kern_lwp.c revision 1.236 1 /* $NetBSD: kern_lwp.c,v 1.236 2020/04/26 18:53:33 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Nathan J. Williams, and Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Overview
35 *
36 * Lightweight processes (LWPs) are the basic unit or thread of
37 * execution within the kernel. The core state of an LWP is described
38 * by "struct lwp", also known as lwp_t.
39 *
40 * Each LWP is contained within a process (described by "struct proc"),
41 * Every process contains at least one LWP, but may contain more. The
42 * process describes attributes shared among all of its LWPs such as a
43 * private address space, global execution state (stopped, active,
44 * zombie, ...), signal disposition and so on. On a multiprocessor
45 * machine, multiple LWPs be executing concurrently in the kernel.
46 *
47 * Execution states
48 *
49 * At any given time, an LWP has overall state that is described by
50 * lwp::l_stat. The states are broken into two sets below. The first
51 * set is guaranteed to represent the absolute, current state of the
52 * LWP:
53 *
54 * LSONPROC
55 *
56 * On processor: the LWP is executing on a CPU, either in the
57 * kernel or in user space.
58 *
59 * LSRUN
60 *
61 * Runnable: the LWP is parked on a run queue, and may soon be
62 * chosen to run by an idle processor, or by a processor that
63 * has been asked to preempt a currently runnning but lower
64 * priority LWP.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed,
69 * or it has ceased executing a unit of work and is waiting
70 * to be started again.
71 *
72 * LSSUSPENDED:
73 *
74 * Suspended: the LWP has had its execution suspended by
75 * another LWP in the same process using the _lwp_suspend()
76 * system call. User-level LWPs also enter the suspended
77 * state when the system is shutting down.
78 *
79 * The second set represent a "statement of intent" on behalf of the
80 * LWP. The LWP may in fact be executing on a processor, may be
81 * sleeping or idle. It is expected to take the necessary action to
82 * stop executing or become "running" again within a short timeframe.
83 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
84 * Importantly, it indicates that its state is tied to a CPU.
85 *
86 * LSLARVAL:
87 *
88 * Born, but not fully mature: the LWP is in the process
89 * of being constructed. This state exists so that the
90 * LWP can occupy a slot in the PID table, but without
91 * having to worry about being touched; lookups of the
92 * LWP will fail while in this state. The LWP will become
93 * visible in the PID table once its state transitions
94 * to LSIDL.
95 *
96 * LSZOMB:
97 *
98 * Dead or dying: the LWP has released most of its resources
99 * and is about to switch away into oblivion, or has already
100 * switched away. When it switches away, its few remaining
101 * resources can be collected.
102 *
103 * LSSLEEP:
104 *
105 * Sleeping: the LWP has entered itself onto a sleep queue, and
106 * has switched away or will switch away shortly to allow other
107 * LWPs to run on the CPU.
108 *
109 * LSSTOP:
110 *
111 * Stopped: the LWP has been stopped as a result of a job
112 * control signal, or as a result of the ptrace() interface.
113 *
114 * Stopped LWPs may run briefly within the kernel to handle
115 * signals that they receive, but will not return to user space
116 * until their process' state is changed away from stopped.
117 *
118 * Single LWPs within a process can not be set stopped
119 * selectively: all actions that can stop or continue LWPs
120 * occur at the process level.
121 *
122 * State transitions
123 *
124 * Note that the LSSTOP state may only be set when returning to
125 * user space in userret(), or when sleeping interruptably. The
126 * LSSUSPENDED state may only be set in userret(). Before setting
127 * those states, we try to ensure that the LWPs will release all
128 * locks that they hold, and at a minimum try to ensure that the
129 * LWP can be set runnable again by a signal.
130 *
131 * LWPs may transition states in the following ways:
132 *
133 * LARVAL ----> IDL
134 *
135 * RUN -------> ONPROC ONPROC -----> RUN
136 * > SLEEP
137 * > STOPPED
138 * > SUSPENDED
139 * > ZOMB
140 * > IDL (special cases)
141 *
142 * STOPPED ---> RUN SUSPENDED --> RUN
143 * > SLEEP
144 *
145 * SLEEP -----> ONPROC IDL --------> RUN
146 * > RUN > SUSPENDED
147 * > STOPPED > STOPPED
148 * > ONPROC (special cases)
149 *
150 * Some state transitions are only possible with kernel threads (eg
151 * ONPROC -> IDL) and happen under tightly controlled circumstances
152 * free of unwanted side effects.
153 *
154 * Migration
155 *
156 * Migration of threads from one CPU to another could be performed
157 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
158 * functions. The universal lwp_migrate() function should be used for
159 * any other cases. Subsystems in the kernel must be aware that CPU
160 * of LWP may change, while it is not locked.
161 *
162 * Locking
163 *
164 * The majority of fields in 'struct lwp' are covered by a single,
165 * general spin lock pointed to by lwp::l_mutex. The locks covering
166 * each field are documented in sys/lwp.h.
167 *
168 * State transitions must be made with the LWP's general lock held,
169 * and may cause the LWP's lock pointer to change. Manipulation of
170 * the general lock is not performed directly, but through calls to
171 * lwp_lock(), lwp_unlock() and others. It should be noted that the
172 * adaptive locks are not allowed to be released while the LWP's lock
173 * is being held (unlike for other spin-locks).
174 *
175 * States and their associated locks:
176 *
177 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
178 *
179 * Always covered by spc_lwplock, which protects LWPs not
180 * associated with any other sync object. This is a per-CPU
181 * lock and matches lwp::l_cpu.
182 *
183 * LSRUN:
184 *
185 * Always covered by spc_mutex, which protects the run queues.
186 * This is a per-CPU lock and matches lwp::l_cpu.
187 *
188 * LSSLEEP:
189 *
190 * Covered by a lock associated with the sleep queue (sometimes
191 * a turnstile sleep queue) that the LWP resides on. This can
192 * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
193 *
194 * LSSTOP:
195 *
196 * If the LWP was previously sleeping (l_wchan != NULL), then
197 * l_mutex references the sleep queue lock. If the LWP was
198 * runnable or on the CPU when halted, or has been removed from
199 * the sleep queue since halted, then the lock is spc_lwplock.
200 *
201 * The lock order is as follows:
202 *
203 * sleepq -> turnstile -> spc_lwplock -> spc_mutex
204 *
205 * Each process has an scheduler state lock (proc::p_lock), and a
206 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
207 * so on. When an LWP is to be entered into or removed from one of the
208 * following states, p_lock must be held and the process wide counters
209 * adjusted:
210 *
211 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
212 *
213 * (But not always for kernel threads. There are some special cases
214 * as mentioned above: soft interrupts, and the idle loops.)
215 *
216 * Note that an LWP is considered running or likely to run soon if in
217 * one of the following states. This affects the value of p_nrlwps:
218 *
219 * LSRUN, LSONPROC, LSSLEEP
220 *
221 * p_lock does not need to be held when transitioning among these
222 * three states, hence p_lock is rarely taken for state transitions.
223 */
224
225 #include <sys/cdefs.h>
226 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.236 2020/04/26 18:53:33 thorpej Exp $");
227
228 #include "opt_ddb.h"
229 #include "opt_lockdebug.h"
230 #include "opt_dtrace.h"
231
232 #define _LWP_API_PRIVATE
233
234 #include <sys/param.h>
235 #include <sys/systm.h>
236 #include <sys/cpu.h>
237 #include <sys/pool.h>
238 #include <sys/proc.h>
239 #include <sys/syscallargs.h>
240 #include <sys/syscall_stats.h>
241 #include <sys/kauth.h>
242 #include <sys/sleepq.h>
243 #include <sys/lockdebug.h>
244 #include <sys/kmem.h>
245 #include <sys/pset.h>
246 #include <sys/intr.h>
247 #include <sys/lwpctl.h>
248 #include <sys/atomic.h>
249 #include <sys/filedesc.h>
250 #include <sys/fstrans.h>
251 #include <sys/dtrace_bsd.h>
252 #include <sys/sdt.h>
253 #include <sys/ptrace.h>
254 #include <sys/xcall.h>
255 #include <sys/uidinfo.h>
256 #include <sys/sysctl.h>
257 #include <sys/psref.h>
258 #include <sys/msan.h>
259 #include <sys/kcov.h>
260 #include <sys/cprng.h>
261 #include <sys/futex.h>
262
263 #include <uvm/uvm_extern.h>
264 #include <uvm/uvm_object.h>
265
266 static pool_cache_t lwp_cache __read_mostly;
267 struct lwplist alllwp __cacheline_aligned;
268
269 /*
270 * Lookups by global thread ID operate outside of the normal LWP
271 * locking protocol.
