kern_lwp.c revision 1.235 1 /* $NetBSD: kern_lwp.c,v 1.235 2020/04/24 03:22:06 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Nathan J. Williams, and Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Overview
35 *
36 * Lightweight processes (LWPs) are the basic unit or thread of
37 * execution within the kernel. The core state of an LWP is described
38 * by "struct lwp", also known as lwp_t.
39 *
40 * Each LWP is contained within a process (described by "struct proc"),
41 * Every process contains at least one LWP, but may contain more. The
42 * process describes attributes shared among all of its LWPs such as a
43 * private address space, global execution state (stopped, active,
44 * zombie, ...), signal disposition and so on. On a multiprocessor
45 * machine, multiple LWPs be executing concurrently in the kernel.
46 *
47 * Execution states
48 *
49 * At any given time, an LWP has overall state that is described by
50 * lwp::l_stat. The states are broken into two sets below. The first
51 * set is guaranteed to represent the absolute, current state of the
52 * LWP:
53 *
54 * LSONPROC
55 *
56 * On processor: the LWP is executing on a CPU, either in the
57 * kernel or in user space.
58 *
59 * LSRUN
60 *
61 * Runnable: the LWP is parked on a run queue, and may soon be
62 * chosen to run by an idle processor, or by a processor that
63 * has been asked to preempt a currently runnning but lower
64 * priority LWP.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSLARVAL:
87 *
88 * Born, but not fully mature: the LWP is in the process
89 * of being constructed. This state exists so that the
90 * LWP can occupy a slot in the PID table, but without
91 * having to worry about being touched; lookups of the
92 * LWP will fail while in this state. The LWP will become
93 * visible in the PID table once its state transitions
94 * to LSIDL.
95 *
96 * LSZOMB:
97 *
98 * Dead or dying: the LWP has released most of its resources
99 * and is about to switch away into oblivion, or has already
100 * switched away. When it switches away, its few remaining
101 * resources can be collected.
102 *
103 * LSSLEEP:
104 *
105 * Sleeping: the LWP has entered itself onto a sleep queue, and
106 * has switched away or will switch away shortly to allow other
107 * LWPs to run on the CPU.
108 *
109 * LSSTOP:
110 *
111 * Stopped: the LWP has been stopped as a result of a job
112 * control signal, or as a result of the ptrace() interface.
113 *
114 * Stopped LWPs may run briefly within the kernel to handle
115 * signals that they receive, but will not return to user space
116 * until their process' state is changed away from stopped.
117 *
118 * Single LWPs within a process can not be set stopped
119 * selectively: all actions that can stop or continue LWPs
120 * occur at the process level.
121 *
122 * State transitions
123 *
124 * Note that the LSSTOP state may only be set when returning to
125 * user space in userret(), or when sleeping interruptably. The
126 * LSSUSPENDED state may only be set in userret(). Before setting
127 * those states, we try to ensure that the LWPs will release all
128 * locks that they hold, and at a minimum try to ensure that the
129 * LWP can be set runnable again by a signal.
130 *
131 * LWPs may transition states in the following ways:
132 *
133 * LARVAL ----> IDL
134 *
135 * RUN -------> ONPROC ONPROC -----> RUN
136 * > SLEEP
137 * > STOPPED
138 * > SUSPENDED
139 * > ZOMB
140 * > IDL (special cases)
141 *
142 * STOPPED ---> RUN SUSPENDED --> RUN
143 * > SLEEP
144 *
145 * SLEEP -----> ONPROC IDL --------> RUN
146 * > RUN > SUSPENDED
147 * > STOPPED > STOPPED
148 * > ONPROC (special cases)
149 *
150 * Some state transitions are only possible with kernel threads (eg
151 * ONPROC -> IDL) and happen under tightly controlled circumstances
152 * free of unwanted side effects.
153 *
154 * Migration
155 *
156 * Migration of threads from one CPU to another could be performed
157 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
158 * functions. The universal lwp_migrate() function should be used for
159 * any other cases. Subsystems in the kernel must be aware that CPU
160 * of LWP may change, while it is not locked.
161 *
162 * Locking
163 *
164 * The majority of fields in 'struct lwp' are covered by a single,
165 * general spin lock pointed to by lwp::l_mutex. The locks covering
166 * each field are documented in sys/lwp.h.
167 *
168 * State transitions must be made with the LWP's general lock held,
169 * and may cause the LWP's lock pointer to change. Manipulation of
170 * the general lock is not performed directly, but through calls to
171 * lwp_lock(), lwp_unlock() and others. It should be noted that the
172 * adaptive locks are not allowed to be released while the LWP's lock
173 * is being held (unlike for other spin-locks).
174 *
175 * States and their associated locks:
176 *
177 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
178 *
179 * Always covered by spc_lwplock, which protects LWPs not
180 * associated with any other sync object. This is a per-CPU
181 * lock and matches lwp::l_cpu.
182 *
183 * LSRUN:
184 *
185 * Always covered by spc_mutex, which protects the run queues.
186 * This is a per-CPU lock and matches lwp::l_cpu.
187 *
188 * LSSLEEP:
189 *
190 * Covered by a lock associated with the sleep queue (sometimes
191 * a turnstile sleep queue) that the LWP resides on. This can
192 * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
193 *
194 * LSSTOP:
195 *
196 * If the LWP was previously sleeping (l_wchan != NULL), then
197 * l_mutex references the sleep queue lock. If the LWP was
198 * runnable or on the CPU when halted, or has been removed from
199 * the sleep queue since halted, then the lock is spc_lwplock.
200 *
201 * The lock order is as follows:
202 *
203 * sleepq -> turnstile -> spc_lwplock -> spc_mutex
204 *
205 * Each process has an scheduler state lock (proc::p_lock), and a
206 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
207 * so on. When an LWP is to be entered into or removed from one of the
208 * following states, p_lock must be held and the process wide counters
209 * adjusted:
210 *
211 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
212 *
213 * (But not always for kernel threads. There are some special cases
214 * as mentioned above: soft interrupts, and the idle loops.)
215 *
216 * Note that an LWP is considered running or likely to run soon if in
217 * one of the following states. This affects the value of p_nrlwps:
218 *
219 * LSRUN, LSONPROC, LSSLEEP
220 *
221 * p_lock does not need to be held when transitioning among these
222 * three states, hence p_lock is rarely taken for state transitions.
223 */
224
225 #include <sys/cdefs.h>
226 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.235 2020/04/24 03:22:06 thorpej Exp $");
227
228 #include "opt_ddb.h"
229 #include "opt_lockdebug.h"
230 #include "opt_dtrace.h"
231
232 #define _LWP_API_PRIVATE
233
234 #include <sys/param.h>
235 #include <sys/systm.h>
236 #include <sys/cpu.h>
237 #include <sys/pool.h>
238 #include <sys/proc.h>
239 #include <sys/syscallargs.h>
240 #include <sys/syscall_stats.h>
241 #include <sys/kauth.h>
242 #include <sys/sleepq.h>
243 #include <sys/lockdebug.h>
244 #include <sys/kmem.h>
245 #include <sys/pset.h>
246 #include <sys/intr.h>
247 #include <sys/lwpctl.h>
248 #include <sys/atomic.h>
249 #include <sys/filedesc.h>
250 #include <sys/fstrans.h>
251 #include <sys/dtrace_bsd.h>
252 #include <sys/sdt.h>
253 #include <sys/ptrace.h>
254 #include <sys/xcall.h>
255 #include <sys/uidinfo.h>
256 #include <sys/sysctl.h>
257 #include <sys/psref.h>
258 #include <sys/msan.h>
259 #include <sys/kcov.h>
260 #include <sys/cprng.h>
261
262 #include <uvm/uvm_extern.h>
263 #include <uvm/uvm_object.h>
264
265 static pool_cache_t lwp_cache __read_mostly;
266 struct lwplist alllwp __cacheline_aligned;
267
268 /*
269 * Lookups by global thread ID operate outside of the normal LWP
270 * locking protocol.
