile and the LWP structure itself unless the
1349 * caller wants to recycle them. Also, free the scheduler specific
1350 * data.
1351 *
1352 * We can't return turnstile0 to the pool (it didn't come from it),
1353 * so if it comes up just drop it quietly and move on.
1354 *
1355 * We don't recycle the VM resources at this time.
1356 */
1357
1358 if (!recycle && l->l_ts != &turnstile0)
1359 pool_cache_put(turnstile_cache, l->l_ts);
1360 if (l->l_name != NULL)
1361 kmem_free(l->l_name, MAXCOMLEN);
1362
1363 kmsan_lwp_free(l);
1364 kcov_lwp_free(l);
1365 cpu_lwp_free2(l);
1366 uvm_lwp_exit(l);
1367
1368 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1369 KASSERT(l->l_inheritedprio == -1);
1370 KASSERT(l->l_blcnt == 0);
1371 kdtrace_thread_dtor(NULL, l);
1372 if (!recycle)
1373 pool_cache_put(lwp_cache, l);
1374 }
1375
1376 /*
1377 * Migrate the LWP to the another CPU. Unlocks the LWP.
1378 */
1379 void
1380 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1381 {
1382 struct schedstate_percpu *tspc;
1383 int lstat = l->l_stat;
1384
1385 KASSERT(lwp_locked(l, NULL));
1386 KASSERT(tci != NULL);
1387
1388 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1389 if ((l->l_pflag & LP_RUNNING) != 0) {
1390 lstat = LSONPROC;
1391 }
1392
1393 /*
1394 * The destination CPU could be changed while previous migration
1395 * was not finished.
1396 */
1397 if (l->l_target_cpu != NULL) {
1398 l->l_target_cpu = tci;
1399 lwp_unlock(l);
1400 return;
1401 }
1402
1403 /* Nothing to do if trying to migrate to the same CPU */
1404 if (l->l_cpu == tci) {
1405 lwp_unlock(l);
1406 return;
1407 }
1408
1409 KASSERT(l->l_target_cpu == NULL);
1410 tspc = &tci->ci_schedstate;
1411 switch (lstat) {
1412 case LSRUN:
1413 l->l_target_cpu = tci;
1414 break;
1415 case LSSLEEP:
1416 l->l_cpu = tci;
1417 break;
1418 case LSIDL:
1419 case LSSTOP:
1420 case LSSUSPENDED:
1421 l->l_cpu = tci;
1422 if (l->l_wchan == NULL) {
1423 lwp_unlock_to(l, tspc->spc_lwplock);
1424 return;
1425 }
1426 break;
1427 case LSONPROC:
1428 l->l_target_cpu = tci;
1429 spc_lock(l->l_cpu);
1430 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1431 /* spc now unlocked */
1432 break;
1433 }
1434 lwp_unlock(l);
1435 }
1436
1437 /*
1438 * Find the LWP in the process. Arguments may be zero, in such case,
1439 * the calling process and first LWP in the list will be used.
1440 * On success - returns proc locked.
1441 */
1442 struct lwp *
1443 lwp_find2(pid_t pid, lwpid_t lid)
1444 {
1445 proc_t *p;
1446 lwp_t *l;
1447
1448 /* Find the process. */
1449 if (pid != 0) {
1450 mutex_enter(proc_lock);
1451 p = proc_find(pid);
1452 if (p == NULL) {
1453 mutex_exit(proc_lock);
1454 return NULL;
1455 }
1456 mutex_enter(p->p_lock);
1457 mutex_exit(proc_lock);
1458 } else {
1459 p = curlwp->l_proc;
1460 mutex_enter(p->p_lock);
1461 }
1462 /* Find the thread. */
1463 if (lid != 0) {
1464 l = lwp_find(p, lid);
1465 } else {
1466 l = LIST_FIRST(&p->p_lwps);
1467 }
1468 if (l == NULL) {
1469 mutex_exit(p->p_lock);
1470 }
1471 return l;
1472 }
1473
1474 /*
1475 * Look up a live LWP within the specified process.
1476 *
1477 * Must be called with p->p_lock held (as it looks at the radix tree,
1478 * and also wants to exclude idle and zombie LWPs).
1479 */
1480 struct lwp *
1481 lwp_find(struct proc *p, lwpid_t id)
1482 {
1483 struct lwp *l;
1484
1485 KASSERT(mutex_owned(p->p_lock));
1486
1487 l = radix_tree_lookup_node(&p->p_lwptree, (uint64_t)(id - 1));
1488 KASSERT(l == NULL || l->l_lid == id);
1489
1490 /*
1491 * No need to lock - all of these conditions will
1492 * be visible with the process level mutex held.
