Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.242
      1 /*	$NetBSD: kern_lwp.c,v 1.242 2020/06/22 16:21:29 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Nathan J. Williams, and Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Overview
     35  *
     36  *	Lightweight processes (LWPs) are the basic unit or thread of
     37  *	execution within the kernel.  The core state of an LWP is described
     38  *	by "struct lwp", also known as lwp_t.
     39  *
     40  *	Each LWP is contained within a process (described by "struct proc"),
     41  *	Every process contains at least one LWP, but may contain more.  The
     42  *	process describes attributes shared among all of its LWPs such as a
     43  *	private address space, global execution state (stopped, active,
     44  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     45  *	machine, multiple LWPs be executing concurrently in the kernel.
     46  *
     47  * Execution states
     48  *
     49  *	At any given time, an LWP has overall state that is described by
     50  *	lwp::l_stat.  The states are broken into two sets below.  The first
     51  *	set is guaranteed to represent the absolute, current state of the
     52  *	LWP:
     53  *
     54  *	LSONPROC
     55  *
     56  *		On processor: the LWP is executing on a CPU, either in the
     57  *		kernel or in user space.
     58  *
     59  *	LSRUN
     60  *
     61  *		Runnable: the LWP is parked on a run queue, and may soon be
     62  *		chosen to run by an idle processor, or by a processor that
     63  *		has been asked to preempt a currently runnning but lower
     64  *		priority LWP.
     65  *
     66  *	LSIDL
     67  *
     68  *		Idle: the LWP has been created but has not yet executed, or
     69  *		it has ceased executing a unit of work and is waiting to be
     70  *		started again.  This state exists so that the LWP can occupy
     71  *		a slot in the process & PID table, but without having to
     72  *		worry about being touched; lookups of the LWP by ID will
     73  *		fail while in this state.  The LWP will become visible for
     74  *		lookup once its state transitions further.  Some special
     75  *		kernel threads also (ab)use this state to indicate that they
     76  *		are idle (soft interrupts and idle LWPs).
     77  *
     78  *	LSSUSPENDED:
     79  *
     80  *		Suspended: the LWP has had its execution suspended by
     81  *		another LWP in the same process using the _lwp_suspend()
     82  *		system call.  User-level LWPs also enter the suspended
     83  *		state when the system is shutting down.
     84  *
     85  *	The second set represent a "statement of intent" on behalf of the
     86  *	LWP.  The LWP may in fact be executing on a processor, may be
     87  *	sleeping or idle. It is expected to take the necessary action to
     88  *	stop executing or become "running" again within a short timeframe.
     89  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
     90  *	Importantly, it indicates that its state is tied to a CPU.
     91  *
     92  *	LSZOMB:
     93  *
     94  *		Dead or dying: the LWP has released most of its resources
     95  *		and is about to switch away into oblivion, or has already
     96  *		switched away.  When it switches away, its few remaining
     97  *		resources can be collected.
     98  *
     99  *	LSSLEEP:
    100  *
    101  *		Sleeping: the LWP has entered itself onto a sleep queue, and
    102  *		has switched away or will switch away shortly to allow other
    103  *		LWPs to run on the CPU.
    104  *
    105  *	LSSTOP:
    106  *
    107  *		Stopped: the LWP has been stopped as a result of a job
    108  *		control signal, or as a result of the ptrace() interface.
    109  *
    110  *		Stopped LWPs may run briefly within the kernel to handle
    111  *		signals that they receive, but will not return to user space
    112  *		until their process' state is changed away from stopped.
    113  *
    114  *		Single LWPs within a process can not be set stopped
    115  *		selectively: all actions that can stop or continue LWPs
    116  *		occur at the process level.
    117  *
    118  * State transitions
    119  *
    120  *	Note that the LSSTOP state may only be set when returning to
    121  *	user space in userret(), or when sleeping interruptably.  The
    122  *	LSSUSPENDED state may only be set in userret().  Before setting
    123  *	those states, we try to ensure that the LWPs will release all
    124  *	locks that they hold, and at a minimum try to ensure that the
    125  *	LWP can be set runnable again by a signal.
    126  *
    127  *	LWPs may transition states in the following ways:
    128  *
    129  *	 RUN -------> ONPROC		ONPROC -----> RUN
    130  *		    				    > SLEEP
    131  *		    				    > STOPPED
    132  *						    > SUSPENDED
    133  *						    > ZOMB
    134  *						    > IDL (special cases)
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN			    > SUSPENDED
    141  *		    > STOPPED			    > STOPPED
    142  *						    > ONPROC (special cases)
    143  *
    144  *	Some state transitions are only possible with kernel threads (eg
    145  *	ONPROC -> IDL) and happen under tightly controlled circumstances
    146  *	free of unwanted side effects.
    147  *
    148  * Migration
    149  *
    150  *	Migration of threads from one CPU to another could be performed
    151  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
    152  *	functions.  The universal lwp_migrate() function should be used for
    153  *	any other cases.  Subsystems in the kernel must be aware that CPU
    154  *	of LWP may change, while it is not locked.
    155  *
    156  * Locking
    157  *
    158  *	The majority of fields in 'struct lwp' are covered by a single,
    159  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    160  *	each field are documented in sys/lwp.h.
    161  *
    162  *	State transitions must be made with the LWP's general lock held,
    163  *	and may cause the LWP's lock pointer to change.  Manipulation of
    164  *	the general lock is not performed directly, but through calls to
    165  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
    166  *	adaptive locks are not allowed to be released while the LWP's lock
    167  *	is being held (unlike for other spin-locks).
    168  *
    169  *	States and their associated locks:
    170  *
    171  *	LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
    172  *
    173  *		Always covered by spc_lwplock, which protects LWPs not
    174  *		associated with any other sync object.  This is a per-CPU
    175  *		lock and matches lwp::l_cpu.
    176  *
    177  *	LSRUN:
    178  *
    179  *		Always covered by spc_mutex, which protects the run queues.
    180  *		This is a per-CPU lock and matches lwp::l_cpu.
    181  *
    182  *	LSSLEEP:
    183  *
    184  *		Covered by a lock associated with the sleep queue (sometimes
    185  *		a turnstile sleep queue) that the LWP resides on.  This can
    186  *		be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
    187  *
    188  *	LSSTOP:
    189  *
    190  *		If the LWP was previously sleeping (l_wchan != NULL), then
    191  *		l_mutex references the sleep queue lock.  If the LWP was
    192  *		runnable or on the CPU when halted, or has been removed from
    193  *		the sleep queue since halted, then the lock is spc_lwplock.
    194  *
    195  *	The lock order is as follows:
    196  *
    197  *		sleepq -> turnstile -> spc_lwplock -> spc_mutex
    198  *
    199  *	Each process has an scheduler state lock (proc::p_lock), and a
    200  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    201  *	so on.  When an LWP is to be entered into or removed from one of the
    202  *	following states, p_lock must be held and the process wide counters
    203  *	adjusted:
    204  *
    205  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    206  *
    207  *	(But not always for kernel threads.  There are some special cases
    208  *	as mentioned above: soft interrupts, and the idle loops.)
    209  *
    210  *	Note that an LWP is considered running or likely to run soon if in
    211  *	one of the following states.  This affects the value of p_nrlwps:
    212  *
    213  *		LSRUN, LSONPROC, LSSLEEP
    214  *
    215  *	p_lock does not need to be held when transitioning among these
    216  *	three states, hence p_lock is rarely taken for state transitions.
    217  */
    218 
    219 #include <sys/cdefs.h>
    220 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.242 2020/06/22 16:21:29 maxv Exp $");
    221 
    222 #include "opt_ddb.h"
    223 #include "opt_lockdebug.h"
    224 #include "opt_dtrace.h"
    225 
    226 #define _LWP_API_PRIVATE
    227 
    228 #include <sys/param.h>
    229 #include <sys/systm.h>
    230 #include <sys/cpu.h>
    231 #include <sys/pool.h>
    232 #include <sys/proc.h>
    233 #include <sys/syscallargs.h>
    234 #include <sys/syscall_stats.h>
    235 #include <sys/kauth.h>
    236 #include <sys/sleepq.h>
    237 #include <sys/lockdebug.h>
    238 #include <sys/kmem.h>
    239 #include <sys/pset.h>
    240 #include <sys/intr.h>
    241 #include <sys/lwpctl.h>
    242 #include <sys/atomic.h>
    243 #include <sys/filedesc.h>
    244 #include <sys/fstrans.h>
    245 #include <sys/dtrace_bsd.h>
    246 #include <sys/sdt.h>
    247 #include <sys/ptrace.h>
    248 #include <sys/xcall.h>
    249 #include <sys/uidinfo.h>
    250 #include <sys/sysctl.h>
    251 #include <sys/psref.h>
    252 #include <sys/msan.h>
    253 #include <sys/kcov.h>
    254 #include <sys/cprng.h>
    255 #include <sys/futex.h>
    256 
    257 #include <uvm/uvm_extern.h>
    258 #include <uvm/uvm_object.h>
    259 
    260 static pool_cache_t	lwp_cache	__read_mostly;
    261 struct lwplist		alllwp		__cacheline_aligned;
    262 
    263 static int		lwp_ctor(void *, void *, int);
    264 static void		lwp_dtor(void *, void *);
    265 
    266 /* DTrace proc provider probes */
    267 SDT_PROVIDER_DEFINE(proc);
    268 
    269 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
    270 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
    271 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
    272 
    273 struct turnstile turnstile0 __cacheline_aligned;
    274 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
    275 #ifdef LWP0_CPU_INFO
    276 	.l_cpu = LWP0_CPU_INFO,
    277 #endif
    278 #ifdef LWP0_MD_INITIALIZER
    279 	.l_md = LWP0_MD_INITIALIZER,
    280 #endif
    281 	.l_proc = &proc0,
    282 	.l_lid = 0,		/* we own proc0's slot in the pid table */
    283 	.l_flag = LW_SYSTEM,
    284 	.l_stat = LSONPROC,
    285 	.l_ts = &turnstile0,
    286 	.l_syncobj = &sched_syncobj,
    287 	.l_refcnt = 0,
    288 	.l_priority = PRI_USER + NPRI_USER - 1,
    289 	.l_inheritedprio = -1,
    290 	.l_class = SCHED_OTHER,
    291 	.l_psid = PS_NONE,
    292 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
    293 	.l_name = __UNCONST("swapper"),
    294 	.l_fd = &filedesc0,
    295 };
    296 
    297 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
    298 
    299 /*
    300  * sysctl helper routine for kern.maxlwp. Ensures that the new
    301  * values are not too low or too high.