272 *
273 * => When we look up an LWP in the table, we take lwp_threadid_lock as
274 * a READER. While still holding the lock, we add a reference to
275 * the LWP (using atomics). After adding the reference, we drop the
276 * lwp_threadid_lock. We now take p_lock and check the state of the
277 * LWP. If the LWP is draining its references, we drop the reference
278 * we took and return NULL. Otherwise, the lookup has succeeded and
279 * the LWP is returned with a reference count that the caller is
280 * responsible for dropping.
281 *
282 * => When a LWP is exiting, it also drains off any references being
283 * held by others. However, the reference in the lookup path is taken
284 * outside the normal locking protocol. There needs to be additional
285 * serialization so that EITHER lwp_drainrefs() sees the incremented
286 * reference count so that it knows to wait, OR lwp_getref_lwpid() sees
287 * that the LWP is waiting to drain and thus drops the reference
288 * immediately. This is achieved by taking lwp_threadid_lock as a
289 * WRITER when setting LPR_DRAINING. Note the locking order:
290 *
291 * p_lock -> lwp_threadid_lock
292 */
293 static krwlock_t lwp_threadid_lock __cacheline_aligned;
294
295 static void lwp_dtor(void *, void *);
296
297 /* DTrace proc provider probes */
298 SDT_PROVIDER_DEFINE(proc);
299
300 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
301 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
302 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
303
304 struct turnstile turnstile0 __cacheline_aligned;
305 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
306 #ifdef LWP0_CPU_INFO
307 .l_cpu = LWP0_CPU_INFO,
308 #endif
309 #ifdef LWP0_MD_INITIALIZER
310 .l_md = LWP0_MD_INITIALIZER,
311 #endif
312 .l_proc = &proc0,
313 .l_lid = 0, /* we own proc0's slot in the pid table */
314 .l_flag = LW_SYSTEM,
315 .l_stat = LSONPROC,
316 .l_ts = &turnstile0,
317 .l_syncobj = &sched_syncobj,
318 .l_refcnt = 0,
319 .l_priority = PRI_USER + NPRI_USER - 1,
320 .l_inheritedprio = -1,
321 .l_class = SCHED_OTHER,
322 .l_psid = PS_NONE,
323 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
324 .l_name = __UNCONST("swapper"),
325 .l_fd = &filedesc0,
326 };
327
328 static void lwp_threadid_init(void);
329 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
330
331 /*
332 * sysctl helper routine for kern.maxlwp. Ensures that the new
333 * values are not too low or too high.
334 */
335 static int
336 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
337 {
338 int error, nmaxlwp;
339 struct sysctlnode node;
340
341 nmaxlwp = maxlwp;
342 node = *rnode;
343 node.sysctl_data = &nmaxlwp;
344 error = sysctl_lookup(SYSCTLFN_CALL(&node));
345 if (error || newp == NULL)
346 return error;
347
348 if (nmaxlwp < 0 || nmaxlwp >= 65536)
349 return EINVAL;
350 if (nmaxlwp > cpu_maxlwp())
351 return EINVAL;
352 maxlwp = nmaxlwp;
353
354 return 0;
355 }
356
357 static void
358 sysctl_kern_lwp_setup(void)
359 {
360 struct sysctllog *clog = NULL;
361
362 sysctl_createv(&clog, 0, NULL, NULL,
363 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
364 CTLTYPE_INT, "maxlwp",
365 SYSCTL_DESCR("Maximum number of simultaneous threads"),
366 sysctl_kern_maxlwp, 0, NULL, 0,
367 CTL_KERN, CTL_CREATE, CTL_EOL);
368 }
369
370 void
371 lwpinit(void)
372 {
373
374 LIST_INIT(&alllwp);
375 lwpinit_specificdata();
376 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
377 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
378
379 maxlwp = cpu_maxlwp();
380 sysctl_kern_lwp_setup();
381 lwp_threadid_init();
382 }
383
384 void
385 lwp0_init(void)
386 {
387 struct lwp *l = &lwp0;
388
389 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
390
391 LIST_INSERT_HEAD(&alllwp, l, l_list);
392
393 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
394 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
395 cv_init(&l->l_sigcv, "sigwait");
396 cv_init(&l->l_waitcv, "vfork");
397
398 kauth_cred_hold(proc0.p_cred);
399 l->l_cred = proc0.p_cred;
400
401 kdtrace_thread_ctor(NULL, l);
402 lwp_initspecific(l);
403
404 SYSCALL_TIME_LWP_INIT(l);
405 }
406
407 static void
408 lwp_dtor(void *arg, void *obj)
409 {
410 lwp_t *l = obj;
411 (void)l;
412
413 /*
414 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
415 * calls will exit before memory of LWP is returned to the pool, where
416 * KVA of LWP structure might be freed and re-used for other purposes.
417 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
418 * callers, therefore cross-call to all CPUs will do the job. Also,
419 * the value of l->l_cpu must be still valid at this point.
420 */
421 KASSERT(l->l_cpu != NULL);
422 xc_barrier(0);
423 }
424
425 /*
426 * Set an suspended.
427 *
428 * Must be called with p_lock held, and the LWP locked. Will unlock the
429 * LWP before return.
430 */
431 int
432 lwp_suspend(struct lwp *curl, struct lwp *t)
433 {
434 int error;
435
436 KASSERT(mutex_owned(t->l_proc->p_lock));
437 KASSERT(lwp_locked(t, NULL));
438
439 KASSERT(curl != t || curl->l_stat == LSONPROC);
440
441 /*
442 * If the current LWP has been told to exit, we must not suspend anyone
443 * else or deadlock could occur. We won't return to userspace.
444 */
445 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
446 lwp_unlock(t);
447 return (EDEADLK);
448 }
449
450 if ((t->l_flag & LW_DBGSUSPEND) != 0) {
451 lwp_unlock(t);
452 return 0;
453 }
454
455 error = 0;
456
457 switch (t->l_stat) {
458 case LSRUN:
459 case LSONPROC:
460 t->l_flag |= LW_WSUSPEND;
461 lwp_need_userret(t);
462 lwp_unlock(t);
463 break;
464
465 case LSSLEEP:
466 t->l_flag |= LW_WSUSPEND;
467
468 /*
469 * Kick the LWP and try to get it to the kernel boundary
470 * so that it will release any locks that it holds.
471 * setrunnable() will release the lock.
472 */
473 if ((t->l_flag & LW_SINTR) != 0)
474 setrunnable(t);
475 else
476 lwp_unlock(t);
477 break;
478
479 case LSSUSPENDED:
480 lwp_unlock(t);
481 break;
482
483 case LSSTOP:
484 t->l_flag |= LW_WSUSPEND;
485 setrunnable(t);
486 break;
487
488 case LSIDL:
489 case LSZOMB:
490 error = EINTR; /* It's what Solaris does..... */
491 lwp_unlock(t);
492 break;
493 }
494
495 return (error);
496 }
497
498 /*
499 * Restart a suspended LWP.
500 *
501 * Must be called with p_lock held, and the LWP locked. Will unlock the
502 * LWP before return.
503 */
504 void
505 lwp_continue(struct lwp *l)
506 {
507
508 KASSERT(mutex_owned(l->l_proc->p_lock));
509 KASSERT(lwp_locked(l, NULL));
510
511 /* If rebooting or not suspended, then just bail out. */
512 if ((l->l_flag & LW_WREBOOT) != 0) {
513 lwp_unlock(l);
514 return;
515 }
516
517 l->l_flag &= ~LW_WSUSPEND;
518
519 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
520 lwp_unlock(l);
521 return;
522 }
523
524 /* setrunnable() will release the lock. */
525 setrunnable(l);
526 }
527
528 /*
529 * Restart a stopped LWP.
530 *
531 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
532 * LWP before return.