271 *
272 * => When we look up an LWP in the table, we take lwp_threadid_lock as
273 * a READER. While still holding the lock, we add a reference to
274 * the LWP (using atomics). After adding the reference, we drop the
275 * lwp_threadid_lock. We now take p_lock and check the state of the
276 * LWP. If the LWP is draining its references, we drop the reference
277 * we took and return NULL. Otherwise, the lookup has succeeded and
278 * the LWP is returned with a reference count that the caller is
279 * responsible for dropping.
280 *
281 * => When a LWP is exiting, it also drains off any references being
282 * held by others. However, the reference in the lookup path is taken
283 * outside the normal locking protocol. There needs to be additional
284 * serialization so that EITHER lwp_drainrefs() sees the incremented
285 * reference count so that it knows to wait, OR lwp_getref_lwpid() sees
286 * that the LWP is waiting to drain and thus drops the reference
287 * immediately. This is achieved by taking lwp_threadid_lock as a
288 * WRITER when setting LPR_DRAINING. Note the locking order:
289 *
290 * p_lock -> lwp_threadid_lock
291 */
292 static krwlock_t lwp_threadid_lock __cacheline_aligned;
293
294 static void lwp_dtor(void *, void *);
295
296 /* DTrace proc provider probes */
297 SDT_PROVIDER_DEFINE(proc);
298
299 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
300 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
301 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
302
303 struct turnstile turnstile0 __cacheline_aligned;
304 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
305 #ifdef LWP0_CPU_INFO
306 .l_cpu = LWP0_CPU_INFO,
307 #endif
308 #ifdef LWP0_MD_INITIALIZER
309 .l_md = LWP0_MD_INITIALIZER,
310 #endif
311 .l_proc = &proc0,
312 .l_lid = 0, /* we own proc0's slot in the pid table */
313 .l_flag = LW_SYSTEM,
314 .l_stat = LSONPROC,
315 .l_ts = &turnstile0,
316 .l_syncobj = &sched_syncobj,
317 .l_refcnt = 0,
318 .l_priority = PRI_USER + NPRI_USER - 1,
319 .l_inheritedprio = -1,
320 .l_class = SCHED_OTHER,
321 .l_psid = PS_NONE,
322 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
323 .l_name = __UNCONST("swapper"),
324 .l_fd = &filedesc0,
325 };
326
327 static void lwp_threadid_init(void);
328 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
329
330 /*
331 * sysctl helper routine for kern.maxlwp. Ensures that the new
332 * values are not too low or too high.
333 */
334 static int
335 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
336 {
337 int error, nmaxlwp;
338 struct sysctlnode node;
339
340 nmaxlwp = maxlwp;
341 node = *rnode;
342 node.sysctl_data = &nmaxlwp;
343 error = sysctl_lookup(SYSCTLFN_CALL(&node));
344 if (error || newp == NULL)
345 return error;
346
347 if (nmaxlwp < 0 || nmaxlwp >= 65536)
348 return EINVAL;
349 if (nmaxlwp > cpu_maxlwp())
350 return EINVAL;
351 maxlwp = nmaxlwp;
352
353 return 0;
354 }
355
356 static void
357 sysctl_kern_lwp_setup(void)
358 {
359 struct sysctllog *clog = NULL;
360
361 sysctl_createv(&clog, 0, NULL, NULL,
362 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
363 CTLTYPE_INT, "maxlwp",
364 SYSCTL_DESCR("Maximum number of simultaneous threads"),
365 sysctl_kern_maxlwp, 0, NULL, 0,
366 CTL_KERN, CTL_CREATE, CTL_EOL);
367 }
368
369 void
370 lwpinit(void)
371 {
372
373 LIST_INIT(&alllwp);
374 lwpinit_specificdata();
375 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
376 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
377
378 maxlwp = cpu_maxlwp();
379 sysctl_kern_lwp_setup();
380 lwp_threadid_init();
381 }
382
383 void
384 lwp0_init(void)
385 {
386 struct lwp *l = &lwp0;
387
388 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
389
390 LIST_INSERT_HEAD(&alllwp, l, l_list);
391
392 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
393 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
394 cv_init(&l->l_sigcv, "sigwait");
395 cv_init(&l->l_waitcv, "vfork");
396
397 kauth_cred_hold(proc0.p_cred);
398 l->l_cred = proc0.p_cred;
399
400 kdtrace_thread_ctor(NULL, l);
401 lwp_initspecific(l);
402
403 SYSCALL_TIME_LWP_INIT(l);
404 }
405
406 static void
407 lwp_dtor(void *arg, void *obj)
408 {
409 lwp_t *l = obj;
410 (void)l;
411
412 /*
413 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
414 * calls will exit before memory of LWP is returned to the pool, where
415 * KVA of LWP structure might be freed and re-used for other purposes.
416 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
417 * callers, therefore cross-call to all CPUs will do the job. Also,
418 * the value of l->l_cpu must be still valid at this point.
419 */
420 KASSERT(l->l_cpu != NULL);
421 xc_barrier(0);
422 }
423
424 /*
425 * Set an suspended.
426 *
427 * Must be called with p_lock held, and the LWP locked. Will unlock the
428 * LWP before return.
429 */
430 int
431 lwp_suspend(struct lwp *curl, struct lwp *t)
432 {
433 int error;
434
435 KASSERT(mutex_owned(t->l_proc->p_lock));
436 KASSERT(lwp_locked(t, NULL));
437
438 KASSERT(curl != t || curl->l_stat == LSONPROC);
439
440 /*
441 * If the current LWP has been told to exit, we must not suspend anyone
442 * else or deadlock could occur. We won't return to userspace.
443 */
444 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
445 lwp_unlock(t);
446 return (EDEADLK);
447 }
448
449 if ((t->l_flag & LW_DBGSUSPEND) != 0) {
450 lwp_unlock(t);
451 return 0;
452 }
453
454 error = 0;
455
456 switch (t->l_stat) {
457 case LSRUN:
458 case LSONPROC:
459 t->l_flag |= LW_WSUSPEND;
460 lwp_need_userret(t);
461 lwp_unlock(t);
462 break;
463
464 case LSSLEEP:
465 t->l_flag |= LW_WSUSPEND;
466
467 /*
468 * Kick the LWP and try to get it to the kernel boundary
469 * so that it will release any locks that it holds.
470 * setrunnable() will release the lock.
471 */
472 if ((t->l_flag & LW_SINTR) != 0)
473 setrunnable(t);
474 else
475 lwp_unlock(t);
476 break;
477
478 case LSSUSPENDED:
479 lwp_unlock(t);
480 break;
481
482 case LSSTOP:
483 t->l_flag |= LW_WSUSPEND;
484 setrunnable(t);
485 break;
486
487 case LSIDL:
488 case LSZOMB:
489 error = EINTR; /* It's what Solaris does..... */
490 lwp_unlock(t);
491 break;
492 }
493
494 return (error);
495 }
496
497 /*
498 * Restart a suspended LWP.
499 *
500 * Must be called with p_lock held, and the LWP locked. Will unlock the
501 * LWP before return.
502 */
503 void
504 lwp_continue(struct lwp *l)
505 {
506
507 KASSERT(mutex_owned(l->l_proc->p_lock));
508 KASSERT(lwp_locked(l, NULL));
509
510 /* If rebooting or not suspended, then just bail out. */
511 if ((l->l_flag & LW_WREBOOT) != 0) {
512 lwp_unlock(l);
513 return;
514 }
515
516 l->l_flag &= ~LW_WSUSPEND;
517
518 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
519 lwp_unlock(l);
520 return;
521 }
522
523 /* setrunnable() will release the lock. */
524 setrunnable(l);
525 }
526
527 /*
528 * Restart a stopped LWP.
529 *
530 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
531 * LWP before return.
532 */
533 void
534 lwp_unstop(struct lwp *l)
535 {
536 struct proc *p = l->l_proc;
537
538 KASSERT(mutex_owned(proc_lock));
539 KASSERT(mutex_owned(p->p_lock));
540
541 lwp_lock(l);
542
543 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
544
545 /* If not stopped, then just bail out. */
546 if (l->l_stat != LSSTOP) {
547 lwp_unlock(l);
548 return;
549 }
550
551 p->p_stat = SACTIVE;
552 p->p_sflag &= ~PS_STOPPING;
553
554 if (!p->p_waited)
555 p->p_pptr->p_nstopchild--;
556
557 if (l->l_wchan == NULL) {
558 /* setrunnable() will release the lock. */
559 setrunnable(l);
560 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
561 /* setrunnable() so we can receive the signal */
562 setrunnable(l);
563 } else {
564 l->l_stat = LSSLEEP;
565 p->p_nrlwps++;
566 lwp_unlock(l);
567 }
568 }
569
570 /*
571 * Wait for an LWP within the current process to exit. If 'lid' is
572 * non-zero, we are waiting for a specific LWP.