1493 */
1494 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1495 l = NULL;
1496
1497 return l;
1498 }
1499
1500 /*
1501 * Update an LWP's cached credentials to mirror the process' master copy.
1502 *
1503 * This happens early in the syscall path, on user trap, and on LWP
1504 * creation. A long-running LWP can also voluntarily choose to update
1505 * its credentials by calling this routine. This may be called from
1506 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1507 */
1508 void
1509 lwp_update_creds(struct lwp *l)
1510 {
1511 kauth_cred_t oc;
1512 struct proc *p;
1513
1514 p = l->l_proc;
1515 oc = l->l_cred;
1516
1517 mutex_enter(p->p_lock);
1518 kauth_cred_hold(p->p_cred);
1519 l->l_cred = p->p_cred;
1520 l->l_prflag &= ~LPR_CRMOD;
1521 mutex_exit(p->p_lock);
1522 if (oc != NULL)
1523 kauth_cred_free(oc);
1524 }
1525
1526 /*
1527 * Verify that an LWP is locked, and optionally verify that the lock matches
1528 * one we specify.
1529 */
1530 int
1531 lwp_locked(struct lwp *l, kmutex_t *mtx)
1532 {
1533 kmutex_t *cur = l->l_mutex;
1534
1535 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1536 }
1537
1538 /*
1539 * Lend a new mutex to an LWP. The old mutex must be held.
1540 */
1541 kmutex_t *
1542 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1543 {
1544 kmutex_t *oldmtx = l->l_mutex;
1545
1546 KASSERT(mutex_owned(oldmtx));
1547
1548 membar_exit();
1549 l->l_mutex = mtx;
1550 return oldmtx;
1551 }
1552
1553 /*
1554 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1555 * must be held.
1556 */
1557 void
1558 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1559 {
1560 kmutex_t *old;
1561
1562 KASSERT(lwp_locked(l, NULL));
1563
1564 old = l->l_mutex;
1565 membar_exit();
1566 l->l_mutex = mtx;
1567 mutex_spin_exit(old);
1568 }
1569
1570 int
1571 lwp_trylock(struct lwp *l)
1572 {
1573 kmutex_t *old;
1574
1575 for (;;) {
1576 if (!mutex_tryenter(old = l->l_mutex))
1577 return 0;
1578 if (__predict_true(l->l_mutex == old))
1579 return 1;
1580 mutex_spin_exit(old);
1581 }
1582 }
1583
1584 void
1585 lwp_unsleep(lwp_t *l, bool unlock)
1586 {
1587
1588 KASSERT(mutex_owned(l->l_mutex));
1589 (*l->l_syncobj->sobj_unsleep)(l, unlock);
1590 }
1591
1592 /*
1593 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1594 * set.
1595 */
1596 void
1597 lwp_userret(struct lwp *l)
1598 {
1599 struct proc *p;
1600 int sig;
1601
1602 KASSERT(l == curlwp);
1603 KASSERT(l->l_stat == LSONPROC);
1604 p = l->l_proc;
1605
1606 /*
1607 * It is safe to do this read unlocked on a MP system..
1608 */
1609 while ((l->l_flag & LW_USERRET) != 0) {
1610 /*
1611 * Process pending signals first, unless the process
1612 * is dumping core or exiting, where we will instead
1613 * enter the LW_WSUSPEND case below.
1614 */
1615 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1616 LW_PENDSIG) {
1617 mutex_enter(p->p_lock);
1618 while ((sig = issignal(l)) != 0)
1619 postsig(sig);
1620 mutex_exit(p->p_lock);
1621 }
1622
1623 /*
1624 * Core-dump or suspend pending.
1625 *
1626 * In case of core dump, suspend ourselves, so that the kernel
1627 * stack and therefore the userland registers saved in the
1628 * trapframe are around for coredump() to write them out.
1629 * We also need to save any PCU resources that we have so that
1630 * they accessible for coredump(). We issue a wakeup on
1631 * p->p_lwpcv so that sigexit() will write the core file out
1632 * once all other LWPs are suspended.