533 */
534 void
535 lwp_unstop(struct lwp *l)
536 {
537 struct proc *p = l->l_proc;
538
539 KASSERT(mutex_owned(proc_lock));
540 KASSERT(mutex_owned(p->p_lock));
541
542 lwp_lock(l);
543
544 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
545
546 /* If not stopped, then just bail out. */
547 if (l->l_stat != LSSTOP) {
548 lwp_unlock(l);
549 return;
550 }
551
552 p->p_stat = SACTIVE;
553 p->p_sflag &= ~PS_STOPPING;
554
555 if (!p->p_waited)
556 p->p_pptr->p_nstopchild--;
557
558 if (l->l_wchan == NULL) {
559 /* setrunnable() will release the lock. */
560 setrunnable(l);
561 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
562 /* setrunnable() so we can receive the signal */
563 setrunnable(l);
564 } else {
565 l->l_stat = LSSLEEP;
566 p->p_nrlwps++;
567 lwp_unlock(l);
568 }
569 }
570
571 /*
572 * Wait for an LWP within the current process to exit. If 'lid' is
573 * non-zero, we are waiting for a specific LWP.
574 *
575 * Must be called with p->p_lock held.
576 */
577 int
578 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
579 {
580 const lwpid_t curlid = l->l_lid;
581 proc_t *p = l->l_proc;
582 lwp_t *l2, *next;
583 int error;
584
585 KASSERT(mutex_owned(p->p_lock));
586
587 p->p_nlwpwait++;
588 l->l_waitingfor = lid;
589
590 for (;;) {
591 int nfound;
592
593 /*
594 * Avoid a race between exit1() and sigexit(): if the
595 * process is dumping core, then we need to bail out: call
596 * into lwp_userret() where we will be suspended until the
597 * deed is done.
598 */
599 if ((p->p_sflag & PS_WCORE) != 0) {
600 mutex_exit(p->p_lock);
601 lwp_userret(l);
602 KASSERT(false);
603 }
604
605 /*
606 * First off, drain any detached LWP that is waiting to be
607 * reaped.
608 */
609 while ((l2 = p->p_zomblwp) != NULL) {
610 p->p_zomblwp = NULL;
611 lwp_free(l2, false, false);/* releases proc mutex */
612 mutex_enter(p->p_lock);
613 }
614
615 /*
616 * Now look for an LWP to collect. If the whole process is
617 * exiting, count detached LWPs as eligible to be collected,
618 * but don't drain them here.
619 */
620 nfound = 0;
621 error = 0;
622
623 /*
624 * If given a specific LID, go via the tree and make sure
625 * it's not detached.
626 */
627 if (lid != 0) {
628 l2 = proc_find_lwp(p, lid);
629 if (l2 == NULL) {
630 error = ESRCH;
631 break;
632 }
633 KASSERT(l2->l_lid == lid);
634 if ((l2->l_prflag & LPR_DETACHED) != 0) {
635 error = EINVAL;
636 break;
637 }
638 } else {
639 l2 = LIST_FIRST(&p->p_lwps);
640 }
641 for (; l2 != NULL; l2 = next) {
642 next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
643
644 /*
645 * If a specific wait and the target is waiting on
646 * us, then avoid deadlock. This also traps LWPs
647 * that try to wait on themselves.
648 *
649 * Note that this does not handle more complicated
650 * cycles, like: t1 -> t2 -> t3 -> t1. The process
651 * can still be killed so it is not a major problem.
652 */
653 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
654 error = EDEADLK;
655 break;
656 }
657 if (l2 == l)
658 continue;
659 if ((l2->l_prflag & LPR_DETACHED) != 0) {
660 nfound += exiting;
661 continue;
662 }
663 if (lid != 0) {
664 /*
665 * Mark this LWP as the first waiter, if there
666 * is no other.
667 */
668 if (l2->l_waiter == 0)
669 l2->l_waiter = curlid;
670 } else if (l2->l_waiter != 0) {
671 /*
672 * It already has a waiter - so don't
673 * collect it. If the waiter doesn't
674 * grab it we'll get another chance
675 * later.
676 */
677 nfound++;
678 continue;
679 }
680 nfound++;
681
682 /* No need to lock the LWP in order to see LSZOMB. */
683 if (l2->l_stat != LSZOMB)
684 continue;
685
686 /*
687 * We're no longer waiting. Reset the "first waiter"
688 * pointer on the target, in case it was us.
689 */
690 l->l_waitingfor = 0;
691 l2->l_waiter = 0;
692 p->p_nlwpwait--;
693 if (departed)
694 *departed = l2->l_lid;
695 sched_lwp_collect(l2);
696
697 /* lwp_free() releases the proc lock. */
698 lwp_free(l2, false, false);
699 mutex_enter(p->p_lock);
700 return 0;
701 }
702
703 if (error != 0)
704 break;
705 if (nfound == 0) {
706 error = ESRCH;
707 break;
708 }
709
710 /*
711 * Note: since the lock will be dropped, need to restart on
712 * wakeup to run all LWPs again, e.g. there may be new LWPs.
713 */
714 if (exiting) {
715 KASSERT(p->p_nlwps > 1);
716 error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
717 break;
718 }
719
720 /*
721 * Break out if all LWPs are in _lwp_wait(). There are
722 * other ways to hang the process with _lwp_wait(), but the
723 * sleep is interruptable so little point checking for them.
724 */
725 if (p->p_nlwpwait == p->p_nlwps) {
726 error = EDEADLK;
727 break;
728 }
729
730 /*
731 * Sit around and wait for something to happen. We'll be
732 * awoken if any of the conditions examined change: if an
733 * LWP exits, is collected, or is detached.
734 */
735 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
736 break;
737 }
738
739 /*
740 * We didn't find any LWPs to collect, we may have received a
741 * signal, or some other condition has caused us to bail out.
742 *
743 * If waiting on a specific LWP, clear the waiters marker: some
744 * other LWP may want it. Then, kick all the remaining waiters
745 * so that they can re-check for zombies and for deadlock.
746 */
747 if (lid != 0) {
748 l2 = proc_find_lwp(p, lid);
749 KASSERT(l2 == NULL || l2->l_lid == lid);
750
751 if (l2 != NULL && l2->l_waiter == curlid)
752 l2->l_waiter = 0;
753 }
754 p->p_nlwpwait--;
755 l->l_waitingfor = 0;
756 cv_broadcast(&p->p_lwpcv);
757
758 return error;
759 }
760
761 /*
762 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
763 * The new LWP is created in state LSIDL and must be set running,
764 * suspended, or stopped by the caller.
765 */
766 int
767 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
768 void *stack, size_t stacksize, void (*func)(void *), void *arg,
769 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
770 const stack_t *sigstk)
771 {
772 struct lwp *l2;
773 turnstile_t *ts;
774
775 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
776
777 /*
778 * Enforce limits, excluding the first lwp and kthreads. We must
779 * use the process credentials here when adjusting the limit, as
780 * they are what's tied to the accounting entity. However for
781 * authorizing the action, we'll use the LWP's credentials.
782 */
783 mutex_enter(p2->p_lock);
784 if (p2->p_nlwps != 0 && p2 != &proc0) {
785 uid_t uid = kauth_cred_getuid(p2->p_cred);
786 int count = chglwpcnt(uid, 1);
787 if (__predict_false(count >
788 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
789 if (kauth_authorize_process(l1->l_cred,
790 KAUTH_PROCESS_RLIMIT, p2,
791 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
792 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
793 != 0) {
794 (void)chglwpcnt(uid, -1);
795 mutex_exit(p2->p_lock);
796 return EAGAIN;
797 }
798 }
799 }
800
801 /*
802 * First off, reap any detached LWP waiting to be collected.
803 * We can re-use its LWP structure and turnstile.
804 */
805 if ((l2 = p2->p_zomblwp) != NULL) {
806 p2->p_zomblwp = NULL;
807 lwp_free(l2, true, false);
808 /* p2 now unlocked by lwp_free() */
809 ts = l2->l_ts;
810 KASSERT(l2->l_inheritedprio == -1);
811 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
812 memset(l2, 0, sizeof(*l2));
813 l2->l_ts = ts;
814 } else {
815 mutex_exit(p2->p_lock);
816 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
817 memset(l2, 0, sizeof(*l2));
818 ts = l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
819 SLIST_INIT(&l2->l_pi_lenders);
820 }
821
822 l2->l_stat = LSLARVAL;
823 l2->l_proc = p2;
824 l2->l_refcnt = 0;
825 l2->l_class = sclass;
826
827 /*
828 * Allocate a process ID for this LWP. We need to do this now
829 * while we can still unwind if it fails. Beacuse we're marked
830 * as LARVAL, no lookups by the ID will succeed.