573 *
574 * Must be called with p->p_lock held.
575 */
576 int
577 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
578 {
579 const lwpid_t curlid = l->l_lid;
580 proc_t *p = l->l_proc;
581 lwp_t *l2, *next;
582 int error;
583
584 KASSERT(mutex_owned(p->p_lock));
585
586 p->p_nlwpwait++;
587 l->l_waitingfor = lid;
588
589 for (;;) {
590 int nfound;
591
592 /*
593 * Avoid a race between exit1() and sigexit(): if the
594 * process is dumping core, then we need to bail out: call
595 * into lwp_userret() where we will be suspended until the
596 * deed is done.
597 */
598 if ((p->p_sflag & PS_WCORE) != 0) {
599 mutex_exit(p->p_lock);
600 lwp_userret(l);
601 KASSERT(false);
602 }
603
604 /*
605 * First off, drain any detached LWP that is waiting to be
606 * reaped.
607 */
608 while ((l2 = p->p_zomblwp) != NULL) {
609 p->p_zomblwp = NULL;
610 lwp_free(l2, false, false);/* releases proc mutex */
611 mutex_enter(p->p_lock);
612 }
613
614 /*
615 * Now look for an LWP to collect. If the whole process is
616 * exiting, count detached LWPs as eligible to be collected,
617 * but don't drain them here.
618 */
619 nfound = 0;
620 error = 0;
621
622 /*
623 * If given a specific LID, go via the tree and make sure
624 * it's not detached.
625 */
626 if (lid != 0) {
627 l2 = proc_find_lwp(p, lid);
628 if (l2 == NULL) {
629 error = ESRCH;
630 break;
631 }
632 KASSERT(l2->l_lid == lid);
633 if ((l2->l_prflag & LPR_DETACHED) != 0) {
634 error = EINVAL;
635 break;
636 }
637 } else {
638 l2 = LIST_FIRST(&p->p_lwps);
639 }
640 for (; l2 != NULL; l2 = next) {
641 next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
642
643 /*
644 * If a specific wait and the target is waiting on
645 * us, then avoid deadlock. This also traps LWPs
646 * that try to wait on themselves.
647 *
648 * Note that this does not handle more complicated
649 * cycles, like: t1 -> t2 -> t3 -> t1. The process
650 * can still be killed so it is not a major problem.
651 */
652 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
653 error = EDEADLK;
654 break;
655 }
656 if (l2 == l)
657 continue;
658 if ((l2->l_prflag & LPR_DETACHED) != 0) {
659 nfound += exiting;
660 continue;
661 }
662 if (lid != 0) {
663 /*
664 * Mark this LWP as the first waiter, if there
665 * is no other.
666 */
667 if (l2->l_waiter == 0)
668 l2->l_waiter = curlid;
669 } else if (l2->l_waiter != 0) {
670 /*
671 * It already has a waiter - so don't
672 * collect it. If the waiter doesn't
673 * grab it we'll get another chance
674 * later.
675 */
676 nfound++;
677 continue;
678 }
679 nfound++;
680
681 /* No need to lock the LWP in order to see LSZOMB. */
682 if (l2->l_stat != LSZOMB)
683 continue;
684
685 /*
686 * We're no longer waiting. Reset the "first waiter"
687 * pointer on the target, in case it was us.
688 */
689 l->l_waitingfor = 0;
690 l2->l_waiter = 0;
691 p->p_nlwpwait--;
692 if (departed)
693 *departed = l2->l_lid;
694 sched_lwp_collect(l2);
695
696 /* lwp_free() releases the proc lock. */
697 lwp_free(l2, false, false);
698 mutex_enter(p->p_lock);
699 return 0;
700 }
701
702 if (error != 0)
703 break;
704 if (nfound == 0) {
705 error = ESRCH;
706 break;
707 }
708
709 /*
710 * Note: since the lock will be dropped, need to restart on
711 * wakeup to run all LWPs again, e.g. there may be new LWPs.
712 */
713 if (exiting) {
714 KASSERT(p->p_nlwps > 1);
715 error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
716 break;
717 }
718
719 /*
720 * Break out if all LWPs are in _lwp_wait(). There are
721 * other ways to hang the process with _lwp_wait(), but the
722 * sleep is interruptable so little point checking for them.
723 */
724 if (p->p_nlwpwait == p->p_nlwps) {
725 error = EDEADLK;
726 break;
727 }
728
729 /*
730 * Sit around and wait for something to happen. We'll be
731 * awoken if any of the conditions examined change: if an
732 * LWP exits, is collected, or is detached.
733 */
734 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
735 break;
736 }
737
738 /*
739 * We didn't find any LWPs to collect, we may have received a
740 * signal, or some other condition has caused us to bail out.
741 *
742 * If waiting on a specific LWP, clear the waiters marker: some
743 * other LWP may want it. Then, kick all the remaining waiters
744 * so that they can re-check for zombies and for deadlock.
745 */
746 if (lid != 0) {
747 l2 = proc_find_lwp(p, lid);
748 KASSERT(l2 == NULL || l2->l_lid == lid);
749
750 if (l2 != NULL && l2->l_waiter == curlid)
751 l2->l_waiter = 0;
752 }
753 p->p_nlwpwait--;
754 l->l_waitingfor = 0;
755 cv_broadcast(&p->p_lwpcv);
756
757 return error;
758 }
759
760 /*
761 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
762 * The new LWP is created in state LSIDL and must be set running,
763 * suspended, or stopped by the caller.
764 */
765 int
766 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
767 void *stack, size_t stacksize, void (*func)(void *), void *arg,
768 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
769 const stack_t *sigstk)
770 {
771 struct lwp *l2;
772 turnstile_t *ts;
773
774 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
775
776 /*
777 * Enforce limits, excluding the first lwp and kthreads. We must
778 * use the process credentials here when adjusting the limit, as
779 * they are what's tied to the accounting entity. However for
780 * authorizing the action, we'll use the LWP's credentials.
781 */
782 mutex_enter(p2->p_lock);
783 if (p2->p_nlwps != 0 && p2 != &proc0) {
784 uid_t uid = kauth_cred_getuid(p2->p_cred);
785 int count = chglwpcnt(uid, 1);
786 if (__predict_false(count >
787 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
788 if (kauth_authorize_process(l1->l_cred,
789 KAUTH_PROCESS_RLIMIT, p2,
790 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
791 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
792 != 0) {
793 (void)chglwpcnt(uid, -1);
794 mutex_exit(p2->p_lock);
795 return EAGAIN;
796 }
797 }
798 }
799
800 /*
801 * First off, reap any detached LWP waiting to be collected.
802 * We can re-use its LWP structure and turnstile.
803 */
804 if ((l2 = p2->p_zomblwp) != NULL) {
805 p2->p_zomblwp = NULL;
806 lwp_free(l2, true, false);
807 /* p2 now unlocked by lwp_free() */
808 ts = l2->l_ts;
809 KASSERT(l2->l_inheritedprio == -1);
810 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
811 memset(l2, 0, sizeof(*l2));
812 l2->l_ts = ts;
813 } else {
814 mutex_exit(p2->p_lock);
815 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
816 memset(l2, 0, sizeof(*l2));
817 ts = l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
818 SLIST_INIT(&l2->l_pi_lenders);
819 }
820
821 l2->l_stat = LSLARVAL;
822 l2->l_proc = p2;
823 l2->l_refcnt = 0;
824 l2->l_class = sclass;
825
826 /*
827 * Allocate a process ID for this LWP. We need to do this now
828 * while we can still unwind if it fails. Beacuse we're marked
829 * as LARVAL, no lookups by the ID will succeed.