    302  */
    303 static int
    304 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
    305 {
    306 	int error, nmaxlwp;
    307 	struct sysctlnode node;
    308 
    309 	nmaxlwp = maxlwp;
    310 	node = *rnode;
    311 	node.sysctl_data = &nmaxlwp;
    312 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    313 	if (error || newp == NULL)
    314 		return error;
    315 
    316 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
    317 		return EINVAL;
    318 	if (nmaxlwp > cpu_maxlwp())
    319 		return EINVAL;
    320 	maxlwp = nmaxlwp;
    321 
    322 	return 0;
    323 }
    324 
    325 static void
    326 sysctl_kern_lwp_setup(void)
    327 {
    328 	sysctl_createv(NULL, 0, NULL, NULL,
    329 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    330 		       CTLTYPE_INT, "maxlwp",
    331 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
    332 		       sysctl_kern_maxlwp, 0, NULL, 0,
    333 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    334 }
    335 
    336 void
    337 lwpinit(void)
    338 {
    339 
    340 	LIST_INIT(&alllwp);
    341 	lwpinit_specificdata();
    342 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
    343 	    "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL);
    344 
    345 	maxlwp = cpu_maxlwp();
    346 	sysctl_kern_lwp_setup();
    347 }
    348 
    349 void
    350 lwp0_init(void)
    351 {
    352 	struct lwp *l = &lwp0;
    353 
    354 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
    355 
    356 	LIST_INSERT_HEAD(&alllwp, l, l_list);
    357 
    358 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
    359 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
    360 	cv_init(&l->l_sigcv, "sigwait");
    361 	cv_init(&l->l_waitcv, "vfork");
    362 
    363 	kauth_cred_hold(proc0.p_cred);
    364 	l->l_cred = proc0.p_cred;
    365 
    366 	kdtrace_thread_ctor(NULL, l);
    367 	lwp_initspecific(l);
    368 
    369 	SYSCALL_TIME_LWP_INIT(l);
    370 }
    371 
    372 /*
    373  * Initialize the non-zeroed portion of an lwp_t.
    374  */
    375 static int
    376 lwp_ctor(void *arg, void *obj, int flags)
    377 {
    378 	lwp_t *l = obj;
    379 
    380 	l->l_stat = LSIDL;
    381 	l->l_cpu = curcpu();
    382 	l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock;
    383 	l->l_ts = pool_get(&turnstile_pool, flags);
    384 
    385 	if (l->l_ts == NULL) {
    386 		return ENOMEM;
    387 	} else {
    388 		turnstile_ctor(l->l_ts);
    389 		return 0;
    390 	}
    391 }
    392 
    393 static void
    394 lwp_dtor(void *arg, void *obj)
    395 {
    396 	lwp_t *l = obj;
    397 	(void)l;
    398 
    399 	/*
    400 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
    401 	 * calls will exit before memory of LWP is returned to the pool, where
    402 	 * KVA of LWP structure might be freed and re-used for other purposes.
    403 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
    404 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
    405 	 * the value of l->l_cpu must be still valid at this point.
    406 	 *
    407 	 * XXX should use epoch based reclamation.
    408 	 */
    409 	KASSERT(l->l_cpu != NULL);
    410 	xc_barrier(0);
    411 
    412 	/*
    413 	 * We can't return turnstile0 to the pool (it didn't come from it),
    414 	 * so if it comes up just drop it quietly and move on.
    415 	 */
    416 	if (l->l_ts != &turnstile0)
    417 		pool_put(&turnstile_pool, l->l_ts);
    418 }
    419 
    420 /*
    421  * Set an LWP suspended.
    422  *
    423  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    424  * LWP before return.
    425  */
    426 int
    427 lwp_suspend(struct lwp *curl, struct lwp *t)
    428 {
    429 	int error;
    430 
    431 	KASSERT(mutex_owned(t->l_proc->p_lock));
    432 	KASSERT(lwp_locked(t, NULL));
    433 
    434 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    435 
    436 	/*
    437 	 * If the current LWP has been told to exit, we must not suspend anyone
    438 	 * else or deadlock could occur.  We won't return to userspace.
    439 	 */
    440 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
    441 		lwp_unlock(t);
    442 		return (EDEADLK);
    443 	}
    444 
    445 	if ((t->l_flag & LW_DBGSUSPEND) != 0) {
    446 		lwp_unlock(t);
    447 		return 0;
    448 	}
    449 
    450 	error = 0;
    451 
    452 	switch (t->l_stat) {
    453 	case LSRUN:
    454 	case LSONPROC:
    455 		t->l_flag |= LW_WSUSPEND;
    456 		lwp_need_userret(t);
    457 		lwp_unlock(t);
    458 		break;
    459 
    460 	case LSSLEEP:
    461 		t->l_flag |= LW_WSUSPEND;
    462 
    463 		/*
    464 		 * Kick the LWP and try to get it to the kernel boundary
    465 		 * so that it will release any locks that it holds.
    466 		 * setrunnable() will release the lock.
    467 		 */
    468 		if ((t->l_flag & LW_SINTR) != 0)
    469 			setrunnable(t);
    470 		else
    471 			lwp_unlock(t);
    472 		break;
    473 
    474 	case LSSUSPENDED:
    475 		lwp_unlock(t);
    476 		break;
    477 
    478 	case LSSTOP:
    479 		t->l_flag |= LW_WSUSPEND;
    480 		setrunnable(t);
    481 		break;
    482 
    483 	case LSIDL:
    484 	case LSZOMB:
    485 		error = EINTR; /* It's what Solaris does..... */
    486 		lwp_unlock(t);
    487 		break;
    488 	}
    489 
    490 	return (error);
    491 }
    492 
    493 /*
    494  * Restart a suspended LWP.
    495  *
    496  * Must be called with p_lock held, and the LWP locked.  Will unlock the
    497  * LWP before return.
    498  */
    499 void
    500 lwp_continue(struct lwp *l)
    501 {
    502 
    503 	KASSERT(mutex_owned(l->l_proc->p_lock));
    504 	KASSERT(lwp_locked(l, NULL));
    505 
    506 	/* If rebooting or not suspended, then just bail out. */
    507 	if ((l->l_flag & LW_WREBOOT) != 0) {
    508 		lwp_unlock(l);
    509 		return;
    510 	}
    511 
    512 	l->l_flag &= ~LW_WSUSPEND;
    513 
    514 	if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
    515 		lwp_unlock(l);
    516 		return;
    517 	}
    518 
    519 	/* setrunnable() will release the lock. */
    520 	setrunnable(l);
    521 }
    522 
    523 /*
    524  * Restart a stopped LWP.
    525  *
    526  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
    527  * LWP before return.
    528  */
    529 void
    530 lwp_unstop(struct lwp *l)
    531 {
    532 	struct proc *p = l->l_proc;
    533 
    534 	KASSERT(mutex_owned(&proc_lock));
    535 	KASSERT(mutex_owned(p->p_lock));
    536 
    537 	lwp_lock(l);
    538 
    539 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    540 
    541 	/* If not stopped, then just bail out. */
    542 	if (l->l_stat != LSSTOP) {
    543 		lwp_unlock(l);
    544 		return;
    545 	}
    546 
    547 	p->p_stat = SACTIVE;
    548 	p->p_sflag &= ~PS_STOPPING;
    549 
    550 	if (!p->p_waited)
    551 		p->p_pptr->p_nstopchild--;
    552 
    553 	if (l->l_wchan == NULL) {
    554 		/* setrunnable() will release the lock. */
    555 		setrunnable(l);
    556 	} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
    557 		/* setrunnable() so we can receive the signal */
    558 		setrunnable(l);
    559 	} else {
    560 		l->l_stat = LSSLEEP;
    561 		p->p_nrlwps++;
    562 		lwp_unlock(l);
    563 	}
    564 }
    565 
    566 /*
    567  * Wait for an LWP within the current process to exit.  If 'lid' is
    568  * non-zero, we are waiting for a specific LWP.