1633 */
1634 if ((l->l_flag & LW_WSUSPEND) != 0) {
1635 pcu_save_all(l);
1636 mutex_enter(p->p_lock);
1637 p->p_nrlwps--;
1638 cv_broadcast(&p->p_lwpcv);
1639 lwp_lock(l);
1640 l->l_stat = LSSUSPENDED;
1641 lwp_unlock(l);
1642 mutex_exit(p->p_lock);
1643 lwp_lock(l);
1644 spc_lock(l->l_cpu);
1645 mi_switch(l);
1646 }
1647
1648 /* Process is exiting. */
1649 if ((l->l_flag & LW_WEXIT) != 0) {
1650 lwp_exit(l);
1651 KASSERT(0);
1652 /* NOTREACHED */
1653 }
1654
1655 /* update lwpctl processor (for vfork child_return) */
1656 if (l->l_flag & LW_LWPCTL) {
1657 lwp_lock(l);
1658 KASSERT(kpreempt_disabled());
1659 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1660 l->l_lwpctl->lc_pctr++;
1661 l->l_flag &= ~LW_LWPCTL;
1662 lwp_unlock(l);
1663 }
1664 }
1665 }
1666
1667 /*
1668 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1669 */
1670 void
1671 lwp_need_userret(struct lwp *l)
1672 {
1673
1674 KASSERT(!cpu_intr_p());
1675 KASSERT(lwp_locked(l, NULL));
1676
1677 /*
1678 * If the LWP is in any state other than LSONPROC, we know that it
1679 * is executing in-kernel and will hit userret() on the way out.
1680 *
1681 * If the LWP is curlwp, then we know we'll be back out to userspace
1682 * soon (can't be called from a hardware interrupt here).
1683 *
1684 * Otherwise, we can't be sure what the LWP is doing, so first make
1685 * sure the update to l_flag will be globally visible, and then
1686 * force the LWP to take a trip through trap() where it will do
1687 * userret().
1688 */
1689 if (l->l_stat == LSONPROC && l != curlwp) {
1690 membar_producer();
1691 cpu_signotify(l);
1692 }
1693 }
1694
1695 /*
1696 * Add one reference to an LWP. This will prevent the LWP from
1697 * exiting, thus keep the lwp structure and PCB around to inspect.
1698 */
1699 void
1700 lwp_addref(struct lwp *l)
1701 {
1702
1703 KASSERT(mutex_owned(l->l_proc->p_lock));
1704 KASSERT(l->l_stat != LSZOMB);
1705
1706 l->l_refcnt++;
1707 }
1708
1709 /*
1710 * Remove one reference to an LWP. If this is the last reference,
1711 * then we must finalize the LWP's death.
1712 */
1713 void
1714 lwp_delref(struct lwp *l)
1715 {
1716 struct proc *p = l->l_proc;
1717
1718 mutex_enter(p->p_lock);
1719 lwp_delref2(l);
1720 mutex_exit(p->p_lock);
1721 }
1722
1723 /*
1724 * Remove one reference to an LWP. If this is the last reference,
1725 * then we must finalize the LWP's death. The proc mutex is held
1726 * on entry.
1727 */
1728 void
1729 lwp_delref2(struct lwp *l)
1730 {
1731 struct proc *p = l->l_proc;
1732
1733 KASSERT(mutex_owned(p->p_lock));
1734 KASSERT(l->l_stat != LSZOMB);
1735 KASSERT(l->l_refcnt > 0);
1736
1737 if (--l->l_refcnt == 0)
1738 cv_broadcast(&p->p_lwpcv);
1739 }
1740
1741 /*
1742 * Drain all references to the current LWP.
1743 */
1744 void
1745 lwp_drainrefs(struct lwp *l)
1746 {
1747 struct proc *p = l->l_proc;
1748
1749 KASSERT(mutex_owned(p->p_lock));
1750
1751 while (l->l_refcnt > 0)
1752 cv_wait(&p->p_lwpcv, p->p_lock);
1753 }
1754
1755 /*
1756 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1757 * be held.
1758 */
1759 bool
1760 lwp_alive(lwp_t *l)
1761 {
1762
1763 KASSERT(mutex_owned(l->l_proc->p_lock));
1764
1765 switch (l->l_stat) {
1766 case LSSLEEP:
1767 case LSRUN:
1768 case LSONPROC:
1769 case LSSTOP:
1770 case LSSUSPENDED:
1771 return true;
1772 default:
1773 return false;
1774 }
1775 }
1776
1777 /*
1778 * Return first live LWP in the process.
1779 */
1780 lwp_t *
1781 lwp_find_first(proc_t *p)
1782 {
1783 lwp_t *l;
1784
1785 KASSERT(mutex_owned(p->p_lock));
1786
1787 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1788 if (lwp_alive(l)) {
1789 return l;
1790 }
1791 }
1792
1793 return NULL;
1794 }
1795
1796 /*
1797 * Allocate a new lwpctl structure for a user LWP.