830 *
831 * N.B. this will always succeed for the first LWP in a process,
832 * because proc_alloc_lwpid() will usurp the slot. Also note
833 * that l2->l_proc MUST be valid so that lookups of the proc
834 * will succeed, even if the LWP itself is not visible.
835 */
836 if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
837 if (ts != &turnstile0)
838 pool_cache_put(turnstile_cache, ts);
839 l2->l_ts = NULL;
840 pool_cache_put(lwp_cache, l2);
841 return EAGAIN;
842 }
843
844 /*
845 * If vfork(), we want the LWP to run fast and on the same CPU
846 * as its parent, so that it can reuse the VM context and cache
847 * footprint on the local CPU.
848 */
849 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
850 l2->l_kpribase = PRI_KERNEL;
851 l2->l_priority = l1->l_priority;
852 l2->l_inheritedprio = -1;
853 l2->l_protectprio = -1;
854 l2->l_auxprio = -1;
855 l2->l_flag = 0;
856 l2->l_pflag = LP_MPSAFE;
857 TAILQ_INIT(&l2->l_ld_locks);
858 l2->l_psrefs = 0;
859 kmsan_lwp_alloc(l2);
860
861 /*
862 * For vfork, borrow parent's lwpctl context if it exists.
863 * This also causes us to return via lwp_userret.
864 */
865 if (flags & LWP_VFORK && l1->l_lwpctl) {
866 l2->l_lwpctl = l1->l_lwpctl;
867 l2->l_flag |= LW_LWPCTL;
868 }
869
870 /*
871 * If not the first LWP in the process, grab a reference to the
872 * descriptor table.
873 */
874 l2->l_fd = p2->p_fd;
875 if (p2->p_nlwps != 0) {
876 KASSERT(l1->l_proc == p2);
877 fd_hold(l2);
878 } else {
879 KASSERT(l1->l_proc != p2);
880 }
881
882 if (p2->p_flag & PK_SYSTEM) {
883 /* Mark it as a system LWP. */
884 l2->l_flag |= LW_SYSTEM;
885 }
886
887 kpreempt_disable();
888 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
889 l2->l_cpu = l1->l_cpu;
890 kpreempt_enable();
891
892 kdtrace_thread_ctor(NULL, l2);
893 lwp_initspecific(l2);
894 sched_lwp_fork(l1, l2);
895 lwp_update_creds(l2);
896 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
897 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
898 cv_init(&l2->l_sigcv, "sigwait");
899 cv_init(&l2->l_waitcv, "vfork");
900 l2->l_syncobj = &sched_syncobj;
901 PSREF_DEBUG_INIT_LWP(l2);
902
903 if (rnewlwpp != NULL)
904 *rnewlwpp = l2;
905
906 /*
907 * PCU state needs to be saved before calling uvm_lwp_fork() so that
908 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
909 */
910 pcu_save_all(l1);
911 #if PCU_UNIT_COUNT > 0
912 l2->l_pcu_valid = l1->l_pcu_valid;
913 #endif
914
915 uvm_lwp_setuarea(l2, uaddr);
916 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
917
918 mutex_enter(p2->p_lock);
919
920 /*
921 * This renders l2 visible in the pid table once p2->p_lock is
922 * released.
923 */
924 l2->l_stat = LSIDL;
925
926 if ((flags & LWP_DETACHED) != 0) {
927 l2->l_prflag = LPR_DETACHED;
928 p2->p_ndlwps++;
929 } else
930 l2->l_prflag = 0;
931
932 if (l1->l_proc == p2) {
933 /*
934 * These flags are set while p_lock is held. Copy with
935 * p_lock held too, so the LWP doesn't sneak into the
936 * process without them being set.
937 */
938 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
939 } else {
940 /* fork(): pending core/exit doesn't apply to child. */
941 l2->l_flag |= (l1->l_flag & LW_WREBOOT);
942 }
943
944 l2->l_sigstk = *sigstk;
945 l2->l_sigmask = *sigmask;
946 TAILQ_INIT(&l2->l_sigpend.sp_info);
947 sigemptyset(&l2->l_sigpend.sp_set);
948 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
949 p2->p_nlwps++;
950 p2->p_nrlwps++;
951
952 KASSERT(l2->l_affinity == NULL);
953
954 /* Inherit the affinity mask. */
955 if (l1->l_affinity) {
956 /*
957 * Note that we hold the state lock while inheriting
958 * the affinity to avoid race with sched_setaffinity().
959 */
960 lwp_lock(l1);
961 if (l1->l_affinity) {
962 kcpuset_use(l1->l_affinity);
963 l2->l_affinity = l1->l_affinity;
964 }
965 lwp_unlock(l1);
966 }
967
968 /* This marks the end of the "must be atomic" section. */
969 mutex_exit(p2->p_lock);
970
971 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
972
973 mutex_enter(proc_lock);
974 LIST_INSERT_HEAD(&alllwp, l2, l_list);
975 /* Inherit a processor-set */
976 l2->l_psid = l1->l_psid;
977 mutex_exit(proc_lock);
978
979 SYSCALL_TIME_LWP_INIT(l2);
980
981 if (p2->p_emul->e_lwp_fork)
982 (*p2->p_emul->e_lwp_fork)(l1, l2);
983
984 return (0);
985 }
986
987 /*
988 * Set a new LWP running. If the process is stopping, then the LWP is
989 * created stopped.
990 */
991 void
992 lwp_start(lwp_t *l, int flags)
993 {
994 proc_t *p = l->l_proc;
995
996 mutex_enter(p->p_lock);
997 lwp_lock(l);
998 KASSERT(l->l_stat == LSIDL);
999 if ((flags & LWP_SUSPENDED) != 0) {
1000 /* It'll suspend itself in lwp_userret(). */
1001 l->l_flag |= LW_WSUSPEND;
1002 }
1003 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1004 KASSERT(l->l_wchan == NULL);
1005 l->l_stat = LSSTOP;
1006 p->p_nrlwps--;
1007 lwp_unlock(l);
1008 } else {
1009 setrunnable(l);
1010 /* LWP now unlocked */
1011 }
1012 mutex_exit(p->p_lock);
1013 }
1014
1015 /*
1016 * Called by MD code when a new LWP begins execution. Must be called
1017 * with the previous LWP locked (so at splsched), or if there is no
1018 * previous LWP, at splsched.
1019 */
1020 void
1021 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1022 {
1023 kmutex_t *lock;
1024
1025 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1026 KASSERT(kpreempt_disabled());
1027 KASSERT(prev != NULL);
1028 KASSERT((prev->l_pflag & LP_RUNNING) != 0);
1029 KASSERT(curcpu()->ci_mtx_count == -2);
1030
1031 /*
1032 * Immediately mark the previous LWP as no longer running and unlock
1033 * (to keep lock wait times short as possible). If a zombie, don't
1034 * touch after clearing LP_RUNNING as it could be reaped by another
1035 * CPU. Issue a memory barrier to ensure this.
1036 */
1037 lock = prev->l_mutex;
1038 if (__predict_false(prev->l_stat == LSZOMB)) {
1039 membar_sync();
1040 }
1041 prev->l_pflag &= ~LP_RUNNING;
1042 mutex_spin_exit(lock);
1043
1044 /* Correct spin mutex count after mi_switch(). */
1045 curcpu()->ci_mtx_count = 0;
1046
1047 /* Install new VM context. */
1048 if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1049 pmap_activate(new_lwp);
1050 }
1051
1052 /* We remain at IPL_SCHED from mi_switch() - reset it. */
1053 spl0();
1054
1055 LOCKDEBUG_BARRIER(NULL, 0);
1056 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1057
1058 /* For kthreads, acquire kernel lock if not MPSAFE. */
1059 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1060 KERNEL_LOCK(1, new_lwp);
1061 }
1062 }
1063
1064 /*
1065 * Exit an LWP.
1066 */
1067 void
1068 lwp_exit(struct lwp *l)
1069 {
1070 struct proc *p = l->l_proc;
1071 struct lwp *l2;
1072 bool current;
1073
1074 current = (l == curlwp);
1075
1076 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1077 KASSERT(p == curproc);
1078
1079 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1080
1081 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1082 LOCKDEBUG_BARRIER(NULL, 0);
1083 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1084
1085 /*
1086 * If we are the last live LWP in a process, we need to exit the
1087 * entire process. We do so with an exit status of zero, because
1088 * it's a "controlled" exit, and because that's what Solaris does.