831 *
832 * N.B. this will always succeed for the first LWP in a process,
833 * because proc_alloc_lwpid() will usurp the slot. Also note
834 * that l2->l_proc MUST be valid so that lookups of the proc
835 * will succeed, even if the LWP itself is not visible.
836 */
837 if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
838 if (ts != &turnstile0)
839 pool_cache_put(turnstile_cache, ts);
840 l2->l_ts = NULL;
841 pool_cache_put(lwp_cache, l2);
842 return EAGAIN;
843 }
844
845 /*
846 * If vfork(), we want the LWP to run fast and on the same CPU
847 * as its parent, so that it can reuse the VM context and cache
848 * footprint on the local CPU.
849 */
850 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
851 l2->l_kpribase = PRI_KERNEL;
852 l2->l_priority = l1->l_priority;
853 l2->l_inheritedprio = -1;
854 l2->l_protectprio = -1;
855 l2->l_auxprio = -1;
856 l2->l_flag = 0;
857 l2->l_pflag = LP_MPSAFE;
858 TAILQ_INIT(&l2->l_ld_locks);
859 l2->l_psrefs = 0;
860 kmsan_lwp_alloc(l2);
861
862 /*
863 * For vfork, borrow parent's lwpctl context if it exists.
864 * This also causes us to return via lwp_userret.
865 */
866 if (flags & LWP_VFORK && l1->l_lwpctl) {
867 l2->l_lwpctl = l1->l_lwpctl;
868 l2->l_flag |= LW_LWPCTL;
869 }
870
871 /*
872 * If not the first LWP in the process, grab a reference to the
873 * descriptor table.
874 */
875 l2->l_fd = p2->p_fd;
876 if (p2->p_nlwps != 0) {
877 KASSERT(l1->l_proc == p2);
878 fd_hold(l2);
879 } else {
880 KASSERT(l1->l_proc != p2);
881 }
882
883 if (p2->p_flag & PK_SYSTEM) {
884 /* Mark it as a system LWP. */
885 l2->l_flag |= LW_SYSTEM;
886 }
887
888 kpreempt_disable();
889 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_lwplock;
890 l2->l_cpu = l1->l_cpu;
891 kpreempt_enable();
892
893 kdtrace_thread_ctor(NULL, l2);
894 lwp_initspecific(l2);
895 sched_lwp_fork(l1, l2);
896 lwp_update_creds(l2);
897 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
898 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
899 cv_init(&l2->l_sigcv, "sigwait");
900 cv_init(&l2->l_waitcv, "vfork");
901 l2->l_syncobj = &sched_syncobj;
902 PSREF_DEBUG_INIT_LWP(l2);
903
904 if (rnewlwpp != NULL)
905 *rnewlwpp = l2;
906
907 /*
908 * PCU state needs to be saved before calling uvm_lwp_fork() so that
909 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
910 */
911 pcu_save_all(l1);
912 #if PCU_UNIT_COUNT > 0
913 l2->l_pcu_valid = l1->l_pcu_valid;
914 #endif
915
916 uvm_lwp_setuarea(l2, uaddr);
917 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
918
919 mutex_enter(p2->p_lock);
920
921 /*
922 * This renders l2 visible in the pid table once p2->p_lock is
923 * released.
924 */
925 l2->l_stat = LSIDL;
926
927 if ((flags & LWP_DETACHED) != 0) {
928 l2->l_prflag = LPR_DETACHED;
929 p2->p_ndlwps++;
930 } else
931 l2->l_prflag = 0;
932
933 if (l1->l_proc == p2) {
934 /*
935 * These flags are set while p_lock is held. Copy with
936 * p_lock held too, so the LWP doesn't sneak into the
937 * process without them being set.
938 */
939 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
940 } else {
941 /* fork(): pending core/exit doesn't apply to child. */
942 l2->l_flag |= (l1->l_flag & LW_WREBOOT);
943 }
944
945 l2->l_sigstk = *sigstk;
946 l2->l_sigmask = *sigmask;
947 TAILQ_INIT(&l2->l_sigpend.sp_info);
948 sigemptyset(&l2->l_sigpend.sp_set);
949 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
950 p2->p_nlwps++;
951 p2->p_nrlwps++;
952
953 KASSERT(l2->l_affinity == NULL);
954
955 /* Inherit the affinity mask. */
956 if (l1->l_affinity) {
957 /*
958 * Note that we hold the state lock while inheriting
959 * the affinity to avoid race with sched_setaffinity().
960 */
961 lwp_lock(l1);
962 if (l1->l_affinity) {
963 kcpuset_use(l1->l_affinity);
964 l2->l_affinity = l1->l_affinity;
965 }
966 lwp_unlock(l1);
967 }
968
969 /* This marks the end of the "must be atomic" section. */
970 mutex_exit(p2->p_lock);
971
972 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
973
974 mutex_enter(proc_lock);
975 LIST_INSERT_HEAD(&alllwp, l2, l_list);
976 /* Inherit a processor-set */
977 l2->l_psid = l1->l_psid;
978 mutex_exit(proc_lock);
979
980 SYSCALL_TIME_LWP_INIT(l2);
981
982 if (p2->p_emul->e_lwp_fork)
983 (*p2->p_emul->e_lwp_fork)(l1, l2);
984
985 return (0);
986 }
987
988 /*
989 * Set a new LWP running. If the process is stopping, then the LWP is
990 * created stopped.
991 */
992 void
993 lwp_start(lwp_t *l, int flags)
994 {
995 proc_t *p = l->l_proc;
996
997 mutex_enter(p->p_lock);
998 lwp_lock(l);
999 KASSERT(l->l_stat == LSIDL);
1000 if ((flags & LWP_SUSPENDED) != 0) {
1001 /* It'll suspend itself in lwp_userret(). */
1002 l->l_flag |= LW_WSUSPEND;
1003 }
1004 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1005 KASSERT(l->l_wchan == NULL);
1006 l->l_stat = LSSTOP;
1007 p->p_nrlwps--;
1008 lwp_unlock(l);
1009 } else {
1010 setrunnable(l);
1011 /* LWP now unlocked */
1012 }
1013 mutex_exit(p->p_lock);
1014 }
1015
1016 /*
1017 * Called by MD code when a new LWP begins execution. Must be called
1018 * with the previous LWP locked (so at splsched), or if there is no
1019 * previous LWP, at splsched.
1020 */
1021 void
1022 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1023 {
1024 kmutex_t *lock;
1025
1026 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1027 KASSERT(kpreempt_disabled());
1028 KASSERT(prev != NULL);
1029 KASSERT((prev->l_pflag & LP_RUNNING) != 0);
1030 KASSERT(curcpu()->ci_mtx_count == -2);
1031
1032 /*
1033 * Immediately mark the previous LWP as no longer running and unlock
1034 * (to keep lock wait times short as possible). If a zombie, don't
1035 * touch after clearing LP_RUNNING as it could be reaped by another
1036 * CPU. Issue a memory barrier to ensure this.
1037 */
1038 lock = prev->l_mutex;
1039 if (__predict_false(prev->l_stat == LSZOMB)) {
1040 membar_sync();
1041 }
1042 prev->l_pflag &= ~LP_RUNNING;
1043 mutex_spin_exit(lock);
1044
1045 /* Correct spin mutex count after mi_switch(). */
1046 curcpu()->ci_mtx_count = 0;
1047
1048 /* Install new VM context. */
1049 if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1050 pmap_activate(new_lwp);
1051 }
1052
1053 /* We remain at IPL_SCHED from mi_switch() - reset it. */
1054 spl0();
1055
1056 LOCKDEBUG_BARRIER(NULL, 0);
1057 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1058
1059 /* For kthreads, acquire kernel lock if not MPSAFE. */
1060 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1061 KERNEL_LOCK(1, new_lwp);
1062 }
1063 }
1064
1065 /*
1066 * Exit an LWP.