1798 */
1799 int
1800 lwp_ctl_alloc(vaddr_t *uaddr)
1801 {
1802 lcproc_t *lp;
1803 u_int bit, i, offset;
1804 struct uvm_object *uao;
1805 int error;
1806 lcpage_t *lcp;
1807 proc_t *p;
1808 lwp_t *l;
1809
1810 l = curlwp;
1811 p = l->l_proc;
1812
1813 /* don't allow a vforked process to create lwp ctls */
1814 if (p->p_lflag & PL_PPWAIT)
1815 return EBUSY;
1816
1817 if (l->l_lcpage != NULL) {
1818 lcp = l->l_lcpage;
1819 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1820 return 0;
1821 }
1822
1823 /* First time around, allocate header structure for the process. */
1824 if ((lp = p->p_lwpctl) == NULL) {
1825 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1826 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1827 lp->lp_uao = NULL;
1828 TAILQ_INIT(&lp->lp_pages);
1829 mutex_enter(p->p_lock);
1830 if (p->p_lwpctl == NULL) {
1831 p->p_lwpctl = lp;
1832 mutex_exit(p->p_lock);
1833 } else {
1834 mutex_exit(p->p_lock);
1835 mutex_destroy(&lp->lp_lock);
1836 kmem_free(lp, sizeof(*lp));
1837 lp = p->p_lwpctl;
1838 }
1839 }
1840
1841 /*
1842 * Set up an anonymous memory region to hold the shared pages.
1843 * Map them into the process' address space. The user vmspace
1844 * gets the first reference on the UAO.
1845 */
1846 mutex_enter(&lp->lp_lock);
1847 if (lp->lp_uao == NULL) {
1848 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1849 lp->lp_cur = 0;
1850 lp->lp_max = LWPCTL_UAREA_SZ;
1851 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1852 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1853 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1854 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1855 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1856 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1857 if (error != 0) {
1858 uao_detach(lp->lp_uao);
1859 lp->lp_uao = NULL;
1860 mutex_exit(&lp->lp_lock);
1861 return error;
1862 }
1863 }
1864
1865 /* Get a free block and allocate for this LWP. */
1866 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1867 if (lcp->lcp_nfree != 0)
1868 break;
1869 }
1870 if (lcp == NULL) {
1871 /* Nothing available - try to set up a free page. */
1872 if (lp->lp_cur == lp->lp_max) {
1873 mutex_exit(&lp->lp_lock);
1874 return ENOMEM;
1875 }
1876 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1877
1878 /*
1879 * Wire the next page down in kernel space. Since this
1880 * is a new mapping, we must add a reference.
1881 */
1882 uao = lp->lp_uao;
1883 (*uao->pgops->pgo_reference)(uao);
1884 lcp->lcp_kaddr = vm_map_min(kernel_map);
1885 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1886 uao, lp->lp_cur, PAGE_SIZE,
1887 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1888 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1889 if (error != 0) {
1890 mutex_exit(&lp->lp_lock);
1891 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1892 (*uao->pgops->pgo_detach)(uao);
1893 return error;
1894 }
1895 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1896 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1897 if (error != 0) {
1898 mutex_exit(&lp->lp_lock);
1899 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1900 lcp->lcp_kaddr + PAGE_SIZE);
1901 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1902 return error;
1903 }
1904 /* Prepare the page descriptor and link into the list. */
1905 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1906 lp->lp_cur += PAGE_SIZE;
1907 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1908 lcp->lcp_rotor = 0;
1909 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1910 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1911 }
1912 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1913 if (++i >= LWPCTL_BITMAP_ENTRIES)
1914 i = 0;
1915 }
1916 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1917 lcp->lcp_bitmap[i] ^= (1U << bit);
1918 lcp->lcp_rotor = i;
1919 lcp->lcp_nfree--;
1920 l->l_lcpage = lcp;
1921 offset = (i << 5) + bit;
1922 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1923 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1924 mutex_exit(&lp->lp_lock);
1925
1926 KPREEMPT_DISABLE(l);
1927 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1928 KPREEMPT_ENABLE(l);
1929
1930 return 0;
1931 }
1932
1933 /*
1934 * Free an lwpctl structure back to the per-process list.