1089 *
1090 * We are not quite a zombie yet, but for accounting purposes we
1091 * must increment the count of zombies here.
1092 *
1093 * Note: the last LWP's specificdata will be deleted here.
1094 */
1095 mutex_enter(p->p_lock);
1096 if (p->p_nlwps - p->p_nzlwps == 1) {
1097 KASSERT(current == true);
1098 KASSERT(p != &proc0);
1099 exit1(l, 0, 0);
1100 /* NOTREACHED */
1101 }
1102 p->p_nzlwps++;
1103
1104 /*
1105 * Perform any required thread cleanup. Do this early so
1106 * anyone wanting to look us up with lwp_getref_lwpid() will
1107 * fail to find us before we become a zombie.
1108 *
1109 * N.B. this will unlock p->p_lock on our behalf.
1110 */
1111 lwp_thread_cleanup(l);
1112
1113 if (p->p_emul->e_lwp_exit)
1114 (*p->p_emul->e_lwp_exit)(l);
1115
1116 /* Drop filedesc reference. */
1117 fd_free();
1118
1119 /* Release fstrans private data. */
1120 fstrans_lwp_dtor(l);
1121
1122 /* Delete the specificdata while it's still safe to sleep. */
1123 lwp_finispecific(l);
1124
1125 /*
1126 * Release our cached credentials.
1127 */
1128 kauth_cred_free(l->l_cred);
1129 callout_destroy(&l->l_timeout_ch);
1130
1131 /*
1132 * If traced, report LWP exit event to the debugger.
1133 *
1134 * Remove the LWP from the global list.
1135 * Free its LID from the PID namespace if needed.
1136 */
1137 mutex_enter(proc_lock);
1138
1139 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1140 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1141 mutex_enter(p->p_lock);
1142 if (ISSET(p->p_sflag, PS_WEXIT)) {
1143 mutex_exit(p->p_lock);
1144 /*
1145 * We are exiting, bail out without informing parent
1146 * about a terminating LWP as it would deadlock.
1147 */
1148 } else {
1149 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1150 mutex_enter(proc_lock);
1151 }
1152 }
1153
1154 LIST_REMOVE(l, l_list);
1155 mutex_exit(proc_lock);
1156
1157 /*
1158 * Get rid of all references to the LWP that others (e.g. procfs)
1159 * may have, and mark the LWP as a zombie. If the LWP is detached,
1160 * mark it waiting for collection in the proc structure. Note that
1161 * before we can do that, we need to free any other dead, deatched
1162 * LWP waiting to meet its maker.
1163 *
1164 * All conditions need to be observed upon under the same hold of
1165 * p_lock, because if the lock is dropped any of them can change.
1166 */
1167 mutex_enter(p->p_lock);
1168 for (;;) {
1169 if (lwp_drainrefs(l))
1170 continue;
1171 if ((l->l_prflag & LPR_DETACHED) != 0) {
1172 if ((l2 = p->p_zomblwp) != NULL) {
1173 p->p_zomblwp = NULL;
1174 lwp_free(l2, false, false);
1175 /* proc now unlocked */
1176 mutex_enter(p->p_lock);
1177 continue;
1178 }
1179 p->p_zomblwp = l;
1180 }
1181 break;
1182 }
1183
1184 /*
1185 * If we find a pending signal for the process and we have been
1186 * asked to check for signals, then we lose: arrange to have
1187 * all other LWPs in the process check for signals.
1188 */
1189 if ((l->l_flag & LW_PENDSIG) != 0 &&
1190 firstsig(&p->p_sigpend.sp_set) != 0) {
1191 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1192 lwp_lock(l2);
1193 signotify(l2);
1194 lwp_unlock(l2);
1195 }
1196 }
1197
1198 /*
1199 * Release any PCU resources before becoming a zombie.
1200 */
1201 pcu_discard_all(l);
1202
1203 lwp_lock(l);
1204 l->l_stat = LSZOMB;
1205 if (l->l_name != NULL) {
1206 strcpy(l->l_name, "(zombie)");
1207 }
1208 lwp_unlock(l);
1209 p->p_nrlwps--;
1210 cv_broadcast(&p->p_lwpcv);
1211 if (l->l_lwpctl != NULL)
1212 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1213 mutex_exit(p->p_lock);
1214
1215 /*
1216 * We can no longer block. At this point, lwp_free() may already
1217 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1218 *
1219 * Free MD LWP resources.
1220 */
1221 cpu_lwp_free(l, 0);
1222
1223 if (current) {
1224 /* Switch away into oblivion. */
1225 lwp_lock(l);
1226 spc_lock(l->l_cpu);
1227 mi_switch(l);
1228 panic("lwp_exit");
1229 }
1230 }
1231
1232 /*
1233 * Free a dead LWP's remaining resources.
1234 *
1235 * XXXLWP limits.
1236 */
1237 void
1238 lwp_free(struct lwp *l, bool recycle, bool last)
1239 {
1240 struct proc *p = l->l_proc;
1241 struct rusage *ru;
1242 ksiginfoq_t kq;
1243
1244 KASSERT(l != curlwp);
1245 KASSERT(last || mutex_owned(p->p_lock));
1246
1247 /*
1248 * We use the process credentials instead of the lwp credentials here
1249 * because the lwp credentials maybe cached (just after a setuid call)
1250 * and we don't want pay for syncing, since the lwp is going away
1251 * anyway
1252 */
1253 if (p != &proc0 && p->p_nlwps != 1)
1254 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1255
1256 /*
1257 * If this was not the last LWP in the process, then adjust counters
1258 * and unlock. This is done differently for the last LWP in exit1().
1259 */
1260 if (!last) {
1261 /*
1262 * Add the LWP's run time to the process' base value.
1263 * This needs to co-incide with coming off p_lwps.
1264 */
1265 bintime_add(&p->p_rtime, &l->l_rtime);
1266 p->p_pctcpu += l->l_pctcpu;
1267 ru = &p->p_stats->p_ru;
1268 ruadd(ru, &l->l_ru);
1269 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1270 ru->ru_nivcsw += l->l_nivcsw;
1271 LIST_REMOVE(l, l_sibling);
1272 p->p_nlwps--;
1273 p->p_nzlwps--;
1274 if ((l->l_prflag & LPR_DETACHED) != 0)
1275 p->p_ndlwps--;
1276
1277 /* Free the LWP ID. */
1278 proc_free_lwpid(p, l->l_lid);
1279
1280 /*
1281 * Have any LWPs sleeping in lwp_wait() recheck for
1282 * deadlock.
1283 */
1284 cv_broadcast(&p->p_lwpcv);
1285 mutex_exit(p->p_lock);
1286 }
1287
1288 /*
1289 * In the unlikely event that the LWP is still on the CPU,
1290 * then spin until it has switched away.
1291 */
1292 membar_consumer();
1293 while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) {
1294 SPINLOCK_BACKOFF_HOOK;
1295 }
1296
1297 /*
1298 * Destroy the LWP's remaining signal information.
1299 */
1300 ksiginfo_queue_init(&kq);
1301 sigclear(&l->l_sigpend, NULL, &kq);
1302 ksiginfo_queue_drain(&kq);
1303 cv_destroy(&l->l_sigcv);
1304 cv_destroy(&l->l_waitcv);
1305
1306 /*
1307 * Free lwpctl structure and affinity.
1308 */
1309 if (l->l_lwpctl) {
1310 lwp_ctl_free(l);
1311 }
1312 if (l->l_affinity) {
1313 kcpuset_unuse(l->l_affinity, NULL);
1314 l->l_affinity = NULL;
1315 }
1316
1317 /*
1318 * Free the LWP's turnstile and the LWP structure itself unless the
1319 * caller wants to recycle them. Also, free the scheduler specific
1320 * data.
1321 *
1322 * We can't return turnstile0 to the pool (it didn't come from it),
1323 * so if it comes up just drop it quietly and move on.
1324 *
1325 * We don't recycle the VM resources at this time.