1067 */
1068 void
1069 lwp_exit(struct lwp *l)
1070 {
1071 struct proc *p = l->l_proc;
1072 struct lwp *l2;
1073 bool current;
1074
1075 current = (l == curlwp);
1076
1077 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1078 KASSERT(p == curproc);
1079
1080 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1081
1082 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1083 LOCKDEBUG_BARRIER(NULL, 0);
1084 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1085
1086 /*
1087 * If we are the last live LWP in a process, we need to exit the
1088 * entire process. We do so with an exit status of zero, because
1089 * it's a "controlled" exit, and because that's what Solaris does.
1090 *
1091 * We are not quite a zombie yet, but for accounting purposes we
1092 * must increment the count of zombies here.
1093 *
1094 * Note: the last LWP's specificdata will be deleted here.
1095 */
1096 mutex_enter(p->p_lock);
1097 if (p->p_nlwps - p->p_nzlwps == 1) {
1098 KASSERT(current == true);
1099 KASSERT(p != &proc0);
1100 exit1(l, 0, 0);
1101 /* NOTREACHED */
1102 }
1103 p->p_nzlwps++;
1104
1105 /*
1106 * Perform any required thread cleanup. Do this early so
1107 * anyone wanting to look us up with lwp_getref_lwpid() will
1108 * fail to find us before we become a zombie.
1109 *
1110 * N.B. this will unlock p->p_lock on our behalf.
1111 */
1112 lwp_thread_cleanup(l);
1113
1114 if (p->p_emul->e_lwp_exit)
1115 (*p->p_emul->e_lwp_exit)(l);
1116
1117 /* Drop filedesc reference. */
1118 fd_free();
1119
1120 /* Release fstrans private data. */
1121 fstrans_lwp_dtor(l);
1122
1123 /* Delete the specificdata while it's still safe to sleep. */
1124 lwp_finispecific(l);
1125
1126 /*
1127 * Release our cached credentials.
1128 */
1129 kauth_cred_free(l->l_cred);
1130 callout_destroy(&l->l_timeout_ch);
1131
1132 /*
1133 * If traced, report LWP exit event to the debugger.
1134 *
1135 * Remove the LWP from the global list.
1136 * Free its LID from the PID namespace if needed.
1137 */
1138 mutex_enter(proc_lock);
1139
1140 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1141 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1142 mutex_enter(p->p_lock);
1143 if (ISSET(p->p_sflag, PS_WEXIT)) {
1144 mutex_exit(p->p_lock);
1145 /*
1146 * We are exiting, bail out without informing parent
1147 * about a terminating LWP as it would deadlock.
1148 */
1149 } else {
1150 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1151 mutex_enter(proc_lock);
1152 }
1153 }
1154
1155 LIST_REMOVE(l, l_list);
1156 mutex_exit(proc_lock);
1157
1158 /*
1159 * Get rid of all references to the LWP that others (e.g. procfs)
1160 * may have, and mark the LWP as a zombie. If the LWP is detached,
1161 * mark it waiting for collection in the proc structure. Note that
1162 * before we can do that, we need to free any other dead, deatched
1163 * LWP waiting to meet its maker.
1164 *
1165 * All conditions need to be observed upon under the same hold of
1166 * p_lock, because if the lock is dropped any of them can change.
1167 */
1168 mutex_enter(p->p_lock);
1169 for (;;) {
1170 if (lwp_drainrefs(l))
1171 continue;
1172 if ((l->l_prflag & LPR_DETACHED) != 0) {
1173 if ((l2 = p->p_zomblwp) != NULL) {
1174 p->p_zomblwp = NULL;
1175 lwp_free(l2, false, false);
1176 /* proc now unlocked */
1177 mutex_enter(p->p_lock);
1178 continue;
1179 }
1180 p->p_zomblwp = l;
1181 }
1182 break;
1183 }
1184
1185 /*
1186 * If we find a pending signal for the process and we have been
1187 * asked to check for signals, then we lose: arrange to have
1188 * all other LWPs in the process check for signals.
1189 */
1190 if ((l->l_flag & LW_PENDSIG) != 0 &&
1191 firstsig(&p->p_sigpend.sp_set) != 0) {
1192 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1193 lwp_lock(l2);
1194 signotify(l2);
1195 lwp_unlock(l2);
1196 }
1197 }
1198
1199 /*
1200 * Release any PCU resources before becoming a zombie.
1201 */
1202 pcu_discard_all(l);
1203
1204 lwp_lock(l);
1205 l->l_stat = LSZOMB;
1206 if (l->l_name != NULL) {
1207 strcpy(l->l_name, "(zombie)");
1208 }
1209 lwp_unlock(l);
1210 p->p_nrlwps--;
1211 cv_broadcast(&p->p_lwpcv);
1212 if (l->l_lwpctl != NULL)
1213 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1214 mutex_exit(p->p_lock);
1215
1216 /*
1217 * We can no longer block. At this point, lwp_free() may already
1218 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1219 *
1220 * Free MD LWP resources.
1221 */
1222 cpu_lwp_free(l, 0);
1223
1224 if (current) {
1225 /* Switch away into oblivion. */
1226 lwp_lock(l);
1227 spc_lock(l->l_cpu);
1228 mi_switch(l);
1229 panic("lwp_exit");
1230 }
1231 }
1232
1233 /*
1234 * Free a dead LWP's remaining resources.
1235 *
1236 * XXXLWP limits.
1237 */
1238 void
1239 lwp_free(struct lwp *l, bool recycle, bool last)
1240 {
1241 struct proc *p = l->l_proc;
1242 struct rusage *ru;
1243 ksiginfoq_t kq;
1244
1245 KASSERT(l != curlwp);
1246 KASSERT(last || mutex_owned(p->p_lock));
1247
1248 /*
1249 * We use the process credentials instead of the lwp credentials here
1250 * because the lwp credentials maybe cached (just after a setuid call)
1251 * and we don't want pay for syncing, since the lwp is going away
1252 * anyway
1253 */
1254 if (p != &proc0 && p->p_nlwps != 1)
1255 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1256
1257 /*
1258 * If this was not the last LWP in the process, then adjust counters
1259 * and unlock. This is done differently for the last LWP in exit1().
1260 */
1261 if (!last) {
1262 /*
1263 * Add the LWP's run time to the process' base value.
1264 * This needs to co-incide with coming off p_lwps.
1265 */
1266 bintime_add(&p->p_rtime, &l->l_rtime);
1267 p->p_pctcpu += l->l_pctcpu;
1268 ru = &p->p_stats->p_ru;
1269 ruadd(ru, &l->l_ru);
1270 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1271 ru->ru_nivcsw += l->l_nivcsw;
1272 LIST_REMOVE(l, l_sibling);
1273 p->p_nlwps--;
1274 p->p_nzlwps--;
1275 if ((l->l_prflag & LPR_DETACHED) != 0)
1276 p->p_ndlwps--;
1277
1278 /* Free the LWP ID. */
1279 proc_free_lwpid(p, l->l_lid);
1280
1281 /*
1282 * Have any LWPs sleeping in lwp_wait() recheck for
1283 * deadlock.
1284 */
1285 cv_broadcast(&p->p_lwpcv);
1286 mutex_exit(p->p_lock);
1287 }
1288
1289 /*
1290 * In the unlikely event that the LWP is still on the CPU,
1291 * then spin until it has switched away.
1292 */
1293 membar_consumer();
1294 while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) {
1295 SPINLOCK_BACKOFF_HOOK;
1296 }
1297
1298 /*
1299 * Destroy the LWP's remaining signal information.
1300 */
1301 ksiginfo_queue_init(&kq);
1302 sigclear(&l->l_sigpend, NULL, &kq);
1303 ksiginfo_queue_drain(&kq);
1304 cv_destroy(&l->l_sigcv);
1305 cv_destroy(&l->l_waitcv);
1306
1307 /*
1308 * Free lwpctl structure and affinity.
1309 */
1310 if (l->l_lwpctl) {
1311 lwp_ctl_free(l);
1312 }
1313 if (l->l_affinity) {
1314 kcpuset_unuse(l->l_affinity, NULL);
1315 l->l_affinity = NULL;
1316 }
1317
1318 /*
1319 * Free the LWP's turnstile and the LWP structure itself unless the
1320 * caller wants to recycle them. Also, free the scheduler specific
1321 * data.
1322 *
1323 * We can't return turnstile0 to the pool (it didn't come from it),
1324 * so if it comes up just drop it quietly and move on.