    569  *
    570  * Must be called with p->p_lock held.
    571  */
    572 int
    573 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
    574 {
    575 	const lwpid_t curlid = l->l_lid;
    576 	proc_t *p = l->l_proc;
    577 	lwp_t *l2, *next;
    578 	int error;
    579 
    580 	KASSERT(mutex_owned(p->p_lock));
    581 
    582 	p->p_nlwpwait++;
    583 	l->l_waitingfor = lid;
    584 
    585 	for (;;) {
    586 		int nfound;
    587 
    588 		/*
    589 		 * Avoid a race between exit1() and sigexit(): if the
    590 		 * process is dumping core, then we need to bail out: call
    591 		 * into lwp_userret() where we will be suspended until the
    592 		 * deed is done.
    593 		 */
    594 		if ((p->p_sflag & PS_WCORE) != 0) {
    595 			mutex_exit(p->p_lock);
    596 			lwp_userret(l);
    597 			KASSERT(false);
    598 		}
    599 
    600 		/*
    601 		 * First off, drain any detached LWP that is waiting to be
    602 		 * reaped.
    603 		 */
    604 		while ((l2 = p->p_zomblwp) != NULL) {
    605 			p->p_zomblwp = NULL;
    606 			lwp_free(l2, false, false);/* releases proc mutex */
    607 			mutex_enter(p->p_lock);
    608 		}
    609 
    610 		/*
    611 		 * Now look for an LWP to collect.  If the whole process is
    612 		 * exiting, count detached LWPs as eligible to be collected,
    613 		 * but don't drain them here.
    614 		 */
    615 		nfound = 0;
    616 		error = 0;
    617 
    618 		/*
    619 		 * If given a specific LID, go via pid_table and make sure
    620 		 * it's not detached.
    621 		 */
    622 		if (lid != 0) {
    623 			l2 = proc_find_lwp(p, lid);
    624 			if (l2 == NULL) {
    625 				error = ESRCH;
    626 				break;
    627 			}
    628 			KASSERT(l2->l_lid == lid);
    629 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    630 				error = EINVAL;
    631 				break;
    632 			}
    633 		} else {
    634 			l2 = LIST_FIRST(&p->p_lwps);
    635 		}
    636 		for (; l2 != NULL; l2 = next) {
    637 			next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
    638 
    639 			/*
    640 			 * If a specific wait and the target is waiting on
    641 			 * us, then avoid deadlock.  This also traps LWPs
    642 			 * that try to wait on themselves.
    643 			 *
    644 			 * Note that this does not handle more complicated
    645 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    646 			 * can still be killed so it is not a major problem.
    647 			 */
    648 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    649 				error = EDEADLK;
    650 				break;
    651 			}
    652 			if (l2 == l)
    653 				continue;
    654 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    655 				nfound += exiting;
    656 				continue;
    657 			}
    658 			if (lid != 0) {
    659 				/*
    660 				 * Mark this LWP as the first waiter, if there
    661 				 * is no other.
    662 				 */
    663 				if (l2->l_waiter == 0)
    664 					l2->l_waiter = curlid;
    665 			} else if (l2->l_waiter != 0) {
    666 				/*
    667 				 * It already has a waiter - so don't
    668 				 * collect it.  If the waiter doesn't
    669 				 * grab it we'll get another chance
    670 				 * later.
    671 				 */
    672 				nfound++;
    673 				continue;
    674 			}
    675 			nfound++;
    676 
    677 			/* No need to lock the LWP in order to see LSZOMB. */
    678 			if (l2->l_stat != LSZOMB)
    679 				continue;
    680 
    681 			/*
    682 			 * We're no longer waiting.  Reset the "first waiter"
    683 			 * pointer on the target, in case it was us.
    684 			 */
    685 			l->l_waitingfor = 0;
    686 			l2->l_waiter = 0;
    687 			p->p_nlwpwait--;
    688 			if (departed)
    689 				*departed = l2->l_lid;
    690 			sched_lwp_collect(l2);
    691 
    692 			/* lwp_free() releases the proc lock. */
    693 			lwp_free(l2, false, false);
    694 			mutex_enter(p->p_lock);
    695 			return 0;
    696 		}
    697 
    698 		if (error != 0)
    699 			break;
    700 		if (nfound == 0) {
    701 			error = ESRCH;
    702 			break;
    703 		}
    704 
    705 		/*
    706 		 * Note: since the lock will be dropped, need to restart on
    707 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
    708 		 */
    709 		if (exiting) {
    710 			KASSERT(p->p_nlwps > 1);
    711 			error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
    712 			break;
    713 		}
    714 
    715 		/*
    716 		 * Break out if all LWPs are in _lwp_wait().  There are
    717 		 * other ways to hang the process with _lwp_wait(), but the
    718 		 * sleep is interruptable so little point checking for them.
    719 		 */
    720 		if (p->p_nlwpwait == p->p_nlwps) {
    721 			error = EDEADLK;
    722 			break;
    723 		}
    724 
    725 		/*
    726 		 * Sit around and wait for something to happen.  We'll be
    727 		 * awoken if any of the conditions examined change: if an
    728 		 * LWP exits, is collected, or is detached.
    729 		 */
    730 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
    731 			break;
    732 	}
    733 
    734 	/*
    735 	 * We didn't find any LWPs to collect, we may have received a
    736 	 * signal, or some other condition has caused us to bail out.
    737 	 *
    738 	 * If waiting on a specific LWP, clear the waiters marker: some
    739 	 * other LWP may want it.  Then, kick all the remaining waiters
    740 	 * so that they can re-check for zombies and for deadlock.
    741 	 */
    742 	if (lid != 0) {
    743 		l2 = proc_find_lwp(p, lid);
    744 		KASSERT(l2 == NULL || l2->l_lid == lid);
    745 
    746 		if (l2 != NULL && l2->l_waiter == curlid)
    747 			l2->l_waiter = 0;
    748 	}
    749 	p->p_nlwpwait--;
    750 	l->l_waitingfor = 0;
    751 	cv_broadcast(&p->p_lwpcv);
    752 
    753 	return error;
    754 }
    755 
    756 /*
    757  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    758  * The new LWP is created in state LSIDL and must be set running,
    759  * suspended, or stopped by the caller.
    760  */
    761 int
    762 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
    763     void *stack, size_t stacksize, void (*func)(void *), void *arg,
    764     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
    765     const stack_t *sigstk)
    766 {
    767 	struct lwp *l2;
    768 
    769 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
    770 
    771 	/*
    772 	 * Enforce limits, excluding the first lwp and kthreads.  We must
    773 	 * use the process credentials here when adjusting the limit, as
    774 	 * they are what's tied to the accounting entity.  However for
    775 	 * authorizing the action, we'll use the LWP's credentials.
    776 	 */
    777 	mutex_enter(p2->p_lock);
    778 	if (p2->p_nlwps != 0 && p2 != &proc0) {
    779 		uid_t uid = kauth_cred_getuid(p2->p_cred);
    780 		int count = chglwpcnt(uid, 1);
    781 		if (__predict_false(count >
    782 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
    783 			if (kauth_authorize_process(l1->l_cred,
    784 			    KAUTH_PROCESS_RLIMIT, p2,
    785 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    786 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
    787 			    != 0) {
    788 				(void)chglwpcnt(uid, -1);
    789 				mutex_exit(p2->p_lock);
    790 				return EAGAIN;
    791 			}
    792 		}
    793 	}
    794 
    795 	/*
    796 	 * First off, reap any detached LWP waiting to be collected.
    797 	 * We can re-use its LWP structure and turnstile.
    798 	 */
    799 	if ((l2 = p2->p_zomblwp) != NULL) {
    800 		p2->p_zomblwp = NULL;
    801 		lwp_free(l2, true, false);
    802 		/* p2 now unlocked by lwp_free() */
    803 		KASSERT(l2->l_ts != NULL);
    804 		KASSERT(l2->l_inheritedprio == -1);
    805 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    806 		memset(&l2->l_startzero, 0, sizeof(*l2) -
    807 		    offsetof(lwp_t, l_startzero));
    808 	} else {
    809 		mutex_exit(p2->p_lock);
    810 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
    811 		memset(&l2->l_startzero, 0, sizeof(*l2) -
    812 		    offsetof(lwp_t, l_startzero));
    813 		SLIST_INIT(&l2->l_pi_lenders);
    814 	}
    815 
    816 	/*
    817 	 * Because of lockless lookup via pid_table, the LWP can be locked
    818 	 * and inspected briefly even after it's freed, so a few fields are
    819 	 * kept stable.