1326 */
1327
1328 if (!recycle && l->l_ts != &turnstile0)
1329 pool_cache_put(turnstile_cache, l->l_ts);
1330 if (l->l_name != NULL)
1331 kmem_free(l->l_name, MAXCOMLEN);
1332
1333 kmsan_lwp_free(l);
1334 kcov_lwp_free(l);
1335 cpu_lwp_free2(l);
1336 uvm_lwp_exit(l);
1337
1338 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1339 KASSERT(l->l_inheritedprio == -1);
1340 KASSERT(l->l_blcnt == 0);
1341 kdtrace_thread_dtor(NULL, l);
1342 if (!recycle)
1343 pool_cache_put(lwp_cache, l);
1344 }
1345
1346 /*
1347 * Migrate the LWP to the another CPU. Unlocks the LWP.
1348 */
1349 void
1350 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1351 {
1352 struct schedstate_percpu *tspc;
1353 int lstat = l->l_stat;
1354
1355 KASSERT(lwp_locked(l, NULL));
1356 KASSERT(tci != NULL);
1357
1358 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1359 if ((l->l_pflag & LP_RUNNING) != 0) {
1360 lstat = LSONPROC;
1361 }
1362
1363 /*
1364 * The destination CPU could be changed while previous migration
1365 * was not finished.
1366 */
1367 if (l->l_target_cpu != NULL) {
1368 l->l_target_cpu = tci;
1369 lwp_unlock(l);
1370 return;
1371 }
1372
1373 /* Nothing to do if trying to migrate to the same CPU */
1374 if (l->l_cpu == tci) {
1375 lwp_unlock(l);
1376 return;
1377 }
1378
1379 KASSERT(l->l_target_cpu == NULL);
1380 tspc = &tci->ci_schedstate;
1381 switch (lstat) {
1382 case LSRUN:
1383 l->l_target_cpu = tci;
1384 break;
1385 case LSSLEEP:
1386 l->l_cpu = tci;
1387 break;
1388 case LSIDL:
1389 case LSSTOP:
1390 case LSSUSPENDED:
1391 l->l_cpu = tci;
1392 if (l->l_wchan == NULL) {
1393 lwp_unlock_to(l, tspc->spc_lwplock);
1394 return;
1395 }
1396 break;
1397 case LSONPROC:
1398 l->l_target_cpu = tci;
1399 spc_lock(l->l_cpu);
1400 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1401 /* spc now unlocked */
1402 break;
1403 }
1404 lwp_unlock(l);
1405 }
1406
1407 /*
1408 * Find the LWP in the process. Arguments may be zero, in such case,
1409 * the calling process and first LWP in the list will be used.
1410 * On success - returns proc locked.
1411 */
1412 struct lwp *
1413 lwp_find2(pid_t pid, lwpid_t lid)
1414 {
1415 proc_t *p;
1416 lwp_t *l;
1417
1418 /* Find the process. */
1419 if (pid != 0) {
1420 mutex_enter(proc_lock);
1421 p = proc_find(pid);
1422 if (p == NULL) {
1423 mutex_exit(proc_lock);
1424 return NULL;
1425 }
1426 mutex_enter(p->p_lock);
1427 mutex_exit(proc_lock);
1428 } else {
1429 p = curlwp->l_proc;
1430 mutex_enter(p->p_lock);
1431 }
1432 /* Find the thread. */
1433 if (lid != 0) {
1434 l = lwp_find(p, lid);
1435 } else {
1436 l = LIST_FIRST(&p->p_lwps);
1437 }
1438 if (l == NULL) {
1439 mutex_exit(p->p_lock);
1440 }
1441 return l;
1442 }
1443
1444 /*
1445 * Look up a live LWP within the specified process.
1446 *
1447 * Must be called with p->p_lock held (as it looks at the radix tree,
1448 * and also wants to exclude idle and zombie LWPs).
1449 */
1450 struct lwp *
1451 lwp_find(struct proc *p, lwpid_t id)
1452 {
1453 struct lwp *l;
1454
1455 KASSERT(mutex_owned(p->p_lock));
1456
1457 l = proc_find_lwp(p, id);
1458 KASSERT(l == NULL || l->l_lid == id);
1459
1460 /*
1461 * No need to lock - all of these conditions will
1462 * be visible with the process level mutex held.
1463 */
1464 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1465 l = NULL;
1466
1467 return l;
1468 }
1469
1470 /*
1471 * Update an LWP's cached credentials to mirror the process' master copy.
1472 *
1473 * This happens early in the syscall path, on user trap, and on LWP
1474 * creation. A long-running LWP can also voluntarily choose to update
1475 * its credentials by calling this routine. This may be called from
1476 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1477 */
1478 void
1479 lwp_update_creds(struct lwp *l)
1480 {
1481 kauth_cred_t oc;
1482 struct proc *p;
1483
1484 p = l->l_proc;
1485 oc = l->l_cred;
1486
1487 mutex_enter(p->p_lock);
1488 kauth_cred_hold(p->p_cred);
1489 l->l_cred = p->p_cred;
1490 l->l_prflag &= ~LPR_CRMOD;
1491 mutex_exit(p->p_lock);
1492 if (oc != NULL)
1493 kauth_cred_free(oc);
1494 }
1495
1496 /*
1497 * Verify that an LWP is locked, and optionally verify that the lock matches
1498 * one we specify.
1499 */
1500 int
1501 lwp_locked(struct lwp *l, kmutex_t *mtx)
1502 {
1503 kmutex_t *cur = l->l_mutex;
1504
1505 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1506 }
1507
1508 /*
1509 * Lend a new mutex to an LWP. The old mutex must be held.
1510 */
1511 kmutex_t *
1512 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1513 {
1514 kmutex_t *oldmtx = l->l_mutex;
1515
1516 KASSERT(mutex_owned(oldmtx));
1517
1518 membar_exit();
1519 l->l_mutex = mtx;
1520 return oldmtx;
1521 }
1522
1523 /*
1524 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1525 * must be held.
1526 */
1527 void
1528 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1529 {
1530 kmutex_t *old;
1531
1532 KASSERT(lwp_locked(l, NULL));
1533
1534 old = l->l_mutex;
1535 membar_exit();
1536 l->l_mutex = mtx;
1537 mutex_spin_exit(old);
1538 }
1539
1540 int
1541 lwp_trylock(struct lwp *l)
1542 {
1543 kmutex_t *old;
1544
1545 for (;;) {
1546 if (!mutex_tryenter(old = l->l_mutex))
1547 return 0;
1548 if (__predict_true(l->l_mutex == old))
1549 return 1;
1550 mutex_spin_exit(old);
1551 }
1552 }
1553
1554 void
1555 lwp_unsleep(lwp_t *l, bool unlock)
1556 {
1557
1558 KASSERT(mutex_owned(l->l_mutex));
1559 (*l->l_syncobj->sobj_unsleep)(l, unlock);
1560 }
1561
1562 /*
1563 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1564 * set.
1565 */
1566 void
1567 lwp_userret(struct lwp *l)
1568 {
1569 struct proc *p;
1570 int sig;
1571
1572 KASSERT(l == curlwp);
1573 KASSERT(l->l_stat == LSONPROC);
1574 p = l->l_proc;
1575
1576 /*
1577 * It is safe to do this read unlocked on a MP system..
1578 */
1579 while ((l->l_flag & LW_USERRET) != 0) {
1580 /*
1581 * Process pending signals first, unless the process
1582 * is dumping core or exiting, where we will instead
1583 * enter the LW_WSUSPEND case below.
1584 */
1585 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1586 LW_PENDSIG) {
1587 mutex_enter(p->p_lock);
1588 while ((sig = issignal(l)) != 0)
1589 postsig(sig);
1590 mutex_exit(p->p_lock);
1591 }
1592
1593 /*
1594 * Core-dump or suspend pending.
1595 *
1596 * In case of core dump, suspend ourselves, so that the kernel
1597 * stack and therefore the userland registers saved in the
1598 * trapframe are around for coredump() to write them out.
1599 * We also need to save any PCU resources that we have so that
1600 * they accessible for coredump(). We issue a wakeup on
1601 * p->p_lwpcv so that sigexit() will write the core file out
1602 * once all other LWPs are suspended.