1325 *
1326 * We don't recycle the VM resources at this time.
1327 */
1328
1329 if (!recycle && l->l_ts != &turnstile0)
1330 pool_cache_put(turnstile_cache, l->l_ts);
1331 if (l->l_name != NULL)
1332 kmem_free(l->l_name, MAXCOMLEN);
1333
1334 kmsan_lwp_free(l);
1335 kcov_lwp_free(l);
1336 cpu_lwp_free2(l);
1337 uvm_lwp_exit(l);
1338
1339 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1340 KASSERT(l->l_inheritedprio == -1);
1341 KASSERT(l->l_blcnt == 0);
1342 kdtrace_thread_dtor(NULL, l);
1343 if (!recycle)
1344 pool_cache_put(lwp_cache, l);
1345 }
1346
1347 /*
1348 * Migrate the LWP to the another CPU. Unlocks the LWP.
1349 */
1350 void
1351 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1352 {
1353 struct schedstate_percpu *tspc;
1354 int lstat = l->l_stat;
1355
1356 KASSERT(lwp_locked(l, NULL));
1357 KASSERT(tci != NULL);
1358
1359 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1360 if ((l->l_pflag & LP_RUNNING) != 0) {
1361 lstat = LSONPROC;
1362 }
1363
1364 /*
1365 * The destination CPU could be changed while previous migration
1366 * was not finished.
1367 */
1368 if (l->l_target_cpu != NULL) {
1369 l->l_target_cpu = tci;
1370 lwp_unlock(l);
1371 return;
1372 }
1373
1374 /* Nothing to do if trying to migrate to the same CPU */
1375 if (l->l_cpu == tci) {
1376 lwp_unlock(l);
1377 return;
1378 }
1379
1380 KASSERT(l->l_target_cpu == NULL);
1381 tspc = &tci->ci_schedstate;
1382 switch (lstat) {
1383 case LSRUN:
1384 l->l_target_cpu = tci;
1385 break;
1386 case LSSLEEP:
1387 l->l_cpu = tci;
1388 break;
1389 case LSIDL:
1390 case LSSTOP:
1391 case LSSUSPENDED:
1392 l->l_cpu = tci;
1393 if (l->l_wchan == NULL) {
1394 lwp_unlock_to(l, tspc->spc_lwplock);
1395 return;
1396 }
1397 break;
1398 case LSONPROC:
1399 l->l_target_cpu = tci;
1400 spc_lock(l->l_cpu);
1401 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1402 /* spc now unlocked */
1403 break;
1404 }
1405 lwp_unlock(l);
1406 }
1407
1408 /*
1409 * Find the LWP in the process. Arguments may be zero, in such case,
1410 * the calling process and first LWP in the list will be used.
1411 * On success - returns proc locked.
1412 */
1413 struct lwp *
1414 lwp_find2(pid_t pid, lwpid_t lid)
1415 {
1416 proc_t *p;
1417 lwp_t *l;
1418
1419 /* Find the process. */
1420 if (pid != 0) {
1421 mutex_enter(proc_lock);
1422 p = proc_find(pid);
1423 if (p == NULL) {
1424 mutex_exit(proc_lock);
1425 return NULL;
1426 }
1427 mutex_enter(p->p_lock);
1428 mutex_exit(proc_lock);
1429 } else {
1430 p = curlwp->l_proc;
1431 mutex_enter(p->p_lock);
1432 }
1433 /* Find the thread. */
1434 if (lid != 0) {
1435 l = lwp_find(p, lid);
1436 } else {
1437 l = LIST_FIRST(&p->p_lwps);
1438 }
1439 if (l == NULL) {
1440 mutex_exit(p->p_lock);
1441 }
1442 return l;
1443 }
1444
1445 /*
1446 * Look up a live LWP within the specified process.
1447 *
1448 * Must be called with p->p_lock held (as it looks at the radix tree,
1449 * and also wants to exclude idle and zombie LWPs).
1450 */
1451 struct lwp *
1452 lwp_find(struct proc *p, lwpid_t id)
1453 {
1454 struct lwp *l;
1455
1456 KASSERT(mutex_owned(p->p_lock));
1457
1458 l = proc_find_lwp(p, id);
1459 KASSERT(l == NULL || l->l_lid == id);
1460
1461 /*
1462 * No need to lock - all of these conditions will
1463 * be visible with the process level mutex held.
1464 */
1465 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1466 l = NULL;
1467
1468 return l;
1469 }
1470
1471 /*
1472 * Update an LWP's cached credentials to mirror the process' master copy.
1473 *
1474 * This happens early in the syscall path, on user trap, and on LWP
1475 * creation. A long-running LWP can also voluntarily choose to update
1476 * its credentials by calling this routine. This may be called from
1477 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1478 */
1479 void
1480 lwp_update_creds(struct lwp *l)
1481 {
1482 kauth_cred_t oc;
1483 struct proc *p;
1484
1485 p = l->l_proc;
1486 oc = l->l_cred;
1487
1488 mutex_enter(p->p_lock);
1489 kauth_cred_hold(p->p_cred);
1490 l->l_cred = p->p_cred;
1491 l->l_prflag &= ~LPR_CRMOD;
1492 mutex_exit(p->p_lock);
1493 if (oc != NULL)
1494 kauth_cred_free(oc);
1495 }
1496
1497 /*
1498 * Verify that an LWP is locked, and optionally verify that the lock matches
1499 * one we specify.
1500 */
1501 int
1502 lwp_locked(struct lwp *l, kmutex_t *mtx)
1503 {
1504 kmutex_t *cur = l->l_mutex;
1505
1506 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1507 }
1508
1509 /*
1510 * Lend a new mutex to an LWP. The old mutex must be held.
1511 */
1512 kmutex_t *
1513 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1514 {
1515 kmutex_t *oldmtx = l->l_mutex;
1516
1517 KASSERT(mutex_owned(oldmtx));
1518
1519 membar_exit();
1520 l->l_mutex = mtx;
1521 return oldmtx;
1522 }
1523
1524 /*
1525 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1526 * must be held.
1527 */
1528 void
1529 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1530 {
1531 kmutex_t *old;
1532
1533 KASSERT(lwp_locked(l, NULL));
1534
1535 old = l->l_mutex;
1536 membar_exit();
1537 l->l_mutex = mtx;
1538 mutex_spin_exit(old);
1539 }
1540
1541 int
1542 lwp_trylock(struct lwp *l)
1543 {
1544 kmutex_t *old;
1545
1546 for (;;) {
1547 if (!mutex_tryenter(old = l->l_mutex))
1548 return 0;
1549 if (__predict_true(l->l_mutex == old))
1550 return 1;
1551 mutex_spin_exit(old);
1552 }
1553 }
1554
1555 void
1556 lwp_unsleep(lwp_t *l, bool unlock)
1557 {
1558
1559 KASSERT(mutex_owned(l->l_mutex));
1560 (*l->l_syncobj->sobj_unsleep)(l, unlock);
1561 }
1562
1563 /*
1564 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1565 * set.
1566 */
1567 void
1568 lwp_userret(struct lwp *l)
1569 {
1570 struct proc *p;
1571 int sig;
1572
1573 KASSERT(l == curlwp);
1574 KASSERT(l->l_stat == LSONPROC);
1575 p = l->l_proc;
1576
1577 /*
1578 * It is safe to do this read unlocked on a MP system..
1579 */
1580 while ((l->l_flag & LW_USERRET) != 0) {
1581 /*
1582 * Process pending signals first, unless the process
1583 * is dumping core or exiting, where we will instead
1584 * enter the LW_WSUSPEND case below.
1585 */
1586 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1587 LW_PENDSIG) {
1588 mutex_enter(p->p_lock);
1589 while ((sig = issignal(l)) != 0)
1590 postsig(sig);
1591 mutex_exit(p->p_lock);
1592 }
1593
1594 /*
1595 * Core-dump or suspend pending.
1596 *
1597 * In case of core dump, suspend ourselves, so that the kernel
1598 * stack and therefore the userland registers saved in the
1599 * trapframe are around for coredump() to write them out.
1600 * We also need to save any PCU resources that we have so that
1601 * they accessible for coredump(). We issue a wakeup on
1602 * p->p_lwpcv so that sigexit() will write the core file out
1603 * once all other LWPs are suspended.