    820 	 */
    821 	KASSERT(l2->l_stat == LSIDL);
    822 	KASSERT(l2->l_cpu != NULL);
    823 	KASSERT(l2->l_ts != NULL);
    824 	KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock);
    825 
    826 	l2->l_proc = p2;
    827 	l2->l_refcnt = 0;
    828 	l2->l_class = sclass;
    829 
    830 	/*
    831 	 * Allocate a process ID for this LWP.  We need to do this now
    832 	 * while we can still unwind if it fails.  Beacuse we're marked
    833 	 * as LSIDL, no lookups by the ID will succeed.
    834 	 *
    835 	 * N.B. this will always succeed for the first LWP in a process,
    836 	 * because proc_alloc_lwpid() will usurp the slot.  Also note
    837 	 * that l2->l_proc MUST be valid so that lookups of the proc
    838 	 * will succeed, even if the LWP itself is not visible.
    839 	 */
    840 	if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
    841 		pool_cache_put(lwp_cache, l2);
    842 		return EAGAIN;
    843 	}
    844 
    845 	/*
    846 	 * If vfork(), we want the LWP to run fast and on the same CPU
    847 	 * as its parent, so that it can reuse the VM context and cache
    848 	 * footprint on the local CPU.
    849 	 */
    850 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
    851 	l2->l_kpribase = PRI_KERNEL;
    852 	l2->l_priority = l1->l_priority;
    853 	l2->l_inheritedprio = -1;
    854 	l2->l_protectprio = -1;
    855 	l2->l_auxprio = -1;
    856 	l2->l_flag = 0;
    857 	l2->l_pflag = LP_MPSAFE;
    858 	TAILQ_INIT(&l2->l_ld_locks);
    859 	l2->l_psrefs = 0;
    860 	kmsan_lwp_alloc(l2);
    861 
    862 	/*
    863 	 * For vfork, borrow parent's lwpctl context if it exists.
    864 	 * This also causes us to return via lwp_userret.
    865 	 */
    866 	if (flags & LWP_VFORK && l1->l_lwpctl) {
    867 		l2->l_lwpctl = l1->l_lwpctl;
    868 		l2->l_flag |= LW_LWPCTL;
    869 	}
    870 
    871 	/*
    872 	 * If not the first LWP in the process, grab a reference to the
    873 	 * descriptor table.
    874 	 */
    875 	l2->l_fd = p2->p_fd;
    876 	if (p2->p_nlwps != 0) {
    877 		KASSERT(l1->l_proc == p2);
    878 		fd_hold(l2);
    879 	} else {
    880 		KASSERT(l1->l_proc != p2);
    881 	}
    882 
    883 	if (p2->p_flag & PK_SYSTEM) {
    884 		/* Mark it as a system LWP. */
    885 		l2->l_flag |= LW_SYSTEM;
    886 	}
    887 
    888 	kdtrace_thread_ctor(NULL, l2);
    889 	lwp_initspecific(l2);
    890 	sched_lwp_fork(l1, l2);
    891 	lwp_update_creds(l2);
    892 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    893 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    894 	cv_init(&l2->l_sigcv, "sigwait");
    895 	cv_init(&l2->l_waitcv, "vfork");
    896 	l2->l_syncobj = &sched_syncobj;
    897 	PSREF_DEBUG_INIT_LWP(l2);
    898 
    899 	if (rnewlwpp != NULL)
    900 		*rnewlwpp = l2;
    901 
    902 	/*
    903 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
    904 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
    905 	 */
    906 	pcu_save_all(l1);
    907 #if PCU_UNIT_COUNT > 0
    908 	l2->l_pcu_valid = l1->l_pcu_valid;
    909 #endif
    910 
    911 	uvm_lwp_setuarea(l2, uaddr);
    912 	uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
    913 
    914 	mutex_enter(p2->p_lock);
    915 	if ((flags & LWP_DETACHED) != 0) {
    916 		l2->l_prflag = LPR_DETACHED;
    917 		p2->p_ndlwps++;
    918 	} else
    919 		l2->l_prflag = 0;
    920 
    921 	if (l1->l_proc == p2) {
    922 		/*
    923 		 * These flags are set while p_lock is held.  Copy with
    924 		 * p_lock held too, so the LWP doesn't sneak into the
    925 		 * process without them being set.
    926 		 */
    927 		l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
    928 	} else {
    929 		/* fork(): pending core/exit doesn't apply to child. */
    930 		l2->l_flag |= (l1->l_flag & LW_WREBOOT);
    931 	}
    932 
    933 	l2->l_sigstk = *sigstk;
    934 	l2->l_sigmask = *sigmask;
    935 	TAILQ_INIT(&l2->l_sigpend.sp_info);
    936 	sigemptyset(&l2->l_sigpend.sp_set);
    937 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    938 	p2->p_nlwps++;
    939 	p2->p_nrlwps++;
    940 
    941 	KASSERT(l2->l_affinity == NULL);
    942 
    943 	/* Inherit the affinity mask. */
    944 	if (l1->l_affinity) {
    945 		/*
    946 		 * Note that we hold the state lock while inheriting
    947 		 * the affinity to avoid race with sched_setaffinity().
    948 		 */
    949 		lwp_lock(l1);
    950 		if (l1->l_affinity) {
    951 			kcpuset_use(l1->l_affinity);
    952 			l2->l_affinity = l1->l_affinity;
    953 		}
    954 		lwp_unlock(l1);
    955 	}
    956 
    957 	/* This marks the end of the "must be atomic" section. */
    958 	mutex_exit(p2->p_lock);
    959 
    960 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
    961 
    962 	mutex_enter(&proc_lock);
    963 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    964 	/* Inherit a processor-set */
    965 	l2->l_psid = l1->l_psid;
    966 	mutex_exit(&proc_lock);
    967 
    968 	SYSCALL_TIME_LWP_INIT(l2);
    969 
    970 	if (p2->p_emul->e_lwp_fork)
    971 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    972 
    973 	return (0);
    974 }
    975 
    976 /*
    977  * Set a new LWP running.  If the process is stopping, then the LWP is
    978  * created stopped.
    979  */
    980 void
    981 lwp_start(lwp_t *l, int flags)
    982 {
    983 	proc_t *p = l->l_proc;
    984 
    985 	mutex_enter(p->p_lock);
    986 	lwp_lock(l);
    987 	KASSERT(l->l_stat == LSIDL);
    988 	if ((flags & LWP_SUSPENDED) != 0) {
    989 		/* It'll suspend itself in lwp_userret(). */
    990 		l->l_flag |= LW_WSUSPEND;
    991 	}
    992 	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
    993 		KASSERT(l->l_wchan == NULL);
    994 	    	l->l_stat = LSSTOP;
    995 		p->p_nrlwps--;
    996 		lwp_unlock(l);
    997 	} else {
    998 		setrunnable(l);
    999 		/* LWP now unlocked */
   1000 	}
   1001 	mutex_exit(p->p_lock);
   1002 }
   1003 
   1004 /*
   1005  * Called by MD code when a new LWP begins execution.  Must be called
   1006  * with the previous LWP locked (so at splsched), or if there is no
   1007  * previous LWP, at splsched.
   1008  */
   1009 void
   1010 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
   1011 {
   1012 	kmutex_t *lock;
   1013 
   1014 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
   1015 	KASSERT(kpreempt_disabled());
   1016 	KASSERT(prev != NULL);
   1017 	KASSERT((prev->l_pflag & LP_RUNNING) != 0);
   1018 	KASSERT(curcpu()->ci_mtx_count == -2);
   1019 
   1020 	/*
   1021 	 * Immediately mark the previous LWP as no longer running and unlock
   1022 	 * (to keep lock wait times short as possible).  If a zombie, don't
   1023 	 * touch after clearing LP_RUNNING as it could be reaped by another
   1024 	 * CPU.  Issue a memory barrier to ensure this.
   1025 	 */
   1026 	lock = prev->l_mutex;
   1027 	if (__predict_false(prev->l_stat == LSZOMB)) {
   1028 		membar_sync();
   1029 	}
   1030 	prev->l_pflag &= ~LP_RUNNING;
   1031 	mutex_spin_exit(lock);
   1032 
   1033 	/* Correct spin mutex count after mi_switch(). */
   1034 	curcpu()->ci_mtx_count = 0;
   1035 
   1036 	/* Install new VM context. */
   1037 	if (__predict_true(new_lwp->l_proc->p_vmspace)) {
   1038 		pmap_activate(new_lwp);
   1039 	}
   1040 
   1041 	/* We remain at IPL_SCHED from mi_switch() - reset it. */
   1042 	spl0();
   1043 
   1044 	LOCKDEBUG_BARRIER(NULL, 0);
   1045 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
   1046 
   1047 	/* For kthreads, acquire kernel lock if not MPSAFE. */
   1048 	if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
   1049 		KERNEL_LOCK(1, new_lwp);
   1050 	}
   1051 }
   1052 
   1053 /*
   1054  * Exit an LWP.
   1055  *
   1056  * *** WARNING *** This can be called with (l != curlwp) in error paths.