1935 */
1936 void
1937 lwp_ctl_free(lwp_t *l)
1938 {
1939 struct proc *p = l->l_proc;
1940 lcproc_t *lp;
1941 lcpage_t *lcp;
1942 u_int map, offset;
1943
1944 /* don't free a lwp context we borrowed for vfork */
1945 if (p->p_lflag & PL_PPWAIT) {
1946 l->l_lwpctl = NULL;
1947 return;
1948 }
1949
1950 lp = p->p_lwpctl;
1951 KASSERT(lp != NULL);
1952
1953 lcp = l->l_lcpage;
1954 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1955 KASSERT(offset < LWPCTL_PER_PAGE);
1956
1957 mutex_enter(&lp->lp_lock);
1958 lcp->lcp_nfree++;
1959 map = offset >> 5;
1960 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1961 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1962 lcp->lcp_rotor = map;
1963 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1964 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1965 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1966 }
1967 mutex_exit(&lp->lp_lock);
1968 }
1969
1970 /*
1971 * Process is exiting; tear down lwpctl state. This can only be safely
1972 * called by the last LWP in the process.
1973 */
1974 void
1975 lwp_ctl_exit(void)
1976 {
1977 lcpage_t *lcp, *next;
1978 lcproc_t *lp;
1979 proc_t *p;
1980 lwp_t *l;
1981
1982 l = curlwp;
1983 l->l_lwpctl = NULL;
1984 l->l_lcpage = NULL;
1985 p = l->l_proc;
1986 lp = p->p_lwpctl;
1987
1988 KASSERT(lp != NULL);
1989 KASSERT(p->p_nlwps == 1);
1990
1991 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1992 next = TAILQ_NEXT(lcp, lcp_chain);
1993 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1994 lcp->lcp_kaddr + PAGE_SIZE);
1995 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1996 }
1997
1998 if (lp->lp_uao != NULL) {
1999 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
2000 lp->lp_uva + LWPCTL_UAREA_SZ);
2001 }
2002
2003 mutex_destroy(&lp->lp_lock);
2004 kmem_free(lp, sizeof(*lp));
2005 p->p_lwpctl = NULL;
2006 }
2007
2008 /*
2009 * Return the current LWP's "preemption counter". Used to detect
2010 * preemption across operations that can tolerate preemption without
2011 * crashing, but which may generate incorrect results if preempted.
2012 */
2013 uint64_t
2014 lwp_pctr(void)
2015 {
2016
2017 return curlwp->l_ncsw;
2018 }
2019
2020 /*
2021 * Set an LWP's private data pointer.
2022 */
2023 int
2024 lwp_setprivate(struct lwp *l, void *ptr)
2025 {
2026 int error = 0;
2027
2028 l->l_private = ptr;
2029 #ifdef __HAVE_CPU_LWP_SETPRIVATE
2030 error = cpu_lwp_setprivate(l, ptr);
2031 #endif
2032 return error;
2033 }
2034
2035 /*
2036 * Renumber the first and only LWP in a process on exec() or fork().
2037 * Don't bother with p_treelock here as this is the only live LWP in
2038 * the proc right now.
2039 */
2040 void
2041 lwp_renumber(lwp_t *l, lwpid_t lid)
2042 {
2043 lwp_t *l2 __diagused;
2044 proc_t *p = l->l_proc;
2045 int error;
2046
2047 KASSERT(p->p_nlwps == 1);
2048
2049 while (l->l_lid != lid) {
2050 mutex_enter(p->p_lock);
2051 error = radix_tree_insert_node(&p->p_lwptree, lid - 1, l);
2052 if (error == 0) {
2053 l2 = radix_tree_remove_node(&p->p_lwptree,
2054 (uint64_t)(l->l_lid - 1));
2055 KASSERT(l2 == l);
2056 p->p_nlwpid = lid + 1;
2057 l->l_lid = lid;
2058 }
2059 mutex_exit(p->p_lock);
2060
2061 if (error == 0)
2062 break;
2063
2064 KASSERT(error == ENOMEM);
2065 radix_tree_await_memory();
2066 }
2067 }
2068
2069 #if defined(DDB)
2070 #include <machine/pcb.h>
2071
2072 void
2073 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2074 {
2075 lwp_t *l;
2076
2077 LIST_FOREACH(l, &alllwp, l_list) {
2078 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2079
2080 if (addr < stack || stack + KSTACK_SIZE <= addr) {
2081 continue;
2082 }
2083 (*pr)("%p is %p+%zu, LWP %p's stack\n",
2084 (void *)addr, (void *)stack,
2085 (size_t)(addr - stack), l);
2086 }
2087 }
2088 #endif /* defined(DDB) */
2089