1604 */
1605 if ((l->l_flag & LW_WSUSPEND) != 0) {
1606 pcu_save_all(l);
1607 mutex_enter(p->p_lock);
1608 p->p_nrlwps--;
1609 cv_broadcast(&p->p_lwpcv);
1610 lwp_lock(l);
1611 l->l_stat = LSSUSPENDED;
1612 lwp_unlock(l);
1613 mutex_exit(p->p_lock);
1614 lwp_lock(l);
1615 spc_lock(l->l_cpu);
1616 mi_switch(l);
1617 }
1618
1619 /* Process is exiting. */
1620 if ((l->l_flag & LW_WEXIT) != 0) {
1621 lwp_exit(l);
1622 KASSERT(0);
1623 /* NOTREACHED */
1624 }
1625
1626 /* update lwpctl processor (for vfork child_return) */
1627 if (l->l_flag & LW_LWPCTL) {
1628 lwp_lock(l);
1629 KASSERT(kpreempt_disabled());
1630 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1631 l->l_lwpctl->lc_pctr++;
1632 l->l_flag &= ~LW_LWPCTL;
1633 lwp_unlock(l);
1634 }
1635 }
1636 }
1637
1638 /*
1639 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1640 */
1641 void
1642 lwp_need_userret(struct lwp *l)
1643 {
1644
1645 KASSERT(!cpu_intr_p());
1646 KASSERT(lwp_locked(l, NULL));
1647
1648 /*
1649 * If the LWP is in any state other than LSONPROC, we know that it
1650 * is executing in-kernel and will hit userret() on the way out.
1651 *
1652 * If the LWP is curlwp, then we know we'll be back out to userspace
1653 * soon (can't be called from a hardware interrupt here).
1654 *
1655 * Otherwise, we can't be sure what the LWP is doing, so first make
1656 * sure the update to l_flag will be globally visible, and then
1657 * force the LWP to take a trip through trap() where it will do
1658 * userret().
1659 */
1660 if (l->l_stat == LSONPROC && l != curlwp) {
1661 membar_producer();
1662 cpu_signotify(l);
1663 }
1664 }
1665
1666 /*
1667 * Add one reference to an LWP. Interlocked against lwp_drainrefs()
1668 * either by holding the proc's lock or by holding lwp_threadid_lock.
1669 * If callers don't hold the proc's lock, then they must check for a
1670 * larva after acquiring the reference. References can't be added to
1671 * zombies because references have already been drained off before the
1672 * state changes to LSZOMB.
1673 */
1674 static void
1675 lwp_addref2(struct lwp *l)
1676 {
1677 KASSERT(l->l_stat != LSZOMB);
1678 atomic_inc_uint(&l->l_refcnt);
1679 }
1680
1681 /*
1682 * Add one reference to an LWP. This will prevent the LWP from
1683 * exiting, thus keep the lwp structure and PCB around to inspect.
1684 */
1685 void
1686 lwp_addref(struct lwp *l)
1687 {
1688 KASSERT(mutex_owned(l->l_proc->p_lock));
1689 lwp_addref2(l);
1690 }
1691
1692 /*
1693 * Remove one reference to an LWP. If this is the last reference,
1694 * then we must finalize the LWP's death.
1695 */
1696 void
1697 lwp_delref(struct lwp *l)
1698 {
1699 struct proc *p = l->l_proc;
1700
1701 mutex_enter(p->p_lock);
1702 lwp_delref2(l);
1703 mutex_exit(p->p_lock);
1704 }
1705
1706 /*
1707 * Remove one reference to an LWP. If this is the last reference,
1708 * then we must finalize the LWP's death. The proc mutex is held
1709 * on entry.
1710 */
1711 void
1712 lwp_delref2(struct lwp *l)
1713 {
1714 struct proc *p = l->l_proc;
1715
1716 KASSERT(mutex_owned(p->p_lock));
1717 KASSERT(l->l_stat != LSZOMB);
1718 KASSERT(atomic_load_relaxed(&l->l_refcnt) > 0);
1719
1720 if (atomic_dec_uint_nv(&l->l_refcnt) == 0)
1721 cv_broadcast(&p->p_lwpcv);
1722 }
1723
1724 /*
1725 * Drain all references to the current LWP. Returns true if
1726 * we blocked.
1727 */
1728 bool
1729 lwp_drainrefs(struct lwp *l)
1730 {
1731 struct proc *p = l->l_proc;
1732 bool rv = false;
1733
1734 KASSERT(mutex_owned(p->p_lock));
1735
1736 /*
1737 * Lookups by thread ID hold lwp_threadid_lock as a reader,
1738 * increase l_refcnt, release it, and then acquire p_lock to
1739 * check for LPR_DRAINING. By taking lwp_threadid_lock as a
1740 * writer here we ensure that either we see the increase in
1741 * l_refcnt or that they see LPR_DRAINING.
1742 */
1743 rw_enter(&lwp_threadid_lock, RW_WRITER);
1744 l->l_prflag |= LPR_DRAINING;
1745 rw_exit(&lwp_threadid_lock);
1746
1747 while (atomic_load_relaxed(&l->l_refcnt) > 0) {
1748 rv = true;
1749 cv_wait(&p->p_lwpcv, p->p_lock);
1750 }
1751 return rv;
1752 }
1753
1754 /*
1755 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1756 * be held.
1757 */
1758 bool
1759 lwp_alive(lwp_t *l)
1760 {
1761
1762 KASSERT(mutex_owned(l->l_proc->p_lock));
1763
1764 switch (l->l_stat) {
1765 case LSSLEEP:
1766 case LSRUN:
1767 case LSONPROC:
1768 case LSSTOP:
1769 case LSSUSPENDED:
1770 return true;
1771 default:
1772 return false;
1773 }
1774 }
1775
1776 /*
1777 * Return first live LWP in the process.
1778 */
1779 lwp_t *
1780 lwp_find_first(proc_t *p)
1781 {
1782 lwp_t *l;
1783
1784 KASSERT(mutex_owned(p->p_lock));
1785
1786 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1787 if (lwp_alive(l)) {
1788 return l;
1789 }
1790 }
1791
1792 return NULL;
1793 }
1794
1795 /*
1796 * Allocate a new lwpctl structure for a user LWP.
1797 */
1798 int
1799 lwp_ctl_alloc(vaddr_t *uaddr)
1800 {
1801 lcproc_t *lp;
1802 u_int bit, i, offset;
1803 struct uvm_object *uao;
1804 int error;
1805 lcpage_t *lcp;
1806 proc_t *p;
1807 lwp_t *l;
1808
1809 l = curlwp;
1810 p = l->l_proc;
1811
1812 /* don't allow a vforked process to create lwp ctls */
1813 if (p->p_lflag & PL_PPWAIT)
1814 return EBUSY;
1815
1816 if (l->l_lcpage != NULL) {
1817 lcp = l->l_lcpage;
1818 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1819 return 0;
1820 }
1821
1822 /* First time around, allocate header structure for the process. */
1823 if ((lp = p->p_lwpctl) == NULL) {
1824 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1825 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1826 lp->lp_uao = NULL;
1827 TAILQ_INIT(&lp->lp_pages);
1828 mutex_enter(p->p_lock);
1829 if (p->p_lwpctl == NULL) {
1830 p->p_lwpctl = lp;
1831 mutex_exit(p->p_lock);
1832 } else {
1833 mutex_exit(p->p_lock);
1834 mutex_destroy(&lp->lp_lock);
1835 kmem_free(lp, sizeof(*lp));
1836 lp = p->p_lwpctl;
1837 }
1838 }
1839
1840 /*
1841 * Set up an anonymous memory region to hold the shared pages.
1842 * Map them into the process' address space. The user vmspace
1843 * gets the first reference on the UAO.
1844 */
1845 mutex_enter(&lp->lp_lock);
1846 if (lp->lp_uao == NULL) {
1847 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1848 lp->lp_cur = 0;
1849 lp->lp_max = LWPCTL_UAREA_SZ;
1850 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1851 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1852 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1853 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1854 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1855 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1856 if (error != 0) {
1857 uao_detach(lp->lp_uao);
1858 lp->lp_uao = NULL;
1859 mutex_exit(&lp->lp_lock);
1860 return error;
1861 }
1862 }
1863
1864 /* Get a free block and allocate for this LWP. */
1865 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1866 if (lcp->lcp_nfree != 0)
1867 break;
1868 }
1869 if (lcp == NULL) {
1870 /* Nothing available - try to set up a free page. */
1871 if (lp->lp_cur == lp->lp_max) {
1872 mutex_exit(&lp->lp_lock);
1873 return ENOMEM;
1874 }
1875 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1876
1877 /*
1878 * Wire the next page down in kernel space. Since this
1879 * is a new mapping, we must add a reference.