   1057  */
   1058 void
   1059 lwp_exit(struct lwp *l)
   1060 {
   1061 	struct proc *p = l->l_proc;
   1062 	struct lwp *l2;
   1063 	bool current;
   1064 
   1065 	current = (l == curlwp);
   1066 
   1067 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
   1068 	KASSERT(p == curproc);
   1069 
   1070 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
   1071 
   1072 	/* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
   1073 	LOCKDEBUG_BARRIER(NULL, 0);
   1074 	KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
   1075 
   1076 	/*
   1077 	 * If we are the last live LWP in a process, we need to exit the
   1078 	 * entire process.  We do so with an exit status of zero, because
   1079 	 * it's a "controlled" exit, and because that's what Solaris does.
   1080 	 *
   1081 	 * We are not quite a zombie yet, but for accounting purposes we
   1082 	 * must increment the count of zombies here.
   1083 	 *
   1084 	 * Note: the last LWP's specificdata will be deleted here.
   1085 	 */
   1086 	mutex_enter(p->p_lock);
   1087 	if (p->p_nlwps - p->p_nzlwps == 1) {
   1088 		KASSERT(current == true);
   1089 		KASSERT(p != &proc0);
   1090 		exit1(l, 0, 0);
   1091 		/* NOTREACHED */
   1092 	}
   1093 	p->p_nzlwps++;
   1094 
   1095 	/*
   1096 	 * Perform any required thread cleanup.  Do this early so
   1097 	 * anyone wanting to look us up with lwp_getref_lwpid() will
   1098 	 * fail to find us before we become a zombie.
   1099 	 *
   1100 	 * N.B. this will unlock p->p_lock on our behalf.
   1101 	 */
   1102 	lwp_thread_cleanup(l);
   1103 
   1104 	if (p->p_emul->e_lwp_exit)
   1105 		(*p->p_emul->e_lwp_exit)(l);
   1106 
   1107 	/* Drop filedesc reference. */
   1108 	fd_free();
   1109 
   1110 	/* Release fstrans private data. */
   1111 	fstrans_lwp_dtor(l);
   1112 
   1113 	/* Delete the specificdata while it's still safe to sleep. */
   1114 	lwp_finispecific(l);
   1115 
   1116 	/*
   1117 	 * Release our cached credentials.
   1118 	 */
   1119 	kauth_cred_free(l->l_cred);
   1120 	callout_destroy(&l->l_timeout_ch);
   1121 
   1122 	/*
   1123 	 * If traced, report LWP exit event to the debugger.
   1124 	 *
   1125 	 * Remove the LWP from the global list.
   1126 	 * Free its LID from the PID namespace if needed.
   1127 	 */
   1128 	mutex_enter(&proc_lock);
   1129 
   1130 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
   1131 	    (PSL_TRACED|PSL_TRACELWP_EXIT)) {
   1132 		mutex_enter(p->p_lock);
   1133 		if (ISSET(p->p_sflag, PS_WEXIT)) {
   1134 			mutex_exit(p->p_lock);
   1135 			/*
   1136 			 * We are exiting, bail out without informing parent
   1137 			 * about a terminating LWP as it would deadlock.
   1138 			 */
   1139 		} else {
   1140 			eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
   1141 			mutex_enter(&proc_lock);
   1142 		}
   1143 	}
   1144 
   1145 	LIST_REMOVE(l, l_list);
   1146 	mutex_exit(&proc_lock);
   1147 
   1148 	/*
   1149 	 * Get rid of all references to the LWP that others (e.g. procfs)
   1150 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
   1151 	 * mark it waiting for collection in the proc structure.  Note that
   1152 	 * before we can do that, we need to free any other dead, deatched
   1153 	 * LWP waiting to meet its maker.
   1154 	 *
   1155 	 * All conditions need to be observed upon under the same hold of
   1156 	 * p_lock, because if the lock is dropped any of them can change.
   1157 	 */
   1158 	mutex_enter(p->p_lock);
   1159 	for (;;) {
   1160 		if (lwp_drainrefs(l))
   1161 			continue;
   1162 		if ((l->l_prflag & LPR_DETACHED) != 0) {
   1163 			if ((l2 = p->p_zomblwp) != NULL) {
   1164 				p->p_zomblwp = NULL;
   1165 				lwp_free(l2, false, false);
   1166 				/* proc now unlocked */
   1167 				mutex_enter(p->p_lock);
   1168 				continue;
   1169 			}
   1170 			p->p_zomblwp = l;
   1171 		}
   1172 		break;
   1173 	}
   1174 
   1175 	/*
   1176 	 * If we find a pending signal for the process and we have been
   1177 	 * asked to check for signals, then we lose: arrange to have
   1178 	 * all other LWPs in the process check for signals.
   1179 	 */
   1180 	if ((l->l_flag & LW_PENDSIG) != 0 &&
   1181 	    firstsig(&p->p_sigpend.sp_set) != 0) {
   1182 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
   1183 			lwp_lock(l2);
   1184 			signotify(l2);
   1185 			lwp_unlock(l2);
   1186 		}
   1187 	}
   1188 
   1189 	/*
   1190 	 * Release any PCU resources before becoming a zombie.
   1191 	 */
   1192 	pcu_discard_all(l);
   1193 
   1194 	lwp_lock(l);
   1195 	l->l_stat = LSZOMB;
   1196 	if (l->l_name != NULL) {
   1197 		strcpy(l->l_name, "(zombie)");
   1198 	}
   1199 	lwp_unlock(l);
   1200 	p->p_nrlwps--;
   1201 	cv_broadcast(&p->p_lwpcv);
   1202 	if (l->l_lwpctl != NULL)
   1203 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
   1204 	mutex_exit(p->p_lock);
   1205 
   1206 	/*
   1207 	 * We can no longer block.  At this point, lwp_free() may already
   1208 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
   1209 	 *
   1210 	 * Free MD LWP resources.
   1211 	 */
   1212 	cpu_lwp_free(l, 0);
   1213 
   1214 	if (current) {
   1215 		/* Switch away into oblivion. */
   1216 		lwp_lock(l);
   1217 		spc_lock(l->l_cpu);
   1218 		mi_switch(l);
   1219 		panic("lwp_exit");
   1220 	}
   1221 }
   1222 
   1223 /*
   1224  * Free a dead LWP's remaining resources.
   1225  *
   1226  * XXXLWP limits.
   1227  */
   1228 void
   1229 lwp_free(struct lwp *l, bool recycle, bool last)
   1230 {
   1231 	struct proc *p = l->l_proc;
   1232 	struct rusage *ru;
   1233 	ksiginfoq_t kq;
   1234 
   1235 	KASSERT(l != curlwp);
   1236 	KASSERT(last || mutex_owned(p->p_lock));
   1237 
   1238 	/*
   1239 	 * We use the process credentials instead of the lwp credentials here
   1240 	 * because the lwp credentials maybe cached (just after a setuid call)
   1241 	 * and we don't want pay for syncing, since the lwp is going away
   1242 	 * anyway
   1243 	 */
   1244 	if (p != &proc0 && p->p_nlwps != 1)
   1245 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
   1246 
   1247 	/*
   1248 	 * In the unlikely event that the LWP is still on the CPU,
   1249 	 * then spin until it has switched away.
   1250 	 */
   1251 	membar_consumer();
   1252 	while (__predict_false((l->l_pflag & LP_RUNNING) != 0)) {
   1253 		SPINLOCK_BACKOFF_HOOK;
   1254 	}
   1255 
   1256 	/*
   1257 	 * Now that the LWP's known off the CPU, reset its state back to
   1258 	 * LSIDL, which defeats anything that might have gotten a hold on
   1259 	 * the LWP via pid_table before the ID was freed.  It's important
   1260 	 * to do this with both the LWP locked and p_lock held.
   1261 	 *
   1262 	 * Also reset the CPU and lock pointer back to curcpu(), since the
   1263 	 * LWP will in all likelyhood be cached with the current CPU in
   1264 	 * lwp_cache when we free it and later allocated from there again
   1265 	 * (avoid incidental lock contention).
   1266 	 */
   1267 	lwp_lock(l);
   1268 	l->l_stat = LSIDL;
   1269 	l->l_cpu = curcpu();
   1270 	lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock);
   1271 
   1272 	/*
   1273 	 * If this was not the last LWP in the process, then adjust counters
   1274 	 * and unlock.  This is done differently for the last LWP in exit1().
   1275 	 */
   1276 	if (!last) {
   1277 		/*
   1278 		 * Add the LWP's run time to the process' base value.
   1279 		 * This needs to co-incide with coming off p_lwps.
   1280 		 */
   1281 		bintime_add(&p->p_rtime, &l->l_rtime);
   1282 		p->p_pctcpu += l->l_pctcpu;
   1283 		ru = &p->p_stats->p_ru;
   1284 		ruadd(ru, &l->l_ru);
   1285 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
   1286 		ru->ru_nivcsw += l->l_nivcsw;
   1287 		LIST_REMOVE(l, l_sibling);
   1288 		p->p_nlwps--;
   1289 		p->p_nzlwps--;
   1290 		if ((l->l_prflag & LPR_DETACHED) != 0)
   1291 			p->p_ndlwps--;
   1292 
   1293 		/*
   1294 		 * Have any LWPs sleeping in lwp_wait() recheck for
   1295 		 * deadlock.