1603 */
1604 if ((l->l_flag & LW_WSUSPEND) != 0) {
1605 pcu_save_all(l);
1606 mutex_enter(p->p_lock);
1607 p->p_nrlwps--;
1608 cv_broadcast(&p->p_lwpcv);
1609 lwp_lock(l);
1610 l->l_stat = LSSUSPENDED;
1611 lwp_unlock(l);
1612 mutex_exit(p->p_lock);
1613 lwp_lock(l);
1614 spc_lock(l->l_cpu);
1615 mi_switch(l);
1616 }
1617
1618 /* Process is exiting. */
1619 if ((l->l_flag & LW_WEXIT) != 0) {
1620 lwp_exit(l);
1621 KASSERT(0);
1622 /* NOTREACHED */
1623 }
1624
1625 /* update lwpctl processor (for vfork child_return) */
1626 if (l->l_flag & LW_LWPCTL) {
1627 lwp_lock(l);
1628 KASSERT(kpreempt_disabled());
1629 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1630 l->l_lwpctl->lc_pctr++;
1631 l->l_flag &= ~LW_LWPCTL;
1632 lwp_unlock(l);
1633 }
1634 }
1635 }
1636
1637 /*
1638 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1639 */
1640 void
1641 lwp_need_userret(struct lwp *l)
1642 {
1643
1644 KASSERT(!cpu_intr_p());
1645 KASSERT(lwp_locked(l, NULL));
1646
1647 /*
1648 * If the LWP is in any state other than LSONPROC, we know that it
1649 * is executing in-kernel and will hit userret() on the way out.
1650 *
1651 * If the LWP is curlwp, then we know we'll be back out to userspace
1652 * soon (can't be called from a hardware interrupt here).
1653 *
1654 * Otherwise, we can't be sure what the LWP is doing, so first make
1655 * sure the update to l_flag will be globally visible, and then
1656 * force the LWP to take a trip through trap() where it will do
1657 * userret().
1658 */
1659 if (l->l_stat == LSONPROC && l != curlwp) {
1660 membar_producer();
1661 cpu_signotify(l);
1662 }
1663 }
1664
1665 /*
1666 * Add one reference to an LWP. Interlocked against lwp_drainrefs()
1667 * either by holding the proc's lock or by holding lwp_threadid_lock.
1668 * If callers don't hold the proc's lock, then they must check for a
1669 * larva after acquiring the reference. References can't be added to
1670 * zombies because references have already been drained off before the
1671 * state changes to LSZOMB.
1672 */
1673 static void
1674 lwp_addref2(struct lwp *l)
1675 {
1676 KASSERT(l->l_stat != LSZOMB);
1677 atomic_inc_uint(&l->l_refcnt);
1678 }
1679
1680 /*
1681 * Add one reference to an LWP. This will prevent the LWP from
1682 * exiting, thus keep the lwp structure and PCB around to inspect.
1683 */
1684 void
1685 lwp_addref(struct lwp *l)
1686 {
1687 KASSERT(mutex_owned(l->l_proc->p_lock));
1688 lwp_addref2(l);
1689 }
1690
1691 /*
1692 * Remove one reference to an LWP. If this is the last reference,
1693 * then we must finalize the LWP's death.
1694 */
1695 void
1696 lwp_delref(struct lwp *l)
1697 {
1698 struct proc *p = l->l_proc;
1699
1700 mutex_enter(p->p_lock);
1701 lwp_delref2(l);
1702 mutex_exit(p->p_lock);
1703 }
1704
1705 /*
1706 * Remove one reference to an LWP. If this is the last reference,
1707 * then we must finalize the LWP's death. The proc mutex is held
1708 * on entry.
1709 */
1710 void
1711 lwp_delref2(struct lwp *l)
1712 {
1713 struct proc *p = l->l_proc;
1714
1715 KASSERT(mutex_owned(p->p_lock));
1716 KASSERT(l->l_stat != LSZOMB);
1717 KASSERT(atomic_load_relaxed(&l->l_refcnt) > 0);
1718
1719 if (atomic_dec_uint_nv(&l->l_refcnt) == 0)
1720 cv_broadcast(&p->p_lwpcv);
1721 }
1722
1723 /*
1724 * Drain all references to the current LWP. Returns true if
1725 * we blocked.
1726 */
1727 bool
1728 lwp_drainrefs(struct lwp *l)
1729 {
1730 struct proc *p = l->l_proc;
1731 bool rv = false;
1732
1733 KASSERT(mutex_owned(p->p_lock));
1734
1735 /*
1736 * Lookups by thread ID hold lwp_threadid_lock as a reader,
1737 * increase l_refcnt, release it, and then acquire p_lock to
1738 * check for LPR_DRAINING. By taking lwp_threadid_lock as a
1739 * writer here we ensure that either we see the increase in
1740 * l_refcnt or that they see LPR_DRAINING.
1741 */
1742 rw_enter(&lwp_threadid_lock, RW_WRITER);
1743 l->l_prflag |= LPR_DRAINING;
1744 rw_exit(&lwp_threadid_lock);
1745
1746 while (atomic_load_relaxed(&l->l_refcnt) > 0) {
1747 rv = true;
1748 cv_wait(&p->p_lwpcv, p->p_lock);
1749 }
1750 return rv;
1751 }
1752
1753 /*
1754 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1755 * be held.
1756 */
1757 bool
1758 lwp_alive(lwp_t *l)
1759 {
1760
1761 KASSERT(mutex_owned(l->l_proc->p_lock));
1762
1763 switch (l->l_stat) {
1764 case LSSLEEP:
1765 case LSRUN:
1766 case LSONPROC:
1767 case LSSTOP:
1768 case LSSUSPENDED:
1769 return true;
1770 default:
1771 return false;
1772 }
1773 }
1774
1775 /*
1776 * Return first live LWP in the process.
1777 */
1778 lwp_t *
1779 lwp_find_first(proc_t *p)
1780 {
1781 lwp_t *l;
1782
1783 KASSERT(mutex_owned(p->p_lock));
1784
1785 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1786 if (lwp_alive(l)) {
1787 return l;
1788 }
1789 }
1790
1791 return NULL;
1792 }
1793
1794 /*
1795 * Allocate a new lwpctl structure for a user LWP.
1796 */
1797 int
1798 lwp_ctl_alloc(vaddr_t *uaddr)
1799 {
1800 lcproc_t *lp;
1801 u_int bit, i, offset;
1802 struct uvm_object *uao;
1803 int error;
1804 lcpage_t *lcp;
1805 proc_t *p;
1806 lwp_t *l;
1807
1808 l = curlwp;
1809 p = l->l_proc;
1810
1811 /* don't allow a vforked process to create lwp ctls */
1812 if (p->p_lflag & PL_PPWAIT)
1813 return EBUSY;
1814
1815 if (l->l_lcpage != NULL) {
1816 lcp = l->l_lcpage;
1817 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1818 return 0;
1819 }
1820
1821 /* First time around, allocate header structure for the process. */
1822 if ((lp = p->p_lwpctl) == NULL) {
1823 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1824 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1825 lp->lp_uao = NULL;
1826 TAILQ_INIT(&lp->lp_pages);
1827 mutex_enter(p->p_lock);
1828 if (p->p_lwpctl == NULL) {
1829 p->p_lwpctl = lp;
1830 mutex_exit(p->p_lock);
1831 } else {
1832 mutex_exit(p->p_lock);
1833 mutex_destroy(&lp->lp_lock);
1834 kmem_free(lp, sizeof(*lp));
1835 lp = p->p_lwpctl;
1836 }
1837 }
1838
1839 /*
1840 * Set up an anonymous memory region to hold the shared pages.
1841 * Map them into the process' address space. The user vmspace
1842 * gets the first reference on the UAO.