1880 */
1881 uao = lp->lp_uao;
1882 (*uao->pgops->pgo_reference)(uao);
1883 lcp->lcp_kaddr = vm_map_min(kernel_map);
1884 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1885 uao, lp->lp_cur, PAGE_SIZE,
1886 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1887 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1888 if (error != 0) {
1889 mutex_exit(&lp->lp_lock);
1890 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1891 (*uao->pgops->pgo_detach)(uao);
1892 return error;
1893 }
1894 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1895 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1896 if (error != 0) {
1897 mutex_exit(&lp->lp_lock);
1898 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1899 lcp->lcp_kaddr + PAGE_SIZE);
1900 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1901 return error;
1902 }
1903 /* Prepare the page descriptor and link into the list. */
1904 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1905 lp->lp_cur += PAGE_SIZE;
1906 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1907 lcp->lcp_rotor = 0;
1908 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1909 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1910 }
1911 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1912 if (++i >= LWPCTL_BITMAP_ENTRIES)
1913 i = 0;
1914 }
1915 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1916 lcp->lcp_bitmap[i] ^= (1U << bit);
1917 lcp->lcp_rotor = i;
1918 lcp->lcp_nfree--;
1919 l->l_lcpage = lcp;
1920 offset = (i << 5) + bit;
1921 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1922 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1923 mutex_exit(&lp->lp_lock);
1924
1925 KPREEMPT_DISABLE(l);
1926 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1927 KPREEMPT_ENABLE(l);
1928
1929 return 0;
1930 }
1931
1932 /*
1933 * Free an lwpctl structure back to the per-process list.
1934 */
1935 void
1936 lwp_ctl_free(lwp_t *l)
1937 {
1938 struct proc *p = l->l_proc;
1939 lcproc_t *lp;
1940 lcpage_t *lcp;
1941 u_int map, offset;
1942
1943 /* don't free a lwp context we borrowed for vfork */
1944 if (p->p_lflag & PL_PPWAIT) {
1945 l->l_lwpctl = NULL;
1946 return;
1947 }
1948
1949 lp = p->p_lwpctl;
1950 KASSERT(lp != NULL);
1951
1952 lcp = l->l_lcpage;
1953 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1954 KASSERT(offset < LWPCTL_PER_PAGE);
1955
1956 mutex_enter(&lp->lp_lock);
1957 lcp->lcp_nfree++;
1958 map = offset >> 5;
1959 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1960 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1961 lcp->lcp_rotor = map;
1962 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1963 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1964 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1965 }
1966 mutex_exit(&lp->lp_lock);
1967 }
1968
1969 /*
1970 * Process is exiting; tear down lwpctl state. This can only be safely
1971 * called by the last LWP in the process.
1972 */
1973 void
1974 lwp_ctl_exit(void)
1975 {
1976 lcpage_t *lcp, *next;
1977 lcproc_t *lp;
1978 proc_t *p;
1979 lwp_t *l;
1980
1981 l = curlwp;
1982 l->l_lwpctl = NULL;
1983 l->l_lcpage = NULL;
1984 p = l->l_proc;
1985 lp = p->p_lwpctl;
1986
1987 KASSERT(lp != NULL);
1988 KASSERT(p->p_nlwps == 1);
1989
1990 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1991 next = TAILQ_NEXT(lcp, lcp_chain);
1992 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1993 lcp->lcp_kaddr + PAGE_SIZE);
1994 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1995 }
1996
1997 if (lp->lp_uao != NULL) {
1998 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1999 lp->lp_uva + LWPCTL_UAREA_SZ);
2000 }
2001
2002 mutex_destroy(&lp->lp_lock);
2003 kmem_free(lp, sizeof(*lp));
2004 p->p_lwpctl = NULL;
2005 }
2006
2007 /*
2008 * Return the current LWP's "preemption counter". Used to detect
2009 * preemption across operations that can tolerate preemption without
2010 * crashing, but which may generate incorrect results if preempted.
2011 */
2012 uint64_t
2013 lwp_pctr(void)
2014 {
2015
2016 return curlwp->l_ncsw;
2017 }
2018
2019 /*
2020 * Set an LWP's private data pointer.
2021 */
2022 int
2023 lwp_setprivate(struct lwp *l, void *ptr)
2024 {
2025 int error = 0;
2026
2027 l->l_private = ptr;
2028 #ifdef __HAVE_CPU_LWP_SETPRIVATE
2029 error = cpu_lwp_setprivate(l, ptr);
2030 #endif
2031 return error;
2032 }
2033
2034 static void
2035 lwp_threadid_init(void)
2036 {
2037 rw_init(&lwp_threadid_lock);
2038 }
2039
2040 /*
2041 * Lookup an LWP by global thread ID. Care must be taken because
2042 * callers of this are operating outside the normal locking protocol.
2043 * We return the LWP with an additional reference that must be dropped
2044 * with lwp_delref().
2045 */
2046 struct lwp *
2047 lwp_getref_lwpid(lwpid_t tid)
2048 {
2049 struct lwp *l;
2050
2051 /*
2052 * We rely on lwp_thread_cleanup() to hide LWP IDs from us
2053 * to ensure that we cannot add a reference do an exiting
2054 * LWP.
2055 */
2056 rw_enter(&lwp_threadid_lock, RW_READER);
2057 l = proc_seek_lwpid(tid);
2058 if (__predict_false(l == NULL)) {
2059 rw_exit(&lwp_threadid_lock);
2060 return NULL;
2061 }
2062
2063 /*
2064 * Acquire a reference on the lwp. It is safe to do this unlocked
2065 * here because lwp_drainrefs() serializes with us by taking the
2066 * lwp_threadid_lock as a writer.
2067 */
2068 lwp_addref2(l);
2069 rw_exit(&lwp_threadid_lock);
2070
2071 /*
2072 * Now verify that our reference is valid.
2073 */
2074 struct proc *p = l->l_proc;
2075 mutex_enter(p->p_lock);
2076 if (__predict_false(l->l_stat == LSLARVAL ||
2077 (l->l_prflag & LPR_DRAINING) != 0)) {
2078 lwp_delref2(l);
2079 l = NULL;
2080 }
2081 mutex_exit(p->p_lock);
2082
2083 return l;
2084 }
2085
2086 /*
2087 * Perform any thread-related cleanup on LWP exit.
2088 * N.B. l->l_proc->p_lock must be HELD on entry but will
2089 * be released before returning!
2090 */
2091 void
2092 lwp_thread_cleanup(struct lwp *l)
2093 {
2094 KASSERT(l == curlwp);
2095 const lwpid_t tid = l->l_lid;
2096
2097 KASSERT((tid & FUTEX_TID_MASK) == tid);
2098 KASSERT(mutex_owned(l->l_proc->p_lock));
2099
2100 /*
2101 * Hide this LWP from seekers (namely lwp_getref_lwpid())
2102 * to prevent them from attempting to acquire a reference
2103 * on a zombie.
2104 */
2105 proc_hide_lwpid(tid);
2106
2107 mutex_exit(l->l_proc->p_lock);
2108
2109 /*
2110 * If the LWP has robust futexes, release them all
2111 * now.
2112 */
2113 if (__predict_false(l->l_robust_head != 0)) {
2114 futex_release_all_lwp(l, tid);
2115 }
2116 }
2117
2118 #if defined(DDB)
2119 #include <machine/pcb.h>
2120
2121 void
2122 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2123 {
2124 lwp_t *l;
2125
2126 LIST_FOREACH(l, &alllwp, l_list) {
2127 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2128
2129 if (addr < stack || stack + KSTACK_SIZE <= addr) {
2130 continue;
2131 }
2132 (*pr)("%p is %p+%zu, LWP %p's stack\n",
2133 (void *)addr, (void *)stack,
2134 (size_t)(addr - stack), l);
2135 }
2136 }
2137 #endif /* defined(DDB) */
2138