   1296 		 */
   1297 		cv_broadcast(&p->p_lwpcv);
   1298 		mutex_exit(p->p_lock);
   1299 
   1300 		/* Free the LWP ID. */
   1301 		mutex_enter(&proc_lock);
   1302 		proc_free_lwpid(p, l->l_lid);
   1303 		mutex_exit(&proc_lock);
   1304 	}
   1305 
   1306 	/*
   1307 	 * Destroy the LWP's remaining signal information.
   1308 	 */
   1309 	ksiginfo_queue_init(&kq);
   1310 	sigclear(&l->l_sigpend, NULL, &kq);
   1311 	ksiginfo_queue_drain(&kq);
   1312 	cv_destroy(&l->l_sigcv);
   1313 	cv_destroy(&l->l_waitcv);
   1314 
   1315 	/*
   1316 	 * Free lwpctl structure and affinity.
   1317 	 */
   1318 	if (l->l_lwpctl) {
   1319 		lwp_ctl_free(l);
   1320 	}
   1321 	if (l->l_affinity) {
   1322 		kcpuset_unuse(l->l_affinity, NULL);
   1323 		l->l_affinity = NULL;
   1324 	}
   1325 
   1326 	/*
   1327 	 * Free remaining data structures and the LWP itself unless the
   1328 	 * caller wants to recycle.
   1329 	 */
   1330 	if (l->l_name != NULL)
   1331 		kmem_free(l->l_name, MAXCOMLEN);
   1332 
   1333 	kmsan_lwp_free(l);
   1334 	kcov_lwp_free(l);
   1335 	cpu_lwp_free2(l);
   1336 	uvm_lwp_exit(l);
   1337 
   1338 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
   1339 	KASSERT(l->l_inheritedprio == -1);
   1340 	KASSERT(l->l_blcnt == 0);
   1341 	kdtrace_thread_dtor(NULL, l);
   1342 	if (!recycle)
   1343 		pool_cache_put(lwp_cache, l);
   1344 }
   1345 
   1346 /*
   1347  * Migrate the LWP to the another CPU.  Unlocks the LWP.
   1348  */
   1349 void
   1350 lwp_migrate(lwp_t *l, struct cpu_info *tci)
   1351 {
   1352 	struct schedstate_percpu *tspc;
   1353 	int lstat = l->l_stat;
   1354 
   1355 	KASSERT(lwp_locked(l, NULL));
   1356 	KASSERT(tci != NULL);
   1357 
   1358 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
   1359 	if ((l->l_pflag & LP_RUNNING) != 0) {
   1360 		lstat = LSONPROC;
   1361 	}
   1362 
   1363 	/*
   1364 	 * The destination CPU could be changed while previous migration
   1365 	 * was not finished.
   1366 	 */
   1367 	if (l->l_target_cpu != NULL) {
   1368 		l->l_target_cpu = tci;
   1369 		lwp_unlock(l);
   1370 		return;
   1371 	}
   1372 
   1373 	/* Nothing to do if trying to migrate to the same CPU */
   1374 	if (l->l_cpu == tci) {
   1375 		lwp_unlock(l);
   1376 		return;
   1377 	}
   1378 
   1379 	KASSERT(l->l_target_cpu == NULL);
   1380 	tspc = &tci->ci_schedstate;
   1381 	switch (lstat) {
   1382 	case LSRUN:
   1383 		l->l_target_cpu = tci;
   1384 		break;
   1385 	case LSSLEEP:
   1386 		l->l_cpu = tci;
   1387 		break;
   1388 	case LSIDL:
   1389 	case LSSTOP:
   1390 	case LSSUSPENDED:
   1391 		l->l_cpu = tci;
   1392 		if (l->l_wchan == NULL) {
   1393 			lwp_unlock_to(l, tspc->spc_lwplock);
   1394 			return;
   1395 		}
   1396 		break;
   1397 	case LSONPROC:
   1398 		l->l_target_cpu = tci;
   1399 		spc_lock(l->l_cpu);
   1400 		sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
   1401 		/* spc now unlocked */
   1402 		break;
   1403 	}
   1404 	lwp_unlock(l);
   1405 }
   1406 
   1407 #define	lwp_find_exclude(l)					\
   1408 	((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB)
   1409 
   1410 /*
   1411  * Find the LWP in the process.  Arguments may be zero, in such case,
   1412  * the calling process and first LWP in the list will be used.
   1413  * On success - returns proc locked.
   1414  *
   1415  * => pid == 0 -> look in curproc.
   1416  * => pid == -1 -> match any proc.
   1417  * => otherwise look up the proc.
   1418  *
   1419  * => lid == 0 -> first LWP in the proc
   1420  * => otherwise specific LWP
   1421  */
   1422 struct lwp *
   1423 lwp_find2(pid_t pid, lwpid_t lid)
   1424 {
   1425 	proc_t *p;
   1426 	lwp_t *l;
   1427 
   1428 	/* First LWP of specified proc. */
   1429 	if (lid == 0) {
   1430 		switch (pid) {
   1431 		case -1:
   1432 			/* No lookup keys. */
   1433 			return NULL;
   1434 		case 0:
   1435 			p = curproc;
   1436 			mutex_enter(p->p_lock);
   1437 			break;
   1438 		default:
   1439 			mutex_enter(&proc_lock);
   1440 			p = proc_find(pid);
   1441 			if (__predict_false(p == NULL)) {
   1442 				mutex_exit(&proc_lock);
   1443 				return NULL;
   1444 			}
   1445 			mutex_enter(p->p_lock);
   1446 			mutex_exit(&proc_lock);
   1447 			break;
   1448 		}
   1449 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1450 			if (__predict_true(!lwp_find_exclude(l)))
   1451 				break;
   1452 		}
   1453 		goto out;
   1454 	}
   1455 
   1456 	l = proc_find_lwp_acquire_proc(lid, &p);
   1457 	if (l == NULL)
   1458 		return NULL;
   1459 	KASSERT(p != NULL);
   1460 	KASSERT(mutex_owned(p->p_lock));
   1461 
   1462 	if (__predict_false(lwp_find_exclude(l))) {
   1463 		l = NULL;
   1464 		goto out;
   1465 	}
   1466 
   1467 	/* Apply proc filter, if applicable. */
   1468 	switch (pid) {
   1469 	case -1:
   1470 		/* Match anything. */
   1471 		break;
   1472 	case 0:
   1473 		if (p != curproc)
   1474 			l = NULL;
   1475 		break;
   1476 	default:
   1477 		if (p->p_pid != pid)
   1478 			l = NULL;
   1479 		break;
   1480 	}
   1481 
   1482  out:
   1483 	if (__predict_false(l == NULL)) {
   1484 		mutex_exit(p->p_lock);
   1485 	}
   1486 	return l;
   1487 }
   1488 
   1489 /*
   1490  * Look up a live LWP within the specified process.
   1491  *
   1492  * Must be called with p->p_lock held (as it looks at the radix tree,
   1493  * and also wants to exclude idle and zombie LWPs).
   1494  */
   1495 struct lwp *
   1496 lwp_find(struct proc *p, lwpid_t id)
   1497 {
   1498 	struct lwp *l;
   1499 
   1500 	KASSERT(mutex_owned(p->p_lock));
   1501 
   1502 	l = proc_find_lwp(p, id);
   1503 	KASSERT(l == NULL || l->l_lid == id);
   1504 
   1505 	/*
   1506 	 * No need to lock - all of these conditions will
   1507 	 * be visible with the process level mutex held.
   1508 	 */
   1509 	if (__predict_false(l != NULL && lwp_find_exclude(l)))
   1510 		l = NULL;
   1511 
   1512 	return l;
   1513 }
   1514 
   1515 /*
   1516  * Update an LWP's cached credentials to mirror the process' master copy.
   1517  *
   1518  * This happens early in the syscall path, on user trap, and on LWP
   1519  * creation.  A long-running LWP can also voluntarily choose to update
   1520  * its credentials by calling this routine.  This may be called from
   1521  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1522  */
   1523 void
   1524 lwp_update_creds(struct lwp *l)
   1525 {
   1526 	kauth_cred_t oc;
   1527 	struct proc *p;
   1528 
   1529 	p = l->l_proc;
   1530 	oc = l->l_cred;
   1531 
   1532 	mutex_enter(p->p_lock);
   1533 	kauth_cred_hold(p->p_cred);
   1534 	l->l_cred = p->p_cred;
   1535 	l->l_prflag &= ~LPR_CRMOD;
   1536 	mutex_exit(p->p_lock);
   1537 	if (oc != NULL)
   1538 		kauth_cred_free(oc);
   1539 }
   1540 
   1541 /*
   1542  * Verify that an LWP is locked, and optionally verify that the lock matches
   1543  * one we specify.
   1544  */
   1545 int
   1546 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1547 {
   1548 	kmutex_t *cur = l->l_mutex;
   1549 
   1550 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1551 }
   1552 
   1553 /*
   1554  * Lend a new mutex to an LWP.  The old mutex must be held.