1843 */
1844 mutex_enter(&lp->lp_lock);
1845 if (lp->lp_uao == NULL) {
1846 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1847 lp->lp_cur = 0;
1848 lp->lp_max = LWPCTL_UAREA_SZ;
1849 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1850 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1851 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1852 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1853 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1854 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1855 if (error != 0) {
1856 uao_detach(lp->lp_uao);
1857 lp->lp_uao = NULL;
1858 mutex_exit(&lp->lp_lock);
1859 return error;
1860 }
1861 }
1862
1863 /* Get a free block and allocate for this LWP. */
1864 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1865 if (lcp->lcp_nfree != 0)
1866 break;
1867 }
1868 if (lcp == NULL) {
1869 /* Nothing available - try to set up a free page. */
1870 if (lp->lp_cur == lp->lp_max) {
1871 mutex_exit(&lp->lp_lock);
1872 return ENOMEM;
1873 }
1874 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1875
1876 /*
1877 * Wire the next page down in kernel space. Since this
1878 * is a new mapping, we must add a reference.
1879 */
1880 uao = lp->lp_uao;
1881 (*uao->pgops->pgo_reference)(uao);
1882 lcp->lcp_kaddr = vm_map_min(kernel_map);
1883 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1884 uao, lp->lp_cur, PAGE_SIZE,
1885 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1886 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1887 if (error != 0) {
1888 mutex_exit(&lp->lp_lock);
1889 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1890 (*uao->pgops->pgo_detach)(uao);
1891 return error;
1892 }
1893 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1894 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1895 if (error != 0) {
1896 mutex_exit(&lp->lp_lock);
1897 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1898 lcp->lcp_kaddr + PAGE_SIZE);
1899 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1900 return error;
1901 }
1902 /* Prepare the page descriptor and link into the list. */
1903 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1904 lp->lp_cur += PAGE_SIZE;
1905 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1906 lcp->lcp_rotor = 0;
1907 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1908 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1909 }
1910 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1911 if (++i >= LWPCTL_BITMAP_ENTRIES)
1912 i = 0;
1913 }
1914 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1915 lcp->lcp_bitmap[i] ^= (1U << bit);
1916 lcp->lcp_rotor = i;
1917 lcp->lcp_nfree--;
1918 l->l_lcpage = lcp;
1919 offset = (i << 5) + bit;
1920 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1921 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1922 mutex_exit(&lp->lp_lock);
1923
1924 KPREEMPT_DISABLE(l);
1925 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1926 KPREEMPT_ENABLE(l);
1927
1928 return 0;
1929 }
1930
1931 /*
1932 * Free an lwpctl structure back to the per-process list.
1933 */
1934 void
1935 lwp_ctl_free(lwp_t *l)
1936 {
1937 struct proc *p = l->l_proc;
1938 lcproc_t *lp;
1939 lcpage_t *lcp;
1940 u_int map, offset;
1941
1942 /* don't free a lwp context we borrowed for vfork */
1943 if (p->p_lflag & PL_PPWAIT) {
1944 l->l_lwpctl = NULL;
1945 return;
1946 }
1947
1948 lp = p->p_lwpctl;
1949 KASSERT(lp != NULL);
1950
1951 lcp = l->l_lcpage;
1952 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1953 KASSERT(offset < LWPCTL_PER_PAGE);
1954
1955 mutex_enter(&lp->lp_lock);
1956 lcp->lcp_nfree++;
1957 map = offset >> 5;
1958 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1959 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1960 lcp->lcp_rotor = map;
1961 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1962 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1963 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1964 }
1965 mutex_exit(&lp->lp_lock);
1966 }
1967
1968 /*
1969 * Process is exiting; tear down lwpctl state. This can only be safely
1970 * called by the last LWP in the process.
1971 */
1972 void
1973 lwp_ctl_exit(void)
1974 {
1975 lcpage_t *lcp, *next;
1976 lcproc_t *lp;
1977 proc_t *p;
1978 lwp_t *l;
1979
1980 l = curlwp;
1981 l->l_lwpctl = NULL;
1982 l->l_lcpage = NULL;
1983 p = l->l_proc;
1984 lp = p->p_lwpctl;
1985
1986 KASSERT(lp != NULL);
1987 KASSERT(p->p_nlwps == 1);
1988
1989 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1990 next = TAILQ_NEXT(lcp, lcp_chain);
1991 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1992 lcp->lcp_kaddr + PAGE_SIZE);
1993 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1994 }
1995
1996 if (lp->lp_uao != NULL) {
1997 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1998 lp->lp_uva + LWPCTL_UAREA_SZ);
1999 }
2000
2001 mutex_destroy(&lp->lp_lock);
2002 kmem_free(lp, sizeof(*lp));
2003 p->p_lwpctl = NULL;
2004 }
2005
2006 /*
2007 * Return the current LWP's "preemption counter". Used to detect
2008 * preemption across operations that can tolerate preemption without
2009 * crashing, but which may generate incorrect results if preempted.
2010 */
2011 uint64_t
2012 lwp_pctr(void)
2013 {
2014
2015 return curlwp->l_ncsw;
2016 }
2017
2018 /*
2019 * Set an LWP's private data pointer.
2020 */
2021 int
2022 lwp_setprivate(struct lwp *l, void *ptr)
2023 {
2024 int error = 0;
2025
2026 l->l_private = ptr;
2027 #ifdef __HAVE_CPU_LWP_SETPRIVATE
2028 error = cpu_lwp_setprivate(l, ptr);
2029 #endif
2030 return error;
2031 }
2032
2033 static void
2034 lwp_threadid_init(void)
2035 {
2036 rw_init(&lwp_threadid_lock);
2037 }
2038
2039 /*
2040 * Lookup an LWP by global thread ID. Care must be taken because
2041 * callers of this are operating outside the normal locking protocol.
2042 * We return the LWP with an additional reference that must be dropped
2043 * with lwp_delref().
2044 */
2045 struct lwp *
2046 lwp_getref_lwpid(lwpid_t tid)
2047 {
2048 struct lwp *l;
2049
2050 /*
2051 * We rely on lwp_thread_cleanup() to hide LWP IDs from us
2052 * to ensure that we cannot add a reference do an exiting
2053 * LWP.
2054 */
2055 rw_enter(&lwp_threadid_lock, RW_READER);
2056 l = proc_seek_lwpid(tid);
2057 if (__predict_false(l == NULL)) {
2058 rw_exit(&lwp_threadid_lock);
2059 return NULL;
2060 }
2061
2062 /*
2063 * Acquire a reference on the lwp. It is safe to do this unlocked
2064 * here because lwp_drainrefs() serializes with us by taking the
2065 * lwp_threadid_lock as a writer.
2066 */
2067 lwp_addref2(l);
2068 rw_exit(&lwp_threadid_lock);
2069
2070 /*
2071 * Now verify that our reference is valid.
2072 */
2073 struct proc *p = l->l_proc;
2074 mutex_enter(p->p_lock);
2075 if (__predict_false(l->l_stat == LSLARVAL ||
2076 (l->l_prflag & LPR_DRAINING) != 0)) {
2077 lwp_delref2(l);
2078 l = NULL;
2079 }
2080 mutex_exit(p->p_lock);
2081
2082 return l;
2083 }
2084
2085 /*
2086 * Perform any thread-related cleanup on LWP exit.
2087 * N.B. l->l_proc->p_lock must be HELD on entry but will
2088 * be released before returning!
2089 */
2090 void
2091 lwp_thread_cleanup(struct lwp *l)
2092 {
2093 KASSERT(l == curlwp);
2094 const lwpid_t tid = l->l_lid;
2095
2096 KASSERT(mutex_owned(l->l_proc->p_lock));
2097
2098 /*
2099 * Hide this LWP from seekers (namely lwp_getref_lwpid())
2100 * to prevent them from attempting to acquire a reference
2101 * on a zombie.
2102 */
2103 proc_hide_lwpid(tid);
2104
2105 mutex_exit(l->l_proc->p_lock);
2106 }
2107
2108 #if defined(DDB)
2109 #include <machine/pcb.h>
2110
2111 void
2112 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2113 {
2114 lwp_t *l;
2115
2116 LIST_FOREACH(l, &alllwp, l_list) {
2117 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2118
2119 if (addr < stack || stack + KSTACK_SIZE <= addr) {
2120 continue;
2121 }
2122 (*pr)("%p is %p+%zu, LWP %p's stack\n",
2123 (void *)addr, (void *)stack,
2124 (size_t)(addr - stack), l);
2125 }
2126 }
2127 #endif /* defined(DDB) */
2128