   1555  */
   1556 kmutex_t *
   1557 lwp_setlock(struct lwp *l, kmutex_t *mtx)
   1558 {
   1559 	kmutex_t *oldmtx = l->l_mutex;
   1560 
   1561 	KASSERT(mutex_owned(oldmtx));
   1562 
   1563 	membar_exit();
   1564 	l->l_mutex = mtx;
   1565 	return oldmtx;
   1566 }
   1567 
   1568 /*
   1569  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1570  * must be held.
   1571  */
   1572 void
   1573 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
   1574 {
   1575 	kmutex_t *old;
   1576 
   1577 	KASSERT(lwp_locked(l, NULL));
   1578 
   1579 	old = l->l_mutex;
   1580 	membar_exit();
   1581 	l->l_mutex = mtx;
   1582 	mutex_spin_exit(old);
   1583 }
   1584 
   1585 int
   1586 lwp_trylock(struct lwp *l)
   1587 {
   1588 	kmutex_t *old;
   1589 
   1590 	for (;;) {
   1591 		if (!mutex_tryenter(old = l->l_mutex))
   1592 			return 0;
   1593 		if (__predict_true(l->l_mutex == old))
   1594 			return 1;
   1595 		mutex_spin_exit(old);
   1596 	}
   1597 }
   1598 
   1599 void
   1600 lwp_unsleep(lwp_t *l, bool unlock)
   1601 {
   1602 
   1603 	KASSERT(mutex_owned(l->l_mutex));
   1604 	(*l->l_syncobj->sobj_unsleep)(l, unlock);
   1605 }
   1606 
   1607 /*
   1608  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1609  * set.
   1610  */
   1611 void
   1612 lwp_userret(struct lwp *l)
   1613 {
   1614 	struct proc *p;
   1615 	int sig;
   1616 
   1617 	KASSERT(l == curlwp);
   1618 	KASSERT(l->l_stat == LSONPROC);
   1619 	p = l->l_proc;
   1620 
   1621 	/*
   1622 	 * It is safe to do this read unlocked on a MP system..
   1623 	 */
   1624 	while ((l->l_flag & LW_USERRET) != 0) {
   1625 		/*
   1626 		 * Process pending signals first, unless the process
   1627 		 * is dumping core or exiting, where we will instead
   1628 		 * enter the LW_WSUSPEND case below.
   1629 		 */
   1630 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1631 		    LW_PENDSIG) {
   1632 			mutex_enter(p->p_lock);
   1633 			while ((sig = issignal(l)) != 0)
   1634 				postsig(sig);
   1635 			mutex_exit(p->p_lock);
   1636 		}
   1637 
   1638 		/*
   1639 		 * Core-dump or suspend pending.
   1640 		 *
   1641 		 * In case of core dump, suspend ourselves, so that the kernel
   1642 		 * stack and therefore the userland registers saved in the
   1643 		 * trapframe are around for coredump() to write them out.
   1644 		 * We also need to save any PCU resources that we have so that
   1645 		 * they accessible for coredump().  We issue a wakeup on
   1646 		 * p->p_lwpcv so that sigexit() will write the core file out
   1647 		 * once all other LWPs are suspended.
   1648 		 */
   1649 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1650 			pcu_save_all(l);
   1651 			mutex_enter(p->p_lock);
   1652 			p->p_nrlwps--;
   1653 			cv_broadcast(&p->p_lwpcv);
   1654 			lwp_lock(l);
   1655 			l->l_stat = LSSUSPENDED;
   1656 			lwp_unlock(l);
   1657 			mutex_exit(p->p_lock);
   1658 			lwp_lock(l);
   1659 			spc_lock(l->l_cpu);
   1660 			mi_switch(l);
   1661 		}
   1662 
   1663 		/* Process is exiting. */
   1664 		if ((l->l_flag & LW_WEXIT) != 0) {
   1665 			lwp_exit(l);
   1666 			KASSERT(0);
   1667 			/* NOTREACHED */
   1668 		}
   1669 
   1670 		/* update lwpctl processor (for vfork child_return) */
   1671 		if (l->l_flag & LW_LWPCTL) {
   1672 			lwp_lock(l);
   1673 			KASSERT(kpreempt_disabled());
   1674 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
   1675 			l->l_lwpctl->lc_pctr++;
   1676 			l->l_flag &= ~LW_LWPCTL;
   1677 			lwp_unlock(l);
   1678 		}
   1679 	}
   1680 }
   1681 
   1682 /*
   1683  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1684  */
   1685 void
   1686 lwp_need_userret(struct lwp *l)
   1687 {
   1688 
   1689 	KASSERT(!cpu_intr_p());
   1690 	KASSERT(lwp_locked(l, NULL));
   1691 
   1692 	/*
   1693 	 * If the LWP is in any state other than LSONPROC, we know that it
   1694 	 * is executing in-kernel and will hit userret() on the way out.
   1695 	 *
   1696 	 * If the LWP is curlwp, then we know we'll be back out to userspace
   1697 	 * soon (can't be called from a hardware interrupt here).
   1698 	 *
   1699 	 * Otherwise, we can't be sure what the LWP is doing, so first make
   1700 	 * sure the update to l_flag will be globally visible, and then
   1701 	 * force the LWP to take a trip through trap() where it will do
   1702 	 * userret().
   1703 	 */
   1704 	if (l->l_stat == LSONPROC && l != curlwp) {
   1705 		membar_producer();
   1706 		cpu_signotify(l);
   1707 	}
   1708 }
   1709 
   1710 /*
   1711  * Add one reference to an LWP.  This will prevent the LWP from
   1712  * exiting, thus keep the lwp structure and PCB around to inspect.
   1713  */
   1714 void
   1715 lwp_addref(struct lwp *l)
   1716 {
   1717 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1718 	KASSERT(l->l_stat != LSZOMB);
   1719 	l->l_refcnt++;
   1720 }
   1721 
   1722 /*
   1723  * Remove one reference to an LWP.  If this is the last reference,
   1724  * then we must finalize the LWP's death.
   1725  */
   1726 void
   1727 lwp_delref(struct lwp *l)
   1728 {
   1729 	struct proc *p = l->l_proc;
   1730 
   1731 	mutex_enter(p->p_lock);
   1732 	lwp_delref2(l);
   1733 	mutex_exit(p->p_lock);
   1734 }
   1735 
   1736 /*
   1737  * Remove one reference to an LWP.  If this is the last reference,
   1738  * then we must finalize the LWP's death.  The proc mutex is held
   1739  * on entry.
   1740  */
   1741 void
   1742 lwp_delref2(struct lwp *l)
   1743 {
   1744 	struct proc *p = l->l_proc;
   1745 
   1746 	KASSERT(mutex_owned(p->p_lock));
   1747 	KASSERT(l->l_stat != LSZOMB);
   1748 	KASSERT(l->l_refcnt > 0);
   1749 
   1750 	if (--l->l_refcnt == 0)
   1751 		cv_broadcast(&p->p_lwpcv);
   1752 }
   1753 
   1754 /*
   1755  * Drain all references to the current LWP.  Returns true if
   1756  * we blocked.
   1757  */
   1758 bool
   1759 lwp_drainrefs(struct lwp *l)
   1760 {
   1761 	struct proc *p = l->l_proc;
   1762 	bool rv = false;
   1763 
   1764 	KASSERT(mutex_owned(p->p_lock));
   1765 
   1766 	l->l_prflag |= LPR_DRAINING;
   1767 
   1768 	while (l->l_refcnt > 0) {
   1769 		rv = true;
   1770 		cv_wait(&p->p_lwpcv, p->p_lock);
   1771 	}
   1772 	return rv;
   1773 }
   1774 
   1775 /*
   1776  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
   1777  * be held.
   1778  */
   1779 bool
   1780 lwp_alive(lwp_t *l)
   1781 {
   1782 
   1783 	KASSERT(mutex_owned(l->l_proc->p_lock));
   1784 
   1785 	switch (l->l_stat) {
   1786 	case LSSLEEP:
   1787 	case LSRUN:
   1788 	case LSONPROC:
   1789 	case LSSTOP:
   1790 	case LSSUSPENDED:
   1791 		return true;
   1792 	default:
   1793 		return false;
   1794 	}
   1795 }
   1796 
   1797 /*
   1798  * Return first live LWP in the process.
   1799  */
   1800 lwp_t *
   1801 lwp_find_first(proc_t *p)
   1802 {
   1803 	lwp_t *l;
   1804 
   1805 	KASSERT(mutex_owned(p->p_lock));
   1806 
   1807 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1808 		if (lwp_alive(l)) {
   1809 			return l;
   1810 		}
   1811 	}
   1812 
   1813 	return NULL;
   1814 }
   1815 
   1816 /*
   1817  * Allocate a new lwpctl structure for a user LWP.
   1818  */
   1819 int
   1820 lwp_ctl_alloc(vaddr_t *uaddr)
   1821 {
   1822 	lcproc_t *lp;
   1823 	u_int bit, i, offset;
   1824 	struct uvm_object *uao;
   1825 	int error;
   1826 	lcpage_t *lcp;
   1827 	proc_t *p;
   1828 	lwp_t *l;
   1829 
   1830 	l = curlwp;
   1831 	p = l->l_proc;
   1832 
   1833 	/* don't allow a vforked process to create lwp ctls */
   1834 	if (p->p_lflag & PL_PPWAIT)
   1835 		return EBUSY;
   1836 
   1837 	if (l->l_lcpage != NULL) {
   1838 		lcp = l->l_lcpage;
   1839 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1840 		return 0;
   1841 	}
   1842 
   1843 	/* First time around, allocate header structure for the process. */
   1844 	if ((lp = p->p_lwpctl) == NULL) {
   1845 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1846 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1847 		lp->lp_uao = NULL;
   1848 		TAILQ_INIT(&lp->lp_pages);
   1849 		mutex_enter(p->p_lock);
   1850 		if (p->p_lwpctl == NULL) {
   1851 			p->p_lwpctl = lp;
   1852 			mutex_exit(p->p_lock);
   1853 		} else {
   1854 			mutex_exit(p->p_lock);
   1855 			mutex_destroy(&lp->lp_lock);
   1856 			kmem_free(lp, sizeof(*lp));
   1857 			lp = p->p_lwpctl;
   1858 		}
   1859 	}
   1860 
   1861  	/*
   1862  	 * Set up an anonymous memory region to hold the shared pages.
   1863  	 * Map them into the process' address space.  The user vmspace
   1864  	 * gets the first reference on the UAO.
   1865  	 */
   1866 	mutex_enter(&lp->lp_lock);
   1867 	if (lp->lp_uao == NULL) {
   1868 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1869 		lp->lp_cur = 0;
   1870 		lp->lp_max = LWPCTL_UAREA_SZ;
   1871 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1872 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
   1873 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1874 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1875 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1876 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1877 		if (error != 0) {
   1878 			uao_detach(lp->lp_uao);
   1879 			lp->lp_uao = NULL;
   1880 			mutex_exit(&lp->lp_lock);
   1881 			return error;
   1882 		}
   1883 	}
   1884 
   1885 	/* Get a free block and allocate for this LWP. */
   1886 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1887 		if (lcp->lcp_nfree != 0)
   1888 			break;
   1889 	}
   1890 	if (lcp == NULL) {
   1891 		/* Nothing available - try to set up a free page. */
   1892 		if (lp->lp_cur == lp->lp_max) {
   1893 			mutex_exit(&lp->lp_lock);
   1894 			return ENOMEM;
   1895 		}
   1896 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1897 
   1898 		/*
   1899 		 * Wire the next page down in kernel space.  Since this
   1900 		 * is a new mapping, we must add a reference.
   1901 		 */
   1902 		uao = lp->lp_uao;
   1903 		(*uao->pgops->pgo_reference)(uao);
   1904 		lcp->lcp_kaddr = vm_map_min(kernel_map);
   1905 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1906 		    uao, lp->lp_cur, PAGE_SIZE,
   1907 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1908 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1909 		if (error != 0) {
   1910 			mutex_exit(&lp->lp_lock);
   1911 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1912 			(*uao->pgops->pgo_detach)(uao);
   1913 			return error;
   1914 		}
   1915 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1916 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1917 		if (error != 0) {
   1918 			mutex_exit(&lp->lp_lock);
   1919 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1920 			    lcp->lcp_kaddr + PAGE_SIZE);
   1921 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1922 			return error;
   1923 		}
   1924 		/* Prepare the page descriptor and link into the list. */
   1925 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1926 		lp->lp_cur += PAGE_SIZE;
   1927 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1928 		lcp->lcp_rotor = 0;
   1929 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1930 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1931 	}
   1932 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1933 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1934 			i = 0;
   1935 	}
   1936 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1937 	lcp->lcp_bitmap[i] ^= (1U << bit);
   1938 	lcp->lcp_rotor = i;
   1939 	lcp->lcp_nfree--;
   1940 	l->l_lcpage = lcp;
   1941 	offset = (i << 5) + bit;
   1942 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1943 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1944 	mutex_exit(&lp->lp_lock);
   1945 
   1946 	KPREEMPT_DISABLE(l);
   1947 	l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
   1948 	KPREEMPT_ENABLE(l);
   1949 
   1950 	return 0;
   1951 }
   1952 
   1953 /*
   1954  * Free an lwpctl structure back to the per-process list.
   1955  */
   1956 void
   1957 lwp_ctl_free(lwp_t *l)
   1958 {
   1959 	struct proc *p = l->l_proc;
   1960 	lcproc_t *lp;
   1961 	lcpage_t *lcp;
   1962 	u_int map, offset;
   1963 
   1964 	/* don't free a lwp context we borrowed for vfork */
   1965 	if (p->p_lflag & PL_PPWAIT) {
   1966 		l->l_lwpctl = NULL;
   1967 		return;
   1968 	}
   1969 
   1970 	lp = p->p_lwpctl;
   1971 	KASSERT(lp != NULL);
   1972 
   1973 	lcp = l->l_lcpage;
   1974 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1975 	KASSERT(offset < LWPCTL_PER_PAGE);
   1976 
   1977 	mutex_enter(&lp->lp_lock);
   1978 	lcp->lcp_nfree++;
   1979 	map = offset >> 5;
   1980 	lcp->lcp_bitmap[map] |= (1U << (offset & 31));
   1981 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1982 		lcp->lcp_rotor = map;
   1983 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1984 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1985 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1986 	}
   1987 	mutex_exit(&lp->lp_lock);
   1988 }
   1989 
   1990 /*
   1991  * Process is exiting; tear down lwpctl state.  This can only be safely
   1992  * called by the last LWP in the process.
   1993  */
   1994 void
   1995 lwp_ctl_exit(void)
   1996 {
   1997 	lcpage_t *lcp, *next;
   1998 	lcproc_t *lp;
   1999 	proc_t *p;
   2000 	lwp_t *l;
   2001 
   2002 	l = curlwp;
   2003 	l->l_lwpctl = NULL;
   2004 	l->l_lcpage = NULL;
   2005 	p = l->l_proc;
   2006 	lp = p->p_lwpctl;
   2007 
   2008 	KASSERT(lp != NULL);
   2009 	KASSERT(p->p_nlwps == 1);
   2010 
   2011 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   2012 		next = TAILQ_NEXT(lcp, lcp_chain);
   2013 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   2014 		    lcp->lcp_kaddr + PAGE_SIZE);
   2015 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   2016 	}
   2017 
   2018 	if (lp->lp_uao != NULL) {
   2019 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   2020 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   2021 	}
   2022 
   2023 	mutex_destroy(&lp->lp_lock);
   2024 	kmem_free(lp, sizeof(*lp));
   2025 	p->p_lwpctl = NULL;
   2026 }
   2027 
   2028 /*
   2029  * Return the current LWP's "preemption counter".  Used to detect
   2030  * preemption across operations that can tolerate preemption without
   2031  * crashing, but which may generate incorrect results if preempted.
   2032  */
   2033 uint64_t
   2034 lwp_pctr(void)
   2035 {
   2036 
   2037 	return curlwp->l_ncsw;
   2038 }
   2039 
   2040 /*
   2041  * Set an LWP's private data pointer.
   2042  */
   2043 int
   2044 lwp_setprivate(struct lwp *l, void *ptr)
   2045 {
   2046 	int error = 0;
   2047 
   2048 	l->l_private = ptr;
   2049 #ifdef __HAVE_CPU_LWP_SETPRIVATE
   2050 	error = cpu_lwp_setprivate(l, ptr);
   2051 #endif
   2052 	return error;
   2053 }
   2054 
   2055 /*
   2056  * Perform any thread-related cleanup on LWP exit.
   2057  * N.B. l->l_proc->p_lock must be HELD on entry but will
   2058  * be released before returning!
   2059  */
   2060 void
   2061 lwp_thread_cleanup(struct lwp *l)
   2062 {
   2063 	const lwpid_t tid = l->l_lid;
   2064 
   2065 	KASSERT((tid & FUTEX_TID_MASK) == tid);
   2066 	KASSERT(mutex_owned(l->l_proc->p_lock));
   2067 
   2068 	mutex_exit(l->l_proc->p_lock);
   2069 
   2070 	/*
   2071 	 * If the LWP has robust futexes, release them all
   2072 	 * now.
   2073 	 */
   2074 	if (__predict_false(l->l_robust_head != 0)) {
   2075 		futex_release_all_lwp(l, tid);
   2076 	}
   2077 }
   2078 
   2079 #if defined(DDB)
   2080 #include <machine/pcb.h>
   2081 
   2082 void
   2083 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   2084 {
   2085 	lwp_t *l;
   2086 
   2087 	LIST_FOREACH(l, &alllwp, l_list) {
   2088 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
   2089 
   2090 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
   2091 			continue;
   2092 		}
   2093 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
   2094 		    (void *)addr, (void *)stack,
   2095 		    (size_t)(addr - stack), l);
   2096 	}
   2097 }
   2098 #endif /* defined(DDB) */
